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In a recent conversation with a banker, upon introducing myself as one of those

mathematicians interested in �nance and insurance, he asked me whether I had

read the Financial Times article ([8]) pointing out that the bell{curve is wrong.

After I informed him that I even co{authored a book ([2]) on this topic, he replied

by saying that this must be akin to a physicist discovering a new elementary

particle. I informed him that, though the comparison was attering for the

scientists working \beyond the bell{curve", I would personally scale down a bit

this comparison. The point made in [8] was that in various studies in di�erent

scienti�c �elds, it was shown that rare events are more common than the bell{

shaped curve predicts. How can we understand the above discussion, and what,

if any, is its relevance for �nance.

Well, �rst of all, the bell{curve referred to above is of course the famous normal

(or Gaussian) distribution. For a random variable X (think for instance of X

as the P&L position of a trading book, or the return of a �nancial instrument),

X has a normal distribution with mean m and variance �2, assumed �nite, if the

probability that X takes values between a and b is given by

P (a < X � b) =
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We denote this by X � N (m; �2); the important standardised case, m = 0,

� = 1, is referred to as the standard{normal case. By (1), if we know m and

� (through statistical estimation, say), we can estimate probabilities by surfaces

under the bell{shaped curve; see Figure 1.
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Figure 1. P (a < X � b) for X � N (m; �2)

From (1), such results as \68% of the data lie between m� �, m + �", \95%

between m � 2�" and \99% between m � 3�" can be numerically derived. But

also \a 5� move or more has probability 10�6, a 10� move 10�23, a 20� move

10�88". On these kind of �gures we have built our \normal" intuition. At this

point, it may be interesting to know that modern reliability theory is pushing

the quality control boundaries from 3� to 6�, the latter corresponding to 10�9

events; pretty rare.

If now, like in the FT article [8], someone has observed that certain rare events

occur more frequently than predicted by the bell{curve, something must be wrong

with the modelling. One such example is the 1987 crash which was a 10�68

event in a bell{curve world with 20% yearly volatility. A further example is the

LTCM crash. As noted in [5], by August 31 1998, the LTCM portfolio had lost

$1.71 trillion in a month; this translates (in LTCM's risk management system)
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into a 8.3 monthly standard deviation event. And, as the author in [5] rightly

concludes: \Assuming a normal distribution, such an event would occur once

every 800 trillion years, or 40 000 times the age of the universe. Surely the model

was wrong." This \surely the model was wrong" is a key point we need to address

in �nance.

Before we do this, a comment on \When is the bell{curve right?". The (math-

ematical) solution lies in the so{called Central Limit Theorem giving an ap-

proximation of the distribution function of averages. Again in �nance language,

suppose X1; : : : ; Xn are the daily returns on a �nancal instrument with mean re-

turn m and volatility � (and I won't discuss where we got these numbers from),

and denote the average daily return by

Xn =
Sn

n
=
X1 + � � �+Xn

n
:(2)

Then, under precise assumptions on the Xi's (they are independent, each with

the same distribution, denoted by iid), we have that, for n large,

Xn � N

�
m;

�2

n

�
;(3)

and hence the bell{curve (i.e. N) comes out of the blue. But note that N in

(3) plays a measuring role for averages Xn. If now we have reason to believe

that �nancial returns (the Xi's themselves) come about as some sort of averaging

process; for instance, very many \small" traders constantly hitting (i.e. buying,

selling) the price process, then, in such a micro model, we may come up with the

bell{curve as a good �rst approximation. Incidently, the same result underlying

(3) also yields the so{called L�evy (�{)stable distributions; the � (volatility) of

the Xi's making up for Xn must in that case be in�nite! With the �{stables (the

normal case corresponds to � = 2) we do believe in averaging e�ects.

Now at least two things can go wrong in the above construction, and both are

relevant for �nance. First of all, we still believe in the micro trading argument

underlying the normal (Black{Scholes) world, but the underlying assumptions
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(iid, � constant) are violated. Then, at �rst, there is no reason even for averages

to always come up with a result like (3). Econometricians have looked at these

problems and have established the following, so{called stylised facts for return

data (only a partial list):

� returns are uncorrelated, but the absolute and squared returns are strongly

correlated (this hints at an intricate dependence structure in return date),

� returns are heavy{tailed, extremes occur in clusters, leptokurtosis,

� volatility (�) is stochastic (uctuations, clustering).

Further \facts" like long{range dependence, chaotic behaviour, self{similarity,

fractality, regime switching and so many more have been looked at. For an ex-

cellent critical view on these stylised facts, and how they can be replicated in

speci�c models, see [7]. Criticising the bell{curve world and its friends for not

�tting empirical data well is one thing, coming up with a better (the \correct")

model is quite a di�erent matter. Some institutions have gone for a paramet-

ric mixing of the normal, i.e. assume that the � in N (m; �2) is random with

a gamma distribution, say; the dynamics built around this model are still of the

so{called L�evy{process type, i.e. a process with stationary, independent incre-

ments. Others went for the, again parametric, class of GARCH{type processes

in which the volatility dynamics are modelled directly. More general stochastic

volatility models may use semi{parametric, or even non{parametric models. In

this model hunting, we stick for a while by our favorite one and whenever a new

stylised fact comes around the corner, we start hunting for the next (rarer) ani-

mal. Several of the newer models come from physics. One of the main di�erences

between economics and physics however (from a modelling point of view) is that

the former has no agreed set of fundamental laws, also most economic processes

are irreversible, and empirical model testing is nearly impossible. I personally

am a bit hesitant in pushing this model hunting too far. As so often in the social
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sciences, there is no universally correct model. As long as we understand the as-

sumptions underlying a particular model choice we can also stress test the model

in order to go beyond its often narrow boundaries. Model risk is therefore an

issue that will stay with us forever.

The stylised facts above tell us that the micro{model underlying �nancial mar-

kets is much more intricate than the assumptions underlying the validity of (3).

Looking for better models here is de�nitely useful. However, in many cases appli-

cations of bell{curve thinking are applied to situations where there is absolutely

no averaging going on! For instance, if the Xi's stand for losses in a credit portfo-

lio, from a risk management point of view, I am not only interested in the average

loss, but much more importantly in the so{called stress loss. The latter corre-

sponds to the p100% largest losses with p very small. What is the loss level for my

portfolio which will only be surpassed with probability p small (VaR thinking)?

Questions like these are not governed by the average loss Xn but by the extreme

loss Mn = max (X1; : : : ; Xn), or an average of the 1% largest losses, say. In order

to handle the behaviour of these extremes, a theory similar to (3), but now for

Mn has to be worked out. In Figure 2 we give the limiting laws which occur

(there are three types) instead of the normal law: they are the Gumbel, Fr�echet

and Weibull. Do note the asymmetry (skewness) and indeed heavy{tailedness.

For instance, when the Xi's are themselves normally distributed, then their max-

imum Mn is governed by the two{sided skew Gumbel distribution (bold solid

curve) in Figure 2. The resulting Extreme Value Theory (see [2]) is just one

tool which can be used for traveling beyond the bell{curve. For a very readable

introduction to EVT, see [6]. One place where EVT can play an important role

is quantile (VaR) estimation given a historical or simulated P&L or credit loss

distribution. Many banks go to great length getting a proper P&L histogram say,

but then �nish the job by reporting a VaR empirically often as the smallest (or

close to the smallest) P&L observation. EVT allows for a parametric �tting in
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Weibull H(-0.5,0,1)
Gumbel H(0,0,1)
Frechet H(0.5,0,1)

Figure 2. Extreme value distributions

the tail area of the P&L; there are of course assumptions underlying such �tting,

but practice has shown (using backtesting) that such procedures work well and

are de�nitely better than some gormless guessing. For the estimation of extreme

quantiles (like VaR, stress losses in credit, scenario testing) non{parametric meth-

ods in general and bootstrapping in particular have to be treated with great care.

Quantile estimation for heavy{tailed distributions is the key example where the

standard bootstrap methodology does not work.

Most of the above points are certainly (hopefully) not new for most �nance ex-

perts: the normal model is a good �rst approximation, various changes/alternatives

are being studied/used. Reality in �nance is to an important degree (especially

within Risk Management) non{normal. And yet in practice we go on using im-

plicitly normal assumptions. Examples are:

� the use of VaR as a risk measure,
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� the use of linear correlation for measuring dependence,

� mean{variance portfolio optimisation,

� market risk capital measures based on averaging (think of the Basle 60 day

averaging rule),

� using the Sharpe{ratio for ranking di�erent long{tailed investment oppor-

tunities,

� constructing symmetric con�dence intervals around risk measures.

In all of these, and many more examples, one uses normal thinking. This can lead

to wrong or misleading conclusions, especially in risk management. Going back

to the LTCM case discussed earlier, an easy model improvement from normality

to a heavier{tailed t{model shows that the loss incurred was an eight years event

(instead of an 800 trillion years one in the wrong model); see [5]. A �nal example

to show how the non{normal world di�ers. Many authors have rightly criticised

VaR for not summarising the tail{loss properly; an alternative, so{called coherent

risk measure in use (see [1]) is the expected loss given that a loss above VaR

occurs, also referred to as shortfall. In a normal world, for VaRs calculated for

high con�dence limits, this conditional expected loss is roughly VaR itself. In

a non{normal, heavy{tailed world, the di�erence between the two risk measures

can easily be a factor 2 or 3.

Conclusions. Of course the bell{curve is right, when applied to the right sort

of problem. It is however very \wrong" in many (if not all) of the �nancial and

insurance Integrated Risk Management models. This de�nitely in credit and op-

erational risk management where the loss distributions are much more akin to

the very skew insurance{loss type distributions. This is not just an academic

statement. By now, many cases are documented where bell{curve based calcu-

lations are just wrong, and in some cases, terribly wrong. The methods needed

to further improve existing IRM systems have now been around for a while; it

is up to the individual risk manager to �nd out how they can be put to work in
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practice. For some further reading on this issue, see [3], [4] and the references

therein.
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