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Abstract

The stylized facts of univariate high-frequency data in finance are
well known; see Dacorogna et al. (2001). In Breymann et al. (2003)
we analyzed bivariate high frequency forex data as a function of the
sampling frequency, however treating the data as iid. In the present
paper, using the data from Breymann et al. (2003), we model the
dynamics as GARCH type processes and investigate the stylized facts
of the bivariate residuals. As a function of the sampling frequency, we
test for tail-dependence and ellipticity. We also investigate clustering
of extremes and change-points.

Keywords: change-point; copula; dynamic copula; high-frequency for-
eign exchange data; tail-dependence; GARCH.

1 Introduction

In Breymann et al. (2003) we investigated the stylized facts of the depen-
dence structure in a set of high-frequency data, namely tick-by-tick obser-
vations of foreign exchange (FX) spot rates for USD Dollar quoted against
German Mark (USD/DEM) and quoted against Japanese Yen (USD/JPY).
After an initial data deseasonalization, bivariate log-return time series for
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six different time horizons were considered, from one hour up to one day.
At each frequency we evaluated the dependence structure fitting copula-
based models by the pseudo log-likelihood method introduced by Genest
et al. (1995), see also Chen and Fan (2002). We further tested for ellipticity
across frequencies and modelled tail-dependence for the hourly returns. It is
important to stress that the above analysis assumed the vectors to be inde-
pendent identically distributed (iid). We know however that this assumption
is violated in practice due for instance to volatility effects; papers like Fortin
and Kuzmics (2002), Patton (2002), Rockinger and Jondeau (2001) discuss
this issue. In the present paper we therefore start from the deseasonalized
FX data and investigate dependence between the (residual) vector compo-
nents after some dynamic model has been fitted. In Section 2 we first filter
the data through univariate GARCH models and analyze the copula func-
tion of the residuals. Ellipticity is tested, spectral densities are estimated
and the so-called extreme tail-dependence copula is modelled. Based on the
models from Section 2, Section 3 is devoted to test the existence of change
points in the dependence parameters, estimating the size and time of the
changes. Whereas the above sections use time invariant copulae, models
allowing for a dynamic time-varying copula are used in Section 4. Finally,
Section 5 concludes.

2 The copula of USD/DEM and USD/JPY spot
rate returns across time frequencies and after
volatility filtering

Recall from Breymann et al. (2003) that the data considered are the bi-
variate log-returns of FX spot rates USD/DEM and USD/JPY after being
deseasonalized. The observations cover the period from 27 April 1986 until
25 October 1998. The six different time horizons considered are one, two,
four, eight, twelve hour and one day periods.

2.1 Time dependence filtering

Among the empirical stylized facts for univariate financial returns are weak
linear dependence in time, heteroscedasticity and non-normal innovations.
The FX observations of USD/DEM and USD/JPY are no exception. We
ran the Jarque-Bera test and normality is rejected at the usual probabil-
ity levels for all considered time series. Moreover, the test for the ab-
sence of ARCH effects (see Engle (1982) and Zivot and Wang (2003) for
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Figure 1: Sample autocorrelograms for the absolute values of the eight hour
USD/DEM and USD/JPY residuals, respectively top left and bottom right,
and cross-correlograms for USD/DEM on past USD/JPY (top right) and
USD/JPY on past USD/DEM (bottom left).

S+FinMetrics implementation) is also rejected. In our discrete-time set-
ting, we model stochastic volatility effects by GARCH type models; see
Shephard (1996) for an overview on volatility models. In particular, we fit
univariate ARMA-GARCH models to each of the marginal series with in-
novations assuming come from a t distribution. We used the S+FinMetrics
software in order to fit the models, perform the tests and obtain the stan-
dardized residuals. Though there exist several multivariate GARCH mod-
els in the literature, like CCC-GARCH, DVEC, matrix-diagonal GARCH,
BEKK, principal components GARCH, in our first analysis we did not want
to bias our investigation of the dependence structure by imposing a spe-
cific analytic model on it. In Section 4, we will reanalyze the data using a
matrix-diagonal model.

In Figure 1 we plot the sample autocorrelograms and cross-correlograms
for the absolute values of the bivariate filtered eight hour FX returns; namely
absolute values of the eight hour USD/DEM and USD/JPY residual vectors
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Figure 2: FX spot rates for USD/DEM and USD/JPY. The figure displays
the scatter-plots of the filtered returns for the several time frequencies.

resulting from the above marginal ARMA-GARCH fitting. In these plots
there seems to be no evidence against serial independence of the absolute
residual values. This is in contrast to the static analysis in Breymann et al.
(2003), Figure 5. Only the contemporaneous cross-dependence remains (see
lag zero in the cross-correlograms of Figure 1) and that is exactly where our

interest lies.

2.2 Copulae for USD/DEM and USD/JPY residuals

Figure 2 shows the scatter-plots of the USD/DEM and USD/JPY residuals
obtained through the fitting of Section 2.1. Suppose that the USD/DEM
residuals are represented by the random variable X; and the USD/JPY by
the random variable X5. Assume that (X1, X2) has multivariate distribution
function F' and continuous univariate marginal distribution functions £} and
F5. In order to investigate the residual dependence, we fit copula-based
models of the type

F(ml,xQ;B) :C(Fl(l'l),FQ(xz);G), (1)



where C' is a copula function, which we know to exist uniquely by Sklar’s
Theorem (Sklar (1959)), parameterized by the vector 8 € R? with ¢ €
N. Denote by X = {(X14,X2) : 4 = 1,2,...,n} a random sample of n
bivariate observations. The dependence parameter 8 of C' is estimated by
the pseudo log-likelihood estimator introduced by Genest et al. (1995) where
the marginal distribution functions F;, i = 1, 2, are estimated by the rescaled
empirical distribution functions
1 n
Fin(z) = ——— D Tyer:y<a} (Xij)-
j=1

As usual 4 denotes the indicator function of the set A. After the marginal
transformations to so-called pseudo observations

(Fin(X14), Fon(X2;))

for i = 1,2,...,n, the copula family C' is fitted. Suppose that its density
exists, we then maximize the pseudo log-likelihood function

L(6;X) = i:logC(Fm(Xu),FQn(X%);9) (2)

i=1
where c¢ is the copula density of model (1) and is given by

32C(U1, Uug; 9)

1]2.
aul BUQ ) (u17u2) € [07 ]

c(uy,ug;0) =
The pseudo log-likelihood estimator @ that maximizes (2) is known to be
consistent and asymptotically normally distributed; see Genest et al. (1995).
The copula families fitted to the USD/DEM and USD/JPY spot rate
residuals are: t, Frank, Plackett, Gaussian, Gumbel, Clayton and the mix-
tures Gumbel with survival Gumbel, Clayton with survival Clayton, Gumbel
with Clayton and survival Gumbel with survival Clayton; for details on these
classes see Embrechts et al. (2002), Joe (1997) and Nelsen (1999). Denoting
the copula family A with parameter 6 by C4(-, -; 8), the fitted mixtures have
distribution functions of the form

C(uy, ug; 8) = 03 C(uy, u; 61) + (1 — 03) CB (uy, ug; 62).

The above choice of time invariant copula models is partly based on
previous analysis but also on tractability and flexibility for investigating
tail-dependence. The Gaussian copula is included mainly for comparison.
The t copula has been proven to be useful in finance. Reasons for specific
choices of copulae will became apparent throughout the text.



We fitted all the listed copula models to the USD/DEM and USD/JPY
residuals to obtain the dependence parameter estimates 0 for the several
frequencies. The choice of a best fit is based on two procedures. First, the
models are ranked by their Akaike information value. From the maximized
log-likelihood we compute for each family the Akaike information criterion:

AIC = —2L(6;x) + 2¢

where ¢ is the number of parameters of the family fitted. The smaller the
Akaike information value the better the model fits to the data. Secondly,
a goodness of fit test is performed to the best ranked models for each time
frequency. Parameter estimates and the approximated standard errors (s.e.)
for all fitted models are listed in Tables 1 and 2. For the t copula the
parameters 61 and 65 in Table 2 represent respectively the degrees of freedom
and the correlation.

From the models fitted to the residuals, the one which has the best AIC
is the t copula for almost all the frequencies. The exception are the daily
observations where the mixture of roughly 0.5 of Gumbel with 0.5 survival
Gumbel performs slightly better than the t model. To enable an easy com-
parison among the AIC values obtained for each frequency we plotted in
Figure 3 the relative differences between the AIC for the t model and the
AIC for all the other models. The results for the Clayton and survival Clay-
ton are not included in the plot because they are significantly worse for all
time frequencies.

According to the AIC criterion, the mixture models and the t model
perform better than the one-parameter models. Both copulae with very
asymmetric tails give poor fits. We should remark that the Plackett copula
is the best of the one parameter models except for daily residuals where the
Gaussian is better. It is not surprising that the Gaussian and the t copu-
lae have very different AIC values because the t having between 4.7 and 6
estimated degrees of freedom is still far from its Gaussian limit. Neverthe-
less, the Gaussian copula approaches the t for a decreasing time frequency
(central limit effect).

From this analysis we can conclude that the filtered residuals on
USD/DEM and USD/JPY spot rates can be modelled well by the t model
or by a mixture between the Gumbel and survival Gumbel copulae. These
are always the two best models. Combining the ARMA-GARCH marginal
fits with the copula modelled residuals we end up with a dynamic, bivariate
model for which functionals of interest can be estimated /simulated.

Comparing these results with those obtained previously using an un-
conditional, static iid model in Breymann et al. (2003) the conclusions are



similar. There the t model was always the best for the several frequencies
of returns; the Gumbel mixture model was however not included.

Frequency Copula model 0 (s.e.) AIC
Clayton 0.859 (0.006) -23401.101
Frank 3.979 (0.024) -27032.306
1 hour Gaussian 0.550 (0.002) -28267.108
Gumbel 1.562 (0.004) -28146.727
Plackett 6.503 (0.061) -29324.002
Clayton 0.913 (0.009) -12730.906
Frank 4.200 (0.035)  -14806.051
2 hour Gaussian 0.571 (0.002) -15483.028
Gumbel 1.605 (0.006) -15506.480
Plackett 7.038 (0.093) -16020.855
Clayton 0.944 (0.013)  -6652.147
Frank 4.341 (0.050)  -7821.259
4 hour Gaussian 0.584 (0.004) -8176.122
Gumbel 1.634 (0.009) -8251.189
Plackett 7.361 (0.137)  -8446.380
Clayton 0.984 (0.019)  -3536.107
Frank 4.563 (0.072)  -4260.632
8 hour Gaussian 0.603 (0.005)  -4413.271
Gumbel 1.669 (0.013)  -4412.292
Plackett 7.752 (0.201)  -4533.552
Clayton 1.025 (0.024)  -2487.922
Frank 4.659 (0.088)  -2941.280
12 hour  Gaussian 0.615 (0.006)  -3092.874
Gumbel 1.681 (0.016)  -3007.219
Plackett 7.949 (0.252)  -3113.152
Clayton 1.034 (0.035)  -1252.289
Frank 4.599 (0.124)  -1446.464
1 day Gaussian 0.617 (0.009)  -1552.695
Gumbel 1.679 (0.023)  -1500.065
Plackett 7.772 (0.350)  -1526.993

Table 1: Residuals on USD/DEM and USD/JPY log-returns. Estimates
and standard errors of dependence parameters in Clayton, Frank, Gaussian,
Gumbel and Plackett models. For each model fitted we provide the AIC
value. The reading of this table must be complemented with Table 2.



Freq. Copula model 01 (s.e.) 0 (s.e.) 03 (s.e.) AIC
Cl&s. Cl 1.125 (0.025) 1.171 (0.027) 0.516 (0.007) -29924.80
Cl & Gumbel 1.568 (0.014) 1.363 (0.066) 0.659 (0.009) -30642.91
1 hour s.Cl & s.Gum 1.552 (0.010)  1.510 (0.065) 0.701 (0.008) -30665.31
Gum & s.Gum  2.038 (0.030) 1.405 (0.009) 0.421 (0.010) -31061.35
t 4.935 (0.108)  0.558 (0.002) - ~31517.70
Cl& s Cl 1.164 (0.033) 1.316 (0.041) 0.517 (0.010) -16430.36
Cl & Gumbel 1.674 (0.034) 1.233 (0.114) 0.650 (0.014) -16803.66
2 hour s.Cl & s.Gum 1.576 (0.013) 1.723 (0.086) 0.695 (0.011) -16801.39
Gum & s.Gum  2.109 (0.039) 1.420 (0.013) 0.441 (0.013) -17015.86
t 4.822 (0.147)  0.580 (0.003) - -17192.73
Cl&s. ClI 1.238 (0.048) 1.325 (0.051) 0.499 (0.014) -8653.704
Cl & Gumbel 1.682 (0.032) 1.359 (0.128) 0.674 (0.017) -8863.199
Ahour s.Cl& s.Gum  1.640 (0.024) 1.535 (0.115) 0.669 (0.016) -8847.032
Gum & s.Gum  1.501 (0.028) 1.991 (0.064) 0.545 (0.020) -8932.445
t 4.748 (0.201)  0.593 (0.004) - -9088.884
Cl&s. ClI 1.265 (0.060) 1.472 (0.071) 0.502 (0.018) -4607.028
Cl & Gumbel  1.771 (0.053) 1.265 (0.170) 0.667 (0.024) -4722.141
Shour s.Cl& s.Gum  1.663 (0.028) 1.710 (0.140) 0.668 (0.021) -4713.239
Gum & s.Gum  1.991 (0.072) 1.534 (0.040) 0.496 (0.027) -4764.398
t 5.323 (0.343)  0.612 (0.006) - -4818.328
Cl&s. CI 1.492 (0.095) 1.286 (0.084) 0.503 (0.024) -3157.357
Cl & Gumbel 1.653 (0.031) 1.893 (0.184) 0.679 (0.025) -3242.862
12 hour s.Cl & s.Gum 1.787 (0.060)  1.307 (0.206) 0.673 (0.030) -3248.558
Gum & s.Gum  1.556 (0.046) 2.018 (0.088) 0.511 (0.033) -3281.252
t 5.837 (0.505)  0.621 (0.007) - -3304.250
Cl&s. CI 1.548 (0.120) 1.280 (0.099) 0.494 (0.032) -1599.798
Cl & Gumbel 1.665 (0.045) 1.844 (0.249) 0.671 (0.037) -1629.394
lday s.Cl&s.Gum  1.816 (0.071) 1.234 (0.195) 0.656 (0.039) -1632.435
Gum & s.Gum  1.588 (0.072) 1.952 (0.117) 0.501 (0.048) -1642.460
t 6.012 (0.786)  0.620 (0.010) - -1640.061
Table 2: Residuals on USD/DEM and USD/JPY log-returns. Estimates

and standard errors of parameters for the t model and for the four mixture

models considered. In case of the mixture models, #; and 6y are the depen-

dence parameters respectively for the first and second terms of the mixture.

03 is the mixture parameter which gives the proportion of the first term.

For the t model, #; are the degrees of freedom and 6, is the correlation. For
each model fitted we provide the AIC. The reading of this table must be
complemented with Table 1.
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Figure 3: Plot of the AIC values relative to the t copula and to the sample

size for each model and time frequency.

Finally for this section we give in Table 3 the p-values for the two best
copula-based models for each time frequency. The reported p-values are
computed using the probability integral test as discussed in Breymann et al.
(2003). The low p-values for one hour up to four hour periods for both
models are believed to be more due to the sample size than to a poor fit-
ting power. Therefore, care has to be taken in comparing p-values across
frequencies.

Frequency sample size t model Gumbel mixture

1 hour 78,239 0 0

2 hour 39,119 0 0

4 hour 19,559  0.0348 0.0006
8 hour 9,779  0.3808 0.1079

12 hour 6,519  0.2471 0.1949
1 day 3,259  0.7211 0.6775

Table 3: P-values for a goodness-of-fit test of the fitted t and Gumbel mix-
ture models to the residual returns on USD/DEM and USD/JPY spot rates.

2.3 Tail-dependence coefficient

The fitted models can now be used to estimate the tail-dependence coeffi-
cient, A\. Recall its definition from Embrechts et al. (2002):



Definition 1 Let X; and X9 be random wvariables with distribution func-
tions F1 and Fy respectively, such that

lim P(Xz < Fy'(w)| X1 < F () = Ay

u—0t

exists. If A, € (0,1] then (X1, X2) has lower tail-dependence coefficient Ar,
and (X1, X2) has no lower tail-dependence if A\, = 0. Similarly, if

lim P(Xy > Fy H(u)| X1 > Fy i (u) = Ay

u—1-

exists, (X1, X2) has upper tail-dependence coefficient A\ if Ay € (0,1] and
has no upper tail-dependence if Ay = 0.

One can show that these coefficients only depend on the copula C of (X1, X5);
see Joe (1997). For instance, in the important special case of the t copula,

M=o =2 (VIE+ D= )/ + ) (3)

where ¢, denotes the tail of a standard univariate t distribution with v
degrees of freedom and p is the correlation parameter of the t copula. This
result can be found in Embrechts et al. (2002).

The Gumbel mixture model has copula function of the form

C’(ul, uU9; 0) = 93C’G“(u1,u2; 91)—1—(1—03)(U1+U2—1+0Gu(1—ul, 1—wus; 92))

where C“" is a Gumbel copula and (u1,us) € [0,1]?. Using the definition of
a Gumbel copula with parameter greater than one, we obtain that

C(U1,U1; 9) = 93’11,%1/61 + (1 - 93) (2u1 -1 + (1 - U1)21/92) . (4)

Straightforward calculations yield
Y= (1 — 93) (2 _ 21/92) and Ay = 05 (2 _ 21/61> ]

Table 4 has the estimated values for the tail-dependence coefficients.
Here we could use jackknife or bootstrap with Monte Carlo simulation to
estimate the variance of the A estimators.

The results in Table 4 are good in the sense that both models give very
similar tail-dependence coeflicient estimates. From the obtained values itself
we can say that tail-dependence is still present in the residuals. Nevertheless,
we should notice that we are estimating an asymptotic tail feature using a
model fitted with the entire data set. Meaning that most of the influence in
the fitting process comes from observations in the center of the distribution.
Approaches focused only on the tail data will be discussed in Sections 2.5
and 2.6.

10



t copula  Gumbel mixture

Frequency A AL Au
1 hour 0.242 0.209 0.250
2 hour 0.261 0.207 0.269
4 hour 0.273 0.265 0.225
8 hour 0.261 0.216 0.289
12 hour 0.247 0.288 0.224

1 day 0.240 0.286 0.226

Table 4: Lower and upper tail-dependence coefficients for the residual re-
turns on USD/DEM and USD/JPY spot rates given by the fitted t and
Gumbel mixture models.

2.4 Testing for the ellipticity

Whereas in Breymann et al. (2003) we tested on the ellipticity of the log-
return data itself, now we will perform such a test on the residuals. We
use the test discussed in Manzotti et al. (2002). First we test ellipticity
for the original residuals and secondly for the residuals where we transform
the margins into standard univariate t distributed observations using the
degrees of freedom estimated for the corresponding t copula.

Table 5 has the p-values obtained for the ellipticity test using the two
kinds of margins. The second column has the results of the test on the
original residuals plotted in Figure 2 and the third column has the results
of testing on the marginal t distributed residuals, displayed in Figure 4.

For the original margins, the ellipticity hypothesis is rejected from one
hour up to eight hour periods and not rejected for twelve hour and one day
frequencies. After transforming the margins, ellipticity is rejected for one
hour and two hour frequencies and not rejected for all the remaining time
horizons. Relatively to the results obtained in Breymann et al. (2003) on the
returns without filtering we can say that we gained one frequency. Before,
the ellipticity was also rejected for the twelve hour period with original
margins and for the four hour frequency with transformed margins. This
may be due to the gain of information resulting of passing from clearly non-
independent samples of returns to much less dependent samples of filtered
returns. Also here we stress the fact that our test results are based on

varying sample sizes.
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Figure 4: FX spot rates for USD/DEM and USD/JPY. The figure displays
the scatter-plots of the filtered returns for the several time frequencies and
with margins transformed into standard t distributed observations with the
degrees of freedom estimated for the corresponding t copula.

2.5 Spectral density estimates

In this section we study the bivariate tail-dependence of the USD/DEM
and USD/JPY residuals through the estimation of the spectral densities for
each time frequency considered. In contrast to the method in Section 2.3,
here we concentrate the analysis only on relevant tail data. The theoretical
background is to be found in Resnick (2002) and Starica (1999). Below
we highlight the main definitions and notation. Let || - || denote the usual
Euclidean Ly norm on R% and S%! be the unit sphere,

Sli={x e R% | x|=1}.

Suppose that the d-dimensional random vector X has a regularly varying
tail distribution. This means that the tail behavior of X is characterized by
a tail index a and the limit

PO X|>tz, X/ X)) o,

PITX > 1) T PO €, ©)

12



Frequency Original margins t margins

1 hour 0 0
2 hour 0 0

4 hour 0 0.348
8 hour 0.001 0.069

12 hour 0.145 0.501
1 day 0.389 0.451

Table 5: P-values for the ellipticity test for the filtered returns on USD/DEM
and USD/JPY spot rates with the original and with the t-transformed mar-
gins.

where x > 0, t — 0o exists. The convergence is said to be vague and O is a
random vector on the space (S%~1, B(S~1)). The distribution function of ©
is referred to as the spectral distribution of X. Definition (5) is equivalent
to the existence of a measure v and a positive sequence (a,), a, — 00, such
that for n — oo,

nP(a,'X ) L v(). (6)

For a more precise and detailed treatment on this see for instance Resnick
(1987). The measure v has the following scaling property:
v(vS) =v %v(9), (7)

for any Borel set S C [—00,00]%\{0}. This property will be useful in order
to find an estimator for the spectral distribution. Intuitively, « indicates
the heaviness of the multivariate tails whereas © measures in which parts of
the space extremes cluster.

Define for x € R? and B € B(RY)

1 ifreB
B) = :
€2(B) {o if z € BC.

Then a consistent estimator of cv, for some ¢ > 0, is given by
1 n
Un = 7~ Z €X;/b(n/kn)>
ki i=1
where b(.) is the quantile function b(t) := F—(1 — 1/t), for ¢ > 1, of the

random variable || X ||. Here F~ denotes the (generalized) inverse of F.
As usual in extreme value theory, k, — oo and k,/n — 0 as n — oo; see

13



Resnick (2002). If we estimate the quantile function with the corresponding

~(n
bl -— =X o
() =% .

where || X |1, » is the k-th largest value of the one-dimensional set {|| X |:

empirical estimator

1 <1i < n}, we obtain as estimator of the spectral measure

n

- 1
P(@ S S) = ]{Iﬁ Zexi/Hkam"(V(S)), (8)
" i=1

where V(S) = {x € ST7! : x/ | x ||€ S} and S = {x:|| x |> 1}. As
in the one-dimensional case, the performance of this estimator very much
depends on the choice of k,,. Here we use the scaling property (7) and choose
ky, such that ﬁn(uSﬂlrfl)/(u_o‘ﬁn(Si*l)) ~ 1 for values of u in a neighborhood
of 1. We plot the set of values

An Sd—l
PRLCIC SR B P
u= %0, (SE)

for several values of k, and choose the one corresponding to the plot for
which these values are closer to 1 around v = 1. For more on this procedure
see Starica (1999). We use the Hill estimator to get the tail index estimate
&; see Embrechts et al. (1997). These values are reported in Table 6. Stan-
dard errors can be calculated; we do not report them as for the analysis of
extremal clustering we only need the point estimates.

Time frequency Tail index estimate &

1 hour 4.176
2 hour 3.827
4 hour 4.171
8 hour 4.094
12 hour 3.906
1 day 3.799

Table 6: Tail index estimates for the bivariate tail residual returns on
USD/DEM and USD/JPY spot rates using the Hill estimator.

We now estimate the spectral density of the bivariate residuals X for the
USD/DEM and USD/JPY data at a given time frequency using (8). First,
choose k,, as described above and consider the points

X
{91- € [0,27][: (cosb;,sinb;) = Z R | xi [[>] % [k, 000 = 1,...,n}.

B
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We then plot a non—parametric density estimate for these angular observa-
tions using a smoothed kernel estimator with Gaussian weights and band-
width 0.27. The estimated densities are plotted in Figure 5. A more de-
tailed analysis would yield confidence bands. In these plots we can see that
USD/DEM and USD/JPY return residuals cluster in the first (7/4) and
in the third (57/4) quadrants. These results agree with those obtained in
previous sections; see in particular Figure 2 and Table 4. We would like to
stress again that a tail-dependence analysis based on the spectral density
estimation for regularly varying vectors uses only observations far in the
tails and is not “biased” by observations in the center of the data. As such,
this approach is akin to a multivariate extreme value analysis as discussed
in Resnick (2002).
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Figure 5: Estimated spectral densities of USD/DEM and USD/JPY return
residuals for the six different time horizons.

2.6 Extreme tail-dependence copula

Another point of view can be taken in analyzing multivariate tails. Given a
high (low) threshold we can look at the dependence structure of simultane-
ously large (small) multivariate observations. As in the spectral estimation
case above, also here the study is based exclusively on tail observations.
No observations from the bulk of the distribution can distort the conclu-
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sions. In the univariate case, the Balkema-de Haan-Pickands Theorem gives
the generalized Pareto as the limiting distribution for the excesses above
a high threshold; see Theorem 3.4.13(b) in Embrechts et al. (1997). In
the same spirit, Juri and Wiithrich (2002) showed that for a wide class of
so-called Archimedean dependence structures, the extreme tail-dependence
copula has the Clayton copula as a limit. This limit procedure has to be
interpreted as a bivariate threshold moves to infinity.

In order to check the applicability of this result to our bivariate residual
data, a huge number of observations is needed. Because of that we restrict
ourselves for this section to hourly observations. We fix a bivariate high (low)
threshold u for the USD/DEM and USD/JPY residuals and fit copula-based
models to the observations {(x1;,z2;) @ ©1; > u,xe; > u,i = 1,2,...,n}
{(z15,22) @ w13 < uye; < u,i = 1,2,...,n}) and then proceed with u’s
more and more in the tails. Hence we model

Co(u,v) = P(U < F7 N w), V < F7H)|U <,V <t)
as well as
Cypi (u,v) = P(U < F7HNw),V < 7L )| U >,V > 1),

using the pseudo log-likelihood method. Tables 7 and 8 have the results
of fitting the models Gumbel, survival Gumbel, Clayton, survival Clayton,
Gaussian and t which were the more relevant models for this kind of analysis.
In Tables 7 and 8 we give the numerical results for thresholds more in the
tails, whereas Figure 6 displays the relative AIC values for all the thresholds
considered. As the theory predicts, the Clayton copula is the one that best
models the bivariate negative tail residual returns. For the other tail, the
bivariate positive residuals are best modelled by the survival Clayton. So
the conclusion is exactly the same as we obtained for the returns without
filtering.
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Threshold Copula model 0 (s.e.) AIC p-value
Gumbel 1.230 (0.034) 50181 -

surv.Gumbel 1.320 (0.036) -135.818 0.787

0.03™ Clayton 0.619 (0.062) -138.912 0.707
(736 obs.) surv.Clayton 0.294 (0.054) -33.436 -
Gaussian 0.351 (0.030) -92.554 -
t 5.242 (1.378); 0.340 (0.036) -109.644 -
Gumbel 1.205 (0.026) -81.206 -

surv.Gumbel 1.289 (0.027) -194.578 0.992

0.05~ Clayton 0.568 (0.047) -200.300 0.992
(1,189 obs.)  surv.Clayton 0.257 (0.042) -42.751 -
Gaussian 0.327 (0.024) -130.255 -
t 6.077 (1.375); 0.320 (0.028)  -151.591 -
Gumbel 1.195 (0.019) ~129.482 .

surv.Gumbel 1.267 (0.020) -299.681 0.956

0.07~ Clayton 0.517 (0.035) -300.765 0.734
(2,044 obs.)  surv.Clayton 0.252 (0.031) -75.442 -
Gaussian 0.314 (0.019) -208.629 -
t 7.133 (1.440); 0.307 (0.021)  -235.692 -
Gumbel 1.201 (0.016) 200.736 -

surv.Gumbel 1.271 (0.016) -469.451 0.960

0.1~ Clayton 0.520 (0.028) -471.372 0.946
(3,168 obs.)  surv.Clayton 0.265 (0.025) -129.379 -
Gaussian 0.324 (0.015) -347.175 -
t 9.877 (2.083); 0.321 (0.016) -372.351 -
Gumbel 1.194 (0.010) ~485.840 -

surv.Gumbel 1.268 (0.010) -1132.761 0.666

0.2” Clayton 0.516 (0.017) 1165.911  0.496
(7,832 obs.)  surv.Clayton 0.250 (0.016) -284.506 -
Gaussian 0.320 (0.009) -845.657 -
t 12.063 (1.901); 0.320 (0.010)  -890.971 -
Gumbel 1.235 (0.008) -1167.899 -

surv.Gumbel 1.301 (0.008) -2238.539  0.987

0.37 Clayton 0.559 (0.013) -2235.334 0.608
(13,381 obs.)  surv.Clayton 0.317 (0.012) -761.293 -
Gaussian 0.357 (0.007) -1825.121 -
t 13.058 (1.652); 0.358 (0.007) -1898.233 -

Table 7: Bivariate excesses of residuals on USD/DEM and USD/JPY log-
returns on the third quadrant of one hour returns for different thresholds.
Estimates and standard errors of dependence parameters in Gumbel, sur-
vival Gumbel, Clayton, survival Clayton, Gaussian and t models. For each
model fitted we provide the AIC value and the p-value for the best two mod-
els. For the t copula the first parameter estimate is the correlation and the
second is the degrees of freedom and respectively for the s.e.’s. The number
of observations associated with each threshold is listed under the threshold

value.
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Threshold Copula model 0 (s.e.) AIC p-value
Gumbel 1.334 (0.037) -139.757 0.715
surv.Gumbel 1.251 (0.035) -68.892 -

0.97* Clayton 0.339 (0.055) -43.623 -

(717 obs.) surv.Clayton 0.636 (0.063) -140.811 0.654
Gaussian 0.380 (0.030) -107.450 -

t 9.838 (5.232); 0.371 (0.034)  -109.338 -

Gumbel 1.296 (0.026) -215.670 0.904

surv.Gumbel 1.227 (0.025) -105.082 -
0.95% Clayton 0.301 (0.041) -64.386 -

(1,284 obs.)  surv.Clayton 0.566 (0.045) -215.589 0.616
Gaussian 0.348 (0.023) -161.898 -

t 8.563 (2.814); 0.340 (0.026)  -170.398 -

Gumbel 1.295 (0.021) -325.528 0.760

surv.Gumbel 1.213 (0.020) -137.818 -
0.93+ Clayton 0.276 (0.032) -82.366 -

(1,941 obs.)  surv.Clayton 0.574 (0.036) -337.730 0.904
Gaussian 0.348 (0.018) -246.270 -

t 16.115 (7.061); 0.345 (0.020)  -250.269 -

Gumbel 1.272 (0.016) -467.118 0.937

surv.Gumbel 1.188 (0.016) -175.475 -
0.9" Clayton 0.231 (0.025) -92.082 -

(3,088 obs.)  surv.Clayton 0.540 (0.028) -495.172 0.962
Gaussian 0.320 (0.015) -330.046 -

t 11.584 (2.835); 0.319 (0.016)  -347.914 -

Gumbel 1.277 (0.010) -1168.805 0.965

surv.Gumbel 1.207 (0.010) -546.477 -
0.8+ Clayton 0.268 (0.016) -316.696 -

(7,685 obs.)  surv.Clayton 0.530 (0.018) -1195.640  0.891
Gaussian 0.327 (0.009) -867.062 -

t 8.965 (1.073); 0.327 (0.010)  -951.622 -
Gumbel 1.289 (0.008) -2135.855 0.906
surv.Gumbel 1.220 (0.007) -1049.790 -
0.7" Clayton 0.294 (0.012) -662.247 -
(13,368 obs.)  surv.Clayton 0.544 (0.013) -2154.319 0.862
Gaussian 0.343 (0.007) -1678.013 -
t 11.517 (1.302); 0.343 (0.007) -1771.787 -

Table 8: Bivariate excesses of residuals on USD/DEM and USD/JPY log-
returns on the first quadrant of one hour returns for different thresholds.
Estimates and standard errors of dependence parameters in Gumbel, sur-
vival Gumbel, Clayton, survival Clayton, Gaussian and t models. For each
model fitted we provide the AIC value and the p-value for the best two mod-
els. For the t copula the first parameter estimate is the correlation and the
second is the degrees of freedom and respectively for the s.e.’s. The number
of observations associated with each threshold is listed under the threshold

value.
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Figure 6: Relative AIC values for the most relevant models in fitting to
the positive and negative tail extremes of hourly USD/DEM and USD/JPY
return residuals for several thresholds.

2.7 Conclusions on the static copula modelling with volatil-
ity models for the margins

Starting from deseasonalized returns on USD/DEM and USD/JPY spot
rates we analyzed the dependence structure of the data across different time
horizons, namely for one, two, four, eight, twelve hour and one day frequen-
cies. As the returns are time dependent we filtered them using univariate
ARMA-GARCH time series models and obtained bivariate residuals of re-
turns showing no evidence against the iid property but which were still
contemporaneously dependent. Copula-based models were fitted to the full
data sets of residuals at each frequency. The best fit came from the t cop-
ula together with a mixture of Gumbel and survival Gumbel, the later only
for the daily residuals. The t copula revealed higher degrees of freedom as
the time frequency decreases. We investigated the presence of asymptotic
tail-dependence by three different approaches. First, the fitted copula-based
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models gave tail-dependence coefficients significantly different from zero. Al-
lowing for tail index estimation, the data spectral density estimates showed
the existence of bivariate extremes. In the case of hourly data, an extreme
tail-dependence copula fitting to multivariate excesses above high thresholds
revealed a Clayton type dependence structure with parameter estimates be-
tween 0.5 and 0.6 once more indicating dependence for the bivariate excesses
in the residuals . We also tested for ellipticity and the results yield that lower
frequency residuals have a dependence structure suitable to be modelled by
elliptical distributions and possibly the higher frequencies too but there the
results are less conclusive.

3 Change-point analysis

In Section 2 we modelled the dynamics of each margin with a GARCH
type model and the contemporaneous dependence with a time invariant
copula model. As the data covers a reasonably long period of time, about
twelve years, we may expect that economic factors induced changes if not
in the copula family at least in the dependence parameters. This section is
devoted to test for the occurrence of such changes in the copula parameters,
estimate the size of those changes and the corresponding time of occurrence,
namely the change-points. For the theoretical background on change-point
analysis we refer to Csorgé and Horvath (1997) and for an application of
the methodology to the detection of changes in the copula parameters we
refer to Dias and Embrechts (2002).

3.1 The test statistic

Let uj,uy,...,u, be a sequence of independent random vectors in [0, 1]%
with univariate uniformly distributed margins and copulae C(u;01,m,),
C(u;02,m5),...,C(u;0,,n,) respectively, where 8; and n, are the copula
parameters such that 8; € oW C RP and n; € 02 C RY. We will consider
the m, as nuisance parameters and look for one single change-point in 6;.
Formally, we test the null hypothesis

Hy:0,=0,=...=0, and N =mnNy=...=1,
versus the alternative
Hy:0,=...=0p« 01 =...=0, and N =My =...=1,.

If we reject the null hypothesis, £* is the time of the change. All the param-
eters of the model are supposed to be unknown under both hypotheses. If
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k* = k were known, the null hypothesis would be rejected for small values
of the likelihood ratio

sup I[ c(us0,m)
@ e xe@ 1<i<n

sup [1 c(u;0,m) I[ c(u;6',m)
(9,9/,77)66(1)><®(1)><@<2) 1<i<k k<i<n

Ay = (9)

We assume that C has a density ¢ given by
8d0(u1,¢, UQJ' ey ud,i; 0, 77)

C(uz, 77’) aul,i 8746271' A 8Ud,i

with (w14, u2,4,...,uq:) € [0, 1]¢. The estimation of Ay, is carried out through
maximum likelihood and so all the necessary conditions of regularity and
efficiency have to be assumed (see Lehmann and Casella (1998)).
Denote
Li(6,m) = ) loge(u;; 6,n)
1<i<k
and
Li(6,m) = Y logc(u;0,m).
k<i<n
Then the likelihood ratio equation can be written as

~210g(Ar) = 2 (Lu(Br, ) + Li (07 175) — La(0ns1,))
As k is unknown, Hy will be rejected for large values of

Zn = max (—2log(Ax)). (10)

3.1.1 Asymptotic critical values

The asymptotic distribution of Z,%/ % is known but has a very slow rate of
convergence; see Csorgd and Horvath (1997), page 22. In the same reference
we can also find an approximation for the distribution of Zi/ % derived to
give better small sample rejection regions. Indeed, for 0 < h < [ < 1, the
following approximation holds:

¥ 2
P(Z%/zzx) ~ exp(—x°/2)

2 (p/2)
(log(l_h})ﬂ(l_l) - :;log(l_lzl(l_l) + % +0 (;)) , (11)

as z — oo and where h and [ can be taken as h(n) = I(n) = (logn)3/?/n.
Note that in (11) p is the number of parameters that may change under
the alternative. This result turns out to be very accurate as shown in a
simulation study in Dias and Embrechts (2002) where it is applied to the
Gumbel copula.
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3.1.2 The time of the change

If we assume that there is exactly one change—point, then the maximum
likelihood estimator for the time of the change is given by

kp =min{l <k <n:Z,=—2log(Ag)}. (12)

In the case that there is no change, k, will take a value near the limits
of the sample. This holds because under the null hypothesis and if all the
necessary regularity conditions hold, for n — oo,

fon/n —5 €,

where P(§ = 0) = P(§ = 1) = 1/2; see Csorgd and Horvath (1997), page
51. This behavior was verified in a simulation study for the Gumbel copula
under the no-change hypothesis in Dias and Embrechts (2002).

3.1.3 Multiple Changes

The detection of several change—points in multidimensional processes with
unknown parameters can be done using the so called binary segmentation
procedure. This method was proposed by Vostrikova (1981) and enables
to simultaneously detect the number and the location of the change—points.
The method consists of first applying the likelihood ratio test for one change.
If Hy is rejected then we have the estimate of the time of the change k.
Next, we divide the sample in two subsamples {u; : 1 < i < k,} and
{u; : kn < i < n} and test Hy for each one of them. If we find a change
in any of the sets we continue this segmentation procedure until we don’t
reject Hy in any of the subsamples.

In the next section we use this procedure to estimate change-points in
the correlation parameter of a t copula fitted to the residuals for daily
USD/DEM and USD/JPY returns. Similar analyses can be performed at
other frequencies; these results are not reported here.

3.2 Change-point analysis for the dependence structure pa-
rameters

After filtering the univariate returns using GARCH type models as in Sec-
tion 2.1 the filtered residuals are assumed to be independent in time and we
can use (10) and (11) for detecting possible change-points in the parameters
of the multivariate contemporaneous distribution and in particular in the
copula.
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For these residuals, in Section 2 we showed that the t copula yields the
best fitting model for the dependence structure between the two series. We
use the empirical distribution function to map the residuals into the unit
square. Moreover, in a first step, we assume that the degrees of freedom of
the copula are constant in time and hence we test for change-points in the
correlation parameter. We evaluate Ay for K =1,2,...,n where n = 3,259;
see (9). The values obtained are displayed in the top panel of Figure 7.
The test statistic (10) takes the value qul/ozbs = 13.26 and by (11) we have
that P(Z,i/2 > 13.26) ~ 0. The null hypothesis of no change-point is to be
rejected and the estimated time of the change is k, = 8 November 1989;
corresponding to the fall of the Berlin wall. In the next step, the sample is
divided in two sub-samples, one up to 8 November 1989 and another from
the estimated time of change onwards. For each sub-sample A is computed
as well as Zrl/ . The middle panel of Figure 7 plots these estimates and
Table 9 has the values for Zﬁ/ % and all the information about the testing
procedure. As the obtained p-values are close to zero we reject the null
hypothesis of no-change for each sub-sample and estimate two more times
of change, 29 December 1986 and 18 June 1997. The later date corresponds
to the beginning of the Asia crisis starting with the violent devaluation of
the Thai Baht. Each sub-sample is again divided in two and the procedure
is repeated yielding the estimates in the bottom panel of Figure 7.

z}/fbs n P(Z,l/2 > z,l/fbs) Hy(0.95) Time of change
13.26 3,259 0 reject 8 Nov. 1989
5.96 923 0.0000004 7 29 Dec. 1986
5.31 2,336 0.0000143 7 18 June 1997
2.99 176 0.0689621 not rej. (23 June 1986)
3.10 747 0.0709747 7 (31 July 1989)
5.86 1,985 0.0000007 reject 23 Oct. 1990
2.36 351 0.3380491 not rej. (8 Sep. 1998)
2.78 1,736 0.1873493 7 (21 Oct. 1996)
2.86 249 0.1061709 7 (21 Mars 1990)

Table 9: Change-point analysis for USD/DEM and USD/JPY spot rate
residuals.

For the results of the analysis showed in the bottom panel of Figure 7
only for the maximum attained at 23 October 1990 the null hypothesis is
rejected at a 95% level. So we still have to split this sub-sample further.
The first from 8 November 1989 until 23 October 1990 and the second from
this date up to 18 June 1997. The 2711/02135 obtained in these cases are low,

see Table 9, and we do not reject the null hypothesis of no-change in both
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cases. In Table 9 we give the time where the test statistic is attained for
each sub-sample. If the null hypothesis is not rejected the referred date is in
parentheses as it is not considered a change-point. In summary we found four
change-points: 29 December 1986, 8 November 1989, 23 October 1990 and
18 June 1997. For the five periods between the times of change we estimated
for the copula correlation (s.e.): p; = 0.6513 (0.0384), po = 0.8312 (0.0113),
p3 = 0.3099 (0.0608), p4 = 0.5752 (0.0149) and p5 = 0.3505 (0.0460). To
visualize these results we plotted in the bottom panel of Figure 11 the esti-
mated cross-correlation for the five periods between the times of change. No
change-points were detected from 23 October 1990 until 18 June 1997 which
seems perhaps quite a long period for the correlation to be constant. It may
be interesting to note that the former date (23 October 1990) corresponds
to the burst in the Japanese asset price bubble. On 18 October 1990, the
USD/JPY ended a fall from about 158 to 125.

We continue the dynamic modelling of the dependence structure in the
next section refining the modelling from a change-points model, where the
parameters are piecewise constant, to models with time-varying parame-
ters, which allow for dependence parameters to vary from observation to
observation.

4 Multivariate GARCH models with time-varying
dependence parameters

As we saw in the above sections, for the FX spot rates on USD/DEM and
USD/JPY the contemporaneous stationary dependence structure between
the two residual series was well described by a t copula or by a mixture
of a Gumbel with a survival Gumbel copula. The univariate serial depen-
dence was modelled by ARMA-GARCH models with t innovations. These
two aspects of dependence were modelled independently in two steps. First
the univariate time series models were fitted and then copula-based models,
time invariant in Section 2 and piecewise constant in Section 3, were used
to model the cross-dependence structure of the residuals resulting from the
marginal modelling. In this section, we want to model the dynamics of the
time dependence structure as well as the dynamics of the contemporaneous
dependence. For that we want to combine two univariate ARMA-GARCH
models with a time-varying copula-based model. This is achieved using a
copula-based model for the conditional bivariate innovations coupling two
ARMA-GARCH processes. With such a procedure we investigate the con-
stancy of the conditional dependence structure on time allowing for time-
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Change-point statistical analysis
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Figure 7: Change-point analysis of daily returns on the FX USD/DEM and
USD/JPY spot rates. The three panels display three steps of the change-
point analysis. Each panel plots the likelihood ratio values Ay for & =
1,2,...,n. In each sub-sample its maximum, the test statistic Z,,, gives the
time of the change in case the no-change null hypothesis is rejected. If the
null hypothesis is not rejected the moment where Z,, is achieved is put in

parentheses.
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varying dependence parameters and assuming a fixed copula family.

As before, we look at several time frequencies for the spot rates con-
sidered. The coupling of univariate GARCH models using copulae in the
conditional distribution can be found in Rockinger and Jondeau (2001),
Patton (2002) and Fortin and Kuzmics (2002).

4.1 Stochastic dependence structure

Stochastic volatility is nowadays accepted as a stylized fact in financial uni-
variate processes. When we want to study several financial time series si-
multaneously we have to consider the dependence structure among them. If
the conditional volatility of a series is not constant there is no reason why
we should expect that from the correlation between different time series or
more generally from the conditional dependence (copula) structure.

If we want to inspect for time-varying cross-correlation we can construct
the so called exponentially weighted covariance estimate; see Foster and
Nelson (1996) and Andreou and Ghysels (2002). In the same spirit but
more sophisticated are the matrix-diagonal models as proposed by Bollerslev
et al. (1994). We choose the later models as a first approach to look at
the covariance component of the conditional dependence structure. We also
considered the BEKK models from Engle and Kroner (1995) but the increase
in the number of parameters did not lead to a fitting improvement.

In a way similar to a one-dimensional GARCH model, the multivariate
matrix-diagonal GARCH model for a d-dimensional random vector X; is
defined as

Xt = Cc+¢€
€ = Zi/QZt (13)
P q
Sio= AcAf+ ) (AAD) ® (er—iei_;) + Y (BB ® %y
i=1 j=1

where A; for i = 0,1,...,p and B; with j =1,2,...,q are lower triangular
d x d matrices. Moreover, ¢ is a vector in R? and p and ¢ are like in the uni-
variate model. The d-dimensional vector sequence {Z; };cn, is assumed to be
iid with zero mean vector and unit variances. The matrix ¥; stands for the
conditional covariance matrix of the vector €; and Ei /2 is obtained through
the Cholesky decomposition of ¥;. In (13), ® stands for the Hadamard prod-
uct, the element by element multiplication. With these models we have the
guarantee of obtaining positive semi-definite covariance matrix estimates.

To evaluate the standardized residuals we compute X, Y %€,
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We used S+FinMetrics to fit bivariate AR-GARCH models with matrix-
diagonal multivariate specification ((13)) to the six time frequencies consid-
ered for the FX spot rate returns. For fitting purposes, the standardized
residuals Z; are assumed to come from a bivariate t distribution. The es-
timated degrees of freedom obtained for the t innovations for each time
frequency are given in Table 10.

Time Estimated d.f.
frequency D(s’e.)

1 hour 4.888 (1.318
2 hour 5.253 (4.358
4 hour 5.351 (1.450
8 hour 5.893 (0.930
(
(

12 hour 5.943 (0.429

)
)
)
)
)
lday  5.998 (0.320)

Table 10: Degrees of freedom of the assumed t innovations in the matrix-
diagonal models fitted to the USD/DEM and USD/JPY spot rate returns
for the several time horizons.

For each time frequency we plotted in Figures 8 and 9 the estimated
conditional cross-correlation. The conditional correlation seems to fluctuate
quite a lot, mostly around 0.6 with occasional drops to values that can be
negative especially for the higher frequencies. There seems to be evidence
for the existence of three regimes, and this consistently at all frequencies.
The corresponding periods are first up to the end of 1989, then from the
latter date till mid 1993, and finally from this date till the end of 1997.
As noted before (Section 3) the shift by the end of 1989 coincides with the
start of the German unification while in June of 1997 the Asia crisis began.
Assuming that the Berlin wall event (10:30 pm, 9 November 1989) caused the
estimated shift from 8 to 9 November 1989 (see Section 3) then this change
is visible much more precisely in Figures 8 and 9 at higher frequencies than
at the lower frequencies.
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Conditional cross—correlation of 1 hour returns
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Figure 8: Time-varying cross-correlations estimated by a matrix-diagonal
AR-GARCH model for the returns on the FX USD/DEM and USD/JPY
spot rates of one, two and four hour frequencies.
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Conditional cross—correlation of 8 hour returns
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Figure 9: Time-varying cross-correlations estimated by a matrix-diagonal
AR-GARCH model for the returns on the FX USD/DEM and USD/JPY
spot rates of eight hour, twelve hour and one day frequencies.
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4.2 The Multivariate GARCH model with time-varying cop-
ula

The estimated covariances in Section 4.1 show that we can not expect a con-
stant type conditional dependence structure between the two return series,
USD/DEM and USD/JPY. That means that we should use a model where
somehow the conditional dependence variability is incorporated. Given that
we want to couple two GARCH type models through a parametric copula,
the simplest way is to admit that the conditional copula stays in the same
family but the dependence parameters are time-varying.

Let {X; : t € No} be a sequence of observable d-dimensional random
vectors. Consider the process description given by

X, = cHe
€ = O'tzt (14)
p q
ol = Ag+ Z A @ (€_i€i_;) + Z B; ® 0'%_]-
i—1 =1

where A; for i = 0,1,...,p and B; with j = 1,2,..., ¢ are diagonal d x d
matrices, ¢ is a vector in R? and p and ¢ are positive integers. Moreover,
{Z;+}ten, for i =1,2,...,d are assumed to be univariate strict white noise
processes with zero mean and unit variance. The set of equations (14) simply
defines each marginal process as a univariate GARCH. Now we couple the
d processes (14) imposing a copula family to the multivariate distribution
of Z;. Assume that Z; has a d-dimensional copula C with time dependent

parameter vector 6; = (614,624, ...,0c+) such that
r d s
Ome =70+ Y _1i [[ Ziv—i+ D skOmi—r (15)
i=1 j=1 k=1
form =1,2,...,e and where r; for i =0,1,...,r and s; with j =1,2,...,s

are scalar model parameters. Equation (15) defines a dynamic structure of
GARCH type for the dependence parameters and is motivated by (13). See
also Patton (2002) and Rockinger and Jondeau (2001) for similar models.
Of course, one can attempt to find more suitable dynamics depending on the
interpretation that a specific dependence parameter may have. For instance
referring to the matrix-diagonal GARCH, the degrees of freedom for the t
innovations were assumed to be constant over time. Asymmetry in the de-
pendence parameters can also be included as for instance for the correlation
in the Asymmetric Generalized Dynamic Conditional Correlation GARCH
in Cappiello et al. (2003).
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4.3 Model estimation

The natural estimation method for (14) and (15) is (conditional) maximum
likelihood. Furthermore, the definition of the model suggests a two step
estimation procedure. In fact, this is used in similar situations by Patton
(2002), Rockinger and Jondeau (2001) and Engle and Sheppard (2001).

Let (X1, Xa2,...,X,) be arandom sample of d-dimensional vectors. Sup-
pose that X;, given the past information have continuous marginal distri-
butions F; parameterized by the vector a;; for i« = 1,2,...,d. Then the
multivariate conditional distribution function of X; is

F(x;on, ..., 0q4,0) = C(Fi(z1;Q14), - - -, Fa(2g; aay); 04)
where C' is the copula family of X;. The conditional density function of X;
is

f(X7 Aty O, gt) =
d

=c(Fi(z;004), ..., Fi(ra; aqr); 04) H fi(xs; o).
i1

Here we assume that C' has a density ¢ given by

94C (u LU ..., Ug; O
c(uy,ug, ..., uq;0) = aillauz...ﬁui )

with (u1,uz,...,uq) € [0,1]% and that F; has a density f; for all
i =1,2,...,d. The conditional log-likelihood function of the model then
is

n d
> <log c(Fu(xrs o), Fa(mas 0ar); 00) + > log filwi; ai,t))
t=m-+1 i=1
(16)
where m = max(p,r). Numerical maximization of (16) gives the maxi-

mum likelihood estimates of the model. However, the optimization of the
likelihood function with possibly many parameters is numerically difficult
and (computer) time consuming. It is more tractable to estimate first the
marginal model parameters and then the dependence model parameters us-
ing the estimates from the first step. In order to do so, the d marginal
likelihood functions

n
> log filwigouy)  fori=1,2,....d, (17)
t=p+1
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are independently maximized. @ From here we obtain the estimates
Gy, ...,04: These are plugged in (16) where some terms became con-
stant and can be ignored. The final function to maximize becomes

n
> loge(Fi(zre @y),. ., Fa(ars Gay); 0:). (18)
t=m+1

From this dependence estimates 6; are obtained and the model is fitted.
In Section 4.4 below we highlight the above procedure, however for space
considerations restricting attention to the t copula.

4.4 Fitting of the time-varying copula model to the
USD/DEM and USD/JPY spot rate returns

For the USD/DEM and USD/JPY spot rate returns we found that the
t copula yields a good model for the cross dependence. This was shown
first through estimating the stationary bivariate distribution (static models);
see Breymann et al. (2003). In Section 2 we arrived at this result though
estimating the dependence structure after using time dependent marginal
models (fitting copula-models to the filtered returns). In all cases where
we fitted univariate GARCH type models, t innovations were used. Now
we are going to combine dynamic models for the margins with dynamic
copula models. For each marginal time series we assume a GARCH type
model. For the dependence structure we use a t copula allowing for time
dynamics in the copula parameters which are the degrees of freedom v and
the correlation p:

Vw=v for all t,
o (19)
pt =h""(ro +rzi—1224-1 + s1h(pt—1)),
where h(-) is Fisher’s transformation for the correlation
1+p
h(p) =1 — .
(p) = log (1 — p)

The choice of model (19) is based on tractability and relevance for practice,
at the same time highlighting the general procedure.

4.4.1 Marginal modelling

For every time frequency, each marginal time series is modelled by an
ARMA-GARCH model with t innovations.
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In each univariate model we included a leverage effect parameter «y in the
GARCH dynamics; see for example Bollerslev et al. (1992) and references
therein. The introduction of v attempts to take into account an asymmetric
contribution that the innovations seem to have on the volatility in some
cases. This improvement is also possible in the model specified in (14); see
Zivot and Wang (2003) and Ding et al. (1993) where model (14) is treated
as a special case of a power GARCH model. In this case, each line of the
last matrix equation in (14) becomes

p q
2 2 2
Ohs =0k + Y okillertmil + Wicki—i)® + Y BriThi;
=1 j=1

where kK = 1,2,...,d. In fact, we already used the leverage effect param-
eter in the marginal modelling in the previous sections. For USD/DEM
returns we can not reject the null hypothesis of v, = 0 for the estimated
~ parameter for all frequencies. In the case of DEM/JPY the situation is
the complete reverse. In this case, we reject the null hypothesis for all fre-
quencies. Rejecting the null hypothesis for the USD/JPY model parameter
v = 0, and using that the estimated values 4 are negative, we have that
negative shocks (bad news) have a larger impact on volatility than positive
shocks (good news).

Time U (sle.)
frequency  USD/DEM USD/JPY
1hour  3.693 (0.054) 3.654 (0.052)
2 hour  3.708 (0.044)  3.759 (0.077)
4 hour 3.975 (0.105)  3.819 (0.109)
Shour  4.679 (0.234) 4.357 (0.195)

(0.326) (0.251)
(0.556) (0.412)

12 hour 5.385 (0.326) 4.574 (0.251
1 day 5.797 (0.556) 4.889 (0.412

Table 11: The degrees of freedom estimated for the marginal conditional
distribution t of the innovations and corresponding standard errors.

From the univariate fitting we need the estimated degrees of freedom
to be used in (18). Table 11 has the estimated marginal degrees of freedom.

4.4.2 Dynamic copula modelling results

Denote by {(21,4,224) : t =0,...,n} the standardized residual return series
obtained from the univariate filtering performed in Section 4.4.1. The esti-
mated degrees of freedom for the marginal innovation distributions are
and 0y for USD/DEM and USD/JPY, respectively. Now the standardized
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residuals are mapped into the unit square by the standard t probability-
integral transformation. Considering that t, denotes the distribution func-
tion of a univariate standard t with v degrees of freedom, the probability-
integral transformation produces the bivariate time series of pseudo obser-
vations:

L Uy
{(t,;1< ﬁ1_221,t>7tﬂ2< ﬁ2_2227t>>,t—1,...,n}. (20)

This time series, plugged into (18) with C being the t copula function and

using (19) for the dynamics of the dependence parameters, gives the maxi-
mum likelihood estimates for the copula degrees of freedom and correlation
(time-varying) parameters.

The results from fitting the dynamic copula model are in Table 12. We
added the t copula parameter estimates obtained with no dynamics in the
correlation which corresponds to 1 = 0 and s; = 0 in (19) or equivalently,
to fit a t copula with time invariant parameters to (20).

The AIC of the time-varying copula model is lower than the AIC of the
constant copula model. So we have an improvement in the fitting in spite
of having two more parameters in the model. The estimate for ry can be
considered zero for 8 hour, twelve hour and daily returns. But r; and s
are definitely different from zero for all frequencies. In other words, the
estimated (copula) correlation depends on the marginal returns and on the
correlation from the previous moment in time. From the estimated parame-
ters for the correlation dynamics we compute, through the second equation
of (19), the time-varying estimated correlation which is plotted in Figures 10
and 11. These also show the estimated constant correlation with a 95% con-
fidence interval. Figures 8 and 9 plot the estimated time-varying correlation
from a matrix-diagonal GARCH model ((13)) with bivariate t innovations.
Comparing the two results the main difference is that the correlation given
by the dynamic copula model is much less jagged than the one from the
matrix-diagonal GARCH allowing for a more detailed observation of the
correlation path.

The number of degrees of freedom estimated is always larger for the
time-varying copula model than for the matrix-diagonal model. In both
models the copula used is the t and the margins are t distributed. But
while in the matrix-diagonal model margins and copula must have the same
degrees of freedom in the copula-based model they don’t. Actually we can
see, for example for the daily returns, from Table 11 that for each mar-
gin we have Uysp/pepv = 5.797, Dyspyrpy = 4.889 and from Table 12
that for the copula 7 = 8.573. On the other hand, model (13) imposes
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vusp/pEM = Vusp,spy = v and gives 7 = 5.998. Actually the degrees of
freedom obtained with the matrix-diagonal model are close to those given
by the copula time-invariant model; compare the values listed in Tables 10
and 12. From the different ways the degrees of freedom were estimated there
is a common increasing pattern from higher to lower frequencies which may
be referred to as a central limit effect.

Time Parameter Estimates (s.e.)
frequency non-dynamic dynamic
1% 4.935 (0.108) 17 6.330 (0.167)
5 0.558 (0.002) | 7 0.0005 (0.0002)
1 hour 71 0.0193 (0.0010)
31 0.9921 (0.0005)
AIC -31517.70 AIC -34488.72
1 4.822 (0.147) 1% 6.203 (0.230)
p 0.580 (0.003) | 79  -0.0004 (0.0002)
2 hour 71 0.0128 (0.0009)
31 0.9952 (0.0004)
AIC -17192.73 AIC -19349.29
1% 4.669 (0.195) 17 6.072 (0.313)
p 0.592 (0.005) | 7  -0.0008 (0.0002)
4 hour 1 0.0147 (0.0011)
4 0.9947 (0.0004)
AIC -9085.848 AIC -10262.23
U 5.296 (0.339) 17 7.206 (0.584)
o 0.612 (0.006) | 7o 0.0005 (0.0005)
8 hour 71 0.0173 (0.0014)
& 0.9927 (0.0006)
AIC -4813.6 AIC -5456.312
U 5.830 (0.499) | © 8.053 (0.884)
o 0.620 (0.008) | 7o 0.0002 (0.0008)
12 hour 71 -0.0249 (0.0023)
51 0.9901 (0.0010)
AIC -3299.16 AIC -3744.28
D 5.945 (0.758) 7 8.573 (1.455)
5 0.619 (0.011) | 7  -0.0023 (0.0017)
1 day 71 -0.0343 (0.0041)
31 0.9846 (0.0021)
AIC -1644.549 AIC -1881.760

Table 12: Parameter estimates, standard errors and AIC values for the two
copula models, without and with dynamics in the correlation, fitted to the
hourly up to daily returns on USD/DEM and USD/JPY rates.
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Conditional cross—correlation of 1 hour returns
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Figure 10: Time-varying cross-correlations estimated by a time-varying
copula-based model for the four hour returns on the FX USD/DEM and
USD/JPY spot rates.
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Conditional cross—correlation of 8 hour returns

——  Time varying correlation
— — - Constant correlation
"""" 95% Cl for const. correl.

0.8

0.6

T

I

i
T
i
i
i

I

I

I

I

I

I

I

I

I

I

I

I

I
ot

I

I

I

I
&

)
it

i
q_’
w
g
i
HE
e

|

I

I

I

I

|
1l

T

I

I

I

|

I
i

I

I

I

I

I
iH
o

I

Conditional correlation
0.4

N N S SRR FR
P

K.

-

v

=

g

§

—

N
o
LB B B L B B s By B B B B B |
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
Conditional cross—correlation of 12 hour returns
o ] ——  Time varying correlation
d 3 — — - Constant correlation
T S| I 95% Cl for const. correl.
5™~
5 O 1
] l
5 ¥
T ]
S 10 7
£34
5 ]
o ]
™
O 7
- L S o e B I L B e e s s s I B B B S s B
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
Conditional cross—correlation of daily returns
; — — Change-point model
g — —— Time varying correlation
1 — — - Constant correlation
i hwveryees—-M . h | 95% Cl for const. correl.
©
o
5 ]
s ~ 1 H\\
¢ o
g 1 A
sef sorfooi fhpooozro
s S - U
B 1
8§ o] |
] |
< |
° 3 |

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Figure 11: Time-varying cross-correlations estimated by a time-varying
copula-based model for the eight hour, twelve hour and daily returns on
the FX USD/DEM and USD/JPY spot rates.
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5 Conclusion

Our goal in this study is a first statistical analysis of the dependence struc-
ture between FX returns on USD/DEM and USD/JPY spot rates across six
different frequencies from one hour up to one day. The data used are the
deseasonalized returns obtained for the static study performed in Breymann
et al. (2003). The analysis is done under three main approaches to the mod-
elling of the (conditional) observations. Firstly, the dependence structure
is assumed to be constant in time, secondly, we test for changes in the de-
pendence parameters and finally, the copula family is supposed to be always
the same but its parameters are time-varying. In all the approaches each
marginal time series is modelled by a GARCH type model producing what
is referred to as filtered returns (or residuals).

Assuming a time invariant copula model, in Section 2 a list of copula
models are fitted to the filtered returns. The t copula turns out to be
a potentially good model followed by a mixture of a Gumbel with a sur-
vival Gumbel for all frequencies except for the daily returns where the two
models perform almost equally well with slight advantage for the mixture
one. The fitted degrees of freedom of the t copula increase as the time fre-
quency decreases just like it happened without marginal GARCH filtering
in Breymann et al. (2003). Nevertheless, the degrees of freedom are higher
in the time-varying copula model compared with the other models used. A
tail-dependence coefficient estimation gives values around 0.25 revealing the
presence of asymptotic tail-dependence between the two FX rates even at
the residuals level. This fact is confirmed through the estimation of the
spectral densities showing clustering of extremes in both tails of equal signs.
The extreme tail-dependence copula is well modelled by a Clayton type
copula and the parameter estimates imply the existence of dependence in
the bivariate residuals over thresholds going further into the first and third
quadrant tails. Ellipticity of the data is rejected only for one and two hour
frequencies when the margins are t transformed.

As an improvement to the time invariant copula-model we tested for the
existence of change-points in the correlation parameter of the t copula for
the daily filtered returns. The tests gave four change-points in the consid-
ered period which imply considerable jumps in the correlation over time.
The largest is estimated at 8 November 1989 with a drop in the correlation
from p = 0.831 to p = 0.310. Change-point tests have less power in case of
small changes and so we refined the dependence analysis assuming a time-
varying behavior for the correlation parameter. In this way matrix-diagonal
GARCH models are fitted to all frequencies. From these we can observe a
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jagged path to the estimated correlations far from being constant or even
piecewise constant. Using the t copula model with time varying correlation
we get a more flexible distribution for the model innovations which gives es-
timated correlation processes with much less noise than the matrix-diagonal
models. On the other hand, allowing for time-varying dependence parame-
ters, according to the AIC criterion, we obtain a better fitting than with a
time invariant dependence structure. Comparing the estimates obtained by
the copula-varying model and the other models considered we observe that
in the first case the degrees of freedom are considerably higher for all time
frequencies. The monotonic behavior for the estimated degrees of freedom
is preserved. For the daily returns we can compare the change-point model
with the time-varying t copula model. It seems that change-point mod-
els only detect bigger changes but apparently sooner than a time-varying
parameter model; see the bottom panel in Figure 11.

Clearly more general copula models can be handled similarly. It would
in particular be interesting to investigate t copula models with time varying
degrees of freedom for the returns on the USD/DEM and USD/JPY spot
rates. Moreover, in models with time-varying dependence parameters, the
existence of change-points can be tested in the parameters of the equations
that define the copula dynamics. We return to some of these questions in
further publications.

Acknowledgement

We would like to thank Wolfgang Breymann and Olsen Data for providing
the FX data. This paper was written while the second author was Cen-
tennial Professor of Finance at the London School of Economics. We also
acknowledge useful discussions with Alexander McNeil and La Fischer.

References

Andreou, E. and Ghysels, E. (2002). Rolling-sample volatility estimators:
some new theoretical, simulation, and empirical results. J. Bus. Econom.
Statist., 20(3):363-376.

Bollerslev, T., Chou, R. Y., and Kroner, K. (1992). ARCH modeling in
finance. Journal of Econometrics, 52:5-59.

Bollerslev, T., Engle, R. F., and Nelson, D. B. (1994). Arch models. In

39



Handbook of econometrics, Vol. IV, volume 2 of Handbooks in Econom.,
pages 2959-3038. North-Holland, Amsterdam.

Breymann, W., Dias, A., and Embrechts, P. (2003). Dependence structures
for multivariate high-frequency data in finance. Quantitative Finance,
3:1-14.

Cappiello, L., Engle, R., and Sheppard, K. (2003). Asymetric dynamics in
the correlations of global equity and bond returns. Working paper 204,
European Central Bank.

Chen, X. and Fan, Y. (2002). Estimation of copula-based semiparametric
time series models. working paper, New York University and Vanderbilt
University.

Csorgs, M. and Horvath, L. (1997). Limit Theorems in Change—Point Anal-
ysis. Wiley, Chichester.

Dacorogna, M. M., Gengay, R., Miiller, U. A., Olsen, R. B., , and Pictet,
O. V. (2001). An Introduction to High—Frequency Finance. Academic
Press, San Diego, CA.

Dias, A. and Embrechts, P. (2002). Change-point analysis for dependence
structures in finance and insurance. In: Novos Rumos em FEstatistica
(Ed. C. Carvalho, F. Brilhante, F. Rosado), Sociedade Portuguesa de
Estatistica, Lisbon, 69-86.

Ding, Z., Granger, C. W. J., and Engle, R. F. (1993). A long memory
property of stock market returns and a new model. Journal of Empirical
Finance, 1:83-106.

Embrechts, P., Kliippelberg, C., and Mikosch, T. (1997). Modelling Extremal
FEvents for Insurance and Finance. Springer, Berlin.

Embrechts, P., McNeil, A. J., and Straumann, D. (2002). Correlation and
dependence in risk management: Properties and pitfalls. In: Risk Man-
agement: Value at Risk and Beyond (Ed. M. Dempster), Cambridge Uni-
versity Press, Cambridge, 176-223.

Engle, R. and Sheppard, K. (2001). Theoretical and empirical properties
of dynamic conditional correlation multivariate garch. Working Paper
2001-15, UCSD.

40



Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with
estimates of the variance of United Kingdom inflation. FEconometrica,
50(4):987-1007.

Engle, R. F. and Kroner, K. F. (1995). Multivariate simultaneous generalized
ARCH. Econometric Theory, 11(1):122-150.

Fortin, I. and Kuzmics, C. (2002). Tail dependence in stock return-pairs: To-
wards testing ellipticity. Working paper, Institute For Advanced Studies,
Vienna and Faculty of Economics and Politics, University of Cambridge.

Foster, D. P. and Nelson, D. B. (1996). Continuous record asymptotics for
rolling sample variance estimators. Econometrica, 64(1):139-174.

Genest, C., Ghoudi, K., and Rivest, L.-P. (1995). A semiparametric esti-
mation procedure of dependence parameters in multivariate families of
distributions. Biometrika, 82(3):543-552.

Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman
& Hall, London.

Juri and Wiithrich (2002). Copula convergence theorems for tail events.
Insurance: Mathematics and Economics, 30:405—420.

Lehmann, E. L. and Casella, G. (1998). Theory of point estimation, second
edition. Springer, New York.

Manzotti, A., Pérez, F. J., and Quiroz, A. J. (2002). A statistic for test-
ing the null hypothesis of elliptical symmetry. J. Multivariate Anal.,
81(2):274-285.

Nelsen, R. B. (1999). An Introduction to Copulas, volume 139 of Lecture
Notes in Statistics. Springer, New York.

Patton, A. J. (2002). Modelling time-varying exchange rate dependence
using the conditional copula. Working paper, UCSD.

Resnick, S. (1987). Extreme Values, Regular Variation, and Point Processes.
Springer, New York.

Resnick, S. (2002). On the foundations of multivariate heavy tail
analysis. Cornell Reports and Papers. Available online from
http://www.orie.cornell.edu/"sid.

41



Rockinger, M. and Jondeau, E. (2001). Conditional dependency of finan-
cial series: An application of copulas. Working paper, HEC - School of
Management, Departement of Finance.

Shephard, N. (1996). Statistical aspects of ARCH and stochastic volatility.
In: Time Series Models (Ed. Cox, D. R. and Hinkley, D. V.), Chapman
and Hall Ltd, London, 1-67.

Sklar, A. (1959). Fonctions de répartition a n dimensions et leurs marges.
Publ. Inst. Statist. Univ. Paris, 8:229-231.

Starica, C. (1999). Multivariate extremes for models with constant condi-
tional correlations. Journal of Empirical Finance, 6:515-553.

Vostrikova, L. J. (1981). Detecting “disorder” in multidimensional random
processes. Soviet Mathematics Doklady, 24(1):55-59.

Zivot, E. and Wang, J. (2003). Modeling Financial Time Series with S-Plus.
Springer, New York.

42



