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1 Introduction

Integrated Risk Management (IRM) is concerned with the quantitative description of
risks to a financial business. Whereas the qualitative aspects of IRM are extremely im-
portant, in the present contribution we only concentrate on the quantitative ones. Since
the emergence of Value-at-Risk (VaR) in the early nineties and its various generalisations
and refinements more recently, regulators and banking and insurance professionals have
build up a huge system aimed at making the global financial system safer. Whereas the
steps taken no doubt have been very important towards increasing the overall risk aware-
ness, continuously questions have been asked concerning the quality of the safeguards as
constructed.

All quantitative models are based on assumptions vis-a-vis the markets on which
they are to be applied. Standard hedging techniques require a high level of liquidity
of the underlying instruments, prices quoted for many financial products are often based
on “normal” conditions. The latter may be interpreted in a more economic sense, or
more specifically referring to the distributional (i.e. normal, Gaussian) behaviour of some
underlying data. Especially for IRM, deviations from the “normal” would constitute a
prime source of investigation. Hence the classical literature is full of deviations from the
so-called random walk (Brownian motion) model and heavy tails appear prominently. The
latter has for instance resulted in the firm establishment of Extreme Value Theory (EVT)
as a standard tool within IRM. Within market risk management, the so-called stylised facts
of econometrics summarise this situation: market data returns tend to be uncorrelated,
but dependent, they are heavy tailed, extremes appear in clusters and volatility is random.

Our contribution aims at providing tools for going one step further: what would be
the stylised facts of dependence in financial data? Is there a way of understanding so-
called normal (i.e. Gaussian) dependence and how can we construct models which allow
to go beyond normal dependence? Other problems we would like to understand better
are spillover, the behaviour of correlations under extreme market movements, the pros
and contras of linear correlation as a measure of dependence, the construction of risk
measures for functions of dependent risks. One example concerning the latter is the
following: suppose we have two VaR numbers corresponding to two different lines of
business. In order to cover the joint position, can we just add the VaR? Under which
conditions is this always the upper bound? What can go wrong if these conditions are
not fulfilled? A further type of risk where dependence play a crucial role is credit risk:
how to define, stress test and model default correlation. The present paper is not solving
the above problem, it presents however tools which are crucial towards the construction
of solutions.

The notion we concentrate on is that of copula, well known for some time within the
statistics literature. Copulas allow us to construct models which go beyond the standard
ones at the level of dependence. They yield an ideal tool to stress test a wide variety
of portfolios and products in insurance and finance for extreme moves in correlation and
more general measures of dependence. As such, they gradually are becoming an extra, but
crucial, element of best practice IRM. After Section 2 in which we define the concept of
copula in full generality, we turn in Section 3 to an overview of the most important notions
of dependence used in IRM. Section 4, 5 and 6 introduces the most important families
of copulas, their properties both methodological as well as with respect to simulation.
Throughout these sections, we stress the importance of the techniques introduced within
an IRM framework. Finally in Section 7 we discuss some specific examples.



We would like to stress that the present paper only gives a first introduction aimed
at bringing together from the extensive copula world those results which are immediately
usable in IRM. Topics not included are statistical estimation of copulas and the modelling
of dependence, through copulas, in a dynamic environment. As such, the topics listed
correspond to a one-period point of view. Various extensions are possible; the interested
reader is referred to the bibliography for further reading.

2 Copulas

The standard “operational” definition of a copula is a multivariate distribution function
defined on the unit cube [0,1]", with uniformly distributed marginals. This definition
is very natural if one considers how a copula is derived from a continuous multivariate
distribution function; indeed in this case the copula is simply the original multivariate
distribution function with transformed univariate margins. This definition however masks
some of the problems one faces when constructing copulas using other techniques, i.e. it
does not say what is meant by a multivariate distribution function. For that reason, we
start with a slightly more abstract definition, returning to the “operational” one later.
Below, we follow Nelsen (1999) in concentrating on general multivariate distributions at
first and then studying the special properties of the copula subset.

Throughout this paper, for a function H, we denote by domH and ranH the domain
and range respectively of H. Furthermore, a function f will be called increasing whenever
z < y implies that f(z) < f(y). We may also refer to this as f is nondecreasing. A
statement about points of a set S C R", where S is typically the real line or the unit cube
[0,1]™, is said to hold almost everywhere if the set of points of S where the statement fails
to hold has Lebesgue measure zero.

2.1 Mathematical Introduction

Definition 2.1. Let Si,..., S, be nonempty subsets of R, where R denotes the extended
real line [—o00, 00]. Let H be a real function of n variables such that DomH = S; x---x S,
and let B = [a, b] be an n-box which vertices are in DomH. Then the H-volume of B is
given by

Vi(B) = sgu(c)H(c),

where the sum is taken over all vertices ¢ of B, and sgn(c) is given by

sgn(c) = 1, if ¢ = a for an even number of k£’s,
& | -1, if ¢, = a for an odd number of k’s.

O

Equivalently, the H-volume of an n-box B = [a, b] is the nth order difference of H on B
Vir(B) = ABH() = Al .. AV H(b),
where we define the n first order differences as
AZIZH(t) = H(tla vy lp—1, bkatk+la s atn) - H(tla ooy te—1, akatk+la s atn)

Definition 2.2. A real function H of n variables is n-increasing if Vi (B) > 0 for all
n-boxes B whose vertices lie in DomH. O



Suppose that the domain of a real function H of n variables is given by DomH =
S1 X -+ x S, where each S; has a smallest element a;. We say that H is grounded
if H(t) = 0 for all t in DomH such that ¢, = aj for at least one k. If each Sy is
nonempty and has a greatest element by, then H has margins, and the one-dimensional
margins of H are the functions Hj with DomH) = S, and for all z in Si, Hi(z) =
H(by,...,bg—1,2,bgy1,...,b,). Higher dimensional margins are defined in an obvious
way. One-dimensional margins are just called margins.

Lemma 2.1. Let Si,...,S, be nonempty subsets of R, and let H be a grounded n-
increasing function with domain Sy % ---xS,. Then H is increasing in each arqument, i.e.,
if (B the1, Tythrty ooy tn) and (t1, .o th—1, Y, tka1y- -, tn) are in DomH and x < vy,
then H(t1, ...tk 1,y tkits--otn) < H(t1y oyt 1Yttty tn).

Lemma 2.2. Let Si,...,S, be nonempty subsets of R, and let H be a grounded n-

increasing function with margins whose domain is Sy x -+ x Sy,. Then, if x = (x1,...,2y)
and 'y = (Y1, -.,Yn) are any points in S1 X -+ X Sy,
n
|H(x) — H(y)| <Y |Hi(zr) — Hi(ys)|-
k=1

For the proof, see Schweizer and Sklar (1983).

Definition 2.3. An n-dimensional distribution function is a function H with domain R"
such that H is grounded, n-increasing and H (oo, ...,00) = 1. O

It follows from Lemma 2.1 that the margins of an n-dimensional distribution function
are distribution functions, which we denote Fi,..., F,.

Definition 2.4. An n-dimensional copula is a function C' with domain [0, 1]” such that
1. C is grounded and n-increasing.
2. C has margins Cy, k = 1,2,...,n, which satisfy Cy(u) = u for all v in [0, 1].
Il

Note that for any n-copula C, n > 3, each k-dimensional margin of C' is a k-copula.
Equivalently, an n-copula is a function C from [0, 1]” to [0, 1] with the following properties:

1. For every u in [0, 1]", C(u) = 0 if at least one coordinate of u is 0, and C(u) = uy
if all coordinates of u equal 1 except wug.
2. For every a and b in [0, 1]" such that a; < b; for all 4, V([a, b]) > 0.

Since copulas are joint distribution functions (on [0, 1]"), a copula C induces a prob-
ability measure on [0, 1]"” via

Ve([0,u1] X -+ X [0,uy]) = C(ug, ..., uy).

From Definition 2.4 it follows that a copula C' is a distribution function on [0, 1]™ with
uniformly distributed (on [0,1]) margins. The following theorem follows directly from
Lemma 2.2.

Theorem 2.1. Let C be an n-copula. Then for every u and v in [0,1]",
‘C(V) - C(u)‘ < Z "Uk - uk‘
k=1

Hence C' is uniformly continuous on [0, 1]™.



2.2 Sklar’s Theorem

The following theorem is known as Sklar’s theorem. It is perhaps the most important
result regarding copulas, and is used in essentially all applications of copulas.

Theorem 2.2. Let H be an n-dimensional distribution function with margins Fy, ..., F,.
Then there exists an n-copula C such that for all x in R”,

H(1,. . 20) = C(Fy(31), - . Fo(n)). (2.1)
If Fy, ..., F, are all continuous, then C' is unique; otherwise C' is uniquely determined on
RanFy X --- X RanF,. Conversely, if C is an n-copula and Fy,...,F, are distribution

functions, then the function H defined above is an n-dimensional distribution function
with margins Fy, ..., F,.

For the proof, see Sklar (1996).

From Sklar’s theorem we see that for continuous multivariate distribution functions,
the univariate margins and the multivariate dependence structure can be separated, and
the dependence structure can be represented by a copula.

Let F' be a univariate distribution function. We define the generalized inverse of F' as

F~Y(t) = inf{z € R|F(x) >t} for all ¢ in [0, 1].

Corollary 2.1. Let H be an n-dimensional distribution function with continuous margins
Fy,...,F, and copula C (where C is given by (2.1)). Then for any u in [0,1]",

Clut, .. up) = HFT (ur), ..., F, Hug)).

n

Without the continuity assumption, care has to be taken; see Nelsen (1999) or Marshall
(1996).

Example 2.1. Let ® denote the standard univariate normal distribution function and let
&% denote the standard multivariate normal distribution function with linear correlation
matrix R. Then

Cuty ... uy) = @%(fb_l(ul), R <I>_1(un))

is the Gaussian or normal n-copula. [l

2.3 The Fréchet—Hoeffding Bounds for Joint Distribution Functions
Consider the functions M™, II" and W" defined on [0, 1]" as follows:

M"(u) = min(u,...,up),
M"(u) = wuy...up,
W"(u) = max(u; +---+u, —n+1,0).

The functions M™ and II" are n-copulas for all n > 2 whereas the function W™ is not a
copula for any n > 3 as shown in the following example.



Example 2.2. Consider the n-cube [1/2,1]" C [0, 1]™.

Virn([1/2,1]") = max(l+---+1—n+1,0)
—nmax(1/2+1+---+1-n+1,0)

+(Z> max(1/2+1/2+1+ - +1—n+1,0)

+max(1/2+---+1/2 -=n+1,0)
= 1—n/240+---+0.

Hence, W™ is not a copula for n > 3. [l
The following theorem is called the Fréchet—Hoeffding bounds inequality (Fréchet (1957)).

Theorem 2.3. If C is any n-copula, then for every u in [0,1]",
W"(u) < C(u) < M"™(u).

For more details, including geometrical interpretations, see Mikusinski, Sherwood, and
Taylor (1992). Although the Fréchet-Hoeffding lower bound W™ is never a copula for
n > 3, it is the best possible lower bound in the following sense.

Theorem 2.4. For anyn > 3 and any u in [0,1]", there is an n-copula C (which depends
on u) such that
C(u) = W"(u).

For the proof, see Nelsen (1999) p.42.

We denote by C the joint survival function for n random variables with joint distribu-
tion function C, i.e., if (Uy,...,U,)" has distribution function C, then C(uy,...,u,) =
]P{Ul > ul,..., Uy > un}

Definition 2.5. If C; and C; are copulas, Cy is smaller than Cy (written C; < Cy) if
Cr(u,...,up) < Co(ut,...,uy) and Ci(ut,...,u,) < Colur,...,uy),
for all uy,ug,...,uy, in [0,1]. O

Note that in the bivariate case,

Ci(ut,u2) < Co(ur,uz) < 1 —up —us + Cr(ur,uz) <1 —uy —us + Coug,us)
<~ CI(UI,UQ) < CQ(UI,UQ).

The Fréchet-Hoeffding lower bound W? is smaller than every 2-copula, and every n-
copula is smaller than the Fréchet—Hoeffding upper bound M". This partial ordering of
the set of copulas is called a concordance ordering. It is a partial ordering since not every
pair of copulas is comparable in this order. However many important parametric families
of copulas are totally ordered. We call a one-parameter family {Cg} positively ordered if
Cy, < Cy, whenever 0; < 6. Examples of such one-parameter families will be given later.



2.4 Copulas and Random Variables

Let Xi,...,X, be random variables with continuous distribution functions Fi,..., Fj,
respectively, and joint distribution function H. Then (Xi,...,X,)" has a unique copula
C, where C' is given by (2.1). The standard copula representation of the distribution of
the random vector (X1,...,X,)” then becomes:

H(zy,...,2p) =P{X1 <z1,...., Xy, < zp} = C(Fi1(21),..., Fo(zy)).

The transformations X; — F;(X;) used in the above representation are usually referred
to as the probability-integral transformations (to uniformity) and form a standard tool in
simulation methodology.

Since X1,..., X, are independent if and only if H(z1,...,z,) = Fi(21)... Fy(zy,) for
all z1,...,z, in R, the following result follows from Theorem 2.2.

Theorem 2.5. Let (X1,...,X,)" be a vector of continuous random variables with copula
C, then Xq,...,X, are independent if and only if C' =TI".

One nice property of copulas is that for strictly monotone transformations of the
random variables, copulas are either invariant, or change in certain simple ways. Note
that if the distribution function of a random variable X is continuous, and if « is a strictly
monotone function whose domain contains RanX, then the distribution function of the
random variable «(X) is also continuous.

Theorem 2.6. Let (X1,...,X,)" be a vector of continuous random variables with cop-
ula C. If ay,...,ay are strictly increasing on RanXq,..., RanX,, respectively, then also
(1(X1)y- - an(Xy))T has copula C.

Proof. Let Fy,...,F, denote the distribution functions of Xy,..., X, and let Gy,...,G,
denote the distribution functions of a1(X1),...,a,(X,), respectively. Let (X1,..., X,)T
have copula C, and let (ay(X1),...,a,(X,))T have copula C,. Since ay is strictly in-
creasing for each k, Gy (z) = P{ay(X;) < 7} = P{X}), < o, '(z)} = Fi(ay, ' (2)) for any =
in R, hence

Ca(Gl(,’L‘l),. .. ,Gn(xn)) = P{CM1(X1) < L1y 7an(Xn) < le}
P{X: < ay'(1),..., Xy < oy (z4)}

C(Fi(ay ! (21)),- -, Fuleg ' (2n)))
= C(Gl(.’L‘l), e ,Gn(xn))

Since X1,...,X, are continuous, RanG; = --- = RanG,, = [0,1]. Hence it follows that
Co = C on [0,1]". O

From Theorem 2.2 we know that the copula function C' “separates” an n-dimensional
distribution function from its univariate margins. The next theorem will show that there
is also a function, C , that separates an n-dimensional survival function from its univariate
survival margins. Furthermore this function can be shown to be a copula, and this survival
copula can rather easily be expressed in terms of C and its k-dimensional margins.

Theorem 2.7. Let (X1,...,X,)" be a vector of continuous random variables with copula
Cx,,..x,- Let a1,...,cp be strictly monotone on RanXy,..., RanXy, respectively, and



let (a1(X1),...,0n(Xn))T have copula Cai(X1),an(Xn)- Furthermore let oy be strictly
decreasing for some k. Without loss of generality let k = 1. Then

Cor(X1)msan (X)) (UL, U2, -y Un) = Cln(X),on (X) (U2 -+ o5 Un)
— X\ an(Xa)yan (Xo) (1 — UL, U2, - oo Up).

Proof. Let X1,..., X, have distribution functions Fy, ..., F, and let aq(X1),...,an(X,)
have distribution functions G4y, ...,G,. Then

Coy (X1),02(X2) e (X0) (G1(T1), -, G (Tn))
=P{on(X1) < z1,y...,00(Xp) <z}
=P{X; > afl(xl),OQ(XQ) <z, an(Xy) < zp}
=P{ag(X2) < z9,...,an(Xy) <z}
—P{X; < O[l_l(l'l),CYQ(XQ) <z, an(Xy) < zp}
= Coy(Xs),.osan (X) (G2(72), - ., G (70))
— Oxy an(Xa)ynan (Xn) (Fi(0 (1), Go(22), . . ., Gn(zn))
= Coy(Xs2),san (Xn) (G2(72), - ., Gr(70))
— Ox1a(X2)yman(Xn) (1 — G1(71), G2(22), . . ., G (1)),

from which the conclusion follows directly. O

By using the two theorems above recursively it is clear that the copula Cy, (x,),... 0, (X2n)
can be expressed in terms of the copula Cx, .. x, and its lower dimensional margins. This
is exemplified below.

Example 2.3. Consider the bivariate case.
Let a; be strictly decreasing and let aig be strictly increasing. Then

Cal(Xl),OzQ(Xg)(UI?UQ) = Uz — CXl,az(Xg)(l _U’lﬂuQ)
= up — Cx, x,(1 —ui,u2).
Let a; and a9 be strictly decreasing. Then
Cal(Xl),ag(Xg)(ula,U’?) = U2 — CXl,az(Xg)(l _ulaUZ)

= 'LL2—(]_—UI—CXI’XQ(]_—'LLI,]_—'LLQ))
= u1+u2—1+CX1,X2(1—u1,1—u2).

Here Cy, (x,),as(x») 18 the survival copula, 6, of (X1,X2)7, ie.,
H(z1,m0) =P{X1 > 21, Xy > z3} = C(Fy(21), Fa(2)).
[l

Note also that the joint survival function of n U(0,1) random variables whose joint
distribution function is the copula C is C'(u1,...,u,) = 5(1 — Ul 1L —up).

The mixed kth order partial derivatives of a copula C, 9*C(u)/0uy ... Ouy, exist for
almost all u in [0,1]”. For such u, 0 < 9*C(u)/0u; ...0u;, < 1. For details, see Nelsen

(1999) p.11. With this in mind, let

Cuty . yup) = Ac(uty ... up) + Sc(ut, ..., uy),



where

Ac(uy,...,up) = / / (9u1 C(sl,...,sn)dsl...dsn,

Sc(ut, ... up) = Cur,... uy) — Ac(ul, ceyUp)-

Unlike multivariate distributions in general, the margins of a copula are continuous,
hence a copula has no individual points u in [0,1]" for which Vio(u) > 0. If C =
Ac on [0,1]", then C is said to be absolutely continuous. In this case C' has den-
sity (fmlaiMC(ul,...,un). If C = Sc on [0,1]", then C is said to be singular, and
auf.mc(“h ...,Up) = 0 almost everywhere in [0,1]". The support of a copula is the
complement of the union of all open subsets A of [0, 1]" with V(A) = 0. When C is sin-
gular its support has Lebesgue measure zero and conversely. However a copula can have
full support without being absolutely continuous. Examples of such copulas are so-called
Marshall-Olkin copulas which are presented later.

Example 2.4. Consider the bivariate Fréchet—-Hoeffding upper bound M. Then
8281}M (u,v) = 0 everywhere on [0, 1] except on the main diagonal (which has Lebesgue
measure zero), and Vj;(B) = 0 for every rectangle B in [0, 1]? entirely above or below the

main diagonal. Hence M is singular. ]

One of the main aims of this paper is to present effective algorithms for random variate
generation from the various copula families studied. The properties of the specific copula
family is often essential for the efficiency of the corresponding algorithm. We now present
a general algorithm for random variate generation from copulas. Note however that in
most cases it is not an efficient one to use.

Consider the general situation of random variate generation from the n-copula C. Let

Crlut, ... up) =Clug, ... ug, 1,...,1), k=2,...,n—1,

denote k-dimensional margins of C', with C(u1) = u; and Cy(uq, ..., up) = C(u1, ..., uy).
Let Uy,...,U, have joint distribution function C'. Then the conditional distribution of
Uy given the values of Uy,...,Ui_1, is given by

Cr(uglur,. .. up—1) = P{Ux <uglUr =u,...,Up—1 = ug_1}
G (w, . )/akilokfl(ula---aukfl)
N 8u1 PN 8uk,1 8u1 . 8uk,1 '
The following algorithm generates a random variate (u1, ..., u,)? from C(uy,...,u,). As

usual, let U(0,1) denote the uniform distribution on [0, 1].
Algorithm 2.1.
e Simulate a random variate u; from U(0, 1).

e Simulate a random variate ugy from Co(ug|uq).

e Simulate a random variate wu,, from Cy,(up|u1, ..., un_1).



The correctness of the algorithm follows from the fact that for independent U (0, 1) random
variables Q1,...,Qp,

(Q1,C5H(Q2|Q1), -+, Cy  (QnQ1, C5 1 (Q2|Q1), .. )T

has distribution function C. To simulate a value from Cy(ug|u1, ..., ur_1) in general means
simulating ¢ from U (0, 1) from which u; = Ck_l(q|u1, ..., Uup_1) can be obtained through
the equation ¢ = Ck(ug|u, ..., ur—1) by numerical rootfinding. When C,;l(-|u1, ey Ug—1)

has a closed form (and hence there is no need for numerical rootfinding) this algorithm
can be recommended.

Example 2.5. Let the copula C be given by C(u,v) = (u=? + v~ — 1)~ for > 0.
Then

oC 1 _ _ 1/6— o
Colol) = S (u0) = —5(u " +v 0 = 1)L (—gu 0
—1-6 —1-6

= @) o Wl -V =1+l —1)) e

Solving the equation ¢ = Ca(v|u) for v yields
_ ~1/6
C, Yqlu) = v = ((q% P 1) .

Thus the following algorithm generates a random variate (u,v)” from the above copula

C.

e Simulate two independent random variates u and ¢ from U(0,1).
-0
o Setwv=((¢g —1)u?+1)"1/7.

3 Dependence Concepts

Copulas provide a natural way to study and measure dependence between random vari-
ables. As a direct consequence of Theorem 2.6, copula properties are invariant under
strictly increasing transformations of the underlying random variables. Linear correlation
(or Pearson’s correlation) is most frequently used in practice as a measure of dependence.
However, since linear correlation is not a copula based measure of dependence, it can often
be quite misleading and should not be taken as the canonical dependence measure. Below
we recall the basic properties of linear correlation, and then continue with some copula
based measures of dependence.

3.1 Linear Correlation

Definition 3.1. Let X and Y be two random variables with finite variances. The linear
correlation coefficient for X and Y is

Cov(X,Y)
X,Y) = :
pl ) v/ Var(X)/Var(Y)

where Cov(X,Y) = E(XY) — E(X)E(Y) is the covariance for X and Y, and Var(X) and
Var(Y') are the variances of X and Y. O

(3.1)




Linear correlation is a measure of linear dependence. In the case of perfect linear
dependence, i.e., Y = aX + b almost surely for ¢ € R\ {0},b € R, we have |[p(X,Y)| =
1. More important is that the converse also holds. Otherwise, —1 < p(X,Y) < 1.
Furthermore linear correlation has the property that

p(aX + B,7Y +0) = sign(ay)p(X,Y),

for a,y € R\ {0},3,d € R. Hence linear correlation is invariant under strictly increasing
linear transformations. Linear correlation is easily manipulated under linear operations.
Let A, B be m X n matrices; a,b € R™ and let X,Y be random n-vectors. Then

Cov(AX + a, BY 4+ b) = ACov(X,Y)B".
From this it follows that for a € R",
Var(a?'X) = o Cov(X)a,

where Cov(X) := Cov(X, X). Hence the variance of a linear combination is fully deter-
mined by pairwise covariances between the components, a property which is crucial in
portfolio theory.

Linear correlation is a popular but also often misunderstood measure of dependence.
The popularity of linear correlation stems from the ease with which it can be calculated
and it is a natural scalar measure of dependence in elliptical distributions (with well known
members such as the multivariate normal and the multivariate t-distribution). However
most random variables are not jointly elliptically distributed, and using linear correlation
as a measure of dependence in such situations might prove very misleading. Even for
jointly elliptically distributed random variables there are situations where using linear
correlation, as defined by (3.1), does not make sense. We might choose to model some
scenario using heavy-tailed distributions such as to-distributions. In such cases the linear
correlation coefficient is not even defined because of infinite second moments.

3.2 Perfect Dependence
For every n-copula C' we know from the Fréchet—Hoeffding inequality that
W, .. tin) < Cltn, ., tin) < M, ..., ).

Furthermore, for n = 2 the upper and lower bounds are themselves copulas and we
have seen that W and M are the bivariate distributions functions of the random vectors
(U, 1-U)T and (U, U)", respectively, where U ~ U(0,1) (i.e. U is uniformly distributed on
[0,1]). In this case we say that W describes perfect negative dependence and M describes
perfect positive dependence.

Theorem 3.1. Let (X,Y)” have one of the copulas W or M. Then there exist two
monotone functions a, 3 : R — R and a random variable Z so that

(X,Y) =a ((2),5(2)),

with « increasing and 3 decreasing in the former case (W) and both « and (3 increasing
in the latter case (M ). The converse of this result is also true.

For a proof, see Embrechts, McNeil, and Straumann (1999).
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Definition 3.2. If (X,Y)” has the copula M then X and Y are said to be comonotonic;
if it has the copula W they are said to be countermonotonic. Il

Note that if any of F and G (the distribution functions of X and Y, respectively) have
discontinuities so that the copula is not unique, then W and M are possible copulas. In
the case of F' and G being continuous, a stronger version of the result can be stated:

C=W & Y=T(X)as.,T=G"o(l-F) decreasing,
C=M & Y =T(X)as., T=G""oF increasing.

3.3 Concordance

Let (z,y)” and (Z,%)T be two observations from a random vector (X,Y)” of continuous
random variables. Then (x,%)” and (,7)” are said to be concordant if (z —)(y—4) > 0,
and discordant if (z — Z)(y — 7) < 0.

The following theorem can be found in Nelsen (1999) p.127. Many of the results in
this section are direct consequences of this theorem.

Theorem 3.2. Let (X,Y)" and (X,Y)T be independent vectors of continuous random
variables with joint distribution functions H and H, respectively, with common margins
F (of X and X) and G (of Y and Y). Let C and C denote the copulas of (X, )T and
(X, V)T, respectively, so that H(z,y) = C(F(z),G(y)) and H(z,y) = C(F(z),G(y)). Let
Q denote the difference between the probability of concordance and discordance of (X,Y )T
and (X, V)T, i.e. let

Q=P{(X -X)(Y —Y) >0} -P{(X — X)(Y —Y) <0}.
Then
Q=Q(C,C) —4/ Cuv)dC(uv) L.

Proof. Since the random variables are all continuous, P{(X — X)(Y-Y) <0} =1- P{(X—
X)(Y V) > 0} and hence Q = 2P{(X — X)(V — ¥) > 0} — 1. But P{(X — X)(Y —V) >
0} =P{X > X,Y >Y}+P{X < X,Y <Y}, and these probabilities can be evaluated
by integrating over the distribution of one of the vectors (X,Y)T or (X,Y)7. Hence

P{X>X,Y >Y} = P X <X, Y<Y}
_ //R PIX < 2,V <y} dC(F(2), G(y))

- [[ étrw). 6 acra). G,
Employing the probability-integral transforms v = F(z) and v = G(y) then yields
P{X>X,Y >Y}= / Cuv)dC(uv)

Similarly,

P{X < X,Y < T} / /R P{X >2,¥ > y}dO(F(2), G(y))
= / /R (1= F(@) = Gly) + C(F (x), G(y) } dC(F (2), G (y))

_ //{011}2{1 —u— v+ Cu,v)} dC(u,v).

11



But since C is the joint distribution function of a vector (U, V)T of U(0,1) random vari-
ables, E(U) = E(V) = 1/2, and hence

~ ~ 1 1 ~ ~
IP’{X<X,Y<Y}:1————+/ C(u,v)dC(u,v):/ C(u,v)dC(u,v).
2.2 JJpap 0,1)”
Thus
P{(X — X)(Y = 7) > 0} = 2/ G, v) dC(u, v),
[0,1)?
and the conclusion follows. O

Corollary 3.1. Let C, C, and Q be as given in Theorem 3.2. Then
1. Q is symmetric in its arguments: Q(C,C) = Q(C, C). ) )
2. Q is nondecreasing in each argument: if C' < C', then Q(C,C) < Q(C',C).
3. Copulas can be replaced by survival copulas in Q, i.e. Q(C,C) = Q(a, 8’)

The following definition can be found in Scarsini (1984).

Definition 3.3. A real valued measure « of dependence between two continuous random
variables X and Y whose copula is C'is a measure of concordance if it satisfies the following
properties:
1. k is defined for every pair X,Y of continuous random variables.
-1 S KXY S 1, KX, X = 1 and RX,—-X = —1.
KXY = Ky,X.
If X and Y are independent, then kxy = ki = 0.
K—Xx)y = KX,—y = =KX,y
If C and C are copulas such that C' < é’, then ko < Ka.
If {(X,,Y,)} is a sequence of continuous random variables with copulas
Ch, and if {C},} converges pointwise to C, then lim, . k¢, = K¢

NS e e

O

Let x be a measure of concordance for continuous random variables X and Y. As a
consequence of Definition 3.3, if If Y is almost surely an increasing function of X, then
kx)y = ky = 1, and if Y is almost surely a decreasing function of X, then kxy = Ky =
—1. Moreover, if « and 8 are almost surely strictly increasing functions on RanX and
RanY respectively, then ry(x) 5v) = Fx,y-

3.4 Kendall’s tau and Spearman’s rho

In this section we discuss two important measures of dependence (concordance) known
as Kendall’s tau and Spearman’s rho. They provide the perhaps best alternatives to the
linear correlation coefficient as a measure of dependence for nonelliptical distributions, for
which the linear correlation coefficient is inappropriate and often misleading. For more
details about Kendall’s tau and Spearman’s rho and their estimators (sample versions)
we refer to Kendall and Stuart (1979), Kruskal (1958), Lehmann (1975) and Capéraa and
Genest (1993). For other interesting scalar measures of dependence see Schweizer and
Wolff (1981).

12



Definition 3.4. Kendall’s tau for the random variables X and Y is defined as
T(X,Y)=P{(X - X)(Y -Y) >0} —P{(X — X)(Y —Y) < 0},
where (X,Y)7 is an independent copy of (X,Y). O

Hence, Kendall’s tau for (X,Y)7 is simply the probability of concordance minus the
probability of discordance.

Theorem 3.3. Let X and Y be continuous random wvariables whose copula is C. Then
Kendall’s tau for X and Y is given by

7(X,Y)=Q(C,C) = 4/ o C(u,v)dC(u,v) — 1.

Note that the integral above is the expected value of the function C'(U,V'), where
U,V ~U(0,1) with joint distribution function C, i.e. 7(X,Y) =4E(C(U,V)) — 1.
Definition 3.5. Spearman’s rho for the random variables X and Y is defined as

ps(X,Y) = 3(P{(X — X)(Y —Y") > 0} — P{(X — X)(Y — ") < 0}),
where (X, V)7, (X,Y)” and (X', Y")" are independent copies. O

Note that X and Y’ are independent. Using Theorem 3.2 and the first part of Corollary
3.1 we obtain the following result.

Theorem 3.4. Let X and Y be continuous random wvariables whose copula is C. Then
Spearman’s rho for X and Y is given by

pslX.Y) 3@ =12 [

ude(u,v)—?):lQ/ C(u,v)dudv — 3.
[0,1]2 [0,1)2

Hence, if X ~ Fand Y ~ G, and we let U = F(X) and V = G(Y), then

ps(X,Y) = 12// wv dC/(u,v) — 3 = 12B(UV) — 3
017

E(UV)—-1/4  Cov(U,V)
1/12 ~ /Var(U)/Var(V)
= p(F(X),G(Y)).

In the next theorem we will see that Kendall’s tau and Spearman’s rho are concordance
measures according to Definition 3.3.

Theorem 3.5. If X and Y are continuous random wvariables whose copula is C, then
Kendall’s tau and Spearman’s rho satisfy the properties in Definition 3.3 for a measure of
concordance.

For a proof, see Nelsen (1999) p.137.
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Example 3.1. Kendall’s tau and Spearman’s rho for the random variables X and Y
are invariant under strictly increasing transformations of X and Y. This property does
not hold for linear correlation. It is not difficult to construct examples, the following
construction is instructive in its own right. Let X and Y be standard exponential random
variables with copula C', where C' is a member of the Farlie-Gumbel-Morgenstern family,
i.e. C is given by

C(u,v) = uv + Ouv(l — u)(1 — v),

for some 6 in [—1,1]. The joint distribution function H of X and Y is given by
H(z,y)=C(1l—e""1—¢e77).
Let p denote the linear correlation coefficient. Then

E(XY) — E(X)E(Y)

V/Var(X),/Var(Y)

p(X,Y) = =E(XY) -1,

where
E(XY) = / / zydH (z,y)
= / / zy (e "7V 4+ 0727 — e V(1 — e7Y)

e —e™) +0(1—e ") (1 — e ¥)e " Y) dady
9
= 1+Z'
Hence p(X,Y) = 0/4. But
p(l_eixal_eiy) = pS(XaY)

= 12/ C(u,v)dudv — 3
0,1]:

= 12 //[071}2(uv + Ouv(l —u)(1 —v))dudv —3

SEC R

36
= 9/3.

Hence p(X,Y’) is not invariant under strictly increasing transformations of X and Y and
therefore linear correlation is not a measure of concordance. Il

Although the properties listed under Definition 3.3 are useful, there are some additional
properties that would make a measure of concordance even more useful. Recall that for a
random vector (X,Y)” with copula C,

C = M — Tc = pc = 1,
C = W = 71c=pc=-1.

The following theorem states that the converse is also true.

Theorem 3.6. Let X and Y be continuous random wvariables with copula C, and let k
denote Kendall’s tau or Spearman’s rho. Then the following are true:

14



1. K(X,)Y)=1 <<= C=M.
2. k(X)Y)=-1 <= C=W.

For a proof, see Embrechts, McNeil, and Straumann (1999).

From the definitions of Kendall’s tau and Spearman’s rho it follows that both are in-
creasing functions of the value of the copula under consideration. Thus they are increasing
with respect to the concordance ordering given in Definition 2.5. Moreover, for continuous
random variables all values in the interval [—1,1] can be obtained for Kendall’s tau or
Spearman’s rho by a suitable choice of the underlying copula. This is however not the
case with linear correlation as is shown in the following example from Embrechts, McNeil,
and Straumann (1999).

Example 3.2. Let X ~ LN(0,1) (Lognormal) and Y ~ LN(0,0?),0 > 0. Then pyi, =
p(e?,e77%) and pmax = p(e?,e7?), where Z ~ N(0,1). From this pmin and pmax can be
calculated, yielding:

e 7 —1 e? —1
Pmin = - y P = ’
o \/e—lx/e"z—l e Ve —1ve’ —1

from which follows that lim, o0 Pmin = limy_y00 Pmax = 0. Hence the linear correlation
coefficient can be almost zero, even if X and Y are comonotonic or countermonotonic. [

Kendall’s tau and Spearman’s rho are measures of dependence between two random
variables. However the extension to higher dimensions is obvious, we simply write pairwise
correlations in an n X n matrix in the same way as is done for linear correlation.

3.5 Tail Dependence

The concept of tail dependence relates to the amount of dependence in the upper-right-
quadrant tail or lower-left-quadrant tail of a bivariate distribution. It is a concept that
is relevant for the study of dependence between extreme values. It turns out that tail
dependence between two continuous random variables X and Y is a copula property and
hence the amount of tail dependence is invariant under strictly increasing transformations
of X and Y.

Definition 3.6. Let X and Y be continuous random variables with distribution functions
F and . The coefficient of upper tail dependence of X and Y is

lim P{Y > G 1(u)|X > F 1(u)} =\
u, 1

provided that the limit Ay € [0, 1] exists. If Ay € (0,1], X and Y are said to be asymp-
totically dependent in the upper tail; if Ay = 0, X and Y are said to be asymptotically
independent in the upper tail. [l

Since P{Y > G~!(u)|X > F~'(u)} can be written as

1-P{X <F ')} —P{Y <G '(u)} + P{X < F7'(u),Y <G '(u)}
1-P{X < F(u)} ’

an alternative and equivalent definition (for continuous random variables), from which it
is seen that the concept of tail dependence is indeed a copula property, is the following.

15



Definition 3.7. If a bivariate copula C' is such that

2{1}1%(1 —2u+ C(u,u))/(l —u) = Ay

exists, then C has upper tail dependence if Ay € (0,1], and upper tail independence if
Ay = 0. O

Example 3.3. Consider the bivariate Gumbel family of copulas given by
Cy(u,v) = exp(=[(—Inu)? + (- lnv)a]l/a),
for 6 > 1. Then

1 —2u+ Clu,u) 1 —2u + exp(2'/?1nw) B 1—2u+u2’’
1—u N 1—u N 1—u

bl
and hence

lim (1 — 2u + C(u,u))/(1 —u) = 2 — lim 202" -1 = 2 — 21/0,
u M u,M

Thus for 6 > 1, Cy has upper tail dependence. O

For copulas without a simple closed form an alternative formula for Ay is more useful.
An example is given in the case of the Gaussian copula

-2
(u,v) / / p{— RIQS;_Ft }dsdt
2m\/1— RZ, R%Z Riy)

where —1 < Rip < 1 and ® is the univariate standard normal distribution function.
Consider a pair of U(0,1) random variables (U, V') with copula C. First note that P{V <
v|U = u} = 9C(u,v)/0u and P{V > v|U = u} = 1 — 9C(u,v)/du, and similarly when
conditioning on V. Then

Ay = lim C(u,u)/(1 —u)

u, 1
_ i 9Cw)
w1 du
— tim(—2+ Lost 20t
= —J/{Hﬁ(- +& (Sa )‘s:t u+at (S )‘s:t:u)

= li/‘rri(]P’{V > u|lU =u} +P{U > u|V = u}).
u

Furthermore if C' is an exchangeable copula, i.e. C'(u,v) = C(v,u), then the expression
for A\ simplifies to
Ay =2 lm P{V > u|U = u}.
u, 1

Example 3.4. Let (X,Y)” have the bivariate standard normal distribution function
with linear correlation coefficient p. That is (X,Y)? ~ C(®(z),®(y)), where C is a
member of the Gaussian family given above with Ris = p. Since copulas in this family
are exchangeable,
Ay =2 1lim P{V > u|U = u},
u, 1
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and because @ is a distribution function with infinite right endpoint,

lim P{V > u|U = u} = lim P{® (V) > 2|® ' (U) = 2} = lim P{X > z|V = z}.
u T—00 T—500

Using the well known fact that Y|X =z ~ N(pz,1 — p?) we obtain
Ay =2 lim ®((z — px)/V/1 — p?) =2 lim ®(z\/1 —p/\/1+ p),
T—r00 T—r00

from which it follows that Ay = 0 for Rj2 < 1. Hence the Gaussian copula C with p < 1
does not have upper tail dependence. [l

The concept of lower tail dependence can be defined in a similar way. If the limit
lim,\ o C(u,u)/u = Aj, exists, then C has lower tail dependence if A7, € (0, 1], and lower
tail independence if A\;, = 0. For copulas without a simple closed form an alternative
formula for )z, is more useful. Consider a random vector (U, V)T with copula C. Then

A= lim Ofuu)/u = lim % - ii\r‘%(%C(s
(P{V <u|lU = u} +P{U < u|V = u}).

80(3,25)‘

) t) ‘s:t:u + & s:t:u)

lim
u\0

Furthermore if C' is an exchangeable copula, i.e. C'(u,v) = C(v,u), then the expression
for Az, simplifies to
AL =21im P{V < u|U = u}.
u\,0

Recall that the survival copula of two random variables with copula C is given by

~

Clu,v)=u+v—14+C(1 —u,1—v),

and the joint survival function for two U(0, 1) random variables whose joint distribution
function is C is given by

Clu,v) =1—u—v+C(u,v) =C(1 —u,1 —v).
Hence it follows that

lim C 1—u)=1lmC(1—u1—u)/(1—-u)=1lmC

lim O, 0)/(1 =) = lim G0 — .1~ )/(1 ) = lim Cu )/
so the coefficient of upper tail dependence of C' is the coefficient of lower tail dependence
of C'. Similarly the coefficient of lower tail dependence of C' is the coefficient of upper tail
dependence of C'.

4 Marshall-Olkin Copulas

In this section we discuss a class of copulas called Marshall-Olkin copulas. To be able to
derive these copulas and present explicit expressions for rank correlation and tail depen-
dence coefficients without tedious calculations, we begin with bivariate Marshall-Olkin
copulas. We then continue with the more general n-dimensional case and suggest appli-
cations of Marshall-Olkin copulas to the modelling of dependent risks. For further details
about Marshall-Olkin distributions we refer to Marshall and Olkin (1967).
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4.1 Bivariate Marshall-Olkin Copulas

Consider a two component system where the components are subject to shocks, which are
fatal to one or both components. Let X; and X, denote the lifetimes of the two compo-
nents. Furthermore assume that the shocks follow three independent Poisson processes
with parameters A;, Ag, A\j2 > 0, where the index indicates whether the shocks effect only
component 1, only component 2 or both. Then the times 71, Zs and Z1o of occurrence
of these shocks are independent exponential random variables with parameters A1, Ao and
A12 respectively. Hence

F(Hﬁl,l‘g) =P{X1 > 1, X9 > 2o} = P{Z1 > 21 }P{Zy > xo}P{Z15 > max(z1,z2)}.

The univariate survival functions for X; and X, are Fi(z1) = exp(—(A\; + A2)z1) and
Fa(z2) = exp(— (A2 + A\12)72). Furthermore, since max(z1,x2) = 1 + x93 — min(zy, 22),
H(z1,m3) = exp(—(A1+ A2)zr — (A2 + Ai2)x2 + Ao min(zy, 72))
= F1 (Il)FQ (IQ) min(exp()\lgml), eXp(Algﬂjg)).
Let oy = )\12/()\1 + )\12) and ay = )\12/()\2 + )\12) Then eXp()\12£E1) = 71(1‘1)7(11 and
exp(A1222) = Fa(12)~%2, and hence the survival copula of (X1, X5)7 is given by

az) —Oéz)

- P - R 1
C(u1,u2) = ugug min(u; **, u; = min(u;” ug, uru,

This construction leads to a copula family given by

11—« a1 s
. 1— 1—agy Uq U2a Uy > Uy~
Cfll,aZ (U1,U2) - mln(ul UQ,U,1U,2 ) - 1—ao a1 o, Q2

upt < g’

This family is known as the Marshall-Olkin family. Marshall-Olkin copulas have both an
absolutely continuous and a singular component. Since

2 —Q a1 [}
78 Ca « (U1 UZ) = RV - Y2
OuqOug VN uy *?, ul!t < ug?,

the mass of the singular component is concentrated on the curve u{! = u$? in [0,1]? as
seen in Figure 4.1.

Kendall’s tau and Spearman’s rho are quite easily evaluated for this copula family.
For Spearman’s rho, applying the result obtained in Theorem 3.4 yields:

ps(Cara) = 12// Car a0 (u,v)dudv — 3
0,1]2

w1/ o2 1
= 12/ </ ul™ O‘lvdv+/ w2 dv) du —3
0 0 uo1/o2

3C¥1 (6]

20[1 + 20(2 — (X109 '

To evaluate Kendall’s tau we use the following theorem, a proof of which is found in
Nelsen (1999) p.131.

Theorem 4.1. Let C' be a copula such that the product (80/8u) (80/(91)) 1s integrable
on [0,1]?. Then

0
/01 C(u,v)dC(u,v) ——// 2%Cuv&LC(u,v)dudv.
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Figure 4.1: A simulation from the Marshall-Olkin copula with Ay = 1.1, A3 = 0.2 and
A2 = 0.6.

Using Theorems 3.3 and 4.1 we obtain

T(Cal,aQ) = 4//[0 12 Ca1,a2 (U,U) dCa1,a2 (u,v) -1

1 o 9
= - . o . , B 1
' (2 //[0,1]2 8ucal,az (U,v)au Cayas (u, ) du d“)

a1

a1 +ay —ajan

Thus all values in the interval [0, 1] can be obtained for pg(Cy, a,) and 7(Cq, ). The
Marshall-Olkin copulas have upper tail dependence. Without loss of generality assume
that oy > a9, then

. Clu,u) .1 —2u+u?min(u=,u"%2)
lim ——— = lim
vl 1 —u u M 1—wu
ol —2u+utume
= lim
u M 1—wu
= il/‘Hi(2 — 2U1_a2 + 012u1_a2) = g,

and hence Ay = min(aq, as) is the coefficient of upper tail dependence.
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4.2 A Multivariate Extension

We now present the natural multivariate extension of the bivariate Marshall-Olkin family.
Consider an n-component system, where each nonempty subset of components is assigned
a shock which is fatal to all components of that subset. Let S denote the set of nonempty
subsets of {1,...,n}. Let Xy,...,X,, denote the lifetimes of the components, and assume
that shocks assigned to different subsets s, s € S, follow independent Poisson processes
with intensities A;. Let Zs, s € S, denote the time of first occurrence of a shock event for
the shock process assigned to subset s. Then the occurrence times Z; are independent
exponential random variables with parameters A, and X; = ming.jes Z; for j = 1,...,n.

There are in total 2" — 1 shock processes, each in one-to-one correspondence with a
nonempty subset of {1,...,n}.

Example 4.1. Let n = 4. Then

Xy =min(Zy, Z9, Z13, Z14, Z123, Z124, Z134, Z1234)
Xo = min(Zy, Z19, Za3, Zoa, Z123, Z124, Z234, Z1234)
X3 = min(Z3, Z13, Z23, Z34, Z123, Z134, Z234, Z1234)

( )

)

Xy = min(Zy, Z14, Zoa, L34, Z124, Z134, Z234, Z1234)-
If for example A3 = 0, then Z13 = oo almost surely. O

We now turn to the question of random variate generation from Marshall-Olkin n-
copulas. Order the [ := |S| = 2" — 1 nonempty subsets of {1,...,n} in some arbitrary
way, S1,...,51, and set Ay := s, (the parameter of Z,) for £ = 1,...,I. The following
algorithm generates random variates from the Marshall-Olkin n-copula.

Algorithm 4.1.

e Simulate [ independent random variates vy, ..., v; from U(0, 1).
e Setux; = minlgkg,iesk,/\kig(— lnvk/)\k), 1=1,...,n.

e Set AZ'ZZLZI 1{i Esk})\k, 1=1,...,n.

e Setu; =exp(—Ajz;), 1=1,...,n.

Then (z1,...,2,)7 is an n-variate from the n-dimensional Marshall-Olkin distribution
and (ug,...,u,)" is an n-variate from the corresponding Marshall-Olkin n-copula. Fur-
thermore, A; is the shock intensity “felt” by component . O

Since the (i, j)-bivariate margin of a Marshall-Olkin n-copula is a Marshall-Olkin cop-
ula with parameters

ai=( > A)/(O-N) and ay=( > A)/(D] M),
$:ES,JES S:ES $:ES,JES 5:jESs

the Kendall’s tau and Spearman’s rho rank correlation matrices are easily evaluated. The
(,7) entries are given by

;0 3aja

—— =  and ,
o + o — o 20 + 205 — a5

respectively. As seen above, evaluating the rank correlation matrix given the full parame-
terization of the Marshall-Olkin n-copula is straightforward. However given a (Kandall’s
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tau or Spearman’s rho) rank correlation matrix we cannot in general obtain a unique
parameterization of the copula. By setting the shock intensities for subgroups with more
then two elements to zero, we obtain the perhaps most natural parameterization of the
copula in this situation. However this also means that the copula only has bivariate
dependence.

4.3 A Useful Modelling Framework

In general the huge number of parameters for high dimensional Marshall-Olkin copulas
make them unattractive for high dimensional risk modelling. However, we will now give
an example of how an intuitively appealing and easier parameterized model for modelling
dependent loss frequencies can be set up, for which the survival copula of times to first
losses is a Marshall-Olkin copula.

Suppose we are interested in insurance losses occurring in several different lines of
business or several different countries. In credit risk modelling we might be interested in
losses related to the default of various different counterparties or types of counterparty. A
natural approach to modelling this dependence is to assume that all losses can be related
to a series of underlying and independent shock processes. In insurance these shocks might
be natural catastrophes; in credit risk modelling they might be a variety of underlying
economic events. When a shock occurs this may cause losses of several different types; the
common shock causes the numbers of losses of each type to be dependent. It is commonly
assumed that the different varieties of shocks arrive as independent Poisson processes,
in which case the counting processes of the losses are also Poisson and can be handled
easily analytically. In reliability such models are known as fatal shock models, when the
shock always destroys the component, and non-fatal shock models, when components have
a chance of surviving the shock. A good basic reference on such models is Barlow and
Proschan (1975).

Suppose there are m different types of shocks and for e = 1,...,m, let {N(©)(t),¢ > 0}
be a Poisson process with intensity A(¢) recording the number of events of type e occurring
in (0,]. Assume further that these shock counting processes are independent. Consider
losses of n different types and for j = 1,...,n, let {N;(¢),¢ > 0} be a counting process that
records the frequency of losses of the jth type occurring in (0,¢]. At the rth occurrence
of an event of type e the Bernoulli variable I ](;)
The vectors

indicates whether a loss of type j occurs.

10 = (19, ... 1eHT

T 1,r n,

for r = 1,...,N(©)(¢) are considered to be independent and identically distributed with
a multivariate Bernoulli distribution. In other words, each new event represents a new
independent opportunity to incur a loss but, for a fixed event, the loss trigger variables for
losses of different types may be dependent. The form of the dependence depends on the
specification of the multivariate Bernoulli distribution with independence as a special case.
We use the following notation for p-dimensional marginal probabilities of this distribution
(the subscript r is dropped for simplicity):

P =iy, I =) = p\) (i, i), iy, € {0,1).

We also write p(e)(l) = pge) for one-dimensional marginal probabilities, so that in the spe-

J
cial case of conditional independence we have pg-f?m,jp(l, L) =11 pgi). The counting
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processes for events and losses are thus linked by

N (t)

Ni(t) =" 1.

e=1 r=1

Under the Poisson assumption for the event processes and the Bernoulli assumption for
the loss indicators, the loss processes {N;(t),z > 0} are clearly Poisson themselves, since
they are obtained by superpositioning m independent (possibly thinned) Poisson processes
generated by the m underlying event processes. The random vector (Niy(t),..., N (t)T
can be thought of as having a multivariate Poisson distribution.

The presented non-fatal shock model has an equivalent fatal shock model representa-
tion, i.e. of the type presented in Section 4.2. Hence the random vector (Xi,...,X,)"
of times to first losses of different types, where X; = inf{t > 0|N;(t) > 0}, has an
n-dimensional Marshall-Olkin distribution whose survival copula is a Marshall-Olkin n-
copula. From this it follows that Kendall’s tau, Spearman’s rho and coefficients of tail
dependence for (X;, X j)T can be easily calculated. For more details on this model, see
Lindskog and McNeil (2001).

5 Elliptical Copulas

The class of elliptical distributions provides a rich source of multivariate distributions
which share many of the tractable properties of the multivariate normal distribution and
enables modelling of multivariate extremes and other forms of nonnormal dependences.
Elliptical copulas are simply the copulas of elliptical distributions. Simulation from ellip-
tical distributions is easy, and as a consequence of Sklar’s Theorem so is simulation from
elliptical copulas. Furthermore, we will show that rank correlation and tail dependence
coefficients can be easily calculated. For further details on elliptical distributions we refer
to Fang, Kotz, and Ng (1987) and Cambanis, Huang, and Simons (1981).

5.1 Elliptical Distributions

Definition 5.1. If X is a n-dimensional random vector and, for some p € R™ and some
n x n nonnegative definite, symmetric matrix ¥, the characteristic function px_,(t) of
X — 4 is a function of the quadratic form t”$t, px_,(t) = ¢(t7Xt), we say that X has
an elliptical distribution with parameters p, ¥ and ¢, and we write X ~ E,(u, %, ¢). O

When n = 1, the class of elliptical distributions coincides with the class of one-
dimensional symmetric distributions. A function ¢ as in Definition 5.1 is called a charac-
teristic generator.

Theorem 5.1. X ~ E,(u, X, ¢) with rank(X) = k if and only if there exist a random
variable R > 0 independent of U, a k-dimensional random vector uniformly distributed
on the unit hypersphere {z € R¥|zTz = 1}, and a n x k matriz A with AAT =%, such
that

X=4p+ RAU.

For the proof of Theorem 5.1 and the relation between R and ¢ see Fang, Kotz, and Ng
(1987) or Cambanis, Huang, and Simons (1981).
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Example 5.1. Let X ~ N,(0,I,). Since the components X; ~ N(0,1),7 = 1,...,n,
are independent and the characteristic function of X; is exp(—t?/2), the characteristic
function of X is

1 1
exp{—g(t% +o 2} = exp{—itTt}.
From Theorem 5.1 it then follows that X ~ E,,(0,1,, ¢), where ¢(u) = exp(—u/2). O

IfX ~ E,(u, X, ¢), where X is a diagonal matrix, then X has uncorrelated components
(if 0 < Var(X;) < o0). If X has independent components, then X ~ N, (u, 2). Note that
the multivariate normal distribution is the only one among the elliptical distributions
where uncorrelated components imply independent components. A random vector X ~
E,(p, X, ¢) does not necessarily have a density. If X has a density it must be of the form
12" 2g((X — p)TS"1(X — p)) for some nonnegative function g of one scalar variable.
Hence the contours of equal density form ellipsoids in R™. Given the distribution of
X, the representation E,(u, X, ¢) is not unique. It uniquely determines p but ¥ and ¢
are only determined up to a positive constant. More precisely, if X ~ E, (u, X, ¢) and
X ~ E,(p*, X*, ¢*), then

M* = W, ¥ = cX, ¢*() = ¢(/C)a

for some constant ¢ > 0.
In order to find a representation such that Cov(X) = X, we use Theorem 5.1 to obtain

Cov(X) = Cov(u + RAU) = AE(R?)Cov(U)AT,

provided that E(R?) < oo. Let Y ~ MN,(0,I,). Then Y =, ||[Y||U, where |Y] is
independent of U. Furthermore ||[Y||? ~ x2, so E(|[Y]|?) = n. Since Cov(Y) = I, we see
that if U is uniformly distributed on the unit hypersphere in R", then Cov(U) = I, /n.
Thus Cov(X) = AATE(R?)/n. By choosing the characteristic generator ¢*(s) = ¢(s/c),
where ¢ = E(R?)/n, we get Cov(X) = X. Hence an elliptical distribution is fully described
by u, ¥ and ¢, where ¢ can be chosen so that Cov(X) = X (if Cov(X) is defined). If
Cov(X) is obtained as above, then the distribution of X is uniquely determined by E(X),
Cov(X) and the type of its univariate margins, e.g. normal or t4, say.

Theorem 5.2. Let X ~ E, (1,2, ¢), let B be an ¢ X n matriz and b € R?. Then
b+ BX ~ E (b + Bu, BEB”, ).
Proof. By Theorem 5.1, b + BX has the stochastic representation

b+ BX =;b+ Bu+ RBAU.
Partition X, 1 and X into

Xy 1 Y1 Yo >
X' - b) - b) Z - b)
(X2> a (M2> ( Yo1 X

where X and p1 are r X 1 vectors and Y17 is a r X r matrix.
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Corollary 5.1. Let X ~ E, (4, X, $). Then

X1 ~ ET(Mla 2117 ¢)’ X2 ~ ETZ—T(M% 2227 ¢)

Hence marginal distributions of elliptical distributions are elliptical and of the same
type (with the same characteristic generator). The next result states that the conditional
distributions of X; are also elliptical, but in general not of the same type as X;.

Theorem 5.3. Let X ~ E,(u, X, ) with ¥ strictly positive definite. Then
X1|X2 =X~ Er(ﬂ'v Sﬁz)a
where i = b1 + 2122521 (x — p2) and Y=Y 2122521221. Moreover, é = ¢ if and only

For the proof and details about qz, see Fang, Kotz, and Ng (1987). For the extension to
the case where rank(X) < n, see Cambanis, Huang, and Simons (1981).

The following lemma states that linear combinations of independent, elliptically dis-
tributed random vectors with the same dispersion matrix 3 (up to a positive constant)
remain elliptical.

Lemma 5.1. Let X ~ E,(p, 2, ¢) and X ~ E,(j1,c3, qg) for ¢ > 0 be independent. Then

for a,b € R, aX +bX ~ E,(ap + bji, B, ¢*) with ¢*(u) = ¢(a’u)p(b?cu).

Proof. By Definition 5.1, it is sufficient to show that for all t € R™

(PaXerf(faufbﬁ(t) = PaX-p) (t)(pb(fifﬁ) ()

= ¢((at)"S(at))d((bt)" (c2)(bt))
= H(a*tTTt) (bt H).

As usual, let X ~ E,(u, X, ¢). Whenever 0 < Var(X;), Var(X;) < oo,

p(Xi,Xj) = COV(XZ-,Xj)/\/Var(Xi)Var(Xj) = Eij/\/ ZJZ-Z-ZJ]-]-.

This explains why linear correlation is a natural measure of dependence between random
variables with a joint nondegenerate (3;; > 0 for all 7) elliptical distribution. Throughout
this section we call the matrix R, with R;; = ¥;;/1/%;i2j;, the linear correlation matrix
of X. Note that this definition is more general than the usual one and in this situation
(elliptical distributions) makes more sense. Since an elliptical distribution is uniquely
determined by u, 3 and ¢, the copula of a nondegenerate elliptically distributed random
vector is uniquely determined by R and ¢.

One practical problem with elliptical distributions in multivariate risk modelling is
that all margins are of the same type. To construct a realistic multivariate distribution
for some given risks, it may be reasonable to choose a copula of an elliptical distribution
but different types of margins (not necessarily elliptical). One big drawback with such
a model seems to be that the copula parameter R can no longer be estimated directly
from data. Recall that for nondegenerate elliptical distributions with finite variances, R is
just the usual linear correlation matrix. In such cases, R can be estimated using (robust)
linear correlation estimators. One such robust estimator is provided by the next theorem.
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For nondegenerate nonelliptical distributions with finite variances and elliptical copulas,
R does not correspond to the linear correlation matrix. However, since the Kendall’s tau
rank correlation matrix for a random vector is invariant under strictly increasing transfor-
mations of the vector components, and the next theorem provides a relation between the
Kendall’s tau rank correlation matrix and R for nondegenerate elliptical distributions, R
can in fact easily be estimated from data.

Theorem 5.4. Let X ~ E, (11, 2, ¢) with P{X; = p;} <1 and P{X; = pu;} < 1. Then

(X, X5) = (1= ) _(P{X; = z})?) %arcsin(Rij). (5.1)
zER

If rank(X) > 2, then (5.1) simplifies to
2 .
(X5, X;) = (1 — (P{X; = wi})?) - arcsin(R;;).

For a proof, see Lindskog, McNeil, and Schmock (2001). Note that if P{X; = u;} = 0 for
all ¢, which is true for e.g. multivariate t or normal distributions with strictly positive
definite dispersion matrices 3, then

2
7(Xi, X;) = — arcsin(R;;)

for all ¢ and j.

The non-parametric estimator of R, sin(n7/2) (dropping the subscript for simplicity),
provided by the above theorem, inherits the robustness properties of the Kendall’s tau
estimator and is an efficient (low variance) estimator of R for both elliptical distributions
and nonelliptical distributions with elliptical copulas.

5.2 Gaussian Copulas

The copula of the n-variate normal distribution with linear correlation matrix R is
CRo(u) = DF(D™" (), .., 27" (un)),

where ®% denotes the joint distribution function of the n-variate standard normal dis-
tribution function with linear correlation matrix R, and ®~! denotes the inverse of the
distribution function of the univariate standard normal distribution. Copulas of the above
form are called Gaussian copulas. In the bivariate case the copula expression can be writ-

ten as
<I>_1(u) <I>_1(v) 1 2 2 t t2
C§% (u,v) = / / —~ {_S Bipst + } ds dt.
. oo 27(1— R%) 2(1 — R%)

Note that Rio is simply the usual linear correlation coefficient of the corresponding bi-
variate normal distribution. Example 3.4 shows that Gaussian copulas do not have upper
tail dependence. Since elliptical distributions are radially symmetric, the coefficient of
upper and lower tail dependence are equal. Hence Gaussian copulas do not have lower
tail dependence.

We now address the question of random variate generation from the Gaussian copula
C’ga. For our purpose, it is sufficient to consider only strictly positive definite matrices R.
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Write R = AAT for some n x n matrix A, and if Z1,...,Z, ~ N(0,1) are independent,
then
X =pu+ AZ ~ Ny(p, R).

One natural choice of A is the Cholesky decomposition of R. The Cholesky decomposition
of R is the unique lower-triangular matrix L with LLT = R. Furthermore Cholesky
decomposition routines are implemented in most mathematical software. This provides
an easy algorithm for random variate generation from the Gaussian n-copula C’g“.

Algorithm 5.1.

Find the Cholesky decomposition A of R.

Simulate n independent random variates z1, ..., z, from N (0,1).
Set x = Az.

Set u; = ®(z;),i=1,...,n.

(uty...,u)T ~ CHe.

As usual ® denotes the univariate standard normal distribution function. O

5.3 t-copulas

If X has the stochastic representation

Vv

VS

where € R?, S ~ x2 and Z ~ N, (0,X) are independent, then X has an n-variate
t,-distribution with mean y (for v > 1) and covariance matrix -5 (for v > 2). If v < 2
then Cov(X) is not defined. In this case we just interpret X as being the shape parameter
of the distribution of X.

The copula of X given by (5.2) can be written as

X =g p+ Y=12, (5.2)

Czt/,R(u) = tZ,R(t;l(ul)a tet 7t;1(un))7

where R;; = ¥;;/1/2:i2;; for 4,5 € {1,...,n} and where t; g denotes the distribution
function of v/2Y /V/S, where S ~ x2 and Y ~ N,,(0, R) are independent. Here #, denotes
the (equal) margins of ” . i.e. the distribution function of v/#Y;/V/S. In the bivariate
case the copula expressiofl can be written as

t, () pty L (v) 1 s2 — 2Riost + 12 —(v+2)/2
Ct ’ — / / {]_ 12 } ds dt.
A U N CE A Eh G ’

Note that Rio is simply the usual linear correlation coefficient of the corresponding bi-
variate t,-distribution if v > 2.

If (X7, X2) has a standard bivariate t-distribution with v degrees of freedom and linear
correlation matrix R, then Xo|X; = z is t-distributed with v + 1 degrees of freedom and

1/+$2
v+1

E(X3| X, = x) = Ripz, Var(Xs|X; =z) = < ) (1 - R2%,).

26



This can be used to show that the t-copula has upper (and because of radial symmetry)
equal lower tail dependence:

Ay = 2 lim IP)(XQ > :E|X1 = (L‘)
T—>00

V—I—l)l/QZE—RlQ(L‘

2 /

2 i % v+1 1/2\/1—R12
= im %,
T—00 +l I//I2 +1 m

= 24 (\/m\/l — Ria/\/1+ R12) .

= 2 | (

From this it is also seen that the upper tail dependence is increasing in R12 and decreasing
in v, as one would expect. Furthermore, the coefficient of upper (lower) tail dependence
tends to zero as the number of degrees of freedom tends to infinity for Rio < 1.
Coefficients of upper tail dependence for the bivariate t-copula are:

| \Ri2 [ 05| 0] 05] 09][1]
2]0.06[0.18 039 [0.72 ] 1
410.010.08]025]0.63] 1
10 [ 0.00 | 0.01 | 0.08 [ 0.46 | 1
| 0] 0] o] o0]1

The last row represents the Gaussian copula, i.e. no tail dependence.

It should be mentioned that the expression given above is just a special case of a
general formula for the coefficient(s) of tail dependence for elliptical distributions with
tail dependence. It turns out that if ¥; > 0 for all 4 and X;;/,/3;X;; < 1 for all
i # 7, then the bivariate marginal distributions of an elliptically distributed random
vector X =4 u + RAU ~ E,(u, %, ¢) has tail dependence if and only if R is so-called
regularly varying. For more details, see Hult and Lindskog (2001), and for details about
regular variation in general see Resnick (1987) or Embrechts, Mikosch, and Kliippelberg
(1997).

Equation (5.2) provides an easy algorithm for random variate generation from the
t-copula, le’R.

Algorithm 5.2.

e Find the Cholesky decomposition A of R.

e Simulate n independent random variates z1, ..., z, from N (0,1).
e Simulate a random variate s from 2 independent of zi,. .., z,.
e Sety = Az.

o Setx=YZy.

o Setu;=t,(z;),i=1,...,n.

o (ul,...,un)TNC’IiR.

d

Figures 5.1 and 5.2 show samples from bivariate distributions with Gaussian and t-
copulas. In Figure 5.1, we have contrasted a real example (BMW-Siemens daily return
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Figure 5.1: The upper left plot shows BMW-Siemens daily log returns from 1989 to 1996.
The other plots show samples from bivariate distributions with t4-margins and Kendall’s

tau 0.5.
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Figure 5.2: Samples from two distributions with standard normal margins, R;3 = 0.8
and different dependence structures. (X1,Y1) has a Gaussian copula and (X2,Y2) has a
to-copula.
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data) with simulated data using marginal t4 tails, corresponding Kendall’s tau (0.5) and
varying copulas. Note that the Gaussian copula does not get the extreme joint tail ob-
servations clearly present in the real data. The to-copula seems to be able to do a much
better job in that respect. Indeed the ty generated scatter plot shows most of the graphical
features in the real data. Note that these examples were only introduced to highlight the
simulation procedures and do not constitute a detailed statistical analysis. Figure 5.2 (a
simulated example) further highlights the difference between the Gaussian and t-copulas,
this time with standard normal margins.

The algorithms presented for the Gaussian and t-copulas are fast and easy to imple-
ment. We want to emphasize the potential usefulness of t-copulas as an alternative to
Gaussian copulas. Both Gaussian and t-copulas are easily parameterized by the linear
correlation matrix, but only t-copulas yield dependence structures with tail dependence.

6 Archimedean Copulas

The copula families we have discussed so far have been derived from certain families of
multivariate distribution functions using Sklar’s Theorem. We have seen that elliptical
copulas are simply the distribution functions of componentwise transformed elliptically
distributed random vectors. Since simulation from elliptical distributions is easy, so is
simulation from elliptical copulas. There are however drawbacks: elliptical copulas do not
have closed form expressions and restricted to have radial symmetry (C' = 6) In many
finance and insurance applications it seems reasonable that there is a stronger dependence
between big losses (e.g. a stock market crash) than between big gains. Such asymmetries
cannot be modelled with elliptical copulas.

In this section we discuss an important class of copulas, called Archimedean copulas.
This class of copulas is worth studying for a number of reasons. Many interesting para-
metric families of copulas are Archimedean and the class of Archimedean copulas allow for
a great variety of different dependence structures. Furthermore, in contrast to elliptical
copulas, all commonly encountered Archimedean copulas have closed form expressions.
Unlike the copulas discussed so far these copulas are not derived from multivariate distri-
bution functions using Sklar’s Theorem. A consequence of this is that we need somewhat
technical conditions to assert that multivariate extensions of Archimedean 2-copulas are
proper n-copulas. A further disadvantage is that multivariate extensions of Archimedean
copulas in general suffer from lack of free parameter choice in the sense that some of the
entries in the resulting rank correlation matrix are forced to be equal. At the end of
this section we present one possible multivariate extension of Archimedean copulas and a
general algorithm for random variate generation for those families of n-copulas. For other
multivariate extensions we refer to Joe (1997).

There is much written about Archimedean copulas. For parameter estimation and
a discussion on other statistical questions we refer to Genest and Rivest (1993). Good
references on Archimedean copulas in general are Genest and MacKay (1986), Nelsen
(1999) and Joe (1997). See also the webpage http://www.mat.ulaval.ca/pages/genest/
for further related work.

6.1 Definitions

We begin with a general definition of Archimedean copulas, which can be found in Nelsen
(1999) p.90. As our aim is the construction of and random variate generation from multi-
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variate extensions of Archimedean 2-copulas, this general definition will later prove to be
a bit more general than needed.

Definition 6.1. Let ¢ be a continuous, strictly decreasing function from [0, 1] to [0, co]
such that (1) = 0. The pseudo-inverse of ¢ is the function @l : [0, 00] — [0, 1] given

b
' Ly J o M), 0<t<9p0),
’ (t)_{o’ ©(0) <t < oo.

O

Note that ol =1 is continuous and decreasing on [0,00], and strictly decreasing on
[0, ©(0)]. Furthermore, pl="(p(u)) = u on [0,1], and

. £ < (0),
ole ”(t”:{ 0(0), 9(0) <t < oo.

Finally, if (0) = oo, then o[~ = 1.

Theorem 6.1. Let ¢ be a continuous, strictly decreasing function from [0,1] to [0, 0]
such that p(1) = 0, and let !~ be the pseudo-inverse of ¢. Let C be the function from
[0, 1] to [0,1] given by

C(u,v) = o1 o) + ¢(v)). (6.1)

Then C'is a copula if and only if ¢ is convex.

For a proof, see Nelsen (1999) p.91.

Copulas of the form (6.1) are called Archimedean copulas. The function ¢ is called a
generator of the copula. If ¢(0) = 0o, we say that ¢ is a strict generator. In this case,
=1 = o= and C(u,v) = ¢~ (p(u) + @(v)) is said to be a strict Archimedean copula.

Example 6.1. Let p(t) = (—Int)?, where § > 1. Clearly o(t) is continuous and go( ) =0.
¢'(t) = —0(—Int)? 11 s0 ¢ is a strictly decreasing function from [0, 1] to [0, 00]. ¢"(t) >0
on [0, 1], so ¢ is convex Moreover ¢(0) = 0o, so ¢ is a strict generator. From (6.1) we get

Colu,v) = ¢ (p(u) + p(v) = exp(~[(~ Inu)’ + (= Inv)]'/?).

Furthermore €} = II and limg_,oo Cy = M (recall that II(u,v) = wv and M(u,v) =
min(u,v)). This copula family is called the Gumbel family. As shown in Example 3.3 this
copula family has upper tail dependence. Il

Example 6.2. Let op(t) = (t7% — 1)/6, where 6 € [~1,00) \ {0}. This gives the Clayton
family
Co(u,v) = max([u=? + v —1]71/90).

For 6 > 0 the copulas are strict and the copula expression simplifies to
Colu,v) = (u™? +0v=0 —1)71/°, (6.2)

The Clayton family has lower tail dependence for 8 > 0, and C_y = W, limy_,q Cy = 11
and limy_,, Cy = M. Since most of the following results are results for strict Archimedean
copulas we will refer to (6.2) as the Clayton family. O
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Example 6.3. Let p(t) = —In <%=, where 0 € R\ {0}. This gives the Frank family
1 (e70 —1)(e7% —1)
Cy(u,v) :—Eln <1—i— = .

The Frank copulas are strict copulas. Furthermore limy_, _,, Cy = W, limy_,o Cyp = IT and
limy_ oo Cp = M. Members of tlle Frank family are the only Archimedean copulas which

satisfy the equation C'(u,v) = C(u,v) for so-called radial symmetry, see Frank (1979) for
details. ]

Example 6.4. Let ¢(t) = 1 — ¢t for  in [0,1]. Then l"1(t) =1 —¢ for ¢ in [0,1] and 0
for t > 1; i.e., o= !(t) = max(1 — ¢,0). Since C(u,v) = max(u +v — 1,0) = W (u,v), we
see that W is Archimedean. O

6.2 Properties

The results in the following theorem will enable us to formulate multivariate extensions
of Archimedean copulas.

Theorem 6.2. Let C' be an Archimedean copula with generator ¢. Then
1. C is symmetric, i.e. C(u,v) = C(v,u) for all u,v in [0,1].
2. C is associative, i.e. C(C(u,v),w) = C(u,C(v,w)) for all u,v,w in [0,1].

Proof. The first part follows directly from (6.1). For 2.,

C(Clu,v),w) = o (p(Clu,v)) + p(w))
= oo (p(u) + ¢(v))) + p(w))
= o (p(u) + ¢(v) + p(w))
= o (p(u) + (N (p(v) + p(w))))
= o (p(u) + ¢(C(v,w))) = C(u, C(v,w)),
and hence C is associative. ]

The associativity property of Archimedean copulas is not shared by copulas in general
as shown by the following example.

Example 6.5. Let Cy be a member of the bivariate Farlie-Gumbel-Morgenstern family
of copulas, i.e. Cy(u,v) = uv + Quv(l —u)(l —v), for § € [—1,1]. Then

a(po(z3))2a(o(i3)3)

forall @ € [—1,1]\{0}. Hence the only member of the bivariate Farlie-Gumbel-Morgenstern
family of copulas that is Archimedean is II. O

Theorem 6.3. Let C' be an Archimedean copula generated by @ and let
Kc(t) = Ve({(u,0) € [0,1*|C(u,v) < t}).

Then for any t in [0, 1],




For a proof, see Nelsen (1999) p.102.

Corollary 6.1. If (U,V)" has distribution function C, where C is an Archimedean copula
generated by ¢, then the function Ko given by (6.3) is the distribution function of the
random variable C(U,V).

The next theorem will provide the basis for a general algorithm for random variate
generation from Archimedean copulas. Before the theorem can be stated we need an
expression for the density of an absolutely continuous Archimedean copula. From (6.1) it
follows that

(O 0) 5-Cluv) = l(u),
#(C(,0) 5 Clu) = @),
2
' (C1,0) 5 O,0) - Cu,0) + ¢! (Clas)) o Olaw) = 0,
and hence
) 9 9
32 C(u U) _ _(p (C(u,v))%C(u,v)%C(u,v) _ _Lp”(C(u,U))tp'(u)(p’(v)
udv ¢'(C(u,v)) B [ (Clu,v))]®
Thus, when C' is absolutely continuous, its density is given by
K w ) — _"(C(u,0))¢' (w)¢' (v)
a0 = TG (64)

Theorem 6.4. Under the hypotheses of Corollary 6.1, the joint distribution function
H(s,t) of the random wvariables S = o(U)/[p(U) + ¢(V)] and T = C(U,V) is given
by H(s,t) = sKc(t) for all (s,t) in [0,1]2. Hence S and T are independent, and S is
uniformly distributed on (0,1).

Proof. (This proof, for the case when C is absolutely continuous, can be found in Nelsen
(1999) p.104. For the general case, see Genest and Rivest (1993).) The joint density
h(s,t) of S and T is given by
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d(u,v)
d(s,t)

)

where 0?C(u,v)/0udv is given by (6.4) and 9(u,v)/d(s,t) denotes the Jacobian of the
transformation p(u) = sp(t), p(v) = (1 — s)e(t). But

O(u,v) _ ()¢ (%)
0(s,t) ¢ (u)¢'(v)’

and hence
_ (DLW )\ [ et (t) | _ " (D)e(t)
et = () () = e
Therefore
H(s.1) = /s /t " )0W) 4 g — S[y_ w(y)]t _ oK)
’ o Jo [P ©'(y) 1o ’
from which the conclusion follows. O
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An application of Theorem 6.4 is the following algorithm for generating random vari-
ates (u,v)T whose joint distribution is an Archimedean copula C' with generator ¢.

Algorithm 6.1.

e Simulate two independent U(0, 1) random variates s and q.
e Sett=K_,'(q), where K¢ is the distribution function of C(U, V).

o Setu =@l U(sp(t)) and v = I I((1 = s)p(t)).

Note that the variates s and ¢ correspond to the random variables S and 7" in Theorem
6.4 and from the proof it follows that this algorithm yields the desired result. Il

6.3 Kendall’s tau Revisited

In general evaluating Kendall’s tau for a certain copula C requires evaluation of a double
integral. For Archimedean copulas, Kendall’s tau can be evaluated directly from the
generator, as shown in the following theorem from Genest and MacKay (1986).

Theorem 6.5. Let X and Y be random variables with an Archimedean copula C generated
by . Kendall’s tau of X and Y is given by

1
ro=1+4 /0 ;’,((tt)) dt. (6.5)

Proof. Let U and V be U(0,1) random variables with joint distribution function C, and
let K¢ denote the distribution function of C'(U, V). Then from Theorem 3.3 we have
1
o = 4E«xavqy-1:4/ntdxcuy_1
0

= 4 <[th(t)](1) — /01 Kc(t) dt) —-1=3- 4/01 Kc(t)dt.

From Theorem 6.3 and Corollary 6.1 it follows that

(1)
Ke(t)y=t—
= ey
and hence ) )
t t
TC:3—4/ (t - ‘,p(l )dt:1+4/ LU
0 @' (th) o ¢'(t)
where ¢'(tT) can be replaced by ¢'(t) in the denominator of the integral because concave
functions are differentiable almost everywhere. O

Example 6.6. Consider the Gumbel family with generator ¢(t) = (—1Int)?, for 6 > 1.
Then (t)/¢'(t) = (tInt)/0. Using Theorem 6.5 we can calculate Kendall’s tau for the
Gumbel family.

Ltint 4 (1t 1 L 4
144 2=t (|Zme] =] tat)=14+20-1/4)=1-1/6.
=1 /0 7 +9<[2“}0 /02 ) 0 1/4) /

As a consequence, in order to have Kendall’s tau equal to 0.5 in Figure 5.1 (the Gumbel
case), we put 6 = 2. O
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Example 6.7. Consider the Clayton family with generator ¢(t) = (=% — 1)/, for 6 €
[—1,00) \ {0}. Then ¢(t)/¢'(t) = (t*1 —t)/h. Using Theorem 6.5 we can calculate
Kendall’s tau for the Clayton family.

L+l ¢ 4 1 1 0
0= /0 g 4 +9(9+2 2) 0+2

O

Example 6.8. Consider the Frank family presented in Example 6.3. It can be shown
that Kendall’s tau is 7p = 1 — 4(1 — D1(0))/0, where D(z) is the Debye function, given

by
k [* ¢k
D =— [ ——dt
k(l‘) $k /0 6t _ 1

for any positive integer k. O
6.4 Tail Dependence Revisited

For Archimedean copulas, tail dependence can be expressed in terms of the generators.

Theorem 6.6. Let ¢ be a strict generator such that ¢~ ! belongs to the class of Laplace
transforms of (a.s.) strictly positive random variables. If <p_1l(0) is finite, then

Clu,v) = ¢~ (p(u) + ¢(v))

does not have upper tail dependence. If C' has upper tail dependence, then Lp*II(O) = —00
and the coefficient of upper tail dependence is given by

A =2 =2 limle™(26) /67 (9)]

Proof. (This proof can be found in Joe (1997), p. 103.) Note that
lim C 1—u) = lim[l—2 (2 1—
L O, u) /(1 = w) 1= 2u 4™ (Zp(u)]/(1 = u)

= 2-2lmy! "2p(u) /oY (p(u))

= 2-2 gi\r%[w‘”(%)/w‘“(sn-

If ¢ 1'(0) € (—o0,0), then the limit is zero and C does not have upper tail dependence.
Since ¢ 1'(0) is the negative of the expectation of a strictly positive random variable,
¢ 1'(0) < 0 from which the conclusion follows. O

The additional condition on the generator ¢ might seem somewhat strange. It will however
prove quite natural when we turn to the construction of multivariate Archimedean copulas.
Furthermore, the condition is satisfied by the majority of the commonly encountered
Archimedean copulas.

Example 6.9. The Gumbel copulas are strict Archimedean with generator () = (— Int).
Hence ¢ '(s) = exp(—s'/?) and ¢ ' (s) = —s'/? Lexp(—s'/?) /6. Using Theorem 6.6 we
get

My =2—21lim[o Y(25) /o Y (s)] = 2 — 210 |
U sl\n(l)[w (25) /¢ ()] lim

exp(-29')| _, e
exp(—s'/7)

see also Example 3.3. 1
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Theorem 6.7. Let @ be as in Theorem 6.6. The coefficient of lower tail dependence for
the copula C(u,v) = ¢ (p(u) + ¢(v)) is equal to

_ . —1/ —1/
Ap =2 lim [p™"(2s) /0™ (s)]-
The proof is similar to that of Theorem 6.6.

Example 6.10. Consider the Clayton family given by Cy(u,v) = (v + v —1)71/9,
for # > 0. This strict copula family has generator ¢(t) = (+~ —1)/0. It follows that
¢ (s) = (14 0s)~/?. Using Theorem 6.7 shows that the Clayton family has lower tail
dependence with coefficient of lower tail dependence given by

—1/6—1
A =2 Tim [V (28) /oY ()] = 2 Tim | UF209) ] —g.9 /01— g1/0,

§—00 §—00

(1 +0s)—1/0-1

Example 6.11. Consider the Frank family given by
(efou _ 1)(679” _ 1))

1
Cy(u,v) = —gln <1 +

e ft—1

for € R\ {0}. This strict copula family has generator () = —In <= . Tt follows that
¢ 1(s)=—3In(l—(1—e %e *) and o V(s) = —s(l—e e s/(1—(1—e ?)e *). Since

e —1
0
is finite, the Frank family does not have upper tail dependence according to Theorem 6.6.

Furthermore, members of the Frank family are radially symmetric, i.e. C' = C , and hence
the Frank family does not have lower tail dependence. Il

¢ ' (0) =

6.5 Multivariate Archimedean Copulas

In this section we look at the construction of, and random variate generation from one
particular multivariate extension of Archimedean 2-copulas. For other multivariate ex-
tensions, see Joe (1997). It should be noted that in order to show that other multivariate
extensions are proper copulas, we essentially have to go through the same arguments as
those given below.

The expression for the product copula II” in n-dimensions, with u = (uy, ug, ..., u,)7,
can be written as II"(u) = uy ... up, = exp(—[(—Inwuy) + --- + (= Inwuy,)]). This naturally
leads to the following generalization of (6.1):

C™(u) = e (p(ur) + - + o(un)). (6.6)
In the 3-dimensional case,

C3 (w1, uz,uz) = 0 (0 0 T (1) + p(u2)) + p(us)) = C(C(u1, uz), us),

and in the 4-dimensional case,

Cut,...,ua) = oo ol (o T (p(ur) + p(u2)) + p(uz)) + p(us))
C(C3(u1,uQ,U3),U4) = C(C(C(ul,UQ),U3),U4).
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Whence in general, for n > 3, C™(uy,...,u,) = C(C" ' (uy,ug,...,un 1),uy,). This tech-
nique of constructing higher dimensional copulas generally fails. But since Archimedean
copulas are symmetric and associative it seems more likely that C™ as defined above, given
certain additional properties of ¢ (and Lp[*”), is indeed a copula for n > 3.

Definition 6.2. A function g(¢) is completely monotone on the interval J if it has deriva-
tives of all orders which alternate in sign, i.e. if it satisfies

k
(—D’“%g(t) >0

for all ¢ in the interior of J and £k =0,1,2,.... O

As a consequence, if ¢g() is completely monotone on [0,00) and g(c) = 0 for some
¢ > 0, then g must be identically zero on [0,00). So if the pseudo-inverse @l of an
Archimedean generator ¢ is completely monotone, it must be positive on [0, 00), i.e., ¢ is
strict and =1 = o1,

The following theorem from Kimberling (1974) gives necessary and sufficient conditions
for the function (6.6) to be an n-copula.

Theorem 6.8. Let ¢ be a continuous strictly decreasing function from [0, 1] to [0, 00| such
that p(0) = oo and p(1) = 0, and let ¢! denote the inverse of p. If C™ is the function
from [0,1]" to [0, 1] given by (6.6), then C™ is an n-copula for all n > 2 if and only if p~"
is completely monotone on [0, 00).

This theorem can be partially extended to the case where ¢ is non-strict and ¢[=! is
m~monotone on [0, c0) for some m > 2, that is, the derivatives of o1 alter sign up to and
including the mth order on [0,00). Then the function C™ given by (6.6) is an n-copula
for2<n<m.

Corollary 6.2. If the inverse ¢! of a strict generator ¢ of an Archimedean copula C is

completely monotone, then C = 11, i.e. C(u,v) > uv for all u,v in [0, 1].

For a proof, see Nelsen (1999) p.122.

While it is simple to generate n-copulas of the form given by (6.6), they suffer from a
very limited dependence structure since all k-margins are identical, they are distribution
functions of n exchangeable U (0, 1) random variable. One would like to have a multivariate
extension of the Archimedean 2-copula given by (6.1) which allows for nonexchangeabil-
ity. Since any multivariate extension should contain (6.6) as a special case, clearly the
necessary conditions for (6.6) to be a copula has to be satisfied. In the light of Theorem
6.8, we restrict ourselves to strict generators.

Since the general multivariate result is notationally complex, we indicate the pattern
and conditions from the 3-dimensional and 4-dimensional extensions of (6.1). The 3-
dimensional generalization of (6.1) is

01 (01 005 (02(ur) + @2 (u2)) + @1 (us)), (6.7)

where @1 and @9 are generators of strict Archimedean copulas. The 4-dimensional gener-
alization of (6.1) is

01 (01 005 (2 0 03 (03(u1) + p3(u2)) + @2(us)) + @1 (ug)), (6.8)
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where @1, p2 and @3 are generators of strict Archimedean copulas. The expressions (6.7)
and (6.8) can be written as C1(Cs(u1,us2),us) and Cy(Ca(Cs(u1,us2),us), us), respectively,
where C; denotes an Archimedean copula generated by ;.

If generators ¢; are chosen so that certain conditions are satisfied, then multivariate
copulas can be obtained such that each bivariate margin has the form (6.1) for some i.
However, the number of distinct generators ¢; among the n(n — 1)/2 bivariate margins is
only n — 1, so that the resulting dependence structure is one of partial exchangeability.
However a general algorithm for random variate generation from this class can be obtained
which among other things provides an algorithm for random variate generation from the
multivariate extreme value copula resulting from the multivariate extension of the Gumbel
copula.

Clearly the generators have to satisfy the necessary conditions for the n-copula given
by (6.6) in order to make (6.7) and (6.8) valid copula expressions. What other conditions
are needed to make these proper copulas? To answer that question we now introduce
function classes £, and L. Let

Ly, = {¢ [O’OO) - [Ov 1] | ¢(0) =1, ¢(OO) =0, (_1)j¢(j) >0, 7=1,... ,n},

n=12,...,00, with L, being the class of Laplace transforms of almost surely strictly
positive random variables. Also introduce

L ={w:[0,00) = [0,00) | w(0) =0, w(co) =00, (1) 'wl) >0, j=1,...,n},

n =1,2,...,00. Note that ¢! € £; when ¢ is the generator of a strict Archimedean
copula. The functions in L} are usually compositions of the form 1! o ¢ with ¥, ¢ € L;.
Note also that with this notation, the necessary and sufficient conditions for (6.6) to be a
proper copula is that ¢! € £, and that, if (6.6) is a copula for all n, then ¢! must be
completely monotone and hence be a Laplace transform.

It turns out that if <p1_1 and @5 ! are completely monotone (Laplace transforms) and
@100, € L%, then (6.7) is a proper copula. Note that (6.7) has (1,2) bivariate margin
of the form (6.1) with generator o and (1,3) and (2,3) bivariate margins of the form
(6.1) with generator ¢;. Also (6.6) is the special case of (6.7) when ¢; = 2. The 3-
dimensional copula in (6.7) has a (1,2) bivariate margin copula which is larger than the
(1,3) and (2,3) bivariate margin copulas (which are identical).

As one would expect, there are similar conditions for the 4-dimensional case. If gofl,
Oy L and ©3 ! are completely monotone (Laplace transforms) and ¢;0¢5 Land @y0 ©3 Lare
in £}, then (6.8) is a proper copula. Note that all 3-dimensional margins of (6.8) have
the form (6.7) and all bivariate margins have the form (6.1). Clearly the idea underlying
(6.7) and (6.8) generalize to higher dimensions.

Example 6.12. Let o;(t) = (—Int)% with §; > 1 for i = 1,...,n, i.e. the generators of
Gumbel copulas. What conditions do we have to impose on 64, ...,0, in order to obtain
an n-dimensional extension of the Gumbel family of the form indicated above. It should
first be noted that ¢, Le £ forall i, so (6.6) with the above generators gives an n-copula
for all n > 2. Secondly, ¢; o apijrll (t) = t%/%+1. If 0;/0;,1 ¢ N, then the nth derivative of

;o Lpz-jrll (t) is given by
b .. ( b _(n- 1)) 10i/0itr—n
Oit1 i1
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Hence if 6;/0;11 ¢ N, then ¢; o goi;ll € L5 if and only if 6;/6;11 < 1. If 6;/0;11 € N,
then ¢; o ¢;_ +11 € L% if and only if §;/6;11 = 1. Hence an n-dimensional extension of the
Gumbel family of the form indicated above, given by

exp{—([(— Inu)? + (- lnu2)92]6'1/92 + (— an3)91)1/01}
in the 3-dimensional case, is a proper n-copula if 6; < --- < 0,,. 1

We can now present an algorithm for random variate generation from the n-dimensional
extension of (6.1) indicated by (6.7) and (6.8). Because the recursive nature of the mul-
tivariate extension of (6.1), indicated by (6.7) and (6.8), the algorithm is basically an

extension of Algorithm 6.1 for random variate generation from an Archimedean copula C'
of the form (6.1).

Algorithm 6.2.

e Simulate n independent U(0, 1) random variates ¢, s1, ..., Sp—1-
o Sett) = Kgll (q).
Fori=1,...,n—2:
o Seta; =; (sipi(t:) and un—it1 = ¢; (1 — si)pi(t:).
e Setitjy = Kaii_l (al)
e Setu = (P,;il(sn—lﬁpn—l(tn—l)) and up = (P,;il((l - Sn—l)Wn—l(tn—l))-
o (up,...,un)T ~C.

O

Example 6.13. Suppose we want to generate random variates from a 4-dimensional
distribution with standard exponential margins F;(z) = 1 — e %, and a Gumbel copula
C(u1,ug,us,uq; 01,02,03) with 01 = 3/2, 02 = 2 and 03 = 5/2, where the Gumbel copula
C is a 4-dimensional extension given by (6.8). To generate a random variate from C we
simply apply Algorithm 6.2 with

pi(t) = (—Int)",
07 (1) = exp(—t!/%),

_,_ tint
vy, (t) 0;

(t

ngl_ (t) is evaluated using numerical rootfinding. This gives us the random variate

(u1,u2,us,ug) from C. Hence the desired random variate from the prespecified distri-
bution is

(Ffl(ul), ... ,F471(U,4)) = (—In(1 —uy),...,—In(1l — uy)).

Furthermore, the Kendall’s tau rank correlation matrix for this distribution is given by

1 1-1/65 1—1/6; 1—1/6 1 3/5 1/2 1/3

| 1=1/65 1 1—1/6, 1—1/6, | | 3/5 1 1/2 1/3
T 1—1/0, 1-1/6y 1 1-1/6, | | 12 172 1 1/3
1—-1/6, 1—1/6; 1—1/6, 1 1/3 1/3 1/3 1
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Unfortunately Kgl does not have a closed form, which leads to numerical rootfinding
and problems with obtaining a desired accuracy. The following example shows that other
Archimedean families might be more useful for random variate generation in high dimen-
sions.

Example 6.14. Consider the Archimedean copula family given by
-1
Cy(u,v) = (1 + [(1f1 — 1)9 + (vt - 1)9] 1/9>

generated by @p(t) = (t71 — 1) for § > 1. Set ¢;(t) = @y, (t) for i = 1,...,n. Can the
above copulas be extended to n-copulas of the form indicated by (6.7) and (6.8), and if
so under what conditions on 6y,...,0,7 By calculating derivatives of <p;1 and ¢; o (,0;_,_11
it follows that ¢} ' € Lo and ¢; o | € L% if and only if 6;/0;4; < 1. Hence the n-
dimensional extension of the above copulas are n-copulas if ; < --- < 6,,. Furthermore,

_Hi—i-l_ (Qi—l—l

2
5 5 ) —6;s

-1
chi (s)
so Algorithm 6.2 can be applied without causing numerical problems. Copulas of the
above form have upper and lower tail dependence, with coefficients of upper and lower
tail dependence given by 2 — 2Y/? and 271/¢ respectively. One limiting factor for the
usefulness of this copula family might be that they only allow for a limited range of

positive dependence, as seen from the expression for Kendall’s tau given by 7 =1 — %,
for 8 > 1. O

Note that the results presented in this section hold for strict Archimedean copulas.
With some additional constraints most of the results can be generalized to hold also for
non-strict Archimedean copulas. However for practical purposes it is sufficient to only
consider strict Archimedean copulas. This basically means (there are exceptions such
as the Frank family) that we consider copula families with only positive dependence.
Furthermore, risk models are often designed to model positive dependence, since in some
sense it is the “dangerous” dependence: assets (or risks) move in the same direction in
periods of extreme events.

7 Modelling Extremal Events in Practice

7.1 Insurance Risk

Consider a portfolio consisting of n risks X1, ..., X, representing potential losses in dif-
ferent lines of business for an insurance company. Suppose that the insurance company,
in order to reduce the risk in its portfolio, seeks protection against simultaneous big losses
in different lines of business. One suitable reinsurance contract might be the one which
pays the excess losses X; — k; for i € B C {1,...,n} (where B is some prespecified set of
business lines), given that X; > k; for all i € B. Hence the payout function f is given by

f((Xi,ki);i € B) = (H 1{Xi>ki}> (Z(Xz - kz‘)) : (7.1)
tEB 1€EB

In order to price this contract the seller (reinsurer) would typically need to estimate
E(f((X;,k;);7 € B)). Without loss of generality let B = {1,...,l} for [ < n. If the
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joint distribution H of X7,..., X; could be accurately estimated, calculating the expected
value of (7.1) (possibly by using numerical methods) would not be difficult. Unfortunately,
accurate estimation of H is seldom possible due to lack of reliable data. It is more realistic,
and we will assume this, that the data available allow for estimation of the margins
Fy,..., F, of H and pairwise rank correlations. The probability of payout is given by

H(kr,....k)=CF(k1),...,Fi(k)), (7.2)

where H and C denotes the joint survival function and survival copula of Xy,..., X;. If
the thresholds are chosen to be quantiles of the X;s, i.e. if k; = F{l(ai) for all 4, then the
right hand side of (7.2) simplifies to 6(1 —ai,...,1 —a). In a reinsurance context, these
quantile levels are often given as return periods and are known to the underwriter.

For a specific copula family, Kendall’s tau estimates can typically be transformed into
an estimate of the copula parameters. For Gaussian (elliptical) n-copulas this is due to the
relation R;; = sin(77(X;, X;)/2), where R;; = ¥;;//Xi2;; with ¥ being the dispersion
matrix of the corresponding normal (elliptical) distribution. For the multivariate extension
of the Gumbel family presented in Section 6.5 this is due to the relation § = 1/(1 —
7(X;, X)), where 6 denotes the copula parameter for the bivariate Gumbel copula of
(X;,X;)". Hence, once a copula family is decided upon, calculating the probability of
payout or the expected value of the contract is easy. However there is much uncertainty in
choosing a suitable copula family representing the dependence between potential losses for
the [ lines of business. The data may give indications of properties such as tail dependence
but it should be combined with careful consideration of the nature of the underlying
loss causing mechanisms. To show the relevance of good dependence modelling, we will
consider marginal distributions and pairwise rank correlations to be given and compare
the effect of the Gaussian and Gumbel copula on the probability of payout and expected
value of the contract. To be able to interpret the results more easily, we make some further
simplifications: let X; ~ F for all 2, where we let ' be the distribution function of the
standard Lognormal distribution LN(0,1), let k; = k for all ¢ and let 7(X;, X;) = 0.5 for
all 4 # j. Then,

H(k,...,k) =1+ (-1) (i) CL(F (k) + -+ (=1)! (;) Ci(F(k),...,F(k)),

where Cy,, for m = 1,...,l — 1, are m-dimensional margins of C = C; (the copula of
(X1,...,X;)). In the Gaussian case,

Cn(F(K),..., F(k)) = ®F (27 (F(K)),..., 27 (F(k))),

where &% denotes the distribution function of m multivariate normally distributed ran-
dom variables with linear correlation matrix R,, with off-diagonal entries sin(70.5/2) =
1/v/2. ®0(d Y(F(k)),...,® *(F(k))) can be calculated by numerical integration using
the fact that (see Johnson and Kotz (1972) p.48)

= [t (22 o

where ¢ denotes the univariate standard normal density function. In the Gumbel case,
Cun(F(R), ... . F(k)) = exp{=[(= I F(k))’ + -+ (= F(R))]'/} = F(k)™"",
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Figure 7.1: Probability of payout for [ = 5 when the dependence structure is given by a
Gaussian copula (lower curve) and Gumbel copula (upper curve).

where § = 1/(1 — 0.5) = 2.

For illustration, let I = 5, i.e. we consider 5 different lines of business. Figure 7.1
shows payout probabilities (probabilities of joint exceedances) for thresholds k € [0, 15],
when the dependence structure among the potential losses are given by a Gaussian copula
(lower curve) and a Gumbel copula (upper curve). If we let k = F~1(0.99) ~ 10.25,
i.e. payout occurs when all 5 losses exceed their respective 99% quantile, then Figure 7.2
shows that if one would choose a Gaussian copula when the true dependence structure
between the potential losses X1,..., X5 is given by a Gumbel copula, the probability of
payout is underestimated almost by a factor 8.

Figure 7.3 shows estimates of E(f (X1, X,k)) for k =1,...,18. The lower curve shows
estimates for the expectation when (X, X2)” has a Gaussian copula and the upper curve
when (X1, X5)” has a Gumbel copula. The estimates are sample means from samples
of size 150000. Since F~1(0.99) ~ 10.25, Figure 7.3 shows that if one would choose a
Gaussian copula when the true dependence between the potential losses X; and X» is
given by a Gumbel copula, the expected loss to the reinsurer is underestimated by a
factor 2.

7.2 Market Risk

We now consider the problem of measuring the risk of holding an equity portfolio over a
short time horizon (one day, say) without the possibility of rebalancing. More precisely,
consider a portfolio of n equities with current value given by

Vi= Z BiSit,
i=1
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Figure 7.2: Ratios of payout probabilities (Gumbel/Gaussian) for [ = 3 (lower curve) and
[ =5 (upper curve).
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Figure 7.3: Estimates of E(f(X1,..., X, k)) for Gaussian (lower curve) and Gumbel (up-
per curve) copulas. [ = 2.
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Figure 7.4: Daily log returns from 1989 to 1996.

where (3; is the number of units of equity 7 and S;; is the current price of equity 7. Let
Apr1 = —(Vig1 — V) / V4, the (negative) relative loss over time period (¢,¢ + 1], be our
aggregate risk. Then

n
Ay = Z’Yz‘,t&',tﬂ
i=1
where v;; = (3;S;/V; is the portion of the current portfolio value allocated to equity ¢,
and 6; 441 = —(Si+1 — Sit)/Siy is the (negative) relative loss over time period (t,t 4+ 1]
of equity 7.

We will highlight the techniques introduced by studying the effect of different distri-
butional assumptions for 0 := (01,441, ... ,5n,t+1)T on the aggregate risk A := A;y1. The
classical distributional assumption on ¢, widely used within market risk management, is
that of multivariate normality. However, in general the empirical distribution of § has
(one-dimensional) marginal distributions which are heavier tailed than the normal dis-
tribution. Furthermore, there is an even more critical problem with multivariate normal
distributions in this context. Extreme falls in equity prices are often joint extremes, in the
sense that a big fall in one equity price is accompanied by simultaneous big falls in other
equity prices. This is for instance seen in Figure 7.4, an example already encountered
in Figure 5.1. Loosely speaking, a problem with the multivariate normal distributions
(or models based on them) is that they do not assign a high enough probability of oc-
currence to the event in which many thing go wrong a the same time - the “perfect
storm” scenario. More precisely, daily equity return data often indicate that the underly-
ing dependence structure has the property of tail dependence, a property which we know
Gaussian copulas lack.

Suppose d is modelled by a multivariate normal distribution NV, (u, ), where p and 3
are estimated from historical prices of the equities in the portfolio. There seems to be much

44



agreement on the fact that the quantiles of A = 476 ~ NM(y"u, 7" Sy) do not capture
the portfolio risk due to extreme market movements; see for instance Embrechts, Mikosch,
and Klippelberg (1997), Embrechts (2000) and the references therein. Therefore, different
stress test solutions have been proposed. One such “solution” is to choose ug and g in
such a way that d5 ~ N, (s, Xs) represents the distribution of the relative losses of the
different equities under more adverse market conditions. The aim is that the quantiles
of Ay = ¥18s ~ N (YL 115, 7T B47) should be more realistic risk estimates. To judge this
approach we note that

FiYa) = v"us [Ty

F=o) ="p v'Ey’

where F' and F; denotes the distribution functions of A and A; respectively. Hence the
effect of this is simply a translation and scaling of the quantile curve F~'(a). As a
comparison, let 6* have a t4-distribution with mean p and covariance matrix > and let A*
be the corresponding portfolio return. Furthermore let n = 10, p; = ps; = pi =0, 3 =
1/10 for all 4 and let 7(d;, (5]) = 7(5;, (5;) =04, 7(5511-, (55,]') =0.6, X;; = sin(77(d;, (5]')/2),
Ys,ij = 1.5sin(mw7(ds,,0s,;)/2) for all 4,5. Then Figure 7.5 shows from lower to upper
the quantile curves of A, A and A* respectively. If A* were the true portfolio return,
Figure 7.5 shows that the approach described above would eventually underestimate the
quantiles of the portfolio return. It should be noted that this is not mainly due to the
heavier tailed t4-margins. This can be seen in Figure 7.6 which shows quantile curves
of A* and A’ = 47§, where ¢’ is a random vector with t;-margins, a Gaussian copula,
E(8") = E(6) and Cov(d') = Cov(9).

There are of course numerous alternative applications of copula techniques to in-
tegrated risk management. Besides the references already quoted, also see Embrechts,
Hoeing, and Juri (2001) where the calculation of Value-at-Risk bounds for functions of
dependent risks is discussed. The latter paper also contains many more relevant references
to this important topic.
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VaR

0.90 0.92 0.94 0.96 0.98 1.00
alpha

Figure 7.5: Quantile curves: VaRa(«), VaRa, (@) and VaRa-(«) from lower to upper.

0.95 0.96 0.97 0.98 0.99 1.00
alpha

Figure 7.6: Quantile curves: VaRa/(«) and VaRa+(«) from lower to upper.
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