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Abstract

Properties of risk measures for extreme risks have become an important topic of
research. In the present paper we discuss sub- and superadditivity of quantile
based risk measures and show how multivariate extreme value theory yields
the ideal modeling environment. Numerous examples and counter-examples
highlight the applicability of the main results obtained.
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1 Introduction

In Embrechts et al. [10], the following example was worked out. Suppose X1, X2 are
independent random variables (rvs) each with a Pareto distribution function (df)

P (Xi > x) = x−1/2, x ≥ 1,

i.e., the Xi’s have infinite mean. Consider X = X1 + X2 and let α ∈ (0, 1), then

F−1
X1+X2

(α) > F−1
X1

(α) + F−1
X2

(α), (1.1)
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i.e., quantiles act superadditively. This rather trivial example has far-reaching conse-
quences in finance, where the Xi’s correspond to profits or losses, over a given fixed
(holding) period, in particular markets/instruments. A quantile of such a fixed period
position is referred to as Value-at-Risk (VaR); see also Definition 2.1 below. Hence
(1.1) can be rewritten as

VaRα(X1 + X2) > VaRα(X1) + VaRα(X2). (1.2)

The above example (1.1) and its numerous generalizations form an important topic of
research in Quantitative Risk Management (QRM) as for instance discussed in McNeil
et al. [21], Chapter 6. It also has important consequences within (re)insurance when
modeling catastrophic risks; see Ibragimov et al. [16].

Understanding the practical relevance of situations where (1.2) holds, or indeed
where subadditivity (≤ in (1.2)) holds are crucial within the regulatory framework
(so-called Basel I and II) of financial institutions; see Chapter 1 in McNeil et al. [21]
and the references therein. Indeed, under the Basel II framework, the quantile risk
measure VaRα(X) corresponds to regulatory (risk) capital that a financial institution
has to hold in order to be able to carry the risky position X on its books. Furthermore,
the quantity

Dα(X1 + X2) = VaRα(X1 + X2)− VaRα(X1)− VaRα(X2)

can be seen as a measure of diversification. Alternatively, the quantity

Cα(X1 + X2) =
VaRα(X1 + X2)

VaRα(X1) + VaRα(X2)

is referred to as a measure of concentration within the Basel II framework. Conse-
quently, a deeper understanding concerning the possible values of either Dα(X1, X2)

and Cα(X1, X2) across a wide family of dfs relevant for QRM practice is important.
This paper presents several results on this topic for arbitrary dimensions n ≥ 2

and dependence structures, and this within the unifying framework of multivariate
extreme value theory (MEVT). The MEVT approach to the above problems is by
no means new. We found however that a summary of these results keeping finan-
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cial applications in mind would be highly useful. Whereas the applied reader may
have some problems with the mathematical abstractness of the MEVT techniques
used, that same reader hopefully will benefit from the many concrete examples and
counter-examples discussed. Through these examples we show that care has to be
taken concerning possible constraints/properties of the dfs of the underlying risk fac-
tors. In a wider context of QRM, these same techniques are becoming increasingly
important in the analysis of high risk scenarios, see for instance Balkema and Em-
brechts [3], and therefore will become part of the standard toolkit of QRM.

The paper is organized as follows. Section 2 recalls the basic notion of multivari-
ate regular variation and its link to questions like (1.1). In Section 3 we discuss three
examples where (1.1) may or may not hold, stressing in particular the important dif-
ference between one-sided and two-sided risk dfs. For positive rvs, Section 4 uses the
notion of spectral measure to derive additivity-type results under general portfolio
assumptions. Sections 5 and 6 study the link with tail dependence concepts, whereas
Section 7 concludes.

2 Value-at-Risk and multivariate regular variation

In this section we introduce multivariate regular variation, which provides a natural
framework to discuss diversification of a portfolio under the risk measure VaR. It
turns out that MEVT and the notion of spectral measure are the canonical tools for
analyzing high quantiles of sums (or more generally, norms) of dependent rvs; see for
instance Barbe et al. [4].

Definition 2.1 (Value-at-Risk) Let X be a rv with df F . The Value-at-Risk
with respect to the level α ∈ (0, 1) is defined as the generalized inverse of F ,
VaRα(X) = F←(α) = inf {x ∈ R |F (x) ≥ α}. 2

In all relevant situations, α is typically close to 1. We say that VaR is asymptotically
subadditive for X1, . . . , Xn, if

lim
α↗1

VaRα (
∑n

i=1 Xi)∑n
i=1 VaRα(Xi)

≤ 1, (2.1)
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provided the limit exists. VaR is called asymptotically superadditive for X1, . . . , Xn

if “≥” in (2.1) holds. We assume the reader to be familiar with univariate EVT and
in particular univariate regular variation; see for instance Embrechts et al. [9] for
an introduction. The following definition introduces multivariate regular variation
and also the limiting constant q, which is of main interest in this paper; standard
textbooks on multivariate EVT are for instance Resnick [28], [30], Beirlant et al. [5],
de Haan and Ferreira [13] and Balkema and Embrechts [3]. A brief and very readable
introduction to the field is found in Mikosch [22].

Definition 2.2 (Multivariate regular variation) A random vector X =

(X1, . . . , Xn)′ is multivariate regularly varying with index −β < 0, if there exists a
probability measure µ, a measurable function b : (0,∞) → (0,∞) with lim

t→∞
b(t) = ∞

and a scalar q = q(b) > 0 such that for all r > 0,

lim
t→∞

t P

(
‖X‖ > rb(t),

X

‖X‖
∈ G

)
= qr−βµ(G),

for any Borel set G ⊂ ℵn−1
‖·‖ = {x = (x1, . . . , xn)′ ∈ Rn | ‖x‖ = 1}. We write X ∈

MRVn(−β). 2

The definition of multivariate regular variation is independent of the explicit choice
of the norm ‖·‖ on Rn. This comes from the fact that all norms on Rn are equivalent;
see Lemma 2.1 in Hult and Lindskog [15] for details. Note that the limiting constant
q depends on the index −β < 0 and on the norm ‖ · ‖ chosen.

The goal of this paper is to analyze the properties of the limiting constant q

for random vectors X with identically distributed marginals (this assumption can
be relaxed using change of norms techniques; see Section 4) and with an arbitrary
dependence structure. It follows from Definition 2.2 that for X = (X1, . . . , Xn)′ ∈
MRVn(−β), β > 0,

q(β, ‖ · ‖) = lim
x→∞

P (‖X‖ > x)

P (X1 > x)
> 0;

see Barbe et al. [4], formula (9) and Remark 1 in Resnick [29]. An interesting choice
of norm is the l1-norm ‖·‖1 on Rn, to study the sum X1+. . .+Xn of n risky positions.
However, also more general loss functions, say Ψ, are considered in practice.
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Lemma 2.3 Let X = (X1, . . . , Xn)′ ∈ MRVn(−β), β > 0, with identically dis-
tributed marginals. If for a measurable function Ψ : Rn → R,

lim
x→∞

P (Ψ(X) > x)

P (X1 > x)
= qΨ ∈ (0,∞), (2.2)

then
lim
α↗1

VaRα(Ψ(X))

VaRα(X1)
= q

1/β
Ψ .

Proof: Consider FΨ(x) = P (Ψ(X) ≤ x) and F (x) = P (X1 ≤ x). Using (2.2) and
the regular variation properties of X1, one shows that

lim
α↗1

F←Ψ (α)

F←(α)
= lim

x→∞

x

F←(FΨ(x))
= q

1/β
Ψ .

The details are straightforward and therefore omitted. 2

Remark 2.4 Condition (2.2) holds for example if Ψ(X) = ‖X‖ is a norm on Rn

or if Ψ(X) =
∑n

i=1 Xi for X1, . . . , Xn i.i.d.; see Barbe et al. [4], formula (9) and
Embrechts et al. [9], Corollary 1.3.2, respectively. 2

3 Three examples

Many examples show that VaR properties for rvs with doubly infinite support are
not easy to handle, particularly in the case of infinite mean models; see for instance
Nešlehová et al. [26], Chavez-Demoulin et al. [6], Ibragimov and Walden [17]. To
illustrate this, we give three basic examples:

Example 3.1 For n ≥ 2, let X1, . . . , Xn be i.i.d. rvs, regularly varying with index
−β < 0. In this case, it is well-known that asymptotic subadditivity holds if and only
if β ≥ 1. This follows from Lemma 2.3, yielding

lim
α↗1

VaRα (
∑n

i=1 Xi)∑n
i=1 VaRα(Xi)

= n1/β−1 > 1, for β < 1,

because the limiting constant qΨ in (2.2) is equal to n for Ψ(X) =
∑n

i=1 Xi; see
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Corollary 1.3.2 in Embrechts et al. [9]. 2

When we allow for dependence, one has to be careful because sub- as well as super-
additivity may occur in a rather arbitrary way; see for instance Example 6.4, Figure
4 below. In the next example, we consider elliptically distributed random vectors.

Definition 3.2 (Elliptical distribution) A random vector X has an elliptical
distribution with mean µ ∈ Rn and dispersion matrix Σ, if there exist R,A and U

satisfying X
d
= µ + RAU, with

a) R ≥ 0, a non-negative rv;

b) U uniformly distributed on the unit sphere ℵn−1
‖·‖2 = {z ∈ Rn, ‖z‖2 = 1}, inde-

pendent of R, and

c) A ∈ Rn×n with AA′ = Σ. 2

Example 3.3 Theorem 6.8 in McNeil et al. [21] states that for X = (X1, . . . , Xn)′

elliptically distributed, we have for all α ∈ [1
2
, 1),

VaRα

(
n∑

i=1

Xi

)
≤

n∑
i=1

VaRα(Xi).

That is, in the elliptical world, subadditivity of VaR holds true for finite and infinite
mean models. 2

What is the reason for this discrepancy between Example 3.1 and Example 3.3 ? For
β > 1 (finite mean case) the asymptotic VaR is subadditive in both models. However,
for β < 1, we are in the infinite mean regime and the asymptotic VaR behaves very
differently in the models analyzed. The reason for this difference is connected with
the behavior of the joint df (or more precisely, the spectral measure; see Section 4)
and can not be explained by the marginal dfs alone. We will discuss risk aggregation
in the light of dependence structures describing interdependencies in the joint tail(s)
of the distribution.
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In Example 3.3 we learned that subadditivity of VaR holds for every elliptical dis-
tribution. However, asymptotic subadditivity of VaR fails for infinite mean models
as soon as we weaken the influence of the negative tails by restricting for example to
the positive quadrant of the elliptical distribution.

Example 3.4 Let X = RAU be a bivariate elliptical random vector with R ∈
RV−β, β > 0,

A =

(
1 0

%
√

1− %2

)
,

and U uniformly distributed on the unit sphere ℵ1
‖·‖2 , i.e., U = (cos W, sin W )′, with

W ∼ Unif(−π, π). We are interested in the behavior of X = (X1, X2)
′, restricted

to the positive quadrant. We thus consider X̃ = (X̃1, X̃2)
′ = X|{X ≥ 0}, where

the inequality has to be interpreted componentwise. Note that ‖X̃‖1 = X̃1 + X̃2,
and hence we consider q(β, ‖ · ‖1) as a function of β and %. Using the Dominated
Convergence Theorem in the last step below, we get

q(β, %) = lim
x→∞

P (X̃1 + X̃2 > x)

P (X̃1 > x)

= lim
x→∞

P
(
R((1 + %) cos W +

√
1− %2 sin W ) > x

∣∣W ∈ [− arcsin %, π/2]
)

P (R cos W > x|W ∈ [− arcsin %, π/2])

= lim
x→∞

∫ π/2

− arcsin %
P
(
R > x/((1 + %) cos w +

√
1− %2 sin w)

)
dw∫ π/2

− arcsin %
P (R > x/ cos w) dw

=

∫ π/2

− arcsin %
((1 + %) cos w +

√
1− %2 sin w)β dw∫ π/2

− arcsin %
cosβ w dw

. (3.1)
2

Proposition 3.5 Let q(β, %) be defined as in Example 3.4, then

a) for all % ∈ [−1, 1], q(β, %) ≤ 2β if β ≥ 1 and q(β, %) ≥ 2β if β ≤ 1;

b) lim%→−1 q(β, %) = 1 + β, and

c) lim%→1 q(β, %) = 2β.
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Figure 1: The limiting constant q in (3.1) as a function of % for
different values of β.

Proof: Define for f ∈ Lβ([−π/2, π/2]),

ζβ(f) =

(∫ π/2

−α

fβ(w) dw

)1/β

,

with a fixed α = arcsin % ∈ [−π/2, π/2] and 0 < β < ∞. From (3.1) and some
standard trigonometric transformations we get

q(β, sin α)1/β =
ζβ (cos(·) + sin(α + ·))

ζβ (cos(·))
.

Applying Minkowski’s inequality for β ≥ 1, we have

q(β, sin α)1/β ≤ 1 +
ζβ (sin(α + ·))

ζβ (cos(·))
= 2 for β ≥ 1.

For β ≤ 1, the “≤” turns into a “≥” by Theorem 198 in Hardy et al. [14]. This proves
part a). Part b) follows from the representation (3.1) and part c) is a consequence of
the comonotonicity of X1 and X2 or can be calculated explicitly using (3.1). 2

By part a) of Proposition 3.5 the following corollary follows from Lemma 2.3:
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Corollary 3.6 Let X ∈ MRV2(−β), β > 0, be an elliptical random vector as in
Example 3.4, and X̃ the random vector X restricted to the positive quadrant, then
VaR is asymptotically subadditive for X̃ if β ≥ 1 and asymptotically superadditive if
β ≤ 1.

The three examples elaborated in this section show that, besides the dependence
structure and the tail behavior of the marginal dfs, it is also important to differentiate
between rvs with one-sided and two-sided support.

For the infinite mean multivariate t-distribution, subadditivity of VaR holds due
to the dependence properties in the upper left and lower right corner. High values
of one risk are compensated by low values of the other risk, turning VaR into a
coherent risk measure for such infinite mean models. Of course this has important
consequences in risk management. Risk managers should be aware of this property
for elliptical distributions, particularly when the compensation of high losses by high
gains turns out to be an inappropriate characteristic of the considered risk class.

4 Spectral measures for positive rvs

In the following we consider multivariate regularly varyingRn
+-valued random vectors.

Operations between vectors should be interpreted componentwise. Let ‖·‖ : Rn → R+

be an arbitrary norm. Denote the positive part of the unit sphere with respect to
the norm ‖ · ‖ by ℵn−1

+,‖·‖ = {z ∈ Rn
+ | ‖z‖ = 1}. Note that we write ℵn−1

+,‖·‖ for the
positive part of ℵn−1

‖·‖ . For Rn
+-valued random vectors X, Theorem 1 in Resnick [29]

or Theorem 6.1 in Resnick [30] states that multivariate regular variation of X in the
sense of Definition 2.2 is equivalent to the existence of a Radon measure νβ such that

lim
t→∞

t P (X/b(t) ∈ B) = νβ(B),

for all B ⊂ [0,∞]n\{0} relatively compact with νβ(∂B) = 0. The term Radon means
that νβ is finite for all compact subsets of [0,∞]n \{0}. Resnick [30] calls νβ the limit
measure and, after normalization of the marginal dfs, ν1 is referred to as the exponent
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measure in de Haan and Ferreira [13]. Choosing

B = {z ∈ [0,∞]n | ‖z‖ > r, z/‖z‖ ∈ G} ,

for r > 0 and a Borel set G ∈ ℵn−1
+,‖·‖, we get from Definition 2.2,

q(β, ‖ · ‖)r−βµ(G) = νβ {z ∈ [0,∞]n | ‖z‖ > r, z/‖z‖ ∈ G} .

For β = 1 and r = 1, this defines the spectral measure S‖·‖ by

S‖·‖(G) = ν1 {z ∈ [0,∞]n | ‖z‖ > 1, z/‖z‖ ∈ G} .

Following Barbe et al. [4], we have q(β, ‖ · ‖) = ν1

{
z ∈ [0,∞]n | ‖z1/β‖ > 1

}
, and

therefore the following theorem.

Theorem 4.1
Let X ∈ MRVn(−β), β > 0, be a Rn

+-valued random vector with identically distributed
marginals, then

q(β, ‖ · ‖) = lim
x→∞

P (‖X‖ > x)

P (X1 > x)
=

∫
ℵn−1

+,‖·‖

‖z1/β‖β S‖·‖(dz).

Proof: Barbe et al. [4] give an explicit proof when ‖ · ‖ is the l1-norm in Rn. The
same proof holds true for general norms in Rn, as was certainly noticed by these
authors. We therefore refrain from giving the details. 2

Theorem 4.1 shows that β = 1 plays an important role in this context. Regardless
of our choice of the norm, we have q(β = 1, ‖ · ‖) = S‖·‖(ℵn−1

+,‖·‖). If we consider the
l1-norm, we can give the following result.

Corollary 4.2 Let X ∈ MRVn(−β), β > 0, be a Rn
+-valued random vector with

identically distributed marginals. Let ‖ · ‖1 be the l1-norm in Rn, then

n ≤ q(β, ‖ · ‖1) ≤ nβ, for β ≥ 1,

n ≥ q(β, ‖ · ‖1) ≥ nβ, for β ≤ 1.
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Proof: Proposition 2.2 in Barbe et al. [4] states that q(β, ‖ · ‖1) is increasing in
β. Further, q(1, ‖ · ‖1) = S‖·‖1(ℵn−1

+,‖·‖1) = n, because S‖·‖1/n is a probability measure.
This proves the LHS of the statements. For the RHS, consider the functional

ζ̃β(f) =

(∫
ℵn−1

+,‖·‖1

fβ(z) S‖·‖1(dz)

)1/β

,

for non-negative functions f ∈ Lβ(ℵn−1
+,‖·‖1 , S‖·‖1). Note that for β ≥ 1, by Minkowski’s

inequality (note the slight abuse of notation),

(q(β, ‖ · ‖1))
1/β = ζ̃β

(
n∑

i=1

z
1/β
i

)
≤

n∑
i=1

ζ̃β(z
1/β
i ) =

n∑
i=1

(∫
ℵn−1

+,‖·‖1

zi S‖·‖1(dz)

)1/β

= n.

For β ≤ 1 the “≤” turns into a “≥” by Theorem 198 in Hardy et al. [14]. 2

Theorem 4.3
Let X ∈ MRVn(−β), β > 0, be a Rn

+-valued random vector with identically distributed
marginals, then VaRα is asymptotically subadditive for X if β ≥ 1 and asymptotically
superadditive if β ≤ 1.

Proof: Lemma 2.3 and Corollary 4.2 yield the result. 2

Asymptotic subadditivity for bivariate regularly varying random vectors with β ≥ 1

has already been proven in Daníelsson et al. [7], Proposition 1.

Remark 4.4 Note that all components of X in Theorem 4.3 need to be positive.
If this assumption is not fulfilled, subadditivity also for infinite mean models may
occur, for example for elliptical distributed random vectors; see Example 3.3. 2

The norm ‖z‖1 = |z1| + · · · + |zn| is a natural choice, because it allows for the
study of sums of dependent, positive risks and in particular for an analysis of the
additivity properties of VaR; see Theorem 4.3. Sometimes however, spectral measures
with respect to other norms are choosen; for instance in Stărică [33] and Hult and
Lindskog [15], the spectral measure with respect to ‖ · ‖2 and ‖ · ‖∞, respectively, is
more convenient in their context.
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Also when one deals with elliptical types of distributions, where (after a linear
transformation of X) the spectral measure with respect to the Euclidean norm ‖ · ‖2

is uniformly distributed on ℵn−1
‖·‖2 , a change of measure could be appropriate. It is

thus important to express the spectral measure with respect to one norm in terms
of the spectral measure with respect to another norm. This can always be done; see
for instance formula (8.38) in Beirlant et al. [5], which we formulate in the following
lemma.

Lemma 4.5 Let S‖·‖ and S‖·‖′ be the spectral measure with respect to the norms
‖ · ‖ and ‖ · ‖′, respectively, then

S‖·‖(G) =

∫
ℵn−1

+,‖·‖′

1{z/‖z‖∈G}‖z‖ S‖·‖′(dz),

for any Borel set G ⊂ ℵn−1
+,‖·‖.

We call a Rn
+-valued multivariate regularly varying random vector asymptotically

independent, if the spectral measure S‖·‖ is concentrated on the points ei/‖ei‖,
i = 1, . . . , n, with ei the ith basis vector of the canonical basis in Rn; it is called
asymptotically fully dependent, if the spectral measure S‖·‖ is concentrated on 1/‖1‖,
with 1 = (1, . . . , 1)′; see Resnick [29]. Note that by Lemma 4.5 asymptotic indepen-
dence as well as asymptotic full dependence is well-defined.

Proposition 4.6 Let X ∈ MRVn(−β), β > 0, be an asymptotically independent
Rn

+-valued random vector with identically distributed marginals, then q(β, ‖ · ‖) =∑n
i=1 ‖ei‖β and in particular, if ‖ei‖ = 1 for all i = 1, . . . , n, q(β, ‖ · ‖) = n.

Proof: Theorem 4.1 yields

q(β, ‖ · ‖) =
n∑

i=1

‖ (ei/‖ei‖)1/β ‖βS‖·‖(ei/‖ei‖) =
n∑

i=1

‖ei‖β−1S‖·‖(ei/‖ei‖),

with S‖·‖(ei/‖ei‖) = ‖ei‖S‖·‖1(ei) = ‖ei‖, by Lemma 4.5 and because S‖·‖1/n is a
probability measure. 2
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This proposition generalizes Lemma 2.1 in Davis and Resnick [8] to arbitrary norms;
see also Lemma 3.1 in Jessen and Mikosch [19], where the result from [8] is generalized
to rvs with doubly infinite support.

Proposition 4.7 Let X ∈ MRVn(−β), β > 0, be an asymptotically fully dependent
Rn

+-valued random vector with identically distributed marginals, then q(β, ‖ · ‖) =

‖1‖β.

Proof: Theorem 4.1 yields

q(β, ‖ · ‖) = ‖ (1/‖1‖)1/β ‖βS‖·‖(1/‖1‖) = ‖1‖β−1S‖·‖(1/‖1‖),

with S‖·‖(1/‖1‖) = ‖1/n‖S‖·‖1(1/n) = ‖1‖, by Lemma 4.5 and because S‖·‖1/n is a
probability measure. 2

Proposition 4.8 Let X ∈ MRVn(−β), β > 0, be a Rn
+-valued random vector with

identically distributed marginals. Let S‖·‖∞ be the spectral measure with respect to
‖ · ‖∞, the maximum-norm in Rn, then

q(β, ‖ · ‖∞) = S‖·‖∞(ℵn−1
+,‖·‖∞) =

∫
ℵn−1

+,‖·‖

n∨
i=1

zi S‖·‖(dz).

Proof: Note that ‖z1/β‖β
∞ = 1 on ℵn−1

+,‖·‖∞ , for all β > 0. Hence, the first equality
follows from Theorem 4.1. Using Lemma 4.5 the second equality follows. 2

From Proposition 4.8, it follows for X = (X1, . . . , Xn)′ in the above setting that

lim
x→∞

P (max(X1, . . . , Xn) > x)

P (X1 > x)
,

is independent of the index −β < 0, for arbitrary dependence structures.
The following well-known result characterizes asymptotic independence and full

dependence.
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Corollary 4.9 Let X ∈ MRVn(−β), β > 0, be a Rn
+-valued random vector with

identically distributed marginals, then

i) X is asymptotically independent if and only if∫
ℵn−1

+,‖·‖

n∨
i=1

zi S‖·‖(dz) = n.

ii) X is asymptotically fully dependent if and only if∫
ℵn−1

+,‖·‖

n∨
i=1

zi S‖·‖(dz) = 1.

Proof: The “⇒”-part is straightforward from the definition of asymptotic inde-
pendence and full dependence, but also a consequence of Propositions 4.6, 4.7 and
4.8. For the converse, see Beirlant et al. [5], Section 8.2.7. 2

By Proposition 4.8 and Corollary 4.9, it suffices to evaluate q(β, ‖ · ‖∞) in order to
test for asymptotic independence and full dependence, respectively.

5 Tail dependence and asymptotic independence

In Sections 5 and 6, we will discuss further examples and counter-examples for sub-
additivity of VaR. We restrict ourselves to the bivariate case and only sums of rvs
are considered. Since the marginal dfs have equal asymptotic behavior in the dif-
ferent infinite mean models in Examples 3.1 and 3.3, the asymptotic VaR behavior
for the sum of the risks must follow from the different dependence structures (cop-
ulas, spectral measures). We exemplify this issue through the notions of asymptotic
dependence coefficients in the (four) tails of the underlying bivariate distribution.

Definition 5.1 Let (X1, X2)
′ be a bivariate random vector, with marginal dfs FX1

and FX2 . The positive upper (λ+
u ), positive lower (λ+

l ), negative upper (λ−u ) and
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negative lower (λ−l ) tail dependence coefficients are defined as

λ+
u = lim

α↗1
P (X2 > F←X2

(α)|X1 > F←X1
(α)),

λ+
l = lim

α↘0
P (X2 ≤ F←X2

(α)|X1 ≤ F←X1
(α)),

λ−u = lim
α↗1

P (X2 > F←X2
(α)|X1 ≤ F←X1

(1− α)),

λ−l = lim
α↘0

P (X2 ≤ F←X2
(α)|X1 > F←X1

(1− α)),

provided the limits exist in [0, 1]. 2

A sufficient condition for the existence of the tail dependence coefficient is bivariate
regular variation of (f(X1), f(X2))

′ for some strictly increasing transformation f ; see
Mikosch [23] and references therein for weaker conditions on (X1, X2)

′.
Note that for (X1, X2)

′ ∈ MRV2(−β), β > 0, a R2
+-valued random vector with

identically distributed marginals, we have

λ+
u = lim

x→∞
P (X2 > x|X1 > x) = 2− lim

x→∞

P (max(X1, X2) > x)

P (X1 > x)
= 2− q(β, ‖ · ‖∞),

and hence by Proposition 4.8, λ+
u = 2− S‖·‖∞(ℵ1

+,‖·‖∞).

Proposition 5.2 Let (X1, X2)
′ ∈ MRV2(−β), β > 0, be a R2

+-valued random vec-
tor with identically distributed marginals, then

λ+
u = 0 ⇐⇒ (X1, X2)

′ asymptotically independent.

Proof: By Proposition 4.8 and Corollary 4.9, asymptotic independence of the
random vector (X1, X2)

′ is equivalent to 2 = q(β, ‖ · ‖∞). This is equivalent to
λ+

u = 0. 2

Remark 5.3 The concept of positive tail dependence is well-known and often used
in risk management, in particular for describing so-called spillover events; see for
instance Straetmans [31]. However, negative tail dependence λ−u , λ−l , i.e., the proba-
bility that high values of X1 are compensated by low values of X2 and vice versa, did
not draw risk managers’ attention so far. We will see its importance in the sequel.
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High negative tail dependence might not always be reasonable in reality. If it is not
appropriate that high losses are compensated by high gains with positive probability,
then more conservative models should be considered. Recently Zhang [34] introduced
negative tail dependence in order to define a novel dependence measure called total
tail dependence, which is a (2× 2)–matrix with components λ+

u , λ+
l , λ−u , λ−l . 2

The tail dependence coefficients do not depend on the marginal dfs and thus can be
written in terms of the corresponding copulas.

Proposition 5.4 Let FX1 and FX2 from Definition 5.1 be continuous dfs and C the
corresponding copula, then

λ+
u = lim

α↗1

1− 2α + C(α, α)

1− α
, (5.1)

λ+
l = lim

α↘0

C(α, α)

α
, (5.2)

λ−u = 1− lim
α↗1

C(1− α, α)

1− α
, (5.3)

λ−l = 1− lim
α↘0

C(1− α, α)

α
. (5.4)

Proof: See for instance Joe [20], Section 2.1.10 or McNeil et al. [21], Section 5.2.3
for the proof of (5.1) and (5.2). The proof of (5.3) and (5.4) is completely analogous.2

In the case of regularly varying elliptical distributions, the four tail dependence coef-
ficients can be calculated explicitly.

Proposition 5.5 Let X
d
= µ + RAU be a bivariate elliptically distributed regularly

varying random vector with index −β < 0, as defined in Definition 3.2, then

λ+
u = λ+

l =

∫ π/2

a+
cosβ t dt∫ π/2

0
cosβ t dt

, (5.5)

λ−u = λ−l =

∫ π/2

a−
cosβ t dt∫ π/2

0
cosβ t dt

, (5.6)
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with a+ = (π/2 − arcsin %)/2, a− = (π/2 + arcsin %)/2, and where % = σ12/
√

σ11σ22

with (σij)1≤i,j≤2 = Σ = AA′.

Proof: Equation (5.5) has been proven in Hult and Lindskog [15]. By considering
the map X 7→ DX, with

D =

(
0 −1

1 0

)
,

(5.6) follows from (5.5). 2

Even for rvs with a positive linear correlation coefficient, λ−u can be significantly larger
than zero. Another important consequence of the previous proposition is that there
exists no elliptical distribution without negative tail dependence and with heavy (i.e.,
regularly varying) tails, provided % < 1.

Remark 5.6 The class of Archimedean copulas contains several dependence struc-
tures important for practical purposes; see Nelsen [25] Section 4.1, for a definition
of an Archimedean copula and further results. An interesting connection between
Archimedean copulas and so-called l1-norm symmetric distributions is established
by McNeil and Nešlehová [27]. One can show that bivariate dfs with continuous
marginals and with certain Archimedean copulas (e.g., with strict generator; see
Nelsen [25]) have no negative tail dependence, that is λ−u = λ−l = 0. Therefore, they
stand in violent contrast to elliptical distributions, where (unless in the comonotonic
case) λ−u and λ−l are always positive. 2

For every elliptical copula one can always find a (strict) Archimedean copula with the
same positive upper tail dependence coefficient λ+

u . However, the asymptotic VaRs
behave very differently; see also Embrechts et al. [11]. We hence conclude that the
positive upper tail dependence coefficient in an infinite mean model is not able to
explain the sub-/superadditive behavior of VaR.

In the next section we show that a crucial role is indeed played by λ−u and λ−l
whenever X1 and X2 have doubly infinite support.
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6 Tail dependence and subadditivity

The simplest model incorporating independence as well as co- and countermonotonic-
ity is the Fréchet family. Therefore, we combine the independent copula C0,0(u, v) =

uv, the comonotonic copula C1,0(u, v) = u∧ v = min(u, v) and the countermonotonic
copula C0,1(u, v) = (u + v− 1)+; see Nelsen [25], Exercise 2.4. Let Cp1,p2 be a convex
combination of these copulas,

Cp1,p2(u, v) = p1(u ∧ v) + p2(u + v − 1)+ + (1− p1 − p2)uv, (6.1)

for p1 ∈ [0, 1] and p2 ∈ [0, 1 − p1]. The copula family Cp1,p2 is referred to as the
Fréchet family. Let X1, X2 be two identically distributed regularly varying rvs with
index −β < 0 and with marginal df Fβ (i.e., Fβ(x) = x−βL(x), with L slowly varying)
and copula Cp1,p2 . The bivariate df of (X1, X2)

′ is then given by

FX1,X2(x1, x2) = Cp1,p2(Fβ(x1), Fβ(x2)). (6.2)

In Figure 2 we give a typical random sample from the copula Cp1,p2 in (6.1) and the
bivariate df in (6.2).
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Figure 2: Left panel: 500 realizations of the copula Cp1,p2 in (6.1)
with parameters p1 = p2 = 0.1. Right panel: the realizations are
transformed according to (6.2) where Fβ is a t distribution with 6
degrees of freedom.
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In the following, we only look at symmetric marginals, i.e., where X
d
= −X. In order

to investigate subadditivity properties of VaR for the df (6.2), we consider qΨ as a
function of p1, p2 and with Ψ(X) = X1 + X2,

qΨ(β, (p1, p2)) = lim
x→∞

P (X1 + X2 > x)

P (X1 > x)
.

In the symmetric case, qΨ can be calculated explicitly.

Proposition 6.1 Let (X1, X2)
′ be a bivariate random vector defined by (6.2) with

identically distributed, symmetric, regularly varying marginals with index −β < 0,
then

qΨ(β, (p1, p2)) = 2βp1 + 2(1− p1 − p2).

Proof: Due to the linearity of (6.2) it is sufficient to check the independent, the
comonotonic and the countermonotic case separately. For X1, X2 independent, we
have qΨ(β, (0, 0)) = 2, which does not depend on β. For X1, X2 comonotonic and
X1

d
= X2, we have X1 = X2 P -a.s. and hence qΨ(β, (1, 0)) = limx→∞(x/2)−β/x−β =

2β. For X1, X2 countermonotonic and X1
d
= X2, we have X1 = −X2 P -a.s. and hence

qΨ(β, (0, 1)) = 0. 2

Note that the positive upper tail dependence coefficient of the model (6.2) is given
by

λ+
u = lim

u↗1

1− 2u + C(u, u)

1− u
= p1.

Equivalently, we have λ+
l = p1 and λ−u = λ−l = p2. Thus, we have the following

corollary.

Corollary 6.2 Let (X1, X2)
′ be a bivariate random vector with a copula from the

Fréchet family defined by (6.1) and identically distributed, symmetric, regularly vary-
ing marginals with index −β < 0, then qΨ(β, (λ+

u , λ−u )) = 2βλ+
u +2(1−λ+

u −λ−u ), with
λ+

u , λ−u ≥ 0 and λ+
u + λ−u ≤ 1.

If β ≥ 1, then of course, asymptotic subadditivity always holds. This follows from
the fact that qΨ(β, (λ+

u , λ−u )) = 2βλ+
u +2(1−λ+

u −λ−u ) ≤ 2β(λ+
u +(1−λ+

u −λ−u )) ≤ 2β,
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together with Lemma 2.3, yielding that

lim
α↗1

VaRα(X1 + X2)

VaRα(X1) + VaRα(X2)
≤ 1.

In the case β < 1, qΨ(β, (λ+
u , λ−u )) can be smaller or larger than 2β, thus depending

on the values λ+
u , λ−u , subadditivity may hold or fail. To analyze this infinite mean

model in more detail, we exclude the trivial case λ+
u = 1 and introduce the relative

negative tail dependence coefficient

γ =
λ−u

1− λ+
u

.

Because λ+
u +λ−u is always smaller than 1, γ takes values only in [0, 1] and is interpreted

as the amount of negative tail dependence, relative to the possible maximal negative
tail dependence coefficient 1− λ+

u . We then have the following theorem.

Theorem 6.3
Let (X1, X2)

′ be a bivariate random vector with a copula from the Fréchet family
defined by (6.1) with p1 < 1 and identically distributed, symmetric, regularly varying
marginals with index −β < 0. Then asymptotic subadditivity of VaR holds if and
only if γ ≥ 1− 2β−1.

Proof: This follows immediately from Corollary 6.2 and Lemma 2.3. 2

Theorem 6.3 provides a simple criterion for asymptotic subadditivity in the case of
the Fréchet family model (6.2). Only for sufficiently small values of γ superadditivity
occurs. For large values of γ subadditivity always holds. The interpretation of this
behavior is that if the negative tail dependence coefficient is sufficiently large, then
positive extreme values in one coordinate are compensated by negative extreme val-
ues in the other coordinate. This effect can be so strong that we obtain asymptotic
subadditivity. In Figure 3, we plot the range, where subadditivity occurs as a func-
tion of β ∈ [0, 1] and the relative negative tail dependence coefficient γ.

Several authors mention the substantial influence of the transition from a finite
to an infinite mean model on the additivity properties of VaR; see for instance Nešle-
hová et al. [26], Embrechts et al. [11], Ibragimov and Walden [17] and Jang and Jho
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Figure 3: This figure shows the impact of negative tail dependence
on subadditivity properties of VaR for infinite mean models. Inside
of the hatched area subadditivity holds, whereas outside superad-
ditivity holds.

[18]. An early statement in the finance literature that diversification does not in
general reduce its effects on the dispersion of the portfolio return is found already in
1972 in Fama and Miller [12]; these authors based their conclusion on properties of
Lévy-stable dfs.

Theorem 6.3 also shows that β = 1 plays a fundamental role for independent rvs
and more generally if (in the Fréchet model) the relative negative tail dependence
coefficient γ is 0. However, as soon as γ > 0, it is likely that high losses are compen-
sated by high gains and therefore the transition from sub- to superadditivity will be
located at β strictly smaller than 1; see again Figure 3.

Theorem 6.3 of course does not hold in general (outside the Fréchet family model).
However it gives some heuristical insight in the still open problem of the character-
ization of asymptotic sub- and superadditivity in an infinite mean model. Consider
for example a bivariate meta-t-distribution with a t4-copula (% = 0) and identical tν

marginal dfs. Then a simulation with 105 realizations shows that the transition from
sub- to superadditivity is located at a value ν0 in the interval (0.8, 0.9), significantly
below 1. If Theorem 6.3 would hold in general, it would indicate a (theoretical) tran-
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sition located at ν0 = log2(1 − γ) + 1 ≈ 0.877 ∈ (0.8, 0.9), in agreement with our
empirical result. This simulation-based statement we have included for illustrative
purposes, because to the best of our knowledge one does not have a satisfactory ex-
planation for this anomaly at the moment.

In Section 3, we mentioned that in an infinite mean model sub- as well as super-
additivity of VaR may occur in a completely arbitrary (or somewhat chaotic) way.
In the following example we construct such an (artificial) model.

Example 6.4 Corollary 6.2 shows that there exist bivariate rvs where the positive
upper tail dependence coefficient is not the main driver leading to sub- or superad-
ditivity of VaR.
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Figure 4: qΨ(β, λ+
u ) as a function of λ+

u for the Fréchet family cop-
ula (6.1) with parameters p1 and p2 from (6.3) and (6.4), respec-
tively. Subadditivity occurs below the horizontal line, superaddi-
tivity above.

Indeed, by choosing β = 1/2 (infinite mean model) and for instance

p1 = λ+
u , (6.3)

p2 = (1− λ+
u ) sin2

(
4π

λ+
u

1− λ+
u

)
, (6.4)
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the plot of qΨ(β, λ+
u ) in Figure 4 clearly shows that there is no obvious connection

between the positive upper tail dependence coefficient and subadditivity of VaR.
Asymptotic subadditivity occurs if and only if qΨ(β = 1/2, λ+

u ) ≤
√

2 (horizontal
line). One can always choose p2 = λ−u such that for an arbitrary value of λ+

u < 1,
qΨ(β, λ+

u ) is greater or smaller than
√

2. Sub- as well as superadditivity occurs in a
completely arbitrary way. 2

Note that in Theorem 6.3 we assume the rvs to have doubly infinite support. We
give an explicit counter-example, when this assumption is not fulfilled.

Example 6.5 Let X1, X2 be two countermonotonic (i.e., γ = 1) Pareto distributed
rvs with marginal dfs

FX1(x) = FX2(x) = 1− x−1/2, x ≥ 1.

Using countermonotonicity of X1 and X2, we deduce that the df of X1 + X2 for all
x ≥ 8 is,

FX1+X2(x) =

√
1 + 4(1−

√
1 + x)/x = 1− 2x−1/2 + O(x−3/2), x →∞;

see for instance Strassburger and Pfeifer [32], Lemma 5.1. Hence,

lim
x→∞

P (X1 + X2 > x)

P (X1 > x)
= 2,

and thus by Lemma 2.3, asymptotic subadditivity does not hold. 2

Note that for X
′
1, X

′
2

i.i.d.∼ Pareto(1/2), for x ≥ 1,

FX
′
1+X

′
2
(x) = 1− 2

√
x− 1

x
= 1− 2x−1/2 + O(x−3/2), x →∞,

and therefore X1 + X2 in Example 6.5 and X
′
1 + X

′
2 are tail-equivalent. Hence, full

diversification in the sense of countermonotonicity is as bad as independence (and
therefore worse than no diversification in the sense of comonotonicity). For infinite
mean models, diversification clearly goes the wrong way. More generally, we have the
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following proposition; see for instance Davis and Resnick [8], Lemma 2.1 or Albrecher
et al. [2], Corollary 3.2.

Proposition 6.6 Let X1, X2 > 0 be two identically distributed regularly varying rvs
with index −β < 0 and with λ+

u = 0, i.e., such that X1, X2 are tail-independent in
the positive upper tail, then

lim
x→∞

P (X1 + X2 > x)

P (X1 > x)
= 2.

This proposition is indeed a special case of Proposition 4.6. It has the nice inter-
pretation that the sum of tail-independent (in the positive upper tail) rvs behaves
asymptotically as if the summands were independent. According to the above re-
marks, Proposition 6.6 yields the following result. Let X1, X2, X

′
1, X

′
2 > 0 be iden-

tically distributed regularly varying rvs with X1, X2 countermonotonic and X
′
1, X

′
2

independent, then VaRα(X1 + X2) ∼ VaRα(X
′
1 + X

′
2), for α → 1. That is, the VaR

of the sum of highly “diversified” positive rvs is asymptotically equal to the VaR of
the sum of independent rvs for α large.

7 Conclusion

Under the current regulatory guidelines for banking and insurance, risk diversifica-
tion, concentration and aggregation play a prominent role. Within and between “nice”
risk categories, with elliptical dfs, say, these concepts are easily modeled and partic-
ular solutions can be readily worked out. However, for skew, heavy-tailed risk rvs,
diversification and aggregation have to be handled with care.

In this paper we show that the interplay between existence, non-existence of a
finite moment, one- or two-sidedness and symmetry versus asymmetry of the under-
lying risk dfs have to be carefully balanced in order to be able to conclude sub- or
superadditivity of quantile based risk measures like Value-at-Risk.

We have highlighted in the paper that MEVT offers the canonical language for
analyzing from an asymptotic point of view questions of the above type for heavy-
tailed dfs. That answers to these questions are relevant for practice can for instance
be seen in applied publications like Moscadelli [24] and Aas et al. [1]. Though we
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obtained a better understanding of the diversification-concentration-aggregation is-
sue for VaR, many questions still remain unsolved and further research is no doubt
needed, especially for two-sided skew rvs. For two-sided rvs the sum operator is not
a norm but only a so-called gauge function and this makes their analysis much more
delicate; see for instance Balkema and Embrechts [3] for details on MEVT in this
context.
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