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Abstract

Copula modeling has taken the world of finance and insurance, and well beyond,

by storm. Why is this? In this paper I review the early start of this development,

discuss some important current research, mainly from an applications point of view,

and comment on potential future developments. An alternative title of the paper would

be “Demystifying the copula craze”. The paper also contains what I would like to call

the copula must-reads.

Keywords: copula, extreme value theory, Fréchet–Hoeffding bounds, quantitative risk man-

agement, Value–at–Risk

1 Introduction

When I was asked by the organizers of the conference on “New Forms of Risk Sharing

and Risk Engineering” to deliver the Keynote Speech, I decided to talk about dependence
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modeling and extremes.s Both themes are crucial to the Alternative Risk Transfer (ART)

landscape. As a consequence I have written this review paper with a main emphasis on

dependence, in particular on copulas. However, after all the papers, books, conferences,

talks, discussions, software, applications, ... what is there more to say on the topic? Going

back to my early days on the subject, I recall fondly my excitement upon learning some

of the caveats out there in dependence (correlation) modeling. I would like to share these

early experiences and discuss potential developments. From the outset, I insist that this

is a very personal view with in no way a complete literature overview; others have done

that much better. I have therefore left out numerous references/topics I could/should have

included. Let me just mention two interesting references: Patton [37] reviews the use of

copulas in econometric modeling, Genest et al. [19] gives a nice bibliometric overview. Also,

there are no figures to be found in “my personal view on copulas”; a fact that can easily be

compensated by googling “copula”.

For me personally, the copula story started around 1995 when on two separate occasions

I was contacted by practitioners from banking and insurance with risk management ques-

tions, the essence of which was: “Here we are given a multi-dimensional (i.e. several risk

factors) problem for which we have marginal information together with an idea of depen-

dence. When is this question well–posed?”. One concrete actuarial question from that

period was: given two marginal, one–period risks X1, X2 with lognormal distribution func-

tions (dfs) F1 = LN(0, 1), F2 = LN(0, 16). How can one simulate from such a model if X1

and X2 have linear correlation ρ = 0.5, say. Well, first of all, the correlation information

says something about the (or a) bivariate df of the random vector (X1, X2)
>, i.e. about

F (x1, x2) = P (X1 ≤ x1, X2 ≤ x2). Note however that, in the above, that information is not

given; we only know F1, F2 and ρ. What else would one need?

To start on this question here is an easy calculation which most unfortunately quickly floors

those end–users of probabilistic and statistical techniques with an insufficient basic first

course on probability (which our American colleagues would refer to as Probability 101

and some of my more mathematical colleagues would refer to as “Surely you had this in

Kindergarten!”).
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The (easy) copula argument

– First note that for random variables (rvs) Xi with continuous dfs Fi, i = 1, 2, U1 = F1 (X1),

U2 = F2 (X2) both are uniformly distributed rvs on [0, 1] (check!).

– Hence for some joint df F with marginal dfs F1, F2,

F (x1, x2) = P (X1 ≤ x1, X2 ≤ x2)

= P (F1 (X1) ≤ F1 (x1) , F2 (X2) ≤ F2 (x2))

= P (U1 ≤ F1 (x1) , U2 ≤ F2 (x2))

(N)
= C (F1 (x1) , F2 (x2)) , (1)

where
(N)
= stands for “is denoted by”.

– The C above is exactly a (careful here!) copula, a df on [0, 1]2 with standard uniform

marginals, C is the df of the random vector (U1, U2)
>.

A remark is in order here: there is absolutely no real, compelling mathematical reason for

transforming the marginal dfs of F to uniform dfs on [0, 1], though it may be useful from

a statistical point of view. In his 1940 papers, Hoeffding used the interval [−1/2, 1/2]. In

multivariate Extreme Value Theory, it is standard to transform to unit Fréchet marginal dfs.

In this context, Resnick [38] p. 265 writes “How one standardizes is somewhat arbitrary and

depends on taste. Different specifications have led to (superficially) different representations

in the literature.” See also de Haan and Ferreira [9] p. 210. Finally, Klüppelberg and Resnick

[29] present a problem from the realm of copulas where Pareto marginalization is useful; we

will briefly come back to this in our concluding Section 5. For the moment it suffices to know

that (i) transforming marginal dfs in multivariate statistical data to some standard df is

often useful, (ii) in the copula case, one standardizes to a uniform df on [0, 1], and (iii) many

other transformations are possible, and relevant. The choice is often context/application

dependent.

If we now return to our lognormal example, we see no immediate reason how the number ρ
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should determine a/the function C, it is not even clear whether the problem has none, one or

infinitely many solutions. In this case, it turns out that the problem posed has no solution.

Formula (1) couples the continuous marginal dfs F1, F2 to the joint df F via a/the copula C.

Now it is time to concentrate on “a/the” issue and read/interpret (1) correctly. This is done

through Sklar’s Theorem, a result which has become rather well known in Quantitative Risk

Management (QRM); see McNeil et al. [32], Theorem 5.3. Here is a version:

Theorem 1 (Sklar, 1959; the easy version) Suppose X1, . . . , Xd are rvs with continu-

ous dfs F1, . . . , Fd and joint df F , then there exists a unique copula C (a df on [0, 1]d with

uniform marginals) such that for all x = (x1, . . . , xd)
> ∈ Rd:

F (x1, . . . , xd) = C (F1 (x1) , . . . , Fd (xd)) . (2)

Conversely, given any dfs F1, . . . , Fd and copula C, F defined through (2) is a d–variate df

with marginal dfs F1, . . . , Fd. �

One can also rewrite (2) for u = (u1, . . . , ud)
> ∈ [0, 1]d as

C (u1, . . . , ud) = F
(
F−1

1 (u1) , . . . , F−1
d (ud)

)
. (3)

Here F−1
i stands for the inverse of Fi properly defined, it is precisely at this point where the

continuity of Fi comes in handy and problems start when Fi has jumps; see McNeil et al. [32],

Appendix A.1.2, for details. Using formula (2) we can now construct in two stages a joint df F

to our taste. Start with the marginal dfs F1, . . . , Fd and “add” to these a copula C of your

choice: 99.9% of the applications of copula technology use this completely straightforward

formula (do not take the 0.1% too literally!). Stage 1 fixes the marginal dfs F1, . . . , Fd,

whereas stage 2 allows the coupling of the marginals with a predescribed interdependence

through the copula C. Reading formula (3) from right to left yields the construction of

the copula C from any joint df with continuous marginal dfs F1, . . . , Fd, a recipe not unlike

recipes you find in real cookbooks. One does not immediately encounter the lobster– or

châteaubriand-copula, but Archimedean–, Gauss–, Maltesian–, t–, hyperbolic–, zebra– and

elliptical copulas for instance do appear as recipes.
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I realize that I did not answer several remaining questions:

– What about the “a/the” issue more in detail: surely discrete marginal dfs F1, . . . , Fd

must cause problems. Believe me, they do! The full version of Sklar’s Theorem makes

this clear. See Genest and Nešlehová [22] for an excellent primer on this issue and be

prepared that everything that can go wrong, will go wrong. This paper is my first

must–read, though Genest et al. [23] comes very close.

– Are there ways for constructing copulas (away from the F, F1, . . . , Fd construction in

(3))? Well, that’s “easy”. Write down a candidate function from [0, 1]d to [0, 1] and

“just” check that the marginals are standard uniform (usually a trivial task) and that

C is indeed a d–variate df: this is often the hard bit and the reason for quotation

marks around “easy” and “just”. See the standard monographs Joe [25] and Nelsen

[36] for all you want to learn on this, and much more! McNeil et al. [32] contains an

introduction to the realm of copulas aimed at the quantitative risk manager. If you

have mastered the basic theory above, you may venture out into the exciting land of

copula–exotics; an interesting paper for instance giving you a guided walk through the

copula country ruled by Archimedes is McNeil and Nešlehová [33]. This paper not only

gives you ways to construct copulas with shapes you are likely to meet in your wildest

dreams, the authors also show how beautiful and surprising some of the underlying

mathematics can be.

An absolutely crucial next question now is:

– If we use the two–stage copula modeling approach (2) towards the construction of

a multivariate model F , how would one fit such a model to data? One general

idea is obvious. Start from a d–variate sample X1, . . . ,Xn from which d estimators

F̂1,n, . . . , F̂d,n of the marginal dfs can be obtained. Use these F̂i,n to transform the

X–sample to U1, . . . ,Un on [0, 1]d and fit your favorite copula model. At any stage of

this procedure you can use whatever technique you learned from statistics: parametric,

non–parametric, semi–parametric or Bayesian. Of course, if relevant, one can use a full
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Maximum Likelihood approach; see for instance Kim et al. [28]. This paper illustrates

through simulations the clear advantages connected with the use of rank–based meth-

ods for the estimation of dependence parameters, and especially the superiority of the

maximum pseudo–likelihood technique originally studied in Genest et al. [20].

However, fitting a (some) model(s) to data is one thing, showing that you have a good

model reflecting the basic data characteristics is something different. Again, 99.9%

of statistical estimation in copula applications to risk management concentrates on

the former and largely neglects the latter (the goodness–of–fit step). The best advice

I can give the reader at this point is to Google Christian Genest and find out what

he and his co–workers have written on the subject. From this source you will find

numerous papers with statistical theory and applications to several problems many of

which nowadays stem from finance and insurance. For me, our second must–read is

Genest and Favre [18].

Later on in this paper, I will continue with some further copula related questions you may

want to look at. But now, it is time for

2 Another theorem

Recall that in Section 1, I already stated the result that there is no bivariate model with

LN(0, 1), LN(0, 16) marginals and correlation ρ = 0.5. Why? Well, the (skewed) marginal

dfs constrain the range of all possible correlations that a joint model with the given LN–

marginals can have. The basic result starting the analysis goes back a very long time, to the

1940’s.

Theorem 2 (Fréchet–Hoeffding bounds) Suppose F1, . . . , Fd are marginal dfs and F is

any joint df with those given marginals, then for all x ∈ Rd,(
d∑

k=1

Fk (xk) + 1− d

)+

≤ F (x) ≤ min (F1 (x1) , . . . , Fd (xd)) . (4)
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The right–hand side of (4) is always a df (the so-called comonotonic model), whereas the left–

hand side is only a df for d = 2, in which case this model is referred to as countermonotonicity.

As an important conclusion we learn that the marginal dfs constrain the possible joint dfs

built on them (via (2)) as given in (4). This theorem can now be translated into the language

of correlations and yields a result very useful for ART modeling:

Theorem 3 (Correlation bounds) Suppose F1, F2 are non-degenerate dfs. Then for any

bivariate model F with F1, F2 as marginal dfs, the corresponding linear correlation coeffi-

cient ρF satisfies:

−1 ≤ ρmin ≤ ρF ≤ ρmax ≤ +1 ,

where all values in the closed interval [ρmin, ρmax] can be achieved. One always has that

ρmin < 0 and ρmax > 0 but it is possible that ρmin > −1 and/or ρmax < +1; ρmin (respectively

ρmax) corresponds to counter– (respectively co–)monotonicity. �

With respect to the last statement, one can for instance show that for non-degenerate,

positive rvs always ρmin > −1; see Property 5.2.7 of Denuit et al. [10]. Now we can return

to the LN–example from Section 1 and compute for F1 = LN(0, 1), F2 = LN (0, σ2),

ρmin =
e−σ − 1√

(e− 1) (eσ2 − 1)
,

and

ρmax =
eσ − 1√

(e− 1) (eσ2 − 1)
.

When σ = 4, this becomes the interval [−0.00025, 0.01372]. The value ρ = 0.5 lies well

outside this feasibility region; ρ = 0.5 can only be achieved for σ ≤ 2.28. I leave the

obvious risk management consequences of the small absolute values of ρmin, ρmax to the

interested reader. The quantitative risk manager or ART modeler may wonder how to

digest a (fairly standard LN) model with correlation ρ = 0.01372 and yet very strongly (even
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comonotonically) dependent marginals. As a consequence, be careful with the myth “low

correlation (low β in the Capital Asset Pricing Model (CAPM) language), low dependence,

diversification effect, . . .”. If necessary, pedagogical and technical support can be found in

Embrechts et al. [13] or McNeil et al. [32], Figure 5.8. The former publication was one of the

early papers that warned the QRM community for the imprudent use of linear correlation

by discussing several correlation fallacies (it existed as an ETH Zurich RiskLab report by

the end of 1998), the LN–case above being one of them. Though being somewhat biased,

I would like to label this paper as the third must–read.

3 Some of the key copula models used

As we have seen so far (i.e. (2)), the notion of copula is both natural as well as easy for

looking at multivariate dfs. But why do we witness such an incredible growth in papers

published starting the end of the nineties (recall, the concept goes back to the fifties and even

earlier, but not under that name). Here I can give three reasons: finance, finance, finance.

In the eighties and nineties we experienced an explosive development of quantitative risk

management methodology within finance and insurance, a lot of which was driven by either

new regulatory guidelines or the development of new products; see for instance Chapter 1 in

McNeil et al. [32] for the full story on the former. Two papers more than any others “put

the fire to the fuse”: the already mentioned 1998 RiskLab report Embrechts et al. [13] and

at around the same time, the Li credit portfolio model Li [30]. Let me briefly touch upon

the latter.

First recall the standard credit risk model for the pricing of corporate debt. In a simplified

form, consider d companies with value processes V1, . . . , Vd and respective debt D1, . . . , Dd.

Company i defaults by the end of the accounting year if Vi(1) < Di(1), i = 1, . . . , d. Hence

the individual one–year default probabilities equal

P (V1(1) ≤ D1(1)) , . . . , P (Vd(1) ≤ Dd(1)) .

If one now assumes that, after a logarithmic transformation, (V1(t), . . . , Vd(t))t≤1 follows a d–
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dimensional Brownian motion (hence look at Vi as log–value), the joint probability of default

for instance corresponds to

P (V1(1) ≤ D1(1), . . . , Vd(1) ≤ Dd(1)) , (5)

which results in the calculation of the joint probability under a multivariate normal model.

This model is however known for producing too low probabilities of joint defaults. One way

to improve this defect would be to look at the d marginal normal (1–dimensional Brownian)

models, but then put a copula on these which allows for more tail dependence, like a t–

copula. The latter model is referred to as a meta–t model stressing the fact that it is

mainly the copula that determines ultimate joint default rather than the marginal dfs. Li

[30] takes a different approach by assuming that the time–to–default of a company can be

modeled by an exponential rv. Hence our credit portfolio now consists of the random vector

(E1, . . . , Ed)
> where Ei ∼ Exp (λi), i = 1, . . . , d, and equivalent to (5), one has to calculate

P (E1 ≤ 1, . . . , Ed ≤ 1) ,

or more generally, the joint distribution

P (E1 ≤ x1, . . . , Ed ≤ xd) ;

here the 1 corresponds to the one–year default horizon.

Now, in contrast to the multivariate normal or t, there does not exist a standard d–dimensional

exponential df. So in order to make E1, . . . , Ed dependent, while sticking to the exponential

marginals, one can put any copula C on (E1, . . . , Ed). Li [30] proposes for C a Gaussian

copula which is relatively easy to calibrate to credit risk data. This meta–Gaussian model

became enormously popular, in the end causing problems because the market too strongly

believed in it; see Whitehouse [40]. One of my probability friends, at the height of the copula

craze to credit risk pricing, told me that “The Gauss–copula is the worst invention ever for

credit risk management.” Currently various more realistic (less unrealistic) versions have

been worked out replacing for instance the Gauss–copula by a finite mixture of Gaussians or

even an infinite mixture leading to elliptical copulas. Unfortunately, most of these models

are inherently static and fail to incorporate the dynamics of markets, especially in periods
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of distress. The 2007 subprime crisis around the pricing of Collateralized Debt Obligations

(CDOs) is a very clear proof of this. For an introduction to CDO–pricing, see McNeil

et al.[32] or Bluhm and Overbeck [5]. As always, applied modelers should handle new tech-

nology with sufficient caution. In particular, finance seems to be prone to methodological

herding.

Other examples where copulas enter naturally in the realm of QRM concern aggregation

of risk measures within a given risk class, operational risk, say, or between risk classes

(market, credit, operational, underwriting, . . .). Some relevant papers to get started here

are Embrechts and Puccetti [15], Degen et al. [8] for the former and Aas et al. [1] for the latter.

The above papers discuss problems of the following type. Let X1. . . . , Xd be d one–period

risks with marginal dfs F1, . . . , Fd. For some function Ψ : Rd → R, Ψ (X1, . . . , Xd) denotes

a risk position. Given now some risk measure R, one wants to calculate R (Ψ (X1, . . . , Xd)).

For the latter one typically needs the joint df F of (X1, . . . , Xd). We are again in the situation

of the Fréchet–Hoeffding bounds of Section 2. If no further information is available, one could

try to calculate lower and upper bounds

RL ≤ R (Ψ (X1, . . . , Xd)) ≤ RU

which are conform with the available statistical model assumptions on (X1, . . . , Xd). For

the fully unconstrained case we only know F1, . . . , Fd. Copula theory may enter at the level

of coding dependence information. For example, one could be interested in the sum–case

Ψ (x1, . . . , xd) =
∑d

i=1 xi, R = VaRα, for some α ∈ (0, 1), and require that the copula

C ≥ CI , where CI (u1, . . . , ud) = u1 · · ·ud denotes the independence copula. Here VaRα

stands for the Value–at–Risk at confidence α and mathematically corresponds to the α–

quantile of an underlying df; see McNeil et al. [32] or Jorion [26]. The resulting optimization

problems, using (2), reduce to the calculation of

VaRα,L = inf

{
VaRα

(
d∑

i=1

Xi

)
, Xi ∼ Fi , i = 1, . . . , d , C ≥ CI

}
and

VaRα,U = sup

{
VaRα

(
d∑

i=1

Xi

)
, Xi ∼ Fi , i = 1, . . . , d , C ≥ CI

}
.
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Beyond the numerical calculation of such bounds, one is further interested in proving that

these bounds are sharp. For d > 2, there are still several open problems; see for instance

Embrechts and Puccetti [15]. I would like to add at this point that conditions like C ≥ C∗,

for some copula C∗, may not be most natural from an applied modeling point of view. More

relevant notions of risk ordering are, for instance, to be found in Müller and Stoyan [35] and

Denuit et al. [10].

So far we have looked at a random vector X = (X1, . . . , Xd)
> with known one–dimensional

marginal dfs F1, . . . , Fd. A natural extension could start with a multi–dimensional subvector

decomposition of X,

X =
(
X1, . . . , Xd1 , Xd1+1, . . . , Xd1+d2 , . . . , Xd1+···+dl−1+1, . . . , Xd1+···+dl

)>
where d =

∑l
i=1 di and the marginal subvector dfs of

(
Xd1+···+di+1, . . . , Xd1+···+di+1

)
are

known. A typical example from the realm of finance corresponds to a global equity in-

dex for X, say, and the subvectors correspond to more or less homogeneous subgroups such

as banking, insurance, chemical, pharmaceutical, manufacturing, . . .. A further extension

concerns looking at overlapping marginal subvector models. For some references on this,

check for instance the notion of grouped t–copula in McNeil et al. [32], the QRM examples

in Embrechts and Puccetti [16] and the early theory in Rüschendorf [39]. An application of

this theory to operational risk modeling is given in Embrechts and Puccetti [17].

4 Which copula to use

One of the questions most commonly asked by practitioners or beginning young researchers

to the field is “Which copula should we use for a certain problem?”. This question quickly

goes to the core of the criticism voiced by some on the copula craze. By definition, or indeed

by Sklar’s Theorem, a copula model for a multivariate df is two–stage,

F = C (F1, . . . , Fd) .
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Certain multivariate models have a natural and legitimate reason for existence, so for instance

the multivariate Gaussian F = Nd (µ,
∑

) which appears through the multivariate Central

Limit Theorem. Likewise, elliptical dfs appear as scale–mixtures of multivariate Gaussians

via

X = µ +
√

WZ ,

where Z ∼ Nd (0,
∑

), µ ∈ Rd and W ≥ 0 is a scalar rv W , independent of Z. For example,

if W−1 ∼ χ2
ν/ν, then X ∼ td (ν,µ,

∑
), the d–dimensional t–distribution. One does not need

copula theory to understand these models, though it helps to know that the t–copula always

yields extremal clustering, whereas the Gauss–copula does not. I would like to stress that

the above makes the multivariate normal– and t–distribution natural, not necessarily their

corresponding copulas. Copulas also enter naturally in describing the dependence between

multivariate extremes. Whereas univariate Extreme Value Theory (EVT) has a canonical

definition of largest (smallest) value, the Multivariate case (MEVT) allows for several ap-

proaches. By far the most popular one is the coordinatewise one. Suppose X1, . . . ,Xn is

a sample of iid d–dimensional random vectors. Denote the marginal maxima by

Min = max {Xij, j = 1, . . . , n} , i = 1, . . . , d .

Suppose now that for some affine transformation αin(x) = x−cin

din
, cin ∈ R, din > 0, αin (Min)

converges in distribution to some non–degenerate df Hi, then Hi is a generalized extreme

value distribution (of the Fréchet, Gumbel or Weibull type). Hence if the vector of normalized

maxima (αin (Min) , . . . , αdn (Mdn))> converges in distribution, then the vector of marginal

limit dfs equals (H1, . . . , Hd)
>, where H1, . . . , Hd are known through EVT; see Embrechts

et al. [12] for details. Hence in order to fully characterize the joint df H of the limit random

vector, one needs to know the copulas C which can appear in this way; they are referred

to as extreme value copulas, CEV . One can now readily characterize all CEV s and work out

the resulting MEVT based on them; see McNeil et al. [32] for details. A more geometric

approach to MEVT is given in Balkema and Embrechts [3]; in that theory, copulas only

appear marginally.

Besides the elliptical– and extreme value copulas, there are other more specialized copula

models which appear in a natural way as the solution of some stochastic scheme (weak
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convergence limit, closure property, . . .). One such example is the Clayton copula, which for

d = 2 takes the form

CCl
θ (u1, u2) = exp

{
−
(
(− ln u1)

θ + (− ln u2)
θ
)1/θ

}
, 1 ≤ θ < ∞ .

This copula appears as a natural dependence model for successive conditioning in upper

semi–infinite rectangles. See Juri and Wüthrich [27] for the original paper on the subject,

Alink [2] for several extensions and Balkema and Qi [4] for the ultimate uniqueness result

as a closure property. Other interesting classes enter through special stochastic modeling,

like the Marshall–Olkin copula, see Lindskog and McNeil [31], or copulas related to frailty

models in (medical) survival analysis; see Hougaard [24] and Duchateau and Janssen [11]

for the latter, where also the link to the class of Archimedean copulas is explained. For

applications of frailty models to credit risk, see for instance McNeil et al. [32].

In summary, the question “which copula to use?” has no obvious answer. There definitely

are many problems out there for which copula modeling is very useful. Within the world

of copulas there are more and less natural ones, just like in the case of general joint dfs.

Copula theory does not yield a magic trick to pull the model out of a hat. This situation

led to some heated discussions between those in favor and those against copula thinking.

Without taking sides in this discussion, I can recommend the interested critical reader to

go through the arguments oneself; see Mikosch [34] for the paper, followed by a somewhat

lively discussion and rejoinder. As so often, the “truth” lies somewhere in the middle:

copulas form a most useful concept for a lot of applied modeling, they do not yield, however,

a panacea for the construction of useful and well–understood multivariate dfs, and much less

for multivariate stochastic processes. But none of the copula experts makes these claims.

No doubt, copulas form an interesting class of probability measures which can be studied

just from the point of view of Platonic beauty and interest and that is what overall (pure)

mathematics is often about; see however Davies [7] on this more philosophical issue.

As a final remark: recent applications of copula techniques often lack historical perspective.

In the spirit of the well–known quote “standing on the shoulders of giants” by Bernard

de Chartres (12th Century) and made famous by Isaac Newton, researchers should always
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be aware where these “new” techniques originate, where their historical cradle stood. The

edited volume Dall’Aglio et al. [6] (note the subtitle “Beyond the Copulas”) contains sev-

eral interesting papers on this. Notably, the contributions by Giorgio Dall’Aglio, Ludger

Rüschendorf and Berthold Schweizer are still well worth reading.

5 What next

This brings us to the end of my somewhat personal and admittedly too brief copula journey.

Besides consulting the basic texts Joe [25] and Nelsen [36], I urge you to go through the

must–reads in full detail: in chronological order, Embrechts et al. [13], Genest and

Favre [18] and Genest and Nešlehová [22]. Make up your own mind on the critical

Mikosch [34] including the discussions, and experiment/contribute yourself. The theory

allows not only for good mathematics, but also for some fun. For the latter, see for instance

Genest and MacKay [21], or you may want to listen to the DVD publication Embrechts and

Nešlehová [14] on copulas and extreme value theory. And, as a final note: Thomas Mikosch

compared the copula craze with Hans Christian Andersen’s fairy tale “The Emperor’s new

clothes” where the child says “But he hasn’t got anything on!”. In a recent publication,

Klüppelberg and Resnick [29], the authors end with “Religious Copularians have unshakable

faith in the value of transforming a multivariate distribution to its copula. For the sceptics

who believe the Emperor wears no clothes (Mikosch [34]), perhaps use of the Pareto copula

convinces some of these the Emperor at least wears socks.” It is my personal belief that

over the years to come, research will be able to put further garments on the poor man so

that eventually in Hans Christian Andersen’s words we can truly say “Goodness! How well

they suit your Majesty! What a wonderful fit! What a cut! What colors! What sumptuous

robes!”.
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