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ETH-Zürich
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Abstract

Due to the new regulatory guidelines known as Basel II for banking and Solvency 2 for

insurance, the financial industry is looking for qualitative approaches to and quantitative

models for operational risk. Whereas a full quantitative approach may never be achieved,

in this paper we present some techniques from probability and statistics which no doubt

will prove useful in any quantitative modelling environment. The techniques discussed are

advanced peaks over threshold modelling, the construction of dependent loss processes

and the establishment of bounds for risk measures under partial information, and can be

applied to other areas of quantitative risk management1.

JEL classification: C.14; G.10; G.21

Keywords: Copula; Dependence; Fréchet class problems; Generalized Pareto distribution;

Mass transportation; Operational risk; Peaks over threshold; Point process; Risk aggregation;

Statistics of extremes.

1This paper was presented as an invited contribution at the meeting “Implementing an AMA for

Operational Risk”, Federal Reserve Bank of Boston, May 18-20, 2005
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1 Introduction

Managing risk lies at the heart of the financial services industry. Regulatory frameworks, such

as Basel II for banking and Solvency 2 for insurance, mandate a focus on operational risk. A

fast growing literature exists on the various aspects of operational risk modelling; see the list

of references towards the end of the paper. For a textbook discussion very much in line with

our paper, see McNeil et al. (2005).

In this paper we discuss some of the more recent stochastic methodology which may be useful

towards the quantitative analysis of certain types of operational loss data. We stress the

“certain types” in the previous sentence. Indeed, as is well known, not all operational risk

data lend themselves easily to a full quantitative analysis. The analytic methods discussed

cover a broad range of issues which will typically enter in the development of an advanced

measurement approach, AMA in the language of Basel II.

In Section 2, we first present some more advanced techniques from the realm of extreme value

theory (EVT). EVT is considered as a canonical set of tools for analyzing rare events; several

of the operational risk classes exhibit properties which very naturally call for an EVT analysis.

Especially the non-stationarity of most long-term operational risk data however warrants an

approach “beyond classical EVT”.

In Section 3, we turn to the problem of modelling the interdependencies between various

operational risk processes. Here, several approaches are possible. We concentrate on one

approach showing how copula-based techniques can be used to model dependent loss processes

which are of the compound Poisson type. Whereas the results from Section 2 are immediately

applicable (as will be shown on some data), the techniques of Section 3 are presented in order

to offer a first glimpse on what may be obtained. We expect that more results of this type

will become available in the near future.

In Section 4 we leave the detailed modelling of loss processes and turn to the question of how

to combine or aggregate risk measures across several operational risk classes when no precise

dependence information is available. This leads to well-known optimization problems known

under the names Fréchet class problems or mass transportation problems. Also here, the

notion of copula comes in useful. The techniques discussed in this section can also be used

to tackle the problem of risk aggregation between risk classes of different types, as there are

market, credit, operational and underwriting risk for instance.
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A final Section 5 contains some conclusions and thoughts on further research.

2 Advanced EVT Models

2.1 Why EVT?

The key attraction of EVT is that it offers a set of ready-made approaches to the most

challenging problem of quantitative operational risk analysis, that is, how can risks that are

both extreme and rare be modelled appropriately? Applying classical EVT to operational

loss data however raises some difficult issues. The obstacles are not really due to a technical

justification of EVT, but more to the nature of the data. As explained in Embrechts et al.

(2003a) and Embrechts et al. (2004), whereas EVT is the natural set of statistical techniques

for estimating high quantiles of a loss distribution, this can be done with sufficient accuracy

only when the data satisfy specific conditions; we further need sufficient data to calibrate

the models. Embrechts et al. (2003a) contains a simulation study indicating the sample size

needed in order to reliably estimate certain high quantiles, and this under ideal (so called

iid = independent and identically distributed) data structure assumptions. From the above

two papers we can definitely infer that, though EVT is a highly useful tool for high-quantile

estimation, the present data availability and data structure of operational risk losses make a

straightforward EVT application somewhat questionable. Nevertheless, for specific subclasses

where quantitative data can be reliably gathered, EVT offers a useful tool. However, even in

these cases, one may have to go beyond standard EVT to come up with a correct modelling.

To illustrate the latter issue, consider Figure 1 taken from Embrechts et al. (2004). For our

purposes, it suffices to recall that the data span a 10 year period for three different operational

risk loss types, referred to as Types 1, 2 and 3. The stylised facts observed here are:

• the historical period is relatively short (only 10 years of data);

• loss amounts very clearly show extremes;

• loss occurrence times are irregularly spaced in time, and

• the number of occurrences (though relatively few) seems to increase over time with a

radical change around 1998.
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Figure 1: Operational risk losses. From left to right: Type 1 (n = 162), Type 2 (n = 80),

Type 3 (n = 175).

The last point very clearly highlights the presence of non-stationarity in current operational

loss data. The “discontinuity” may be due to the effort to build such a database of losses

of the same type going back about 10 years; quantifying operational risk only became an

issue in the late nineties. This is referred to as reporting bias. Such structural changes may

also be due to an internal change (endogenous effects, management action, M&A) or changes

in the economic/political/regulatory environment in which the company operates (exogenous

effects).

In this section, we adapt classical EVT to take both non-stationarity and covariate modelling

(different types of losses) into account. This section should be viewed as a first illustrative

example of these techniques. Chavez-Demoulin (1999), Chavez-Demoulin and Davison (2005)

contain the relevant methodology. The latter paper explains the new technique with finance

and insurance related applications in mind. In the next subsection, we first review the Peaks

over Threshold (POT) method and the main operational risk measures to be analysed. In

Subsection 2.3, the adapted classical POT method, taking non-stationarity and covariate

modelling into account, is applied to the operational risk loss data from Figure 1. Subsection

2.4 discusses some issues resulting from the modelling of very heavy-tailed data.
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2.2 The basic EVT methodology

Over the recent years, EVT has been recognized as a very useful set of probabilistic and

statistical tools for the modelling of rare events and its impact on insurance, finance and

quantitative risk management is well recognized. Numerous publications have exemplified

this point. Embrechts et al. (1997) detail the mathematical theory with insurance and finance

applications in mind. The edited volume Embrechts (2000) contains an early summary of EVT

applications to risk management, whereas McNeil et al. (2005) contains a concise discussion

with quantitative risk management applications in mind. Reiss and Thomas (2001), Falk

et al. (2004), Coles (2001) and Beirlant et al. (2004) are very readable introductions to EVT

in general.

Below, we only give a very brief introduction to EVT and in particular to the peaks over

threshold (POT) method for high-quantile estimation. A more detailed account is to be

found in the list of references; for our purpose, Chavez-Demoulin and Davison (2005) and

Chavez-Demoulin and Embrechts (2004) contain relevant methodological details.

From the latter paper, we borrow the basic notation (see also Figure 2):

• ground-up losses are denoted by Z1, Z2, . . . , Zq;

• u is a typically high threshold, and

• W1, . . . ,Wn are the excess losses from Z1, . . . , Zq above u, i.e. Wj = Zi − u for some

j = 1, . . . , n and i = 1, . . . , q, where Zi > u.

Note that u is a pivotal parameter to be set by the modeller so that the excesses above u,

W1, . . . ,Wn, satisfy the required properties from the POT method; see Leadbetter (1991)

for the basic theory. The choice of an appropriate u poses several difficult issues in the

modelling of operational risk; see the various discussions at a meeting organized by the Federal

Reserve Bank of Boston, Implementing an AMA for Operational Risk, Boston, May 18–20,

2005 (www.bos.frb.org/bankinfo/conevent/oprisk2005). For iid losses, the conditional excesses

W1, . . . ,Wn, asymptotically for u large, follow a so-called Generalized Pareto Distribution

(GPD):

Gκ,σ(w) =





1− (1 + κw/σ)
−1/κ
+ , κ 6= 0,

1− exp(−w/σ) , κ = 0 ,

(1)
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where (x)+ = x if x > 0 and 0 otherwise. The precise meaning of the asymptotics is explained

in Embrechts et al. (1997), Theorem 3.4.13. For operational loss modelling one typically finds

κ > 0 which corresponds to ground-up losses Z1, . . . , Zq following a Pareto-type distribution

with power tail with index 1/κ, i.e. P (Wi > w) = w−1/κh(w) for some slowly varying function

h, i.e. h satisfies

lim
t→∞

h(tw)

h(t)
= 1, w > 0. (2)

For instance, in a detailed study of all the losses reported to the Basel Committee during

the third Quantitative Impact Study (QIS), Moscadelli (2004) reported typical Pareto-type

behavior across most of the risk types, even some cases with κ > 1, i.e. infinite mean models.

From Leadbetter (1991) it also follows that for u high enough, the exceedance points of

Z1, . . . , Zq of the threshold u follow (approximately) a homogeneous Poisson process with in-

tensity λ > 0. Based on this, an approximate log-likelihood function l(λ, σ, κ) can be derived;

see Chavez-Demoulin and Embrechts (2004) for details. In a further step, the POT method

can be extended by allowing the parameters λ, σ, κ to be dependent on time and explana-

tory variables allowing for non-stationarity; this is useful for applications to operational risk

modelling. In the next section (where we apply the POT method to the data in Figure 1),

we will take for λ = λ(t) a specific function of time which models the obvious “increase” in

loss intensity in Figure 1. We moreover will differentiate between the different loss types and

adjust the parameters κ and σ accordingly.

Before we proceed with the data analysis, we briefly review the main risk measures to be

analysed throughout this paper, Value-at-Risk (VaR) and Expected-Shortfall (ES) (also re-

ferred to as “conditional VaR”, “mean excess loss”, “beyond VaR” or “tail VaR”). The ES

is an alternative risk measure that has been proposed to alleviate some conceptual problems

inherent in VaR. For α close to 1 (0.999, say) and a general loss random variable X with

continuous distribution function F , these measures are defined as follows:

VaRα = F−1(1− α),

ESα = E(X | X > VaRα).

We refrain from discussing the various issues underlying the choice and definition of these risk

measures, as there are: the precise definition of F −1 or the problem in the definition of ESα

whenever X is non-continuous. The latter may lead to the loss of sub-additivity of ESα, a
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Figure 2: The point process of exceedances (POT).

problem which easily can be remedied; see McNeil et al. (2005) for a discussion and further

references. We assume throughout that VaRα and ESα as given above are well defined. In

particular for ESα this means that E(X) <∞, so that in the GPD case, κ < 1.

In cases where the POT method can be applied, for given u, these measures can be estimated

as follows:

V̂aRα = u+
σ̂

κ̂

{(
1− α
λ̂

)−κ̂
− 1

}
, (3)

and

ÊSα =

{
1

1− κ̂ +
σ̂ − κ̂u

(1− κ̂)V̂aRα

}
V̂aRα. (4)

Here λ̂, κ̂, σ̂ are the maximum likelihood estimators of λ, κ and σ. Interval estimates can be

obtained by the delta method or by the profile likelihood approach and has been programmed

into the freeware EVIS by Alexander McNeil, available under www.math.ethz.ch/˜mcneil.

Though an analysis of the data in Figure 1 is self-contained, the interested reader wanting

to learn more about the specifics of modelling non-stationarity and covariates into the POT

method is adviced to read Chavez-Demoulin and Embrechts (2004) and the references therein

before proceeding. The less technical reader will no doubt find the analysis presented in the

next section sufficiently easy to follow in order to grasp the relevance of this more advanced

EVT method.



2 ADVANCED EVT MODELS 8

2.3 POT analysis of the operational loss data

In the previous subsections, we briefly laid the foundation of the approach towards the analysis

of extremes based on the exceedances of a high threshold. We now return to the operational

risk data of Figure 1 which consists of three different types over a 10 year period. Our analysis

below is more illustrative; in order to become fully applicable, much larger operational loss

data bases will have to become available. From the discussion of the data, it follows that

we should at least take the risk type τ as well as the non-stationarity (switch around 1998)

into account. First, pool the data in the three panels of Figure 1. Using the advanced POT

modelling, including non-stationarity and covariates, the data pooling has the advantage to

allow for testing interaction between explanatory variables (is there for instance an interac-

tion between type of loss and regime switching, say?). In line with Chavez-Demoulin and

Embrechts (2004), we fix a threshold u = 0.4. The latter paper also contains a sensitivity

analysis of the results with respect to this choice of threshold u. A result from that analysis

is that for these data, small variations in the value of the threshold have nearly no impact.

Given sufficient data, much more than in Figure 1, our method would allow to model VaRα

and ESα as functions of time: are they constant or changing in time? Are they dependent on

the type of losses?

Following the non-parametric methodology summarized in the above paper, we fit different

models for λ, κ and σ allowing for:

• functional dependence on time g(t), where t refers to the year over the period of study;

• dependence on τ , where τ defines the type of loss data through an indicator Iτ = 1, if

the type equals τ and 0 otherwise, with τ = 1, 2, 3, and

• discontinuity modelling through an indicator I(t>tc) where tc = 1998 is the year of

possible change point or regime switch and

I(t>tc) =





1, if t > tc,

0, if t ≤ tc.

Of course a more formal test on the existence and value of tc can be included; the rather

pragmatic choice of tc = 1998 suffices for this first illustrative analysis. We apply different

possible models to each parameter λ, κ and σ. Using specific tests (based on the likelihood

ratio statistics), we compare the resulting models and select the most significant one.
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Figure 3: Operational risk losses. From left to right: Estimated Poisson intensity λ̂ and

95% confidence intervals for data of loss type 1, 2, 3. The points are the yearly numbers of

exceedances over u = 0.4.

The selected model for the Poisson intensity λ(t, τ) is

log λ̂(t, τ) = γ̂τ Iτ + β̂I(t>tc) + ĝ(t). (5)

Inclusion of the first component γ̂τ Iτ on the right hand side indicates that the type of loss

τ is important to model the Poisson intensity; that is the number of exceedances over the

threshold differs significantly for each type of loss 1, 2 or 3. The selected model also contains

the discontinuity indicator I(t>tc) as a test based on the hypothesis that the simplest model

“β = 0 suffices” is rejected at a 5% level. We find β̂ = 0.47(0.069) and the intensity is

rather different in mean before and after 1998. Finally, it is clear that the loss intensity

parameter λ is dependent on time (year). This dependence is modelled through the estimated

function ĝ(t). For the reader interested in fitting details, we use a smoothing spline with 3

degrees of freedom selected by AIC (see Chavez-Demoulin and Embrechts (2004)). Figure 3

represents the resulting estimated intensity λ̂ for each type of losses and its 95% confidence

interval based on bootstrap resampling schemes (details in Chavez-Demoulin and Davison

(2005)). The resulting curves seem to capture the behaviour of the number of exceedances

(points of the graphs) for each type rather well. The global increase of the estimated intensity

curves therefore seems to be in accordance with reality. Note that the inclusion of the time

dependent function g(t) allows us to model this non-stationarity. The advantage of such a

non-parametric technique becomes very clear. It would also allow to detect any seasonality

or cyclic patterns which may exist; see Brown and Wang (2005).

Similarly, we fit several models for the GPD parameters κ = κ(t, τ) and σ = σ(t, τ) modelling

the loss-size through (1) and compare them. For both κ and σ, the model selected depends

only on the type τ of the losses but not on time t. Their estimates κ̂(τ) and σ̂(τ) and 95%

confidence intervals are given in Figure 4. The shape parameter κ (upper panels) is around
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Figure 4: Operational risk losses. Estimated GPD parameters: upper κ̂, lower σ̂ and 95%

confidence intervals for different loss types.

0.7 for types 1 and 2 (finite mean and infinite variance) and is significantly smaller for type 3

with an estimated value of around 0.3 (finite third moment); this suggests a loss distribution

for type 3 with less heavy tail than for types 1 and 2. Tests based on likelihood ratio statistics

have shown that the effect due to the switch in 1998 is not retained in the models for κ and

σ, i.e. the loss size distributions do not switch around 1998. Finally, note that, as the GPD

parameters κ and σ are much more difficult to estimate than λ, the lack of sufficient data

makes the detection of any trend and/or periodic components difficult.

To assess the model goodness-of-fit for the GPD parameters, a possible diagnostic can be

based on the result that, when the model is correct, the residuals

Rj = κ̂−1 log {1 + κ̂Wj/σ̂} , j = 1, . . . , n,

are approximately independent, unit exponential variables. Figure 5 gives an exponential

quantile-quantile plot for the residuals using the estimates κ̂(τ) and σ̂(τ) for the three types

of loss data superimposed. This plot suggests that our model is reasonable.

The importance of using models including covariates (representing type) instead of pooling

the data and finding unique overall estimated values of λ, κ, σ is clearly highlighted here. In a

certain sense, the use of our adapted model allows to exploit all the information available on
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the data, a feature which is becoming more and more crucial, particularly in the context of

operational and credit risk. Using the estimated parameters λ̂, κ̂, σ̂ it is possible to estimate

VaR, ES or other the risk measures; for this to be done accurately much larger data bases

must become available. The data displayed in Figure 1 are insufficient for such an estimate

procedure at the 99.9 % confidence level, hence we decided not to include such an analysis.

2.4 The one loss causes ruin problem

We further want to make some comments about loss portfolios where the (iid, say) losses

follow a Pareto-type distribution with index 1/κ. Based on the concept of Lorenz curve in

economics, in Embrechts et al. (1997, Section 8.2), a large claim index is introduced explaining

which percentage of the individual losses constitutes a certain percentage of the total portfolio

loss. For instance, the famous 20 – 80 rule corresponds to 1/κ = 1.4. I.e., in an iid Pareto

portfolio with index 1.4, 20 % of the individual losses produce 80 % of the total portfolio

loss. For 1/κ = 1.01 (a model with still finite mean, but only just) we have a 0.1 – 95 rule,

i.e. 0.1 % of the losses is responsible for 95 % of the total loss amount. In such models (and

definitely for κ > 1) we enter the “one loss causes ruin”-regime as discussed in Asmussen

(2000, p. 264) as the “one large claim”-heuristics. See also Figure 1.3.7 in Embrechts et al.

(1997) for a simulated illustration of this phenomenon in a ruin model context. A discussion
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of this figure is also to be found in Mandelbrot and Hudson (2004). We will come back to

this issue in Subsection 4.3.

3 Dependent Risk Processes

3.1 The point process approach

Apart from handling non-stationarity and extremes in operational loss data, the understanding

of diversification effects in operational risk modelling is of key importance. According to the

Basel Committee, operational events are classified into distinct business lines (8) and risk types

(7). This leads to maximally 56 classes, though some larger banks collect data even for a higher

number of cells, sometimes over 100. For each of these cells, one may obtain operational loss

series; for the purpose of this section assume that we are able to model them appropriately. It

is however intuitively clear that risk events may be related across different classes. Consider

for example effects with a broad impact, such as mainframe or electricity failure, weather

catastrophes, major economic events or terrorist attacks like September 11. On such severe

occasions, several business lines will typically be affected and cause simultaneous losses of

different risk types.

In this section, we present two methods for modelling dependent loss processes following

Neslehova and Pfeifer (2004). A key point here is to view loss processes in an equivalent, yet

mathematically more tractable way, namely as point processes. This approach may appear

less appealing at first sight because of its rather complicated theoretical background. This is

however more then compensated for by the clear advantages it has when it comes to more

advanced modelling. In the context of EVT for instance, the point process characterization

not only unifies several well-known models such as block maxima or threshold exceedances

but also provides a more natural formulation of non-stationarity; see McNeil et al. (2005),

Coles (2001) and especially Resnick (1987). The techniques presented in the previous section

very much rely on point process methodology. Point process theory also forms the basis for

the intensity based approach to credit risk; see Bielecki and Rutkowski (2002). In this section,

we show that also the issue of dependence can be tackled in a very general though elegant

way when using this methodology.

To lessen the theoretical difficulties, we devote this subsection to an informal introduction
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to the basics of the theory of point processes in the context of operational risk. For more

information on the topic of point processes, we refer to Chapter 5 in Embrechts et al. (1997),

Reiss (1993), Kingman (1993) or the comprehensive monograph by Daley and Vere-Jones

(1988).

The key ingredients of loss data in operational, credit and underwriting risk, for instance, are

the occurrence of the event and the loss size/severity. We first concentrate on the occurrences

(see Subsection 3.4 for the severities). Loss occurrences will typically follow a Poisson counting

process; the aim of the discussion below is to show that an alternative representation as a

point process is possible, which more naturally allows for dependence.

Suppose that a loss event happens at a random time T in some period under study [0,∆],

say. In our case, ∆ will typically be one (year). For every set A ⊂ [0,∆], we can construct

the easiest point process:

IT (A) =





1, if T ∈ A,

0, otherwise,

also referred to as an elementary random measure. Next, let T1, . . . Tn be n random loss

events, then the point process ξn given by

ξn(A) :=

n∑

i=1

ITi(A) (6)

counts the number of losses in the observation period A ⊂ [0,∆]. There are several ways in

which we can generalize (6) in order to come closer to situations we may encounter in reality.

First, we can make n random, N say, which leads to a random number of losses in [0,∆].

In addition, the Ti’s can be multivariate, T i d-dimensional, say. The latter corresponds to

occurrences of d loss types (all caused by one effect for instance). This leads to the general

random measure

ξN :=
N∑

i=1

IT i . (7)

Recall that all components of T i are assumed to lie in [0,∆], i.e. ξN ([0,∆]d) = N . As a

special case, consider d = 1 and N Poisson with parameter λ∆ and independent of the Ti’s,

which themselves are assumed mutually independent and uniformly distributed on [0,∆]. If

A = [0, t] for some 0 ≤ t ≤ ∆, then one can verify that

{
N(t) := ξN

(
[0, t]

)
: t ∈ [0,∆]

}
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is the well known homogeneous Poisson counting process with rate (intensity) λ > 0, restricted

to [0,∆]. Recall that in this case

E
(
N(t)

)
= E(N)P[Ti ≤ t] = λ∆

t

∆
= λt.

Note that, in contrast to the classical construction of {N(t) : t ≥ 0} as a renewal process, the

sequence of the loss occurrence times Ti is not necessarily ascending. The restriction to the

finite time period [0,∆], which is not needed in the traditional counting process approach,

can also be overcome in the point process world; we come back to this issue in the discussion

below.

The advantage of the point process modelling now becomes apparent as it naturally leads to

further generalizations. The time points can still occur randomly in time, but with a time

variable intensity. Moreover, the loss occurrences can be d-dimensional like in (7), or replaced

by (T i,X i) where the X i’s denote the corresponding severities (see Subsection 3.4). Note

however that to this point, we assume the total number of losses to be the same for each

component. A construction method which relaxes this will be the subject of Subsection 3.3.

If the common counting variable N has a Poisson distribution and is independent of the iid

loss occurrences, which follow some unspecified distribution F , then (7) is a (finite) Poisson

point process, which we from now on denote by ξ. In that case ξ(A) is an ordinary Poisson

random variable with parameter E ξ(A) = E(N)F (A). As a function of A, E ξ(·) is referred

to as the intensity measure of ξ. Whenever this measure has a density then this is called the

intensity of the point process. Moreover, if A1, . . . , An are mutually disjoint time intervals,

the numbers of occurrences within those intervals, ξ(A1), . . . , ξ(An), are independent.

From now on assume that the process of loss occurrences is a Poisson point process of the form

(7). Below, we list three properties of Poisson point processes which are key for modelling

dependence; for proofs and further details, we refer to the literature above.

Let ξ =
∑N

i=1 IT i be a finite Poisson point process with d-dimensional event points T i =

(Ti(1), . . . , Ti(d)). For example, for d = 2, Ti(1) and Ti(2) can denote occurrence time points

of losses due to internal and external fraud in the same business line, respectively. Each of

the projections or, marginal processes,

ξ(k) =

N∑

i=1

ITi(k), k = 1, . . . , d, (8)
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Figure 6: Projections of a two dimensional homogeneous Poisson point process on [0.5, 1.5]×
[0.5, 1.5].

is then a one-dimensional Poisson point process, i.e. a process describing internal and external

fraud losses, respectively. The intensity measure E ξ(k)(·) of the marginal processes is given

by E(N)Fk(·), where Fk denotes the k-th margin of the joint distribution F of the Ti. Figure

6 (left) shows a two-dimensional homogeneous Poisson point process with intensity 20. The

one-dimensional projections are displayed on the axes as well as in Figure 6 (right).

Conversely, if ξ(k) =
∑N

i=1 ITi(k), k = 1, . . . , d, are one-dimensional Poisson point processes,

then ξ =
∑N

i=1 IT i with T i = (Ti(1), . . . , Ti(d)) is a d-dimensional Poisson point process with

intensity measure E ξ(·) = E(N)F (·) where F denotes the joint distribution of T i. This

result, also called embedding, is of particular use for modelling dependent losses triggered by

a common effect, as we will soon see.

Above, we considered only Poisson point processes on a finite period of time [0,∆]. It is

however sometimes necessary to work on an infinite time horizon, such as e.g. [0,∞). To

accomplish this, the definition of Poisson point processes can be extended, see e.g. Embrechts

et al. (1997) or Reiss (1993). The resulting process is no longer given by the sum (7), but can

be expressed as a sum of finite Poisson processes, a so-called superposition. Let ξ1 and ξ2 be

independent Poisson point processes with (finite) intensity measures E ξ1 and E ξ2. Then the

superposition of ξ1 and ξ2, i.e. the process ξ = ξ1 + ξ2, is again a Poisson point process with

intensity measure E ξ = E ξ2 + E ξ1.
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Figure 7: Superposition of a homogeneous Poisson process with intensity 5 over [0, 1] and a

homogeneous Poisson process with intensity 20 over [1, 2].

Figure 7 shows a superposition of two homogeneous Poisson processes with different intensities

defined on different time intervals. Another example would be a superposition of indepen-

dent Poisson processes corresponding to different risk classes over the same time period (see

Figure 11). Extending this result to a superposition of countably many independent Poisson

processes yields a Poisson point process (in a wider sense) with an intensity measure that is

not necessarily finite. For example, if ξk is a homogeneous Poisson point process with con-

stant intensity λ > 0 (independent of k) on [k − 1, k) for a non-negative integer k, then the

superposition ξ =
∑∞

k=1 ξk is a (locally) homogeneous Poisson point process on [0,∞). It

moreover corresponds to the classical time-homogeneous Poisson counting process or renewal

counting process with iid random interarrival times following an exponential distribution with

expectation 1/λ.

A final important technique is thinning, which splits a Poisson point process into two (or more)

independent Poisson processes. It is accomplished by marking the event points with “1” or

“0” using a random number generator and subsequent grouping of the event time points with

identical marks. For instance, considering the point process of exceedances over a threshold

u, we can mark by “1” those losses which exceed an even higher threshold u + x. Suppose

ξ =
∑N

i=1 IT i is some (finite) Poisson point process and {εi} a sequence of iid {0, 1}-valued

random variables with P[εi = 1] = p. Then the thinnings of ξ are point processes given by

ξ1 :=
N∑

i=1

εi · IT i and ξ2 :=
N∑

i=1

(1− εi) · IT i . (9)

The so-constructed processes ξ1 and ξ2 are independent Poisson point processes with intensi-

ties E ξ1 = pE ξ and E ξ1 = (1−p) E ξ. Moreover, the original process arises as a superposition

of the thinnings, ξ = ξ1 + ξ2.

As we will soon see, there are two kinds of dependence which play an important role for the

Poisson point processes, ξ1 =
∑N1

i=1 ITi(1) and ξ2 =
∑N2

i=1 ITi(2), say:
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• dependence between the events such as time occurrences of losses, e.g. between Ti(1)

and Ti(2), and

• dependence between the number of events or event frequencies, e.g. between the count-

ing (Poisson distributed) random variables N1 and N2.

Before presenting the models for dependent Poisson point processes, we first address these

two issues.

3.2 Dependent counting variables

Modelling of multivariate distributions with given marginals can be accomplished in a partic-

ularly elegant way using copulas. This approach is based upon the well-known result of Sklar

that any d-dimensional distribution function F with marginals F1, . . . , Fd can be expressed as

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) for any (x1, . . . , xd) ∈ Rd. (10)

The function C is a so-called copula, a distribution function on [0, 1]d with uniform marginals.

It is not our intention to discuss copulas in greater detail here; we refer to monographs by

Nelsen (1999) or Joe (1997) for further information. McNeil et al. (2005) and Cherubini et al.

(2004) contain introductions with a special emphasis to applications in finance and insurance.

It is sufficient to note that C is unique if the marginal distributions are continuous. Moreover,

combining given marginals with a chosen copula through (10) always yields a multivariate

distribution with those marginals. For the purpose of illustration of the methods presented

below, we will use copulas of the so-called Frank family. These are defined by

Cθ(u, v) = −1

θ
ln

(
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

)
, θ ∈ [−∞,∞],

where the cases θ = −∞, 0 and ∞, respectively, are understood as limits. The choice of

the Frank family is merely motivated by its mathematical properties. It is in particular

comprehensive, meaning that Cθ models a wide class of dependence scenarios for different

values of the parameter θ: perfect positive dependence (for θ =∞), positive dependence (for

θ > 0), negative dependence (for θ < 0), perfect negative dependence (for θ = −∞) and

independence (for θ = 0).

In the situation of point processes, there are two situations where the copula modelling is

particularly useful. First, if the event-time points Ti(1), . . . , Ti(d) have fixed and continuous
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Figure 8: Generation of random variables with Poisson marginals and Frank copula.

distributions, say F1, . . . , Fd, then choosing some suitable copula CT yields the distribution F

of the d-dimensional event-time point T i = (Ti(1), . . . , Ti(d)) via (10).

Secondly, the copula approach can be used for constructing multivariate distributions with

Poisson marginals (see also Joe (1997) and Nelsen (1987)). Although such distributions may

not possess nice stochastic interpretations and have to be handled with care because of the non-

continuity of the marginals, they cover a wide range of dependence possibilities; see Griffiths

et al. (1979), Neslehova (2004), Neslehova and Pfeifer (2004) and Denuit and Lambert (2005)

for further details. Our focus here lies in describing how the generation of two Poisson random

variables using copulas works.

For the moment, suppose G1 and G2 denote Poisson distributions and C a chosen copula.

In the first step, we generate a random point (u, v) in the unit square [0, 1] × [0, 1] from the

copula C. Thereafter, we determine integers i and j in a way that (u, v) lies in the rectangle

Rij := (G1(i−1), G1(i)]×(G2(j−1), G2(j)]. Note that the choice of the i and j is unique. The

point (i, j) is then the realization of a two dimensional Poisson random vector with copula

C and marginals G1 and G2. Figure 8 shows a random generation of a pair (N1, N2) with

Poisson marginals with parameters 1 and 2 and a Frank copula with parameter −10; the

horizontal and vertical lines indicate the subdivision of the unit square into the rectangles

Rij . Here for instance, all simulated random points falling into the shaded rectangle generate

the (same) pair (1, 2).
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3.3 Dependent point processes

In this subsection, we finally present two methods for constructing dependent Poisson point

processes. This task however implicitly involves another important question: what does de-

pendence between point processes mean and how can we describe it? For random variables,

there exist several ways of describing dependence precisely. For instance one can calculate de-

pendence measures like linear correlation, rank correlations like Spearman’s rho or Kendall’s

tau, or investigate dependence concepts like quadrant or tail dependence, or indeed one can

look for a (the) copula. For processes, however, a mathematical formulation and well devel-

oped theory of dependence and resulting measures do not really exist. There do however exist

some partial attempts. Griffiths et al. (1979) use the following analogue of the linear correla-

tion coefficient. Suppose ξ1 and ξ2 are one-dimensional point processes defined on the same

state space, say [0,∆]d. Then the correlation between the two processes can be expressed by

the correlation coefficient ρ(ξ1(A), ξ2(B)) between the random variables ξ1(A) and ξ2(B) for

some sets A and B.

Construction Method I. This method is based upon an extension of (8) and produces

Poisson point processes with the same random number N of events. Let ξ =
∑N

i=1 IT i be

a Poisson process with iid d-dimensional event points T i = (Ti(1), . . . , Ti(d)) whose joint

distribution for each i is given through a copula CT . We can again think of Ti(k) being loss

occurrence times in d different classes, say. Following (8), the marginal processes ξ(k) =
∑N

i=1 ITi(k), k = 1, . . . , d are Poisson, but dependent. Figure 9 illustrates Method I. The

counting variable N is Poisson with parameter 20 and Ti(k), k = 1, . . . , d, are uniform with

joint distribution function given by the Frank copula. The resulting dependent Poisson point

processes are displayed on the axes as well as under the graphs for a better visualisation.

The parameter of the Frank copula is 10 (left) yielding highly positively correlated event time

points and −10 (right) producing highly negatively correlated event time points. The loss-

event times in the left panel for both types cluster in similar time periods, whereas the event

times in the right panel tend to “avoid” each other. This is a typical example of what we call

dependence engineering.

As shown in Neslehova and Pfeifer (2004), the correlation of ξ(k) and ξ(l) is given by

ρ(ξ(k)(A), ξ(l)(B)) =
Fkl(A×B)√
Fk(A)Fl(B)

, k, l = 1, . . . , d, (11)
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Figure 9: Dependent homogeneous Poisson processes with events generated by the Frank

copula with parameter 10 (left) and -10 (right).

where Fkl stands for the joint distribution of Ti(k) and Ti(l) and Fk and Fl denote the

marginal distributions of Ti(k) and Ti(l), respectively. Note especially that, since Fkl(A×B)

is a probability, the correlation is never negative. Hence, only positively correlated Poisson

processes can be generated in this way, the reason being that the marginal processes all

have the same number N of events. Construction Method I is thus particularly suitable for

situations where the events are triggered by a common underlying effect.

Construction Method II allows for variable numbers of events. Here, we first generate

dependent Poisson random variables N1, . . . , Nd with copula CN , for instance using the mod-

elling approach described in the previous subsection. Secondly, the occurrence time points

Ti(k) are again generated as (possibly dependent) margins of a d-dimensional time-event point

Ti = (Ti(1), . . . , Ti(d)). In this way, we obtain d dependent processes ξ(k) =
∑Nk

i=1 ITi(k),

k = 1, . . . , d. Figure 10 illustrates this method. The occurrence time points are chosen inde-

pendent and uniformly distributed. The counting variables are Poisson with parameters 1 and

2, respectively and CN is the Frank copula with parameter -10. Hence, the counting variables

are strongly negatively correlated. Figure 10 also combines Method II with superposition. For

each interval [n− 1, n) the Poisson processes have been generated independently and joined

together to a process on [0, 13). The 13 could correspond to a time horizon of 13 years, say.

Note that, by the choice of the Frank copula with a comparatively strong negative dependence

structure (θ = −10), events in both processes tend to avoid each other.
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Figure 10: Dependent Poisson point processes on [0, 13).

In case the Ti(k)’s are mutually independent, the correlation in this construction is given by

ρ(ξ(k)(A), ξ(l)(B)) = ρ(Nk, Nl)
√
Fk(A)Fl(B), k, l = 1, . . . , d; (12)

see Neslehova and Pfeifer (2004). Note that this formula involves the correlation coefficient of

the counting variables Nk and Nl. Hence, by a suitable choice of CN which governs the joint

distribution of N1, . . .Nd, a wider range of correlation, in particular negative, is achievable.

Operational loss occurrence processes will typically be more complex than those constructed

solely via Methods I or II. In order to come closer to reality, both methods can be combined

freely using superposition and/or refined by thinning. For example, Figure 11 shows a super-

position of independent homogeneous Poisson point processes with different intensities over

[0, 1] with homogeneous but highly positively dependent Poisson point processes generated by

Method I as in Figure 9.

A broad palette of models now becomes available, which may contribute to a better under-

standing of the impact of interdependencies between various risk classes on the quantification

of operational risk. Needless to say that these dependence engineering constructions are ap-

plicable to other types of financial and insurance risk, in particular to credit risk.



3 DEPENDENT RISK PROCESSES 22

• •• ••• ••• ••• ••• • •

• • •• ••• •

• •• ••• ••• ••• ••• • •

| |

| |

0 1
Process 2

Process 1
0 1

Figure 11: Superposition of independent homogeneous Poisson processes with intensity 10

(Process 1) and 8 (Process 2) over [0, 1] (bullets) and dependent Poisson processes generated

by the Frank copula with parameter 20 (triangles).

We conclude this section with the application of the methods discussed above to aggregate

losses.

3.4 Dependent aggregate losses

The loss amounts can be included in the point process modelling in a number of ways. For

example, we can consider d-dimensional point processes where the first component describes

the time and the remaining d− 1 components the sizes of the reported losses. This approach

may be particularly useful when there is evidence for non-stationary loss severities. For further

details we again refer to the literature given at the beginning of this section.

For the sake of simplicity, we illustrate some of the modelling issues in the case of stationary

and independent loss amounts. Consider two aggregate losses L1 and L2, corresponding to

two particular operational risk types and some period of time, [0,∆] say. As in Subsection

3.1, assume that the loss occurrence times of each risk type form a Poisson point process,

ξ(k) =
∑Nk

i=1 ITi(k), k = 1, 2, say. The processes ξ(1) and ξ(2) may be dependent and modelled

by one of the techniques described in the previous subsection; we discuss several concrete

examples below. Furthermore, we denote the severities corresponding to Ti(1) and Ti(2) by

Xi(1) and Xi(2), respectively. The severities are each assumed to be iid and Xi(1) and Xj(2)

independent of one another for i 6= j. Recall that the entire risk processes can be described as

point processes according to ξ̃(k) =
∑Nk

i=1 I(Ti(k),Xi(k)), k = 1, 2. The corresponding aggregate
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losses are given by

L1 =

N1∑

i=1

Xi(1) and L2 =

N2∑

i=1

Xi(2).

Note that although the dependence between the loss occurrence processes ξ(1) and ξ(2) very

much determines the dependence between L1 and L2, the precise location of the loss occurrence

times within the time period of interest does not yet enter into the modelling of the aggregate

losses explicitly. The results below are hence comparable with those obtained from models

which do not directly address the dependence structure between the loss occurrence processes,

as for instance in Powojowski et al. (2002) or Frachot et al. (2004).

We now focus on the correlation between L1 and L2 for several selected types of dependence

between the underlying loss occurrence processes ξ(1) and ξ(2). First, if ξ(1) and ξ(2) are

constructed using Method I, we have as in Neslehova and Pfeifer (2004), that

ρ(L1, L2) =
E(X1(1)X1(2))√

E(X1(1))2 E(X1(2))2
. (13)

Note that similarly to (11), the right hand side is never zero nor becomes negative for positive

loss amounts. This is different when ξ(1) and ξ(2) are constructed using Method II, for there

we have, in case Xi(1) and Xi(2) are independent for any i, that, similar to (12),

ρ(L1, L2) = ρ(N1, N2)
E(X1(1)) E(X1(2))√
E(X1(1))2 E(X1(2))2

; (14)

see Neslehova and Pfeifer (2004). As the correlation is driven by the correlation of the counting

variables N1 and N2, it can be negative if the losses corresponding to different risk types are

caused by mutually exclusive effects. Note also that (14) coincides with the result obtained

by Frachot et al. (2004).

Finally, we would like to mention one particularly simple special case of superposition. Assume

that the time occurrence processes are generated as sums of independent homogeneous Poisson

point processes ξk with intensities λk, k = 1, 2, 3 in the sense that ξ(1) = ξ1 + ξ3 and ξ(2) =

ξ2 + ξ3. Then (14) leads to

ρ(L1, L2) =

(
λ3√

(λ1 + λ3)(λ2 + λ3)

)
E(X1(1)) E(X1(2))√
E(X1(1))2 E(X1(2))2

. (15)

This model corresponds to the setup considered by Powojowski et al. (2002) and allows for

variable positive correlation. The above discussion shows that modelling dependence between

two or more loss processes is a delicate and complex issue and definitely warrants more re-

search before practical guidelines for specific applications can be given. There is a flurry of
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mathematical research ongoing on this topic; beyond the references already given, see also

the common shock model by Lindskog and McNeil (2003) or Bäuerle and Grübel (2005) which

also discusses the construction of dependent loss processes in a point process context.

In the absence of precise dependence information, we are forced to come up with a the com-

bination of marginal risk measures into a global risk assessment; the so-called bottom-up

approach. Methods for handling this type of aggregation problem are discussed in the next

section.

4 Aggregating (Operational) Risk Measures

4.1 The risk aggregation problem

A skeletal version of the risk aggregation issue for operational risk in the Advanced Measure-

ment Approach within the Basel II framework typically, though not exclusively, starts with

a number d (7 risk types, 8 business lines, 56 classes) of loss random variables L1, . . . , Ld

giving the total loss amount for a particular type/line/class for the next accounting year, say.

By the nature of operational risk data (see Section 2), these random variables are often of

the compound-sum type as discussed in Section 3. The total loss therefore to be modelled is

L =
∑d

i=1 Li; this random variable in general is very complex as it may contain components

with rather different frequency as well as severity characteristics. Moreover, the interdepen-

dence between the various Li’s is largely unknown, leading to the dependence engineering

issues discussed in the previous section.

Next, a risk measure % is given, mapping L into %(L), the regulatory capital underlying the

risky position L. In our paper so far we used % = VaRα or % = ESα with α = 0.999, say.

The issue now becomes that one may know %(Li), i = 1, . . . , d, but needs to estimate %(L)

solely on the basis of this information. One way forward and indeed supported by the Basel

II guidelines, is to put

%(L) :=

d∑

i=1

%(Li). (16)

In doing so, one typically assumes that the risks Li are comonotone, i.e. there exists a random

variable Y and increasing functions f1, . . . , fd so that Li = fi(Y ), i = 1, . . . , d. Indeed, for

L1, . . . , Ld comonotonic and % = VaRα, (16) holds; see Embrechts et al. (2003b). If % is a
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coherent risk measure in the language of Artzner et al. (1999), then always

%
( d∑

i=1

Li

)
≤

d∑

i=1

%(Li), (17)

so that %(L) defined in (16) always yields an upper bound of the risk capital required.

As discussed in McNeil et al. (2005), there are essentially three ways in which coherence (or

more particularly sub-additivity as in (17)) can break down:

1. Even when the marginal distribution functions FLi(x) = P(Li ≤ x) are smooth, log-

normal, say, one can always construct a dependence structure (i.e. a copula) so that

sub-additivity (i.e. (17)) fails.

2. Also in the case of independent Li’s, sub-additivity may fail for very heavy-tailed (i.e.

Pareto type) risks.

3. Sub-additivity may further fail because of heavy skewness of the FLi ’s.

For operational risk data, especially 2. and 3. above are particularly relevant and hence

aggregation poses a problem insofar that (16) does not yield an upper bound for the total risk

involved, i.e. the inequality sign (≤) in (17) reverses (≥).

4.2 An optimization example

The example below is based on Embrechts and Puccetti (2005) and the references therein. A

more detailed discussion is to be found in McNeil et al. (2005).

In the language of the previous subsection, consider the loss distribution functions Fi := FLi ,

i = 1, . . . , d and suppose that we are given (statistical) models or estimates for these. Further,

as risk measure we take % = VaRα, for some α ∈ (0, 1), typically close to 1. Since we do not

assume any particular model for the interdependence between the Li’s, we do not know the

joint distribution of the vector (L1, . . . , Ld) and hence we cannot calculate VaRα(
∑d

i=1 Li).

The problem then becomes: determine tight upper and lower bounds VaRu
α, VaRl

α so that

VaRl
α ≤ VaRα

( d∑

i=1

Li

)
≤ VaRu

α . (18)

For the calculation of these bounds, we solve an optimization problem over all joint models

for (L1, . . . , Ld) keeping the marginal distribution functions F1, . . . , Fd fixed. This leads to
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the calculation of:

VaRl
α = inf

{
VaRα

( d∑

i=1

Li

)
: Li ∼ Fi, i = 1, . . . , d

}
,

VaRu
α = sup

{
VaRα

( d∑

i=1

Li

)
: Li ∼ Fi, i = 1, . . . , d

}
.

(19)

When some information on the dependence between the Li’s is given, for instance expressed

in terms of copulas, then one can adjust the optimization problem (19) accordingly. See

Embrechts and Puccetti (2005) for details. As stated, (19) is referred to as a Fréchet problem.

The mathematics used in its solution is related to the so-called mass transportation problem

in measure theory; see Puccetti (2005) for a discussion of this link.

In order to illustrate the potential of the above theory, we discuss a stylized example taken

from McNeil et al. (2005). From Moscadelli (2004) and further supported by deFontnouvelle

(2005), we know that operational loss data often have power-like (Pareto-type) tail behavior,

i.e. Fi(x) = P(Li ≤ x) = 1 − x−αihi(x) for some (so-called) slowly varying functions hi and

tail-index parameters αi (i.e. 1/κi in Section 2.2), i = 1, . . . , d. Note that for 0 < αi < 1,

E(Li) =∞, where for 1 < αi < 2, E(Li) <∞ but Var(Li) =∞. For the further understanding

of the example, the function hi above can be neglected; readers interested in a discussion of

slowly varying functions and their use in extreme value theory can consult Embrechts et al.

(1997), they also briefly appeared in Section 2.3.

For the sake of simplicity, we consider d = 8, corresponding to the eight business lines defined

in the Basel II proposal for operational risk. We assume that the marginal loss distribution

functions Fi, i = 1, . . . , 8 are all exact Pareto Fi(x) = P(Li ≤ x) = 1 − (x + 1)−1.5, x ≥ 0.

Hence αi = 1.5, hi(x) ∼ 1 for x→∞, i = 1, . . . , 8, corresponding to a finite mean E(Li) = 2,

infinite variance model. Under no assumption on the dependence between L1, . . . , L8, the

optimization problem (18), (19) can be solved numerically. For a discussion on the sharpness

of these bounds, see Embrechts and Puccetti (2005). The following results are obtained.

One first easily checks that in the comonotonic case (figures expressed in thousands and

rounded):

VaR0.99

( 8∑

i=1

Li

)
=

8∑

i=1

VaR0.99(Li) = 0.16,

VaR0.999

( 8∑

i=1

Li

)
=

8∑

i=1

VaR0.999(Li) = 0.79.
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In reality however, under no specific information on the interdependence between L1, . . . , L8,

one can show that VaRα

(∑8
i=1 Li

)
can reach values up to 0.41 for α = 0.99 and for α = 0.999

up to 1.93, more than doubling the capital charges. If however some dependence information

is available then these upper bounds come down; see Embrechts and Puccetti (2005). For

the sake of this example, we do not distinguish between VaR (which is just the quantile)

or the mean corrected version typically used for capital allocation VaRα(L) − E(L). The

above example can be generalized to situations where the marginal Pareto distributions have

different tail parameters; see Puccetti (2005).

The above example shows that, especially for heavy-tailed loss data, there is considerable un-

certainty in the calculation of risk measures when no specific dependence assumption between

the various risk classes can be made. Clearly, the extreme situation of no information at all

may be far away from what information actually is available. Until now, operational risk

data are too scarce in order to come up with specific dependence conditions between various

operational risk classes. A viable alternative to some of the above calculations is through a

combination of expert information on loss events, together with some kind of loss distribution

estimation as is for instance discussed in Ebnoether et al. (2003) and the references therein.

4.3 The one loss causes ruin problem, revisited

There are various ways in which the “one loss causes ruin” paradigm manifests itself. In the

context of operational risk, the route via subexponentiality is very natural; see Embrechts et al.

(1997). Take X1, . . . , Xn positive iid random variables with common distribution function F ,

denote Sn =
∑n

k=1Xk and Mn = max(X1, . . . , Xn). The distribution function F is called

subexponential (denoted F ∈ S) if

lim
x→∞

P(Sn > x)

P(Mn > x)
= 1 (20)

i.e. the total loss Sn is mainly determined by one large loss Mn. Examples satisfying (20) are

Pareto-type distributions, lognormal and log-gamma for instance.

A further interesting property for subexponential distributions, relevant for operational risk,

uses the language of the previous sections. Suppose Li is compound Poisson with intensity λi

and loss distribution Fi, i = 1, . . . , d, so that L1, . . . , Ld are independent. One easily shows

that L =
∑d

i=1 Li is compound Poisson with intensity λ =
∑d

i=1 λi and loss distribution
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F =
∑d

i=1
λi
λ Fi. The “one loss causes ruin” paradigm in this case translates into the fact that

the loss distribution Fi with the heaviest tail determines the tail of the distribution of L. An

example of such a result in the Pareto case is as follows. Suppose 1−Fi(x) = x−αihi(x) with

α1 < α2 < · · · < αd, then

lim
x→∞

P(L > x)

1− F1(x)
= λ1, (21)

so that P(L > x) for x large is mainly determined by the individual loss distribution L1 with

the heaviest tail, i.e. the smallest tail-index α1. The above result (21) can be formulated

for Fi ∈ S and more general counting random variables Ni, i = 1, . . . , d. For details, see

Embrechts et al. (1997), McNeil et al. (2005) and the references therein. Practitioners are

well aware of this phenomenon: it is the few largest losses that cause the main concern.

5 Conclusion

As stated in the introduction, we have not attempted to review all potential approaches for

the quantitative modelling of operational risk, but rather concentrated on the presentation

of some of the techniques which were introduced to quantitative risk management in other

publications. The references given will guide the interested reader to several of the alternative

attempts available in the literature. We would like to stress that, whereas the techniques

presented lend themselves ideally for most operational risk data, the same techniques have a

much broader range of applications, as there are for instance the modelling of credit risk or

non-life insurance data.

Acknowledgements

This work was partly supported by the NCCR FINRISK Swiss research program and RiskLab,

ETH Zurich. The authors would like to thank the participants of the meeting “Implementing

an AMA to Operational Risk” held at the Federal Reserve Bank of Boston, May 18 - 20, 2005,

for several useful comments.



REFERENCES 29

References

Artzner, P., Delbaen, F., Eber, J., and Heath, D. (1999). Coherent measures of risk. Mathe-

matical Finance, 9:203–228.

Asmussen, S. (2000). Ruin Probabilities. World Scientific, Singapore.
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