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Assumptions:

                     one period risks with statistically estimated marginals. 

                           total loss exposure.

                                        amount of capital to be reserved. 

 (if                                              , then                                                       )                           

Task: for a fixed (high) level of probability    , calculate:! ! !

Mathematical Problem
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Motivation (QRM)

dependence model

L1 ⇠ F1, L2 ⇠ F2, . . . , Ld ⇠ Fd

marginal distributions
+

=

d ⇡ 600

VaR↵(L1 + · · · + Ld)



Motivation (QRM)

dependence model

L1 ⇠ F1, L2 ⇠ F2, . . . , Ld ⇠ Fd

marginal distributions
+

=

d ⇡ 600

VaR↵(L1 + · · · + Ld)

VaR↵VaR↵ VaR+↵ =
Pd

j=1 VaR↵(Lj)



- In the homogeneous case                                   , the bound            
has been recently given for             in [PR11] and [WW11] under 
different assumptions. 

-  In the homogeneous case,           is very easy to calculate in 
arbitrary dimensions.

- In the inhomogeneous case, the computation of            poses 
serious problems. And the computation of            is not possible.

Known results

F j = F, 1  j  d
d > 2

VaR↵

VaR↵
VaR↵

VaR↵



M(s) = sup
n

P(L1 + · · · + Ld � s); Lj ⇠ F, 1  j  d
o

In the case that                       are identically distributed, we have

Homogeneous marginals, 

where

Duality theorem (reduced) 

d � 3

M(s) = inf
(

d
Z
g dF; g 2 A(s)

)
,

A(s) = {g : R! [0, 1] such that

g(x1) + · · · + g(x

d

) � 1{x1 + · · · + x

d

� s}}

L1, . . . , Ld



Embrechts and Puccetti (2006) introduce the following class of 
piecewise-linear functions for 

Dual bounds
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b = s � (d � 1)a

M(s)  D(s) = inf
a<s/d
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!
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R
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a

F(x) dx

s � da

.

The dual bound          is better than the standard bound produced by 
choosing piecewise-constant dual functions.

D(s)
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Referee report on Embrechts and Puccetti (2006)
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a new numerical approximation procedure
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Summary:

For a given matrix, rearrange the entries in the columns until you 
find an ordered matrix, i.e. a matrix in which

each column is oppositely ordered to the sum of the others.

We call a matrix optimal if the minimal component of the vector of 
the sum is maximized and the maximal component of that vector is 
minimized (min-max problem).
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X =

• • 1 9
• • 2 9
• • 3 9
• • 4 9
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X =

Sudoku

Hint!



X =X =

Sudoku

5 3 1 9
3 4 2 9
1 5 3 9
4 1 4 9
2 2 5 9

Solution!
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dependence=rearrangement
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j |[↵, 1]Fix                   and assume that each
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(idea of the proof)
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Pareto(2) marginals and ↵ = 0.99 OPTIMAL COUPLING!

N = 105 ) VaR↵ = 45.99



Optimal coupling yields a dependence in which:

either the (three) rvs are very close to each other 
and sum up to something very close to the 
minimal sum (-> complete mixability )

or one of the components is large and the other 
(two) are small (-> mutual exclusivity )

-

-



Complete mixability

Definition 

A distribution F is called d-completely mixable if there exist d random 
variables                      identically distributed as F such that

Examples 

- Gaussian, Cauchy, t

- Uniform

- Binomial(n,r/s) is s-completely mixable, n,r,s integers

- Multivariate extensions can be given [Rüschendorf and Uckelmann 
(2002)]

X1, . . . , Xd

P(X
1

+ · · · + Xd = constant) = 1



Sufficient conditions for complete mixability (Wang and Wang 
(2011), Puccetti, Wang and Wang (2012))

- F is continuous with a symmetric and unimodal density. 
[Rüschendorf and Uckelmann (2002)]

-  F is continuous with a monotone density on a bounded support 
and satisfies a moderate mean condition. [Wang and Wang (2011)]

- F  is continuous with a concave density on a bounded support. 
[Puccetti, Wang and Wang (2012)]

Complete mixability



44.51690 

44.49191 

44.52803

44.43416

ordered

X1

X2

X3

X4

With N=100000, we obtain the first two decimals of             in 0.2 sec.                      VaR↵



Rearrangement algorithm
1) Approximate the               upper part of the support of each 
marginal         from above and below:

2) Iteratively rearrange the column of each matrix until the 
matrices X* and Y* with each column oppositely ordered to the 
sum of the other columns.

F j

F j � F j � F j

4) Run the algorithm with N  large enough.

.

(1 � ↵)

and create two matrices X and Y with N columns and d rows.

min(rowSums(X⇤)) min(rowSums(Y⇤)) VaR↵ 3) 





Define the superadditivity ratio as:

and investigate its properties as a function of the dimension d, the 
level     and the parameters of the underlying model.

Investigate the limit, given it exists,

Application: superadditivity ratio

3. The sharpness of the bound D�1(1 � ↵) in (15) can be stated
under di↵erent sets of assumptions for the distribution func-
tion F. To cite a most useful case, sharpness typically holds
for distributions F having a concave density on the interval
(a, b). This allows for instance to compute the sharp bound
VaR↵(L+) = D�1(1 � ↵) in case of Gamma and LogNormal
distributions; see Figure 2.

4. The equation (15) holds in general for all the distributions F
and the confidence levels ↵ typically used in quantitative risk
management, also in the case of heavy tailed, infinite-mean
models.

When the distribution F satisfies the assumptions of Propo-
sition 4, a worst case dependence vector (L⇤1, . . . , L

⇤
d) such that

VaR↵(L+) = VaR↵(L⇤1 + · · · + L⇤d) has been described in Wang
et al. (2011) and Puccetti and Rüschendorf (2012c). The risk
vector (L⇤1, . . . , L

⇤
d) satisfies the following two properties:

(a) When one of the L⇤i ’s lies in the interval (a, b), then all the
L⇤i ’s lie in (a, b) and we have that

P
✓

L⇤1 + · · · + L⇤d = s
�

�

�

�

Li 2 (a, b)
◆

= 1;

(b) For all 1  i  d, we have that

P
✓

Lj = F�1
a⇤
⇣

(d � 1)Fa⇤ (Yi)
⌘

�

�

�

�

Li � b
◆

= 1, for all j , i,

where a⇤ = F�1(1 � D(s)) and Fa⇤ (x) = (F(x) � F(a⇤))/F(a⇤).
F(a⇤) is the distribution of the random variable Ya⇤

d
= (L1|L1 �

a⇤).
The two properties above determine the behavior of the worst

case dependence only in the upper (1� ↵) parts of the marginal
supports where Li � a⇤, 1  i  d. Analogous to the case
d = 2, the interdependence coupling in the ↵ lower parts of the
marginal supports can be set arbitrarily.

In Figure 3 we show a two-dimensional projection of the
d-variate copula merging the upper (1 � ↵) parts of the optimal
risks L⇤i . In practice, only two situations can occur: either one
of the risks is large (above the threshold b) and all the others are
small (below the threshold a), or all the risks are of medium size
(they lie in the interval (a, b)) with their sum being equal to the
threshold VaR↵(L+). This is a negative dependence scenario
analogous to the one underlying Figure 1. In fact the worst
VaR scenario contains a part where the risks are d-completely
mixable, with the variance of their sum being equal to zero. In
the remaining part, it exhibits mutual exclusivity: only one risk
can be large at one time.

For a risk portfolio (L1, . . . , Ld)0 it is of interest to study the
superadditivity ratio

�↵(d) =
VaR↵(L+)
VaR+↵(L+)

between the worst-possible VaR and the comonotonic VaR, at
some given level of probability ↵ 2 (0, 1). The value �↵(d) mea-
sures how much VaR can be superadditive as a function of the

α

α

0 1

1

β

β

Figure 3: One of the identical bi-dimensional projections of the d-variate copula
merging the upper (1 � ↵) parts of the optimal risks L⇤i . In the figure, we have
↵ = 1�D(s) and � = ↵/(d� 1). The grey area represents a completely mixable
part. The interdependence described by this copula can be summarized as:

if Li 2 [a⇤, a] then Lj � b for some j , i
if Li 2 (a, b) then L1 + · · · + Ld = VaR↵(L)
if Li � b then Li 2 [a⇤, a] for all j , i

dimensionality d of the risk portfolio under study. For instance,
for elliptically distributed risks it is well known that �↵(d) = 1
for any d � 1; see McNeil et al. (2005, Theorem 6.8). In Fig-
ure 4 and Figure 5, left, we plot the function �↵(d) for a num-
ber of di↵erent homogeneous portfolios. In these cases, �↵(d)
seems to settle down to a limit in d fairly fast. We therefore
define

�↵ = lim
d!+1

�↵(d),

whenever this limit exists. For large dimensions d one can then
approximate the worst-possible VaR value as

VaR↵(L+) ⇡ �↵VaR+↵(L+) = d�↵VaR↵(L1).

We study the superadditivity constant �↵ for some homoge-
neous risk portfolios of interest in finance and insurance. For
portfolios of LogNormal(2,1)-distributed risks, we have �0.99 �
1.49 and �0.999 � 1.37; see Figure 4, left. For portfolios of
Gamma(3,1)-distributed risks, we have �0.99 � 1.15 and �0.999 �
1.11; see Figure 4, right. For portfolios of Pareto(2)-distributed
risks, we have �0.99 � 2.11 and �0.999 � 2.03; see Figure 5, left.
In Figure 5, right, one can see that the limit constant �↵ depends
on the tail parameter ✓ of the Pareto marginals: the smaller the
tail parameter ✓, the more superadditive the VaR of the sums of
the risks can be. It is also interesting that, in the examples stud-
ied, the superadditivity ratio is larger for smaller levels of ↵.
Risk portfolios showing an analogous behaviour can be found
in other studies like Mainik and Embrechts (2012) and Mainik
and Rüschendorf (2012).

2.2. Inhomogeneous marginals
If one drops the assumption of identically distributed risks,

the bounds given in (10) and (15) cannot be used. For d = 2, the
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Figure 4: Plot of the function �↵(d) versus the dimensionality d of the portfolio for a risk vector of LogNormal(2,1)-distributed (left) and Gamma(3,1)-distributed
(right) risks, for two di↵erent quantile levels.
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Figure 5: Left: plot of the function �↵(d) versus the dimensionality d of the portfolio for a risk vector of Pareto(✓)-distributed risks, for two di↵erent quantile levels
and ✓ = 2. Right: Plot of the limit constant �↵ versus the tail parameter ✓ of the Pareto distribution.
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Conclusions

The rearrangement algorithm calculates numerically sharp bounds 
for the VaR of a sum of dependent random variables.

- it is accurate, fast and computationally less demanding wrt to the 
methods in the literature.

- can be used with inhomogeneous marginals, in high dimensions.

- computes also the best-possible Value-at-Risk.

- can be used with any marginal df and any quantile level.

- can be used also to compute bounds on the distribution function of 
different operators such as  ⇥, min, max .



• Find optimal couplings for the best VaR

• Interpret these couplings wrt realistic scenarios

• Add statistical uncertainty

• Compute VaR sharp bounds with some additional dependence 
information

• Compare and contrast with other approaches: Robust 
Optimization

• ...

Further work
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