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Abstract

We show the perhaps surprising inequality that the weighted average of iid ultra heavy-

tailed (i.e., infinite mean) Pareto losses is larger than a standalone loss in the sense of first-order

stochastic dominance. This result is further generalized to allow for random total number and

weights of Pareto losses and for the losses to be triggered by catastrophic events. We discuss

several implications of these results via an equilibrium analysis in a risk exchange market. First,

diversification of ultra heavy-tailed Pareto losses increases portfolio risk, and thus a diversifica-

tion penalty exists. Second, agents with ultra heavy-tailed Pareto losses will not share risks in

a market equilibrium. Third, transferring losses from agents bearing Pareto losses to external

parties without any losses may arrive at an equilibrium which benefits every party involved. The

empirical studies show that our new inequality can be observed empirically for real datasets that

fit well with ultra heavy tails.

Keywords: Pareto distributions; diversification effect; risk pooling; equilibrium; first-order

stochastic dominance.

1 Introduction

Pareto distributions are arguably the most important class of heavy-tailed loss distributions,

due to their connection to regularly varying tails, Extreme Value Theory (EVT), and power laws

in economics and social networks; see, e.g., Embrechts et al. (1997), de Haan and Ferreira (2006)

and Gabaix (2009). In quantitative risk management, Pareto distributions are frequently used to

model losses from catastrophes such as earthquakes, hurricanes, and wildfires; see, e.g., Embrechts
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et al. (1999). They are also widely used in economics for wealth distributions (e.g., Taleb (2020))

and modeling the tails of financial asset losses and operational risks (e.g., McNeil et al. (2015)).

Andriani and McKelvey (2007) listed over 80 examples of power laws in diverse fields of applications.

By the Pickands-Balkema-de Haan Theorem (Pickands (1975) and Balkema and de Haan (1974)),

generalized Pareto distributions are the only possible non-degenerate limiting distributions of the

residual life time of random variables exceeding a high level.

Stochastic dominance relations are an important tool in economic decision theory which allow

for the analysis of risk preferences for a group of decision makers (Hadar and Russell (1969)). They

have been studied in the forms of first and second degrees (Hadar and Russell (1969) and Rothschild

and Stiglitz (1970)), larger integer degrees (Whitmore (1970) and Caballé and Pomansky (1996)),

and fractional degrees (Müller et al. (2017) and Huang et al. (2020)), and they are widely applied in

the expected utility and dual utility theory (Yaari (1987)), behavioural decision models (Chew et al.

(1987), Baucells and Heukamp (2006) and Schmidt and Zank (2008)), and risk measures (Föllmer

and Schied (2016)). See also Levy (1992, 2016) for the wide applicability of stochastic dominance

relations in decision making.

The strongest form of commonly used stochastic dominance relations is first-order stochastic

dominance, which implies essentially all other forms. For two random variables X and Y repre-

senting random losses, we say X is smaller than Y in first-order stochastic dominance, denoted by

X ≤st Y , if P(X ≤ x) ≥ P(Y ≤ x) for all x ∈ R. Write X 'st Y if X and Y have the same

distribution. The relation X ≤st Y means that all decision makers with an increasing1 utility func-

tion will prefer the loss X to the loss Y , as studied by Quirk and Saposnik (1962) and Hadar and

Russell (1969, 1971), and Müller and Stoyan (2002) and Shaked and Shanthikumar (2007) for the

mathematics of stochastic dominance.

For iid random variables X1, . . . , Xn following a Pareto distribution with infinite mean and

weights θ1, . . . , θn ≥ 0 with
∑n

i=1 θi = 1, our main finding in Theorem 1 is the stochastic dominance

relation

X1 ≤st θ1X1 + · · ·+ θnXn, (1)

and the inequality (1) is strict in a natural sense. As far as we are aware, the inequality (1) is

not known in the literature, even in the case that θ1, . . . , θn are equal (i.e., they are 1/n). It is

somewhat surprising that, for infinite-mean losses, the inequality (1) holds for the strongest form

of risk comparison: for every monotone decision maker (with precise definition in Section 4), a

diversified portfolio of such iid Pareto losses is less preferred to a non-diversified one. We call such

1In this paper, all terms like “increasing” and “decreasing” are in the non-strict sense.
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a stochastic dominance “unexpected” for both its surprising nature and the infinite expectations

involved.

To appreciate the remarkable nature of (1), we first remark that for any identically distributed

random variables X1, . . . , Xn with finite mean, regardless of their distribution or dependence struc-

ture, for θ1, . . . , θn > 0 with
∑n

i=1 θn = 1, (1) can only hold if X1 = · · · = Xn (almost surely), in

which case we have the trivial equality X1 = θ1X1 + · · ·+ θnXn; see Proposition 1. Therefore, the

assumption of infinite mean is very important for (1) to hold.

Observations similar to (1), although with less generality, occur in the literature in different

forms. Samuelson (1967) mentioned that having an infinite mean in portfolio diversification may

lead to a worse distribution; see also p. 271 in Fama and Miller (1972) and Malinvaud (1972). The in-

equality (1) for n = 2 and the Pareto tail parameter α = 1/2 (see Section 2 for the parametrization)

has an explicit formula in Example 7 of Embrechts et al. (2002). Simple numerical examples are

provided by Embrechts and Puccetti (2010, Figure 5.2) and Bauer and Zanjani (2016, Table 2). A

relevant result of Ibragimov (2009) is that for iid random variables Z1, . . . , Zn which follow a convo-

lution of symmetric stable distributions without finite mean, P(θ1Z1 + · · ·+θnZn ≤ x) ≤ P(Z1 ≤ x)

for x > 0 but the opposite holds for x < 0 (and hence first-order stochastic dominance does not

hold2). The symmetry of distributions is essential for this inequality, and Z1, . . . , Zn can take neg-

ative values, unlike Pareto losses, which are positive, skewed and more suitable for the modeling of

extreme losses.

In the realm of banking and insurance, Pareto distributions with infinite mean occur as a

possible mathematical model after careful statistical analysis in several contexts. For instance,

catastrophic losses, operational losses, large insurance losses, and financial returns from technolog-

ical innovations, are often modelled by Pareto distributions without finite mean; Section 1.1 below

collects some examples and related literature.

In risk management, the inequality (1) yields superadditivity of the regulatory risk measure

Value-at-Risk (VaR) in banking and insurance sectors; that is, the weighted average of Pareto losses

without finite mean gives a larger VaR than that given by an individual Pareto loss. Different from

the literature on VaR superadditivity for regularly varying distributions (e.g., Embrechts et al.

(2009) and McNeil et al. (2015)), the superadditivity of VaR implied by (1) holds for all probability

levels, and this not just in some asymptotic sense.

We obtain several generalizations of the inequality (1) for other models in Sections 2 and 3.

2This means that θ1Z1 + · · ·+ θnZn is “more spread out” than Z1. This notion is closer to second-order stochastic
dominance, which captures mean-preserving spreads (although here the mean does not exist); see Ibragimov and
Walden (2007).
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In particular, Proposition 3 in Section 2 deals with losses that are Pareto only in the tail region,

and Theorem 2 in Section 3 addresses losses triggered by catastrophic events, a setting where ultra

heavy-tailed Pareto losses (hence infinite mean) are relevant.

We discuss in Section 4 the implications of (1) and related inequalities on the risk management

decision of a single agent. It follows from (1) that the action of diversification increases the risk of

ultra heavy-tailed Pareto losses uniformly for all risk preferences, such as VaR, expected utilities,

and distortion risk measures, as long as the risk preferences are monotone and well defined. The

increase of the portfolio risk is strict, and it provides an important implication in decision making:

For an agent who faces iid Pareto losses without finite mean and aims to minimize their risk by

choosing a position across these losses, the optimal decision is to take only one of the Pareto losses

(i.e., no diversification).

We proceed to study equilibria of a risk exchange market for Pareto losses under a few different

settings in Section 5. As individual agents do not benefit from diversification in a risk exchange

market where iid Pareto losses without finite mean are present, we may expect that agents will

not share their losses with each other. Indeed, if each agent in the market is associated with an

initial position in one of these Pareto losses, the agents will merely exchange the entire loss position

instead of risk sharing in an equilibrium model (Theorem 3 (i)). The situation becomes quite

different if the agents with initial losses are allowed to transfer their losses to external parties. If

the external agents have a stronger risk tolerance, then it is possible that both the internal and

external agents can benefit by transferring losses from the internal to the external agents (Theorem

4 (ii)). In Proposition 7, we show that agents prefer to share Pareto losses with finite mean among

themselves; this is in sharp contrast to the case of Pareto losses without finite mean. The above

results are consistent with the observations made in Ibragimov et al. (2011) based on a different

model.

In Section 6, numerical and real data examples are presented to illustrate the presence of ultra

heavy tails in two real datasets in which the phenomenon of the inequality (1) can be empirically

observe. We proceed to study the diversification effects of ultra heavy-tailed Pareto losses with

different tail indices. Section 7 concludes the paper. Some background on risk measures is put in

Appendix A, and proofs of all technical results are put in Appendix B.

We fix some notations. Throughout, random variables are defined on an atomless probability

space (Ω,F ,P). Denote by N the set of all positive integers and R+ the set of non-negative real

numbers. For n ∈ N, let [n] = {1, . . . , n}. Denote by ∆n the standard simplex, that is, ∆n =

{(θ1, . . . , θn) ∈ [0, 1]n :
∑n

i=1 θi = 1}. For x, y ∈ R, write x∧ y = min{x, y}, x∨ y = max{x, y}, and
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x+ = max{x, 0}. Recall that X 'st Y means equality in distribution. We always assume n ≥ 2.

1.1 Infinite-mean Pareto models

The key assumption of our paper is that Pareto losses have infinite mean, hence are so-called

ultra heavy-tailed. Whereas statistical models with some divergent higher moments are ubiquitous

throughout the risk management literature, the infinite mean case needs more specific motivation.

For power-tail data, a standard approach for the estimation of the underlying tail parameters is

the Peaks Over Threshold (POT) methodology from EVT; see Embrechts et al. (1997). As we will

discuss in Proposition 3 and Section 6.2, our results apply to the case of the generalized Pareto

distribution which is the basic model for the POT set-up. Below we discuss some examples from the

literature leading to ultra heavy-tailed Pareto models; extra data examples are provided in Section

6.2.3

In the parameterization used in Section 2, a tail parameter α ≤ 1 corresponds to an infinite-

mean Pareto model. Ibragimov et al. (2009) used standard seismic theory to show that the tail

indices α of earthquake losses lie in the range [0.6, 1.5]. Estimated by Rizzo (2009), the tail indices

α for some wind catastrophic losses are around 0.7. Hofert and Wüthrich (2012) showed that the

tail indices α of losses caused by nuclear power accidents are around [0.6, 0.7]; similar observations

can be found in Sornette et al. (2013). Based on data collected by the Basel Committee on Banking

Supervision, Moscadelli (2004) reported the tail indices α of (over 40000) operational losses in 8

different business lines to lie in the range [0.7, 1.2], with 6 out of the 8 tail indices being less than

1, with 2 out of these 6 significantly less than 1 at a 95% confidence level. For a detailed discussion

on the risk management consequences in this case, see Nešlehová et al. (2006). Losses from cyber

risk have tail indices α ∈ [0.6, 0.7]; see Eling and Wirfs (2019), Eling and Schnell (2020) and the

references therein. In a standard Swiss Solvency Test document (FINMA (2021, p. 110)), most

major damage insurance losses are modelled by a Pareto distribution with default parameter α in

the range [1, 2], with α = 1 attained by some aircraft insurance. As discussed by Beirlant et al.

(1999), some fire losses collected by the reinsurance broker AON Re Belgium have tail indices α

around 1. Biffis and Chavez (2014) showed that a number of large commercial property losses

collected from two Lloyd’s syndicates have tail indices α considerably less than 1. Silverberg and

Verspagen (2007) concluded that the tail indices α are less than 1 for financial returns from some

technological innovations. Besides large financial losses and returns, the number of deaths in major

earthquakes and pandemics modelled by Pareto distributions also has infinite mean; see Clark

3For these examples, it turns out that infinite-mean models yield a better overall fit than finite-mean ones, although
one can never say for sure that any real world dataset is generated by an infinite-mean model.
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(2013) and Cirillo and Taleb (2020). Heavy-tailed to ultra heavy-tailed models also occur in the

realm of climate change and environmental economics. Weitzman ’s Dismal Theorem (see Weitzman

(2009)) discusses the break-down of standard economic thinking like cost-benefit analysis in this

context. This led to an interesting discussion with William Nordhaus, a recipient of the 2018 Nobel

Memorial Prize in Economic Sciences; see Nordhaus (2009).

The above references exemplify the occurrence of infinite mean models. Our perspective on

these examples and discussions is that if these models are the result of some careful statistical

analyses, then the practicing modeler has to take a step back and carefully reconsider the risk

management consequences. Of course, in practice there are several methods available to avoid

such ultra heavy-tailed models, like cutting off the loss distribution model at some specific level,

or tapering (concatinating a light-tailed distribution far in the tail of the loss distribution). Our

experience shows that in examples like those referred to above, such corrections often come at

the cost of a great variability depending on the methodology used. It is in this context that our

results add to the existing literature and modeling practice in cases where power-tail data play an

important role.

2 Diversification of Pareto losses without finite mean

2.1 An unexpected stochastic dominance

A common parameterization of Pareto distributions is given by, for θ, α > 0,

Pα,θ(x) = 1−
(
θ

x

)α
, x ≥ θ.

Note that if X ∼ Pα,1, then θX ∼ Pα,θ, and thus θ is a scale parameter. For X ∼ Pα,1, we

write X ∼ Pareto(α). Moreover, the mean of Pareto(α) is infinite if and only if the tail parameter

α ∈ (0, 1]. We say that the Pareto(α) distribution is ultra heavy-tailed if α ≤ 1, and it is moderately

heavy-tailed if α > 1.

Theorem 1. Let X,X1, . . . , Xn be iid Pareto(α) random variables, α ∈ (0, 1]. For (θ1, . . . , θn) ∈

∆n, we have

X ≤st

n∑
i=1

θiXi. (2)

Moreover, for t > 1, P (
∑n

i=1 θiXi > t) > P (X > t) if θi > 0 for at least two i ∈ [n].

Remark 1 (Generalized Pareto distributions). The inequality (2) can be stated equivalently for
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other parameterizations of Pareto distributions without finite mean. For instance, it is often useful

to consider generalized Pareto distributions, which provide an approximation for the excess losses

beyond some high threshold. The generalized Pareto distribution for ξ ≥ 0 is parametrized by

Gξ,β(x) = 1−
(

1 + ξ
x

β

)−1/ξ
, x ≥ 0, (3)

where ξ ≥ 0 (ξ = 0 corresponds to an exponential distribution) and β > 0; see Embrechts et al.

(1997). If ξ ≥ 1, then Gξ,β does not have finite mean. For ξ > 0, a generalized Pareto distribution

in (3) can be converted to P1/ξ,1 through a location-scale transform. Therefore, (2) implies that

for ξ ≥ 1, (β1, . . . , βn) ∈ (0,∞)n and independent random variables Yi ∼ Gξ,βi , i ∈ [n], we have

Y ≤st
∑n

i=1 Yi, where Y ∼ Gξ,β with β =
∑n

i=1 βi.

We will say that a diversification penalty exists if (2) holds, which is naturally interpreted as

that having exposures in multiple iid ultra heavy-tailed Pareto losses is worse than having just one

Pareto loss of the same total exposure. This observation will be generalized to a few other models

later.

To better understand the result in Theorem 1, we stress that (2) cannot be expected if

X1, . . . , Xn have finite mean, regardless of their dependence structure, as summarized in the fol-

lowing proposition.

Proposition 1. For θ1, . . . , θn > 0 with
∑n

i=1 θn = 1 and identically distributed random variables

X,X1, . . . , Xn with finite mean and any dependence structure, (2) holds if and only if X1 = · · · = Xn

almost surely.

Proposition 1 implies, in particular, that (2) never holds for iid non-degenerate random vari-

ables X,X1, . . . , Xn with finite mean. As such, it seems that Theorem 1 yields a clear and ele-

gant methodological distinction between the two modeling environments; the difference between

finite and infinite mean acts as a kind of phase-type transition concerning diversification. Even if

X,X1, . . . , Xn have an infinite mean, we are not aware of any other distributions in the literature

for which (2) holds other than the ones in this paper, all built on the basis of Theorem 1. We

discuss the relation of Theorem 1 to the literature and some immediate relaxations in the next few

remarks.

Remark 2. In the literature of EVT, it has been observed that, for iid ultra heavy-tailed Pareto

risks X1, . . . , Xn,

P

(
1

n

n∑
i=1

Xi > t

)
≥ P (X > t)
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holds true asymptotically as t → ∞; see, e.g., Kaas et al. (2004), Albrecher et al. (2006), and

Embrechts et al. (2009).4 Theorem 1 implies that the same inequality holds for any t ∈ R regardless

of whether t is large enough. This gives rise to implications for decision makers whose preferences

are not determined purely by the tail behaviour of risks; see Sections 4 and 5.

Remark 3. The inequality (2) also holds for some correlated ultra heavy-tailed Pareto risks. First,

the inequality (2) simply holds for perfectly positively dependent ultra heavy-tailed Pareto risks

(i.e., X1 = · · · = Xn almost surely). Therefore, (2) remains true if the dependence structure (i.e.,

copula) of risks X1, . . . , Xn is a mixture of independence and perfectly positive dependence; see

Nelsen (2006) for an introduction to copulas. Besides this specific type of positive dependence

structure, the inequality (2) may also hold for other dependence structures, but a rigorous analysis

is beyond the scope of this paper.

Remark 4. An ultra heavy-tailed Pareto sum is a random variable
∑

j∈N λjYj where Yj ∼ Pareto(αj),

j ∈ N, are independent, αj ∈ (0, 1], λj ∈ R+, and
∑

j∈N λj <∞. The inequality (2) in Theorem 1

holds also for iid ultra heavy-tailed Pareto sums X,X1, . . . , Xn, and this can be shown by applying

Theorem 1 to iid copies of each Yj .

For an equally weighted pool of k iid Pareto losses, it is interesting to see whether enlarging

k increases the risk in first-order stochastic dominance, i.e., for iid Pareto(α) random variables

X1, . . . , X`, α ∈ (0, 1], whether it holds that

1

k

k∑
i=1

Xi ≤st
1

`

∑̀
i=1

Xi for k, ` ∈ N and k ≤ `. (4)

The case of k = 1 in (4) corresponds to (2) with equal weights θ1, . . . , θn. The inequality (4) means

that the more we diversify ultra heavy-tailed Pareto losses, the higher the penalty. In the next

result, we show this inequality for the case that ` is a multiple of k.

Proposition 2. For m,n ∈ N, let X1, . . . , Xmn be iid Pareto(α) random variables, α ∈ (0, 1]. We

have
1

m

m∑
i=1

Xi ≤st
1

mn

mn∑
i=1

Xi.

Based on our numerical results in Section 6.1, we conjecture that the inequality (4) is true also

for the general case that ` is not a multiple of k.

4Such an asymptotic result also holds for dependent ultra heavy-tailed Pareto risks (e.g., Embrechts et al. (2009)
and Kley et al. (2016)).
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2.2 Tail Pareto distributions

As reflected by the Pickands-Balkema-de Haan Theorem (see Theorem 3.4.13 (b) in Embrechts

et al. (1997)), many losses have a power-like tail, but their distributions may not be power-like over

the full support. Therefore, it is practically useful to assume that a random loss has a Pareto

distribution only in the tail region; see the examples in Section 1.1. For α > 0, we say that Y has

a Pareto(α) distribution beyond x ≥ 1 if P(Y > t) = t−α for t ≥ x. Our next result suggests that,

under an extra condition, stochastic dominance also holds in the tail region for such distributions.

Proposition 3. Let Y, Y1, . . . , Yn be iid random variables distributed as Pareto(α) beyond x ≥ 1

and α ∈ (0, 1]. Assume that Y ≥st X ∼ Pareto(α). For (θ1, . . . , θn) ∈ ∆n and t ≥ x, we have

P (
∑n

i=1 θiYi > t) ≥ P (Y > t), and the inequality is strict if t > 1 and θi > 0 for at least two i ∈ [n].

In Proposition 3, the assumption Y ≥st X ∼ Pareto(α), that is, P(Y > t) ≤ t−α for t ∈ [1, x],

is not dispensable. Here we cannot allow the distribution of Y on [1, x] to be arbitrary; the entire

distribution is relevant in order to establish the inequality P (
∑n

i=1 θiYi > t) ≥ P (Y > t), even for

t in the tail region.

Let X,X1, . . . , Xn be iid Pareto(α) random variables with α ∈ (0, 1]. As a particular applica-

tion of Proposition 3, it holds that, for any m ≥ 1,

X ∨m ≤st

n∑
i=1

θi(Xi ∨m). (5)

This inequality follows by noting that X ∨ m has a Pareto distribution beyond m and applying

Proposition 3 to t ≥ m. A location shift of (5) also gives

(X −m)+ ≤st

n∑
i=1

θi(Xi −m)+. (6)

For (5) and (6) to hold, it suffices to assume that X1, . . . , Xn are Pareto(α) beyond m, as their

distribution on (−∞,m] does not matter.

2.3 A classic model in insurance

Theorem 1 can be easily generalized to include random weights and a random number of

risks, which are for instance common in modeling portfolios of insurance losses; see Klugman et

al. (2012). Let N be a counting random variable (i.e., it takes values in {0, 1, 2, . . . }), and Wi and

Xi be positive random variables for i ∈ N. We consider an insurance portfolio where each policy
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incurs a loss WiXi if there is a claim, and N is the total number of claims in a given period of time.

If W1 = W2 = · · · = 1 and X1, X2, . . . are iid, then this model recovers the classic collective risk

model. The total loss of a portfolio of insurance policies is given by
∑N

i=1WiXi, and its average

loss across claims is (
∑N

i=1WiXi)/(
∑N

i=1Wi) where both terms are 0 if N = 0.

Proposition 4. Let X,X1, X2, . . . be iid Pareto(α) random variables, α ∈ (0, 1], W1,W2, . . . be

positive random variables, and N be a counting random variable, such that X, {Xi}i∈N, {Wi}i∈N,

and N are independent. We have

X1{N≥1} ≤st

∑N
i=1WiXi∑N
i=1Wi

and

N∑
i=1

WiX ≤st

N∑
i=1

WiXi. (7)

If P(N ≥ 2) 6= 0, then for t > 1, P(
∑N

i=1WiXi/
∑N

i=1Wi ≤ t) < P(X1{N≥1} ≤ t).

If W1 = W2 = · · · = 1 as in the classic collective risk model, then, under the assumptions of

Proposition 4, we have

X11{N≥1} ≤st
1

N

N∑
i=1

Xi and NX1 ≤st

N∑
i=1

Xi.

To interpret the above inequalities, the average of a randomly counted sequence of iid Pareto(α)

losses is stochastically larger than one member of the sequence if α ≤ 1. Therefore, building an

insurance portfolio for iid ultra heavy-tailed Pareto claims does not reduce the total risk on average.

In this setting, it is less risky to insure one large policy than to insure many independent policies of

the same type of ultra heavy-tailed Pareto loss and thus the basic principle of insurance does not

apply to ultra heavy-tailed Pareto losses.

3 A model for catastrophic losses

Catastrophic losses are large losses that usually occur with very small probabilities. It is

practical to model an individual catastrophic loss as X1A, where A is the triggering event of the

loss such that X1A is Pareto distributed conditional on A (hence, we can assume that X is Pareto

distributed and independent of A). Let A1, . . . , An be the triggering events of independent Pareto

losses X1, . . . , Xn ∼ Pareto(α), α ∈ (0, 1], such that A1, . . . , An are independent of the loss portfolio

(X1, . . . , Xn). Let (θ1, . . . , θn) ∈ Rn+ be the exposure vector. The total loss can then be written as

θ1X11A1 + · · · + θnXn1An . If A1 = · · · = An, meaning that X1, . . . , Xn represent different losses

10



caused by the same catastrophic event, then, by Theorem 1, for λ =
∑n

i=1 θi > 0,

X11A1 ≤st
1

λ

n∑
i=1

θiXi1Ai . (8)

Hence, diversification of losses from the same catastrophe increases the portfolio risk, and thus

there is a diversification penalty. It remains to investigate whether a diversification penalty exists

in this model (i.e., (8) holds) if A1, . . . , An are different, meaning that X1, . . . , Xn may represent

losses caused by different catastrophic events. Diversification has two competing effects on the loss

portfolio: It increases the frequency of having losses and decreases the sizes of the individual losses.

To illustrate the above trade-off, we first look at the diversification of two ultra heavy-tailed

Pareto losses. Let X1, X2 be iid Pareto(α) random variables, α ∈ (0, 1], and A1, A2 be any events

independent of (X1, X2). For simplicity, we assume that (θ1, θ2) = (1/2, 1/2), and P(A1) = P(A2).

We have

1

2
X11A1 +

1

2
X21A2 =

1

2
(X1 +X2)1A1∩A2 +

1

2
X11A1∩Ac

2
+

1

2
X21Ac

1∩A2

'st
1

2
(X1 +X2)1A1∩A2 +

1

2
X11(A1∩Ac

2)∪(Ac
1∩A2)

≥st X11A1∩A2 +
1

2
X11(A1∩Ac

2)∪(Ac
1∩A2),

where the second-last equality holds as A1∩Ac2 and Ac1∩A2 are mutually exclusive and X1 'st X2,

and the last inequality uses 1
2(X1 +X2)1A1∩A2 ≥st X11A1∩A2 which follows by combining Theorem

1 and Theorem 1.A.14 of Shaked and Shanthikumar (2007). Write

X11A1 = X11A1∩A2 +X11A1∩Ac
2
.

Therefore, whether (8) holds in this setting boils down to whether

X11A1∩Ac
2
≤st

1

2
X11(A1∩Ac

2)∪(Ac
1∩A2) (9)

holds. As P(A1) = P(A2), P((A1 ∩Ac2) ∪ (Ac1 ∩A2)) = 2P(A1 ∩Ac2). We write p = P(A1 ∩Ac2). We

can directly compute, for t ≥ 0,

P(X11A1∩Ac
2
> t) = p(t−α ∧ 1) and P

(
1

2
X11(A1∩Ac

2)∪(Ac
1∩A2) > t

)
= (2p)((2t)−α ∧ 1).

Since 2((2t)−α ∧ 1) = 21−α(t−α ∧ 2α) ≥ (t−α ∧ 1), we obtain (9). Hence, diversification of two ultra
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heavy-tailed Pareto losses increases the portfolio risk if the two losses are triggered with the same

probability. Theorem 2 provides a general result for diversifying any number of ultra heavy-tailed

Pareto losses triggered with (possibly) different probabilities. To establish Theorem 2, we need the

following lemma, which itself has a nice interpretation.

Lemma 1. Let X ∼ Pareto(α), α ∈ (0, 1], and B1, . . . , Bn be mutually exclusive events independent

of X. For (c1, . . . , cn) ∈ [0, 1]n, we have

X1A ≤st

n∑
i=1

ciX1Bi ,

where A is an event independent of X satisfying P(A) =
∑n

i=1 ciP(Bi).

Lemma 1 implies X1A ≤st cX1B, where P(A) = cP(B) and c ∈ (0, 1]. This implies that

if we decrease the size of an ultra heavy-tailed Pareto loss (i.e., multiply X by c) and increase

the probability of having the loss (i.e., divide P(A) by c), the loss becomes larger in first-order

stochastic dominance. In general, the stochastic dominance cannot hold if X is a moderately

heavy-tailed Pareto loss (i.e., X has a finite mean). For a moderately heavy-tailed Pareto loss

X, E[cX1B] = E[X1A]. If, in addition, X1A ≤st cX1B holds, then one has X1A 'st cX1B

(Theorem 1.A.8 of Shaked and Shanthikumar (2007)), which does not hold unless c = 1. The above

observation of ultra heavy-tailed Pareto losses consequently leads to Theorem 2.

Theorem 2. Let X1, . . . , Xn be iid Pareto(α) random variables, α ∈ (0, 1], and A1, . . . , An be any

events independent of (X1, ..., Xn). For (θ1, . . . , θn) ∈ Rn+, we have

λX1A ≤st

n∑
i=1

θiXi1Ai , (10)

where λ ≥
∑n

i=1 θi, X ∼ Pareto(α), and A is independent of X satisfying λP(A) =
∑n

i=1 θiP(Ai).

Remark 5. By setting P(A1) = · · · = P(An) = 1, (θ1, . . . , θn) ∈ ∆n and λ = 1, Theorem 2 recovers

the inequality (2) in Theorem 1. Moreover, a strict inequality

P

(
n∑
i=1

θiXi1Ai > t

)
> P (λX1A > t) (11)

similar to Theorem 1 can be expected. A sufficient condition can be obtained using the strict

inequality in Theorem 1: If there exists S ⊆ [n] with at least two elements such that θi > 0 for

i ∈ S and P(BS) > 0 where BS =
(⋂

i∈S Ai
)
∩
(⋂

i∈Sc Aci
)
, then (11) holds for t >

∑
i∈S θi.
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We discuss a special case of Theorem 2, which has practical relevance in risk sharing. Let

P(A1) = · · · = P(An), X = X1, A = A1, and (θ1, . . . , θn) ∈ ∆n. The inequality (10) can be

rewritten as

X11A1 ≤st

n∑
i=1

θiXi1Ai . (12)

The left-hand side of (12) can be regarded as the loss of an agent who keeps their own risk, and the

right-hand side of (12) is the loss of an agent who shares risks with other agents. By pooling among

ultra heavy-tailed Pareto losses, triggered by (possibly) different catastrophes, agents expect to

suffer less loss when their own catastrophic loss occurs. However, every agent in the pool will have

a higher frequency of bearing losses. Theorem 2 shows that the combined effects of diversification

of ultra heavy-tailed Pareto losses lead to a higher probability of default at any capital reserve level,

i.e., P(
∑n

i=1 θiXi1Ai > t) ≥ P(X11A1 > t) for all t > 0.

4 Risk management decisions of a single agent

4.1 No diversification for a monotone agent

As hinted by (12) in Section 3, in a model of catastrophic losses (X1, . . . , Xn) and triggering

events (A1, . . . , An), an agent who can choose between keeping their own risk or sharing risk with

other agents has no incentive to enter the risk sharing pool, because it will increase their total risk.

In this section, we make this observation rigorous by formally considering risk preference models.

Some further notation will be useful. Let X be the set of all random variables, and let L1 ⊆ X

be the set of random variables with finite mean. For X ∈ X , denote by FX the distribution function.

Denote by F−1X the (left) quantile function of X, that is,

F−1X (p) = inf{t ∈ R : FX(t) ≥ p}, p ∈ (0, 1].

For vectors x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn, their dot product is x ·y =
∑n

i=1 xiyi

and we denote by ‖x‖ =
∑n

i=1 |xi|.

Measuring the risk of a financial portfolio is a crucial task in both the banking and insurance

sectors, and it is typically done by calculating the value of a risk measure which maps the portfolio

loss to a real number. A risk measure is a functional ρ : Xρ → R := [−∞,∞], where the domain

Xρ ⊆ X is a set of random variables representing financial losses. We will assume that an agent uses

a risk measure ρ for their preference, in the sense that the agent prefers a smaller value of ρ. Our

notion of a risk measure is quite broad, and it includes not only risk measures in the sense of Artzner
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et al. (1999) and Föllmer and Schied (2016) but also decision models such as the expected utility by

flipping the sign. However, we need to be clear that most classic expected utility models or convex

risk measures (standard properties of risk measures are collected in Appendix A) in the literature

are not suitable for our setting, because the ultra heavy-tailed Pareto losses do not have a finite

mean, and most expected utility functions and convex risk measures will take infinite values when

evaluating these losses. Nevertheless, we will soon see that there are still many useful examples of

risk measures conforming with our setting.

To interpret our main results, we only need minimal assumptions of monotonicity on ρ, in the

following two forms.

(a) Weak monotonicity: ρ(X) ≤ ρ(Y ) for X,Y ∈ Xρ if X ≤st Y .

(b) Mild monotonicity: ρ is weakly monotone and ρ(X) < ρ(Y ) if F−1X < F−1Y on (0, 1).

Each of weak and mild monotonicity implies that ρ(X) = ρ(Y ) holds for X 'st Y . Common

examples of preference models are all mildly monotone; we highlight some examples. First, for an

increasing utility function u, the expected utility agent can be represented by a risk measure Ev,

namely

Ev(X) = E[v(X)], X ∈ XEv := {Y ∈ X : E[|v(Y )|] <∞},

where v(x) = −u(−x) is also increasing. It is clear that Ev is mildly monotone if v or u is strictly

increasing. The next examples are the two widely used regulatory risk measures in insurance and

finance, Value-at-Risk (VaR) and Expected Shortfall (ES). For X ∈ X and p ∈ (0, 1), VaR is defined

as

VaRp(X) = F−1X (p) = inf{t ∈ R : FX(t) ≥ p}, (13)

and ES is defined as

ESp(X) =
1

1− p

∫ 1

p
VaRu(X)du.

For X /∈ L1, such as the ultra heavy-tailed Pareto losses, ESp(X) can be ∞, whereas VaRp(X) is

always finite. VaR is mildly monotone on X , whereas ES is mildly monotone only on L1.

In Theorems 1 and 2, we have established a diversification penalty for two models, which we

will denote by Y = (Y1, . . . , Yn). In both models A and B below, let X,X1, . . . , Xn be iid Pareto(α)

random variables, α ∈ (0, 1], and (θ1, . . . , θn) ∈ ∆n.

A. Yi = Xi, i ∈ [n] and Y = X.

B. Yi = Xi1Ai , i ∈ [n] and Y = X1A, where A1, . . . , An are any events independent of (X1, ..., Xn),

and A is independent of X and satisfies P(A) =
∑n

i=1 θiP(Ai).
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From now on, we will assume that Xρ contains the random variables in models A and B (this puts

some restrictions on v for Ev since E[X] =∞). The following result on the diversification penalty

of ultra heavy-tailed Pareto losses for a monotone agent follows directly from Theorems 1 and 2.

Proposition 5. For (θ1, . . . , θn) ∈ ∆n and a weakly monotone risk measure ρ : Xρ → R, for both

models A and B, we have

ρ

(
n∑
i=1

θiYi

)
≥ ρ(Y ). (14)

The inequality in (14) is strict for model A if ρ is mildly monotone and θi > 0 for at least two

i ∈ [n].

We distinguish strict and non-strict inequalities in (14) because a strict inequality has stronger

implications on the optimal decision of an agent. As an important consequence of Proposition 5,

for p ∈ (0, 1) and (θ1, . . . , θn) ∈ ∆n, in models A and B,

VaRp

(
n∑
i=1

θiYi

)
≥ VaRp(Y ), (15)

and if θi > 0 for at least two i ∈ [n], then, in model A,

VaRp

(
n∑
i=1

θiYi

)
>

n∑
i=1

θiVaRp(Yi). (16)

The inequality (16) and its non-strict version will be referred to as diversification penalty for VaRp.

Remark 6. Diversification penalty for VaRp also holds for other models that we consider. For

instance, by Proposition 3, if Y, Y1, . . . , Yn are iid Pareto(α) beyond x ≥ 1 and Y ≥st X ∼ Pareto(α),

then inequalities (15) and (16) hold for p ≥ 1− x−α.

From now on, we will focus on model A as it allows us to have a simple interpretation of the

diversification penalty as in (16). Since all commonly used preference models are mildly monotone,

Proposition 5 suggests that diversification of ultra heavy-tailed Pareto losses is detrimental for the

agent.

Proposition 5 implies the following optimal decision for an agent in a market where several iid

ultra heavy-tailed Pareto losses are present. Suppose that the agent needs to decide on a position

w ∈ Rn+ across these losses to minimize the total risk. The agent faces a total loss w ·Y − g(‖w‖)

where the function g represents a compensation that depends on w through ‖w‖, and Y is as in
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model A or B. The agent’s optimization problem then becomes

to minimize ρ (w ·Y − g(‖w‖)) subject to w ∈ Rn+ and ‖w‖ = w with given w > 0, (17)

or

to minimize ρ (w ·Y − g(‖w‖)) subject to w ∈ Rn+. (18)

For i ∈ [n], let ei,n be the ith column vector of the n×n identity matrix, and Ew = {wei,n : i ∈ [n]}

for w ≥ 0, which represents the positions of only taking one loss with exposure w.

Proposition 6. Let ρ : Xρ → R be weakly monotone and g : R→ R.

(i) For model A, if ρ is mildly monotone, then the set of minimizers of (17) is Ew, and that of

of (18) is contained in
⋃
w∈R+

Ew.

(ii) For models A and B, if (17) has an optimizer, then it has an optimizer in Ew; if (18) has an

optimizer, then it has an optimizer in
⋃
w∈R+

Ew.

Remarkably, there are almost no restrictions on ρ and g in Proposition 6 other than mono-

tonicity of ρ, and hence this result can be applied to many economic decision models.

Remark 7. Since ESp is ∞ for the losses in models A and B, Proposition 6 applied to ES gives

the trivial statement that every position has infinite risk. The main context of application for

Proposition 6 should be risk measures which are finite for losses in models A and B, such as VaR,

Ev with some sublinear v, and Range Value-at-Risk (RVaR); see Appendix A for the definition of

RVaR.

4.2 A model of excess-of-loss reinsurance coverage

Next, we assume the agent is an insurance company. In practice, insurers seek reinsurance

coverage to transfer their losses. One of the most popular catastrophe reinsurance coverages is the

excess-of-loss coverage; see OECD (2018). Therefore, it is interesting to consider heavy-tailed losses

bounded at some thresholds. Catastrophe excess-of-loss coverage can be provided on per-loss or

aggregate basis. We will see that the result in Proposition 5 holds if the excess-of-loss coverage is

provided on either per-loss basis with high thresholds or aggregate basis.

We first discuss the case that the excess-of-loss coverage is provided on a per-loss basis, where

non-diversification traps may exist for insurers; see Ibragimov et al. (2009). For X1, . . . , Xn ∼

Pareto(α), α ∈ (0, 1], take Yi = Xi ∧ ci, where ci > 1 is the threshold, i = 1, . . . , n. Note that each

Yi is bounded. Since Yi has a finite mean, we cannot expect (15) or (16) to hold for all p ∈ (0, 1).
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Nevertheless, we will see below that for a given p and large c1, . . . , cn, (16) holds, and thus there

exists a diversification penalty for VaRp.

For p ∈ (0, 1) and (θ1, . . . , θn) ∈ ∆n, take ci ≥ VaRp(
∑n

i=1 θiXi)/θi for i ∈ [n]. Given that

Xi ≥ ci for i ∈ [n], the distribution of Xi does not contribute to the calculation of VaRp(
∑n

i=1 θiXi),

and we have VaRp(
∑n

i=1 θiYi) = VaRp(
∑n

i=1 θiXi). Therefore, (16) holds for this choice of p and

(c1, . . . , cn). Hence, a diversification penalty for VaRp exists for a fixed p if the thresholds c1, . . . , cn

are high enough.

If the excess-of-loss coverage is provided on an aggregate basis, then stochastic dominance

holds as X1 ∧ c ≤st (
∑n

i=1 θiXi)∧ c where c > 1 is the threshold; indeed the inequality is preserved

under a monotone transform. Hence, for any weakly monotone risk measure ρ : X → R, we have

ρ(X1 ∧ c) ≤ ρ((
∑n

i=1 θiXi) ∧ c), and a diversification penalty exists for ρ. Unlike the situation

of model A in Proposition 5, strict inequality may not hold for ρ = VaRp because X1 ∧ c and

(
∑n

i=1 θiXi) ∧ c have the same p-quantile c for large p. Nevertheless, for the expected utility

preference Ev, we have

E[v(X1 ∧ c)] < E[v((θ1X1 + · · ·+ θnXn) ∧ c)],

for c > 1 and v strictly increasing on [1, c]. This is because Ev is strictly monotone in the sense

that for X ≤st Y taking values in [1, c] and X 6'st Y , we have Ev(X) < Ev(Y ).

Remark 8. If the minimum in the above discussion is replaced by a maximum, then stochastic

dominance holds, as discussed in (5) and (6).

5 Equilibrium analysis in a risk exchange economy

5.1 The Pareto risk sharing market model

Suppose that there are n ≥ 2 agents in a risk exchange market. Let X = (X1, . . . , Xn), where

X1, . . . , Xn are iid Pareto(α) random variables with α > 0. The ith agent faces a loss aiXi, where

ai > 0 is the initial exposure. In other words, the initial exposure vector of agent i is ai = aiei,n,

and the corresponding loss can be written as ai ·X = aiXi.

In a risk exchange market, each agent decides whether and how to share the losses with the

other agents. For i ∈ [n], let pi ≥ 0 be the premium (or compensation) for one unit of loss Xi;

that is, if an agent takes b ≥ 0 units of loss Xi, it receives the premium bpi, which is linear in b.

Denote by p = (p1, . . . , pn) ∈ Rn+ the (endogenously generated) premium vector. Let wi ∈ Rn+ be

17



the exposure vector of the ith agent from X after risk sharing. Then the loss of agent i ∈ [n] after

risk sharing is

Li(w
i,p) = wi ·X− (wi − ai) · p.

For each i ∈ [n], assume that agent i is equipped with a risk measure ρi : X → R, where X

contains the convex cone generated by {X} ∪ Rn. Moreover, there is a cost associated with taking

a total risk position ‖wi‖ different from the initial total exposure ‖ai‖. The cost is modelled by

ci(‖wi‖−‖ai‖), where ci is a non-negative convex function satisfying ci(0) = 0. Some examples of ci

are ci(x) = 0 (no cost), ci(x) = λi|x| (linear cost), ci(x) = λix
2 (quadratic cost), and ci(x) = λix+

(cost only for excess risk taking), where λi > 0. We denote by c′i−(x) and c′i+(x) the left and right

derivatives of ci at x ∈ R, respectively.

The above setting is called a Pareto risk sharing market. In this risk sharing market, the goal

of each agent is to choose an exposure vector so that their own risk is minimized, i.e., minimizing

ρi(Li(w
i,p)) + ci(‖wi‖ − ‖ai‖) over wi ∈ Rn+, i ∈ [n]. An equilibrium of the market is a tuple(

p∗,w1∗, . . . ,wn∗) ∈ (Rn+)n+1 if the following two conditions are satisfied.

(a) Individual optimality:

wi∗ ∈ arg min
wi∈Rn

+

{
ρi
(
Li(w

i,p∗)
)

+ ci(‖wi‖ − ‖ai‖)
}
, for each i ∈ [n]. (19)

(b) Market clearance:
n∑
i=1

wi∗ =
n∑
i=1

ai. (20)

In this case, the vector p∗ is an equilibrium price, and (w1∗, . . . ,wn∗) is an equilibrium allocation.

Some of our results rely on a popular class of risk measures, many of which can be applied to

ultra heavy-tailed Pareto losses. A distortion risk measure is defined as ρ : Xρ → R, via

ρ(Y ) =

∫ 0

−∞
(h(P(Y > x))− 1)dx+

∫ ∞
0

h(P(Y > x))dx, (21)

where h : [0, 1] → [0, 1], called the distortion function, is a nondecreasing function with h(0) = 0

and h(1) = 1. The distortion risk measure ρ, up to sign change, coincides with the dual utility of

Yaari (1987) in decision theory. As a class of risk measures, it includes VaR, ES, and RVaR as

special cases, and almost all distortion risk measures are mildly monotone (see Proposition A.1).

We assume that Xρ contains the convex cone generated by {X} ∪Rn; this always holds in case ρ is

VaR or RVaR, and it holds for ρ being ES if α > 1.
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5.2 No risk exchange for ultra heavy-tailed Pareto losses

As anticipated from Proposition 6, each agent’s optimal strategy is not to share with the other

agents if their risk measure is mildly monotone and the Pareto losses are ultra heavy-tailed. This

observation is made rigorous in the following result, where we obtain a necessary condition for all

possible equilibria in the market, as well as two different conditions in the case of distortion risk

measures. As before, let X be a generic Pareto(α) random variable.

Theorem 3. In a Pareto risk sharing market, suppose that α ∈ (0, 1], and ρ1, . . . , ρn are mildly

monotone.

(i) All equilibria
(
p∗,w1∗, . . . ,wn∗) (if they exist) satisfy p∗ = (p, . . . , p) for some p ∈ R+ and(

w1∗, . . . ,wn∗) is an n-permutation of (a1, . . . ,an).

(ii) Suppose that ρ1, . . . , ρn are distortion risk measures on X . The tuple
(
(p, . . . , p),a1, . . . ,an

)
is an equilibrium if p satisfies

c′i+(0) ≥ p− ρi(X) ≥ c′i−(0) for i ∈ [n]. (22)

(iii) Suppose that ρ1, . . . , ρn are distortion risk measures on X . If (p, . . . , p) is an equilibrium price,

then

max
j∈[n]

c′i+(aj − ai) ≥ p− ρi(X) ≥ min
j∈[n]

c′i−(aj − ai) for i ∈ [n]. (23)

Theorem 3 (i) states that, even if there is some risk exchange in an equilibrium, the agents

merely exchange positions entirely instead of sharing a pool. This observation is consistent with

Theorem 1, which says that diversification among multiple ultra heavy-tailed Pareto losses increases

risk in a uniform sense. As there is no diversification in the optimal allocation for each agent, taking

any of these iid losses is equivalent for the agent, and the equilibrium price should be identical across

losses. Part (ii) suggests that if ci has a kink at 0, i.e., c′i(0+) > 0 > c′i(0−), then p can be an

equilibrium price if it is very close to ρi(X) in the sense of (22). Conversely, in part (iii), if p is an

equilibrium price, then it needs to be close to ρi(X) for i ∈ [n] in the sense of (23). This observation

is quite intuitive because by (i), the agents will not share losses but rather keep one of them in an

equilibrium. If the price of taking one unit of the loss is too far away from an agent’s assessment

of the loss, it may have an incentive to move away, and the equilibrium is broken.

As a general message, the equilibrium price p should be very close to the individual risk

assessments, and hence the risk sharing mechanism does not benefit the agents. Indeed, in (ii), the
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equilibrium allocation is equal to the original exposure, and there is no welfare gain. We will see

later in Section 5.3 that in the presence of an external market, the picture is drastically different:

the agents will benefit from transferring some losses to an external market.

In general, (22) and (23) are not equivalent, but in the two cases below, they are.

(a) a1 = · · · = an;

(b) c1 = · · · = cn = 0.

In either case, both (22) and (23) are a necessary and sufficient condition for (p, . . . , p) to be an

equilibrium price. Hence, the tuple
(
p∗,w1∗, . . . ,wn∗) is an equilibrium if and only if (22) holds and

(w1∗, . . . ,wn∗) is an n-permutation of (a1, . . . ,an), which can be checked by Theorem 3 (i). In case

(a), p cannot be too far away from ρi(X) for each i ∈ [n]. In case (b), p = ρ1(X) = · · · = ρn(X),

and an equilibrium can only be achieved when all agents agree on the risk of one unit of the loss

and use this assessment for pricing.

Although the agents will not benefit from sharing ultra heavy-tailed Pareto losses, the situation

becomes different if these Pareto losses are moderately heavy-tailed, which will be discussed in

Section 5.4.

Example 1 (Equilibrium for VaR agents with no costs). Suppose that ci = 0 for i ∈ [n]. Let

ρi = VaRq, q ∈ (0, 1), i ∈ [n]. The tuple
(
p∗,w1∗, . . . ,wn∗) is an equilibrium where p∗ = ((1 −

q)−1/α, . . . , (1 − q)−1/α), and (w1∗, . . . ,wn∗) is an n-permutation of (a1, . . . ,an). For i ∈ [n],

ρi
(
Li(w

i∗,p∗)
)

= VaRq(aiX) = ai(1− q)−1/α.

Remark 9. We offer a few further technical remarks on Theorem 3.

1. Theorem 3 (ii) and (iii) remain valid for all mildly monotone, translation invariant, and

positively homogeneous risk measures.

2. If the range of wi = (wi1, . . . , w
i
n) in (19) is constrained to 0 ≤ wij ≤ aj for j ∈ [n], then(

(p, . . . , p),a1, . . . ,an
)

in Theorem 3 (ii) is still an equilibrium under the condition (22).

However, the characterization statement in (i) is no longer guaranteed, which can be seen

from the proof of Theorem 3 in Appendix B. As a result, (iii) cannot be obtained either.

3. The Pareto risk sharing market is closely related to model A in Section 4. Since model B has

similar properties to model A in Proposition 6, we can check that the equilibrium in Theorem

3 (ii) still holds if we replace model A by model B, where the triggering events have the same

probability of occurrence (i.e., P(A1) = · · · = P(An)). However, we cannot guarantee that all
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equilibria for model B have the form in (i) since holding one of the ultra heavy-tailed Pareto

risks may not be the only optimal strategy for agents in model B; see Proposition 6.

5.3 A market with external risk transfer

In the setting of Section 5.2, we have considered a risk exchange within the group of n agents,

each of which has an initial loss. Next, we consider an extended market with external agents to

which risk can be transferred with compensation from the internal agents.

As we have seen from Theorem 3, agents cannot reduce their risks by sharing ultra heavy-tailed

losses within the group. As such, they may seek to transfer their risks to other parties external

to the group. In this context, the internal agents are risk bearers, and the external agents are

institutional investors without initial position of ultra heavy-tailed Pareto losses.

Consider a Pareto risk sharing market with n internal agents and m ≥ 1 external agents

equipped with the same risk measure ρE : X → R. Let uj ∈ Rn+ be the exposure vector of the jth

external agent after sharing the risks of the internal agents, j ∈ [m]. For the jth external agent,

the loss for taking position uj is

LE(uj ,p) = uj ·X− uj · p,

where p = (p1, . . . , pn) is the premium vector. Like the internal agents, the goal of the exter-

nal agents is to minimize their risk plus cost. That is, for j ∈ [m], external agent j minimizes

ρE
(
LE(uj ,p)

)
+ cE(‖uj‖), where cE is a non-negative cost function satisfying cE(0) = 0.

For tractability, we will also make some simplifying assumptions on the internal agents. We

assume that the internal agents have the same risk measure ρI and the same cost function cI .

Assume that cI and cE are strictly convex and continuously differentiable except at 0, and ρI and

ρE are mildly monotone distortion risk measures defined on X . In addition, all internal agents

have the same amount a > 0 of initial loss exposures, i.e., a = a1 = · · · = an. Finally, we consider

the situation where the number of external agents is larger than the number of internal agents by

assuming that m = kn, where k is a positive integer, possibly large.

An equilibrium of this market is a tuple (p∗,w1∗, . . . ,wn∗,u1∗, . . . ,um∗) ∈ (Rn+)n+m+1 if the

following two conditions are satisfied.
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(a) Individual optimality:

wi∗ ∈ arg min
wi∈Rn

+

{
ρI
(
Li(w

i,p∗)
)

+ cI(‖wi‖ − ‖ai‖)
}
, for each i ∈ [n]; (24)

uj∗ ∈ arg min
uj∈Rn

+

{
ρE
(
LE(uj ,p∗)

)
+ cE(‖uj‖)

}
, for each j ∈ [m]. (25)

(b) Market clearance:
n∑
i=1

wi∗ +
m∑
j=1

uj∗ =
n∑
i=1

ai. (26)

The vector p∗ is an equilibrium price, and (w1∗, . . . ,wn∗) and (u1∗, . . . ,um∗) are equilibrium allo-

cations for the internal and external agents, respectively. Before identifying the equilibria in this

market, we first make some simple observations. Let

LE(b) = c′E(b) + ρE(X) and LI(b) = c′I(b) + ρI(X), b ∈ R.

We will write L−I (0) = c′I−(0) + ρI(X) and L+
I (0) = c′I+(0) + ρI(X) to emphasize that the left and

right derivative of cI may not coincide at 0; this is particularly relevant in Theorem 3 (ii). On the

other hand, LE(0) only has one relevant version since the allowed position is non-negative. Note

that both LE and LI are continuous except at 0 and strictly increasing.

If an external agent takes only one source of loss (intuitively optimal from Proposition 6)

among X1, . . . , Xn (we use the generic variable X for this loss), then LE(b) is the marginal cost

of further increasing their position at bX. As a compensation, this agent will also receive p.

Therefore, the external agent has incentives to participate in the risk sharing market if p > LE(0).

If p ≤ LE(0), due to the strict convexity of cE , this agent will not take any risks. On the other

hand, if p ≥ L−I (0), which means that it is expensive to transfer the loss externally, then the

internal agent has no incentive to transfer. For a small risk exchange to benefit both parties, we

need LE(0) < p < L−I (0). This implies, in particular,

ρE(X) ≤ LE(0) < p < L−I (0) ≤ ρI(X),

which means that the risk is more acceptable to the external agents than to the internal agents,

and the price is somewhere between the two risk assessments. The above intuition is helpful to

understand the conditions in the following theorem.

Theorem 4. In the Pareto risk sharing market of n internal and m = kn external agents, suppose
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that α ∈ (0, 1]. Let E = (p,w1∗, . . . ,wn∗,u1∗, . . . ,um∗).

(i) If LE(a/k) < LI(−a), then there is no equilibrium.

(ii) Suppose that LE(a/k) ≥ LI(−a) and LE(0) < L−I (0). Let u∗ be the unique solution to

LE(u) = LI(−ku), u ∈ (0, a/k]. (27)

The tuple E is an equilibrium if and only if p = (p, . . . , p), p = LE(u∗), (u1∗, . . . ,um∗) =

u∗(ek1,n, . . . , ekm,n), and (w1∗, . . . ,wn∗) = (a − ku∗)(e`1,n, . . . , e`n,n), where k1, . . . , km ∈ [n]

and `1, . . . , `n ∈ [n] such that u∗
∑m

j=1 1{kj=s} + (a− ku∗)
∑n

i=1 1{`i=s} = a for each s ∈ [n].

Moreover, if u∗ < a/(2k), then the tuple E is an equilibrium if and only if p = (p, . . . , p),

p = LE(u∗), (u1∗, . . . ,um∗) is a permutation of u∗(ed1/ke,n, . . . , edm/ke,n), and (w1∗, . . . ,wn∗)

is a permutation of (a− ku∗)(e1,n, . . . , en,n).

(iii) Suppose that LE(0) ≥ L−I (0). The tuple E is an equilibrium if and only if p = (p, . . . , p),

p ∈ [L−I (0), LE(0) ∧ L+
I (0)], (u1∗, . . . ,um∗) = (0, . . . , 0), and (w1∗, . . . ,wn∗) is a permutation

of a(e1,n, . . . , en,n).

To interpret Theorem 4 (i), note that LE(a/k) < LI(−a) implies LE(u) < LI(w − a) for

all u ∈ [0, a/k] and w ∈ [0, a]. It means that if the price of transferring a unit of risk is in

[LE(a/k), LI(−a)], the optimal position for each internal agent will be 0, and the external agents

will have the incentives to increase their exposures from 0 to more than a/k. In this case, the

individual optimality conditions (24) and (25) and the clearance condition (26) cannot be satisfied

at the same time. Therefore, there is no equilibrium.

Compared with Theorem 3, where no benefits exist from risk sharing among the internal agents,

Theorem 4 (ii) implies that in the presence of external agents, every party in the market may get

better from risk sharing. More specifically, if LE(0) < L−I (0), (i.e., the marginal cost of increasing

an external agent’s position from 0 is smaller than the marginal benefit of decreasing an internal

agent’s position from a), there exists an equilibrium price p ∈ [LE(0), L−I (0)] such that both internal

and external agents in the market can improve their objectives. The condition LE(0) < L−I (0) is

crucial to such a win-win situation, as a price less than L−I (0) will motivate the internal agents to

transfer risk, and a price greater than LE(0) will motivate the external agents to receive risks. As

shown by Theorem 4 (iii), if LE(0) ≥ L−I (0), there are no incentives for the internal and external

agents to participate in the risk sharing market, and their positions remain the same. Moreover, if

u∗ < a/2k, i.e, the optimal position of each external agent is very small compared with the total
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position of each loss in the market, the loss Xi for each i ∈ [n], has to be shared by one internal

agent and k external agents in order to achieve an equilibrium.

We make further observations on Theorem 4 (ii). From (27), it is straightforward to see

that if k gets larger (more external agents are in the market), the equilibrium price p gets smaller.

Intuitively, as more external agents are willing to take risks, they have to make some compromise on

the received compensation to get the amount of risks they want. The lower price further motivates

the internal agents to transfer more risks to the external agents. Indeed, by (27), ku∗ gets larger

as k increases. On the other hand, u∗ gets smaller as k increases. In the equilibrium model, each

external agent will take less risk if more external agents are in the market. These observations can

be seen more clearly in the example below.

Example 2 (Quadratic cost). Suppose that the conditions in Theorem 4 (ii) are satisfied (this

implies ρE(X) < ρI(X) in particular), cI(x) = λIx
2, and cE(x) = λEx

2, x ∈ R, where λI , λE > 0.

We can compute the equilibrium price

p =
kλI

kλI + λE
ρE(X) +

λE
kλI + λE

ρI(X).

Therefore, the equilibrium price is a weighted average of ρE(X) and ρI(X), where the weights

depend on k, λI , and λE . We also have the equlibrium allocations u∗ = (u, . . . , u) and w∗ =

(w, . . . , w) where

u =
ρI(X)− ρE(X)

2(kλI + λE)
and w =

k(ρE(X)− ρI(X))

2(kλI + λE)
+ a.

It is clear that p moves in the opposite direction of k. Moreover, if more external agents are in

the market, each external agent will take fewer losses, while each internal agent will transfer more

losses to the external agents. If λI increases, the internal agents will be less motivated to transfer

their losses. To compensate for the increased penalty, the price paid by the internal agents will

decrease so that they are still willing to share risks to some extent. The interpretation is similar if

λE changes. Although the increase of different penalties (λE or λI) have different impacts on the

price, the increase of either λE or λI leads to less incentives for the internal and external agents to

participate in the risk sharing market.

5.4 Risk exchange for moderately heavy-tailed Pareto losses

In contrast to the settings in Sections 5.2 and 5.3, we consider moderately heavy-tailed Pareto

losses below. The following proposition shows that agents prefer to share moderately heavy-tailed
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Pareto losses among themselves if they are equipped with ES.

Proposition 7. In the Pareto risk sharing market, suppose that α ∈ (1,∞), and ρ1 = · · · = ρn =

ESq for some q ∈ (0, 1). Let

wi∗ =
ai∑n
j=1 aj

n∑
j=1

aj for i ∈ [n] and p∗ = (E [X1|A] , . . . ,E [Xn|A]) ,

where A = {
∑n

i=1 aiXi ≥ VaRq (
∑n

i=1 aiXi)}. Then the tuple
(
p∗,w1∗, . . . ,wn∗) is an equilibrium.

A sharp contrast is visible between the equilibrium in Theorem 3 and that in Proposition 7.

For α ∈ (0, 1], the equilibrium price is the same across individual losses, and agents do not share

losses at all. For α ∈ (1,∞) and ES agents, each individual loss has a different equilibrium price,

and agents share all losses proportionally.

We choose the risk measure ES here because it leads to an explicit expression of the equilibrium.

Although ES is not finite for ultra heavy-tailed Pareto losses (thus, it does not fit Theorem 3), it

can be approximated arbitrarily closely by RVaR (e.g., Embrechts et al. (2018)) which fits the

condition of Theorem 3. By this approximation, we expect a similar situation if ES in Proposition

7 is replaced by RVaR, although we do not have an explicit result.

Remark 10. Proposition 7, in the case of Pareto(α), α > 1, works for all convex risk measures.

The intuition is that the value of convex risk measures can be reduced by diversification, i.e.,

ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ) where ρ is a convex risk measure, X and Y are two

random variables with finite mean, and λ ∈ (0, 1). Convex risk measures are not suitable for the

case of ultra heavy-tailed Pareto risks as they will always be infinite for risks without finite mean

(see e.g., Filipović and Svindland (2012)).

6 Numerical examples

6.1 Diversification effects as n increases

For α ∈ (0, 1], p ∈ (0, 1), and iid Pareto(α) random variables X1, . . . , Xn, we compute

VaRp(
∑n

i=1Xi/n) for n = 2, . . . , 6. From Figure 1, we observe that VaRp(
∑n

i=1Xi/n) increases

as n increases. The difference between the curves for different n becomes more pronounced as α

becomes smaller, i.e., the tail of the Pareto losses becomes heavier. From these numerical results,

we may expect that

1

k

k∑
i=1

Xi ≤st
1

`

∑̀
i=1

Xi,
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where k, ` ∈ N and k ≤ `. We were only able to show the case where ` is a multiple of k in

Proposition 2.
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Figure 1: VaRp((X1 + · · ·+Xn)/n) for n = 2, . . . , 6 and p ∈ (0.9, 0.96).

6.2 Examples of ultra heavy-tailed Pareto losses

In addition to the many examples mentioned in Section 1.1, we provide two further data

examples: a first one on marine losses, and a second one on suppression costs of wildfires. Using

EVT, we will show that both examples exhibit infinite mean behavior. The marine losses dataset,

from the insurance data repository CASdatasets,5 was originally collected by a French private

insurer and comprises 1,274 marine losses (paid) between January 2003 and June 2006. The wildfire

dataset6 contains 10,915 suppression costs in Alberta, Canada from 1983 to 1995. For the purpose of

this section, we only provide the Hill estimates of these two datasets, although a more detailed EVT

analysis is available (see McNeil et al. (2015)). The Hill estimates of the tail indices α are presented

in Figure 2, where the black curves represent the point estimates and the red curves represent the

95% confidence intervals with varying thresholds; see McNeil et al. (2015) for more details on the

Hill estimator. As suggested by McNeil et al. (2015), one may roughly chose a threshold around

the top 5% order statistics of the data. Following this suggestion, the tail indices α for the marine

losses and wildfire suppression costs are estimated as 0.916 and 0.847 with 95% confidence intervals

being (0.674, 1.158) and (0.776, 0.918), respectively; thus, these losses/costs have infinite mean if

they follow Pareto distributions in their tails regions.

The observations in Figure 2 suggest that the two loss datasets may have similar tail param-

eters. As discussed in Remark 1, Theorem 1 can be applied to generalized Pareto distributions. If

two loss random variables X1 and X2 are independent and follow generalized Pareto distributions

5Available at http://cas.uqam.ca/.
6Available at https://wildfire.alberta.ca/resources/historical-data/historical-wildfire-database.

aspx.
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Figure 2: Hill plots for the marine losses and wildfire suppression costs: For each risk, the Hill
estimates are plotted as black curve with the 95% confidence intervals being red curves.

with the same tail parameter α = 1/ξ < 1 (see (3)), then, for all p ∈ (0, 1),

VaRp(X1 +X2) > VaRp(X1) + VaRp(X2). (28)

Even if X1 and X2 are not Pareto distributed, as long as their tails are Pareto, (28) may hold for

p relatively large, as suggested by Proposition 3 and Remark 6.

We will verify (28) on our datasets to show how the implication of our main results holds for

real data. Since the marine losses data were scaled to mask the actual losses, we renormalize it by

multiplying the data by 500 to make it roughly on the same scale as that of the wildfire suppression

costs;7 this normalization does not matter for (28) and is made only for better visualization. Let F̂1

be the empirical distribution of the marine losses (renormalized) and F̂2 be the empirical distribution

of the wildfire suppression costs. Take independent random variables Ŷ1 ∼ F̂1 and Ŷ2 ∼ F̂2. Let

F̂1⊕ F̂2 be the distribution with quantile function p 7→ VaRp(Ŷ1) + VaRp(Ŷ2), i.e., the comonotonic

sum, and F̂1 ∗ F̂2 be the distribution of Ŷ1 + Ŷ2, i.e., the independent sum.

The differences between the distributions F̂1 ⊕ F̂2 and F̂1 ∗ F̂2 can be seen in Figure 3a. We

observe that F̂1 ∗ F̂2 is less than F̂1⊕ F̂2 over a wide range of loss values. In particular, the relation

holds for all losses less than 267,659.5 (marked by the vertical line in Figure 3a). Equivalently, we

7The average marine losses (renormalized) and the average wildfire suppression costs are 12400 and 12899.
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can see from Figure 3b that

VaRp(Ŷ1 + Ŷ2) > VaRp(Ŷ1) + VaRp(Ŷ2) (29)

holds unless p is greater than 0.9847 (marked by the vertical line in Figure 3b). Recall that

F̂1 ∗ F̂2 ≤ F̂1 ⊕ F̂2 is equivalent to (29) holding for all p ∈ (0, 1). Since the quantiles are directly

computed from data, thus from distributions with bounded supports, for p close enough to 1 it must

hold that VaRp(Ŷ1 + Ŷ2) ≤ VaRp(Ŷ1) + VaRp(Ŷ2); see the similar observation made in Proposition

1. Nevertheless, we observe (29) for most values of p ∈ (0, 1). Note that the observation of (29) is

entirely empirical and it does not use the fitted models.

Let F1 and F2 be the true distributions (unknown) of the marine losses (renormalized) and

wildfire suppression costs, respectively. We are interested in whether the first-order stochastic

dominance relation F1 ∗ F2 ≤ F1 ⊕ F2 holds. Since we do not have access to the true distributions,

we generate two independent random samples of size 104 (roughly equal to the sum of the sizes

of the datasets, thus with a similar magnitude of randomness) from the distributions F̂1 ⊕ F̂2 and

F̂1 ∗ F̂2. We treat these samples as independent random samples from F1⊕F2 and F1 ∗F2 and test

the hypothesis using Proposition 1 of Barrett and Donald (2003). The p-value of the test is greater

than 0.5 and we are not able to reject the hypothesis F1 ∗ F2 ≤ F1 ⊕ F2.
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6.3 Aggregation of Pareto risks with different parameters

As mentioned above, for independent losses Y1, . . . , Yn following generalized Pareto distribu-

tions with the same tail parameter α = 1/ξ < 1, it holds that

n∑
i=1

VaRp(Yi) ≤ VaRp

(
n∑
i=1

Yi

)
, usually with strict inequality. (30)

Inspired by the results in Section 6.2, we are interested in whether (30) holds for losses following

generalized Pareto distributions with different parameters. To make a first attempt on this prob-

lem, we look at the 6 operational losses of different business lines with infinite mean in Table 5

of Moscadelli (2004), where the operational losses are assumed to follow generalized Pareto distri-

butions. Denote by Y1, . . . , Y6 the operational losses corresponding to these 6 generalized Pareto

distributions. The estimated parameters in Moscadelli (2004) for these losses are presented in Table

1; they all have infinite mean.

i 1 2 3 4 5 6

ξi 1.19 1.17 1.01 1.39 1.23 1.22

βi 774 254 233 412 107 243

Table 1: The estimated parameters ξi and βi, i ∈ [6].

For the purpose of this numerical example, we assume that Y1, . . . , Y6 are independent and plot∑6
i=1 VaRp(Yi) and VaRp(

∑6
i=1 Yi) for p ∈ (0.95, 0.99) in Figure 4. We can see that VaRp(

∑6
i=1 Yi)

is larger than
∑6

i=1 VaRp(Yi), and the gap between the two values gets larger as the level p ap-

proaches 1. This observation further suggests that, even if the ultra heavy-tailed Pareto losses have

different tail parameters, a diversification penalty may still exist. We conjecture that this is true

for any generalized Pareto losses Y1, . . . , Yn with shape parameters ξ1, . . . , ξn ∈ [1,∞), although we

do not have a proof. Similarly, we may expect that
∑n

i=1 θiVaRp(Xi) ≤ VaRp(
∑n

i=1 θiXi) holds for

any Pareto losses X1, . . . , Xn with tail parameters α1, . . . , αn ∈ (0, 1],

From a risk management point of view, the message from Sections 6.2 and 6.3 is clear. If a

careful statistical analysis leads to statistical models in the realm of infinite means, then the risk

manager at the helm should take a step back and question to what extent classical diversification

arguments can be applied. Though we mathematically analyzed the case of equal parameters, we

conjecture that these results hold more widely in the heterogeneous case. As a consequence, it is

advised to hold on to only one such ultra-heavy tailed risk. Of course, the discussion concerning the

practical relevance of infinite mean models remains. When such underlying models are methodolog-

ically possible, then one should think carefully about the applicability of standard risk management
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arguments; this brings us back to Weitzman’s Dismal Theorem as discussed towards the end of

Section 1. From a methodological point of view, we expect that the results from Sections 4 and 5

carry over to the above heterogeneous setting.

7 Concluding remarks

We establish in Theorem 1 the inequality that the diversification of iid Pareto losses without

finite mean is greater than an individual Pareto loss in the sense of first-order stochastic dominance,

which is a very strong dominance relation. The result of stochastic dominance is further generalized

to three cases: (i) the losses are Pareto in the tail region (Proposition 3); (ii) the number and weights

of Pareto losses are random (Proposition 4); (iii) the Pareto losses are triggered by catastrophic

events (Theorem 2). These results provide an important implication in risk management, i.e., the

diversification of Pareto losses without finite mean may increase the risk assessment of a portfolio

(Proposition 6).

The equilibrium of a risk exchange model is analyzed in Theorem 3, where agents can take

extra Pareto losses with compensations. In particular, if every agent is associated with an initial

position of a Pareto loss without finite mean, the agents can merely exchange their entire position

with each other. On the other hand, if some external agents are not associated with any initial

losses, it is possible that all agents can reduce their risks by transferring the losses from the agents

with initial losses to those without initial losses (Theorem 4).

The diversification effects are investigated by numerical studies where two open technical
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questions arise. The first question is whether (4) holds, that is,

1

k

k∑
i=1

Xi ≤st
1

`

∑̀
i=1

Xi, (31)

holds for all k, ` ∈ N such that k ≤ `, where X1, . . . , Xl are iid Pareto losses without finite mean.

The statement is true if ` is a multiple of k, as shown in Proposition 2. The second question is

whether

VaRp

(
n∑
i=1

θiXi

)
≥

n∑
i=1

θiVaRp(Xi) (32)

holds for (θ1, . . . , θn) ∈ ∆n and independent ultra heavy-tailed Pareto losses X1, . . . , Xn with pos-

sibly different tail parameters. From the numerical results in Section 6, both (31) and (32) are

anticipated to hold; a proof seems to be beyond the current techniques.
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Appendices

A Background on risk measures

Recall that Xρ is a convex cone of random variables representing losses faced by financial

institutions. We first present commonly used properties of a risk measure ρ : Xρ → R:

(c) Translation invariance: ρ(X + c) = ρ(X) + c for c ∈ R.

(d) Positive homogeneity: ρ(aX) = aρ(X) for a ≥ 0.

(e) Convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for X,Y ∈ Xρ and λ ∈ [0, 1].

A risk measure that satisfies (a) weak monotonicity, (c) translation invariance, and (e) con-

vexity is a convex risk measure (Föllmer and Schied, 2002). It is well-known that ES is a convex

risk measure. The convexity property means that diversification will not increase the risk of the

loss portfolio, i.e., the risk of λX + (1 − λ)Y is less than or equal to that of the weighted average

of individual losses. However, the canonical space for law-invariant convex risk measures is L1 (see

Filipović and Svindland (2012)) and hence convex risk measures are not useful for losses without

finite mean.

For losses without finite mean, such as ultra heavy-tailed Pareto losses, it is natural to consider

VaR or Range Value-at-Risk (RVaR), which includes VaR as a limiting case. For X ∈ X and

0 ≤ p < q < 1, the RVaR is defined as

RVaRp,q(X) =
1

q − p

∫ q

p
VaRu(X)du.

For p ∈ (0, 1), limq↓p+ RVaRp,q(X) = VaRp(X). The class of RVaR is proposed by Cont et al. (2010)

as robust risk measures; see Embrechts et al. (2018) for its properties and risk sharing results. VaR,

ES and RVaR, as well as essential infimum (ess-inf) and essential supremum (ess-sup), belong to

the family of distortion risk measures as defined in (21). For X ∈ X , ess-inf and ess-sup are defined

as

ess-inf(X) = sup{x : FX(x) = 0} and ess-sup(X) = inf{x : FX(x) = 1}.

The distortion functions of ess-inf and ess-sup are given as h(t) = 1{t=1} and h(t) = 1{0<t≤1},

t ∈ [0, 1], respectively; see Table 1 of Wang et al. (2020). Distortion risk measures satisfy (a),

(c) and (d). Almost all the useful distortion risk measures are mildly monotone, as shown by the

following proposition.
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Proposition A.1. Any distortion risk measure is mildly monotone unless it is a mixture of ess-sup

and ess-inf.

Proof. Let ρh be a distortion risk measure with distortion function h. Suppose that ρh is not

mildly monotone. Then there exist X,Y ∈ X satisfying F−1X (p) < F−1Y (p) for all p ∈ (0, 1) and

ρ(X) = ρ(Y ). Suppose that there exist b ∈ (0, 1) such that h(1 − a) < h(1 − b) for all a >

b. For x ∈ (F−1X (b), F−1Y (b)), we have FX(x) ≥ b > FY (x); see e.g., Lemma 1 of Guan et al.

(2022). Hence, we have h(1 − FX(x)) ≤ h(1 − b) < h(1 − FY (x)) for x ∈ (F−1X (b), F−1Y (b)). Since

h(1− FX(x))− h(1− FY (x)) ≤ 0 for all x ∈ R, by (21) we get

ρ(X)− ρ(Y ) =

∫ ∞
−∞

(h(1− FX(x))− h(1− FY (x))) dx < 0.

This contradicts ρ(X) = ρ(Y ). Hence, there is no b ∈ (0, 1) such that h(1 − a) < h(1 − b) for all

a > b. Using a similar argument with the left quantiles replaced by right quantiles, we conclude

that there is no b ∈ (0, 1) such that h(1− a) > h(1− b) for all a < b. Therefore, for every b ∈ (0, 1),

there exists an open interval Ib such that b ∈ Ib and h is constant on Ib. For any ε > 0, the interval

[ε, 1− ε] is compact. Hence, there exists a finite collection {Ib : b ∈ B} which covers [ε, 1− ε]. Since

the open intervals in {Ib : b ∈ B} overlap, we know that h is constant on [ε, 1 − ε]. Letting ε ↓ 0

yields that h takes a constant value on (0, 1), denoted by λ ∈ [0, 1]. Together with h(0) = 0 and

h(1) = 1, we get that h(t) = λ1{0<t≤1}+ (1−λ)1{t=1} for t ∈ [0, 1], which is the distortion function

of ρh = λ ess-inf +(1− λ) ess-sup.

As a consequence, for any set X containing a random variable unbounded from above and one

unbounded from below, such as the Lq-space for q ∈ [0,∞), a real-valued distortion risk measure

on X is mildly monotone.

B Proofs of all theorems, propositions, and lemmas

B.1 Proofs of the results in Section 2

Proof of Theorem 1. For (u1, . . . , un) ∈ (0, 1)n and θ = (θ1, . . . , θn) ∈ ∆n, define the generalized

weighted average Mr,θ(u1, . . . , un) = (θ1u
r
1 + · · ·+ θnu

r
n)

1
r , where r ∈ R. Note that (2) can be

equivalently written as

Mr,θ(U1, . . . , Un) ≤st U, (A.1)

where U,U1, . . . , Un are iid uniform random variables on (0, 1), and r = −1/α ∈ (−∞,−1]. It

is well known that Mr,θ ≤ Ms,θ for r ≤ s; see Theorem 16 of Hardy et al. (1934). Hence,
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Mr,θ(U1, . . . , Un) ≤ M−1,θ(U1, . . . , Un) for all r ≤ −1. Therefore, for (A.1) to hold for all r ≤ −1,

it suffices to show that M−1,θ(U1, . . . , Un) ≤st U .

If some θ1, . . . , θn are 0, we can reduce the dimension of the problem. Hence, we will assume

mini∈[n] θi > 0 in the proof below. There is nothing to show if only one θi > 0 which reduces to

dimension 1.

We first show the case of n = 2. For a fixed p ∈ (0, 1) and θ = (θ1, θ2) ∈ ∆2 where min{θ1, θ2} >

0, let δ = θ2/(p
−1 − 1 + θ2). For (u1, u2) ∈ (0, 1)2, if u2 ≤ δ, then

θ1u
−1
1 + θ2u

−1
2 ≥ θ1 + θ2δ

−1 = 1− θ2 + p−1 − 1 + θ2 = p−1.

Hence, M−1,θ(u1, u2) ≤ p if u2 ≤ δ. Then, for iid uniform random variables U1 and U2 on (0, 1), we

have

P (M−1,θ(U1, U2) ≤ p) = P
(
θ1U

−1
1 + θ2U

−1
2 ≥ p−1

)
= P(U2 ≤ δ) + P

(
θ1U

−1
1 ≥ p−1 − θ2U−12 , U2 > δ

)
≥ P(U2 ≤ δ) + P

(
θ1U

−1
1 ≥ p−1 − θ2, U2 > δ

)
= δ + θ1(1− δ)(p−1 − θ2)−1

> δ + θ1(1− δ)p

= θ1p+ pδ(p−1 − 1 + θ2) = p.

Hence, we have shown the result when n = 2. Next, let n ≥ 2, and θ = (θ1, . . . , θn+1) ∈ ∆n+1

where mini∈[n+1] θi > 0. Let U,U1, . . . , Un+1 be iid uniform random variables on (0, 1). Assume that

U−1 ≤st θ1/(
∑n

i=1 θi)U
−1
1 + · · · + θn/(

∑n
i=1 θi)U

−1
n . As first-order stochastic dominance is closed

under convolutions (e.g., Theorem 1.A.3 (a) of Shaked and Shanthikumar (2007)), we have

θ1U
−1
1 + · · ·+ θn+1U

−1
n+1 ≥st

(
n∑
i=1

θi

)
U−1 + θn+1U

−1
n+1 ≥st U

−1,

Thus, M−1,θ(U1, . . . , Un+1) ≤st U . Moreover, for p ∈ (0, 1),

P (M−1,θ(U1, . . . , Un+1) ≤ p) = P
(
θ1U

−1
1 + · · ·+ θn+1U

−1
n+1 ≥ p

−1)
≥ P

((
n∑
i=1

θi

)
U−1 + θn+1U

−1
n+1 ≥ p

−1

)
> p.

By induction, we have the desired result.
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Proof of Proposition 1. Note that (1) implies that ESp(X) ≤ ESp(
∑n

i=1 θiXi) for all p ∈ (0, 1),

where ESp is defined in Section 4. Since ESp is convex and X1, . . . , Xn are identically distributed,

we have

ESp(X) ≤ ESp

(
n∑
i=1

θiXi

)
≤ θi

n∑
i=1

ESp(Xi) = ESp(X), p ∈ (0, 1).

Using positive homogeneity of ESp, it follows that the equality
∑n

i=1 ESp(θiXi) = ESp(
∑n

i=1 θiXi)

holds for each p ∈ (0, 1). By Theorem 5 of Wang and Zitikis (2021), this implies that (θ1X1, . . . , θnXn)

is p-concentrated for each p; this result requires X1, . . . , Xn to have finite mean. Using Theorem

3 of Wang and Zitikis (2021), the above condition implies that (X1, . . . , Xn) is comonotonic. For

definitions of comonotonicity and p-concentration, see Wang and Zitikis (2021). Since X1, . . . , Xn

are identically distributed, comonotonicity further implies that X1 = · · · = Xn almost surely.

Proof of Proposition 2. Let Yj = (
∑jn

i=n(j−1)+1Xi)/n, j = 1, . . . ,m. By Theorem 1, X ′j ≤st Yj

for j = 1, . . . ,m, where X ′1, . . . , X
′
m ∼ Pareto(α) are independent. Note that Y1, . . . , Ym are also

independent. As first-order stochastic dominance is closed under convolutions (e.g., Theorem 1.A.3

(a) of Shaked and Shanthikumar (2007)), we obtain

X1 + · · ·+Xm 'st X
′
1 + · · ·+X ′m ≤st Y1 + · · ·+ Ym =

X1 + · · ·+Xmn

n
.

Dividing both sides by m yields the desired inequality.

Proof of Proposition 3. Let X1, . . . , Xn be iid Pareto(α) random variables. Note that for t ≥ x, by

using Theorem 1 and Y ≥st X, we have

P

(
n∑
i=1

θiYi > t

)
≥ P

(
n∑
i=1

θiXi > t

)
≥ P (X > t) = P (Y > t) .

The statement on strictness also follows from Theorem 1.

Proof of Proposition 4. By Theorem 1 and the law of total expectation, it is easy to verify that, for

n = 2, 3, . . . , P(
∑n

i=1WiXi/
∑n

i=1Wi ≤ t) < P(X ≤ t), t > 1 . As N is independent of {WiXi}i∈N,

for t > 1,

P

(∑N
i=1WiXi∑N
i=1Wi

≤ t

)
= P(N = 0) +

∞∑
n=1

P
(∑n

i=1WiXi∑n
i=1Wi

≤ t
)
P(N = n)

≤ P(N = 0) + P(N ≥ 1)

(
1− 1

tα

)
= P

(
X1{N≥1} ≤ t

)
.
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It is obvious that the inequality is strict if P(N ≥ 2) 6= 0. To show the second inequality in (7),

note that for each realization of N = n and (W1, . . . ,WN ) = (w1, . . . , wn) ∈ Rn,
∑n

i=1wiX ≤st∑n
i=1wiXi holds by Theorem 1. Hence, the second inequality in (7) holds.

B.2 Proofs of the results in Section 3

Proof of Lemma 1. The result is clearly true if c1 = · · · = cn = 0. If any components of (c1, . . . , cn)

are zero, the problem simply reduces its dimension. Hence, we assume that (c1, . . . , cn) ∈ (0, 1]n for

the rest of the proof. For t ≥ 1 ≥ maxi∈[n] ci,

P

(
n∑
i=1

ciX1Bi ≤ t

)
=

n∑
i=1

(
1− cαi

tα

)
P(Bi) + P

⋂
i∈[n]

Bc
i

 .

Since B1, . . . , Bn are mutually exclusive,
∑n

i=1 P(Bi) = P
(⋃

i∈[n]Bi

)
= 1 − P

(⋂
i∈[n]B

c
i

)
. More-

over, as ci ∈ (0, 1] and α ∈ (0, 1], cαi ≥ ci for i ∈ [n]. Therefore,

P

(
n∑
i=1

ciX1Bi ≤ t

)
= 1−

n∑
i=1

cαi
tα

P(Bi) ≤ 1− 1

tα

n∑
i=1

ciP(Bi) = 1− 1

tα
P(A) = P(X1A ≤ t).

For t ∈ [0, 1), P (
∑n

i=1 ciX1Bi ≤ t) ≤ P (
∑n

i=1 ciX1Bi ≤ 1) ≤ 1− P(A) = P(X1A ≤ t). This yields

the desired result.

Proof of Theorem 2. For S ⊆ [n], let BS =
(⋂

i∈S Ai
)
∩
(⋂

i∈Sc Aci
)
. For (θ1, . . . , θn) ∈ Rn+, we write

n∑
i=1

θiXi1Ai =
∑
S⊆[n]

1BS

∑
i∈S

θiXi.

By Theorem 1,
∑

i∈S θiXi ≥st
∑

i∈S θiX for any S ⊆ [n]. As A1, . . . , An are independent of

(X1, ..., Xn), by Theorem 1.A.14 of Shaked and Shanthikumar (2007),
∑

i∈S θiXi1BS
≥st

∑
i∈S θiX1BS

for any S ⊆ [n]. Since BS and BR are mutually exclusive for any distinct S,R ⊆ [n], we have

n∑
i=1

θiXi1Ai =
∑
S⊆[n]

1BS

∑
i∈S

θiXi ≥st

∑
S⊆[n]

∑
i∈S

θiX1BS
.

Note that

∑
S⊆[n]

P(BS)
∑
i∈S

θi =

n∑
j=1

θj
∑

S⊆[n],j∈S

P(BS) =

n∑
j=1

θiP(Aj) = λP(A).
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As
∑

i∈S θi/λ ∈ [0, 1] for any S ⊆ [n], by Lemma 1,
∑

S⊆[n](
∑

i∈S θi/λ)X1BS
≥st X1A. Hence,∑n

i=1 θiXi1Ai ≥st λX1A.

B.3 Proofs of the results in Section 4

Proof of Proposition 6. The proof of (i) follows directly from Theorem 1. Statement (ii) follows

from Theorem 2 by noting that there exists j ∈ [n] such that P(Aj) ≤ P(A), and hence,

wXj1Aj ≤st wX1A ≤st

n∑
i=1

wiXi1Ai ,

where X and A are as in (10) with λ = w and (θ1, . . . , θn) = (w1, . . . , wn).

B.4 Proofs of the results in Section 5

Proof of Theorem 3. (i) Suppose that
(
p∗,wi∗, . . . ,wn∗) forms an equilibrium. We let p =

maxj∈[n]{pj} and S = arg maxj∈[n]{pj}. For the ith agent, by writing w = ‖wi‖, using

Theorem 1 and the fact that ρi is mildly monotone, we have that for any wi ∈ [0, 1]n,

ρi(Li(w
i,p∗)) = ρi(w

i · (X− p∗) + ai · p∗)

≥ ρi(wi ·X− wp+ ai · p∗) ≥ ρi(wX1 − wp+ ai · p∗).

By the last statement of Theorem 1, the last inequality is strict if wi contains at least two

non-zero components. Moreover, c(‖wi‖ − ‖ai‖) = c(w − ‖ai‖). Therefore, we know that the

optimizer wi∗ = (wi∗1 , . . . , w
i∗
n ) to (19) has at most one non-zero component wi∗j , and j ∈ S.

Hence, wi∗k = 0 if k ∈ [n] \ S and this holds for each i ∈ [n]. Using
∑n

i=1w
i∗ =

∑n
i=1 a

i which

have all positive components, we know that S = [n], which further implies that p∗ = (p, . . . , p)

for p ∈ R+. Next, as each wi∗ has only one positive component, (wi∗, . . . ,wn∗) has to be an

n-permutation of (a1, . . . ,an) in order to satisfy the clearance condition (20).

(ii) The clearance condition (20) is clearly satisfied. Note that distortion risk measures are trans-

lation invariant and positive homogeneous (see Appendix A for properties of risk measures).
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Using these two properties and Proposition 6, for i ∈ [n],

min
wi∈Rn

+

{
ρi
(
Li(w

i,p∗)
)

+ ci(‖wi‖ − ‖ai‖)
}

= min
wi∈Rn

+

{
ρi
(
wi ·X− (wi − ai) · p∗

)
+ ci(‖wi‖ − ‖ai‖)

}
= min
‖wi‖∈R+

{
(ρi
(
‖wi‖X

)
− (‖wi‖ − ai)p) + ci(‖wi‖ − ‖ai‖)

}
= min

w∈R+

{w(ρi(X)− p) + aip+ ci(w − ai)} . (A.2)

Note that w 7→ w(ρi(X) − p) + ci(w − ai) is convex and with condition (22), its minimum is

attained at w = ai. Therefore, wi∗ = ai∗ is an optimizer to (19), which shows the desired

equilibrium statement.

(iii) By (i),
(
w1∗, . . . ,wn∗) is an n-permutation of (a1, . . . ,an). It means that for any i ∈ [n], there

exists j ∈ [n] such that aj is the minimizer of (A.2). As ci is convex, we have

c′i+(aj − ai) ≥ p− ρi(X) ≥ c′i−(aj − ai), for each i ∈ [n].

Hence, we obtain (23).

Proof of Theorem 4. As in Section 5.2, an optimal position for either the internal or the external

agents is to concentrate on one of the losses Xi, i ∈ [n]. By the same arguments as in Theorem

3 (i), the equilibrium price, if it exists, must be of the form p = (p, . . . , p). For such a given p,

using the assumption that ρE and ρI are mildly monotone and Proposition 6, we can rewrite the

optimization problems in (24) and (25) as

min
uj∈Rn

+

{
ρE
(
LE(uj ,p)

)
+ cE(‖uj‖)

}
= min

u∈R+

{u (ρE (X)− p) + cE(u)} , (A.3)

and

min
wi∈Rn

+

{
ρI
(
Li(w

i,p)
)

+ cI(‖wi‖ − ‖ai‖)
}

= min
w∈R+

{w(ρI (X)− p) + ap+ cI(w − a)} , (A.4)

for j ∈ [m] and i ∈ [n]. Note that the derivative of the function inside the minimum of the right-

hand side of (A.3) with respect to u is LE(u)− p, and similarly, LI(w − a)− p is the derivative of

the function inside the minimum of the right-hand side of (A.4). Using strict convexity of cE and

cI , we get the following facts.
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1. The optimizer u to (A.3) has two cases:

(a) If LE(0) ≥ p, then u = 0.

(b) If LE(0) < p, then u > 0 and LE(u) = p.

2. The optimizer w to (A.4) has four cases:

(a) If L+
I (0) < p, then w > a. This is not possible in an equilibrium.

(b) If L+
I (0) ≥ p ≥ L−I (0), then w = a.

(c) If L−I (0) > p > LI(−a), then 0 < w < a and LI(w − a) = p.

(d) If LI(−a) ≥ p, then w = 0.

From the above analysis, we see that the optimal positions for each different external agent

are either all 0 or all positive, and they are identical due to the strict monotonicity of LE . We can

say the same for the internal agents. Suppose that there is an equilibrium. Let u be the external

agent’s common exposure, and w be the internal agent’s exposure. By the clearance condition (26)

we have w + ku = a. If 0 < ku < a, then from (1.b) and (2.c) above, we have LE(u) = LI(−ku).

Below we show the three statements.

(i) If LE(a/k) < LI(−a), then by strict monotonicity of LE and LI , there is no u ∈ (0, a/k] such

that LE(u) = LI(−ku). Since u cannot be larger than a/k, if an equilibrium exists, then

u = 0; but in this case, by (1.a) and (2.b), we have LE(0) ≥ p ≥ LI−(0), which contradicts

LE(a/k) < LI(−a). Hence, there is no equilibrium.

(ii) In this case, there exists a unique u∗ ∈ (0, a/k] such that LE(u∗) = LI(−ku∗). It follows that

u = u∗ optimizes (A.3) and w = a− ku∗ optimizes (A.4). It is straightforward to verify that

E is an equilibrium, and thus the “if” statement holds. To show the “only if” statement, it

suffices to notice that LE(u) = LI(−ku) = p has to hold, where p is an equilibrium price and u

is the optimizer to (A.3), and such u and p are unique. Next, we show the “only if” statement

for u∗ < a/2k. As the optimal position for each external agent is a− ku∗ > a/2, if more than

two of the internal agents take the same loss, then the clearance condition (26) does not hold.

Hence, the internal agents have to take different losses. Moreover, as the optimal position for

the internal agents are the same, the loss Xi for each i ∈ [n], must be shared by one internal

and k external agents. The equilibrium is preserved under the permutation of allocations.

Thus, we have the “only if ” statement for u∗ < a/2k. The “if” statement is obvious.
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(iii) The “if” statement can be verified directly by using Theorem 3 (ii). Next, we show the “only if”

statement. By (2.a), it is clear that the equilibrium price p satisfies p ≤ L+
I (0). If p < L−I (0),

by (1.a), (2.c), and (2.d), the clearance condition (26) cannot be satisfied. Thus, p ≥ L−I (0).

By a similar argument, we have p ≤ LE(0). Hence, we get p ∈ [L−I (0), LE(0) ∧ L+
I (0)]. From

(1.a) and (2.b), we have u = 0 and w = a and thus the desired result.

Proof of Proposition 7. The clearance condition (20) is clearly satisfied. As ES is translation in-

variant, it suffices to show that wi∗ minimizes ESq(w
i ·X −wi · p∗) + ci(‖wi‖ − ‖ai‖) for i ∈ [n].

Write r : w 7→ ESq (w ·X) for w = (w1, . . . , wn) ∈ [0, 1]n. By Corollary 4.2 of Tasche (2000),

∂r

∂wi
(w) = E [Xi|Aw] , i ∈ [n],

where Aw = {
∑n

i=1wiXi ≥ VaRq (
∑n

i=1wiXi)}. Moreover, using convexity of r, we have (see

McNeil et al. (2015, p. 321))

r (w)−w · p∗ ≥
n∑
i=1

wi
∂r

∂wi
(a1, . . . , an)−w · p∗ = 0.

By Euler’s rule (see McNeil et al. (2015, (8.61))), the equality holds if w = λ(a1, . . . , an) for any

λ > 0 . By taking λ = ai/
∑n

j=1 aj , we get ‖w‖ = ai = ‖ai‖, and hence ci(‖w‖−‖ai‖) is minimized

by w = λ(a1, . . . , an). Therefore, wi∗ is an optimizer for each i ∈ [n].
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