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Abstract

The worst-possible Value-at-Risk for a hon-decreasingtion ) of n dependent risks is
known whenn = 2 or the copula of the portfolio is bounded from below. In thigopr we
analyze the properties of the dependence structures gpéaithis solution, in particular
their form and the implied functional dependence betweemiharginals. Furthermore we
criticise the assumption of the worst-possible scenar®&/#R-based risk management and
we provide an alternative approach supporting comonaitgnic
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1 Introduction

Consider an insurer holding a portfolio consistingugdolicies with individual risks
X4,..., X, overafixed time period. Given some measurable funatiofR™ — R,

a relevant task in insurance mathematics is the investigati the risk position as-
sociated withy) (X7, ..., X,,), when the marginal distributions of the single risks
are known. Actuarial examples of the functigninclude}"" , z;, simply charac-
terizing the aggregate claim amount deriving from the pedéor}-" , h;(x;) and
h(>-7_, x;), providing the risk positions for a reinsurance treaty wétention func-
tionsh;,i = 1,...,n and a global reinsurance treaty with global retention fiamct
h, respectively.
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The problem of finding the best-possible lower bound on tk&idution function

(df) of (X1, ..., X,,) has received a considerable interest in insurance mathemat
ics. From a financial risk management point of view, the probls equivalent

to finding the worst-possible Value-at-Risk (VaR) for theresponding aggregate
position. Here we refer to the Introduction in Embrechts Bodcetti (2004) for
details.

Modelling the interdependence arising in a random podfollls for the use of
copulas. If a lower bound on the copula of the vedtat, .. ., X,,) is given, the
above problem is fully solved and the bounds provided in Eeclis et al. (2003)
are sharp. In the no-information case the latter do hold dnly= 2. Rather than
treating the technical proof of such results, for which wier¢o the above cited
references, in this paper we analyse in more details theeptiep of their solu-
tions. We concentrate mainly on the no-information casesrwn lower bound on
the copula of the portfolio is not available and a solutioknswn only for two-
dimensional portfolios. Without loss of generality, wedstuihe optimizing copula
for the sum of two dependent risks, which is well-known tdedifrom comono-
tonicity. In particular we discuss its shape, its implioas in terms of dependence
and we criticise it as not being a rational scenario for anrigisce company. Finally,
we provide an alternative optimization approach leading suitable measure of
risk, which supports the assumption of comonotonicity fpradent evaluation of
the VaR for the aggregate position.

2 Preliminaries and fundamental results

In this section we present some well-known concepts aboptilas and briefly
recall the fundamental results about the problem of bountlia VaR for functions
of dependent risks. For more details about copulas, we tefdelsen (1999).

2.1 Value-at-Risk and dependence structures

On some probability spacg?, 2, P), let the random vectoX = (X,...,X,)
represent a portfolio of risks. Given a measurable functionR™ — R we face
the problem of finding the supremum of the VaR for the aggeegasitiony)(.X)
over the class of possible dfs f&r having fixed marginal$, .. ., F),.

Definition 1 Lety : R — R be a non-decreasing function. Igeneralized left
continuous inversés the functiony= : R — R defined byy1(y) := inf{x €

R|p(z) > y}. For 0 < a < 1 the Value-at-Risk at probability levek for a

random variableY” with distribution function is its a-quantile, i.e.

VaR, (V) := G (a).



Of course, quantiles of the df af(X) can be computed if the joint distribution
function F(xy,...,z,) = P[X; < z1,..., X, < x,]is known. At this point, the
notion of copula becomes useful.

Definition 2 An n -dimensional copul#@s ann-dimensional distribution function
restricted to[0, 1] having standard uniform marginals. We denote wittthe fam-
ily of n-dimensional copulas.

Given a copulal’ € ¢€" and a set of univariate marginds, . . ., F,,, we can always
define a dfF' on R™ having these marginals by

F(zy,...,x,) = C(Fi(z1),..., F.(x,)). 1)

Hence, givem dfs Fy, ..., F,, we letX“ = (X,..., X,) be the random vector
on R™ having a copulaC satisfying (1). Observe that this copula is unique for
continuous marginal dfs. Conversely, Sklar's Theoremd6kl973), Theorem 1)
states that there always exigts € ¢" coupling the marginals of a fixed df
trough (1).

Comparing copulas pointwise and defining the riskiness apeddence structure
through this comparison, we recall that any copuilées between thiowerandup-
per Frechet bound$V (uy, ..., u,) == (X" w; —n+ 1) andM (uy, . .., u,) ==
min; <;<,, u;, NamMely

W <O <M. )

Observe that, contrary tb/, the lower Fréchet bounid” is not a distribution func-
tion for n > 2. Random variables coupled through= M (C = W, respectively)
are calledcomonotoniqcountermonotonic The independence copula is denoted

by (uy, ..., uy) == TT7 w;.

Remark 3 Comonotonicity characterizes the risks of the portfoliobesng in-
creasing functions of a common random variable. It is treeefa strong depen-
dence and measure of dependence such as KendatiisSpearman’s will de-
scribe M as a perfect structure, i.e:(M) = p(M) = 1. It is precisely this rep-
resentation which motivates the use of the concept of cotaoitity in financial
applications. Moreover, assuming comonotonicity leadst@ost all the computa-
tional benefits of independence, yielding, in addition, ad@nt scenario in many
contexts as we will emphasize in Section 4. For an in depttud&gon of comono-
tonicity, see Dhaene et al. (2001).

2.2 Bounds on value at risk for functions of dependent risks

We now recall the two fundamental results being the objedunfanalysis. For a
proof of both theorems and further discussions, we refentbfechts and Puccetti



(2004) and the references therein. For a cogund marginalgs, .. ., F,,, define

ooy F)(s) = /{M} dC(Fy(21), ..., Fulzn)),
Tow(F1y .. FR)(s) == sup C(Fi(z1), ..., Fooi(za—r), F, (Y5 (5))),

wherey; (s) := sup{z, € R|Y(z_p,z,) < s} foraz_, == (21,...,2,1) €
R™~!. In the following, we refer to non-decreasing functiahs R* — R as being
non-decreasing in each component.

Remark 4 Observe thav ,(F, ..., F,)(s) = P(XY) < s] for X¢ having
marginalsFi, . . ., F,,. In the Appendix, Proposition 23, we show that the operator
T IN (3) is actually the left-continuous version of a df, i.e. thexests a random
variable K with P[K < s] = 7¢, (F1, ..., F,)(s). This result extends a claim
of Denuit et al. (1999), p. 37. As first noted in Schweizer addr§1974) for the
sum of two risks, i€, # M there does not exist a measurable real funcymsuch
that K = ¢g(X), with X having marginalg, ..., F,.

Theorem 5 Let X = (X1,..., X,,) be a random vector oR” (n > 1) having
marginal distribution functiond, ..., F,,. Assume that there exists a copula
such thatC' > (. If ¢ : R™ — R is non-decreasing, then for every realve have

oo (Fr, .., Fo)(8) > mop 0 (Fr, ..o Fu)(S). 3

Translated in the language of VaR, the above statement Eom

VaR, (¢(X1, ..., X)) < 7oy 0(Frs- . BN a)

for everya in the unit interval.

The bounds stated in Theorem 5 are pointwise best-possidleannot be tight-
ened ifn = 2 or a lower bound”;, > W on the copula of the portfolid( is
assumed.

Theorem 6 Further to the hypotheses of Theorem 5, we assumevthatalso
right-continuous in its last argument. Define the copdla: [0, 1]" — [0, 1] as

Colu) = {max{a,CL(u)}, if u=(uy,...,u,) € [, 1],

min{u,...,u,}, otherwise
wherea = 7¢, 4(F1,. .., F,)(s). Then this copula attains bour{@), i.e.
oc,w(F1,.. ., F,)(s) = a. (4)

The latter theorem motivates the investigation of the ddpeoe structures leading
to the worst-case VaR scenario wher= 2 orC;, > W. ForC;, = W andn > 2
the bound stated in (3) is still valid but no more sharp.



3 Analysis of the worst-case portfolios

The aim of the present paper is to give more insight into ttegslof the copula
yielding the worst-possible VaR fap(X) = (X1, ..., X,) and to understand
the implied dependence between the marginals. Under afliijesdependence
structures, the worst-case scenario for the VaR at levsl given by the copula
minimizing P[/(X“) < s] over s-regions depending on. Indeed, according to
Definition 1 with

my(s) = it {P(XO) <s)}, sER, (5)

we have that VaR(y(X%)) < m,'(a),a € [0,1]. The problem at hand becomes
also the characterization of the copula minimizing, or equivalently maximizing

my(s) = 1 — my(s) = sup {P(XY) > 5]}, s €R. ©)
ceer

Such a copula will be referred to as a worst-casenariofor the aggregate position
¥»(XY). We use the term scenario to indicate a (possibly degeneestef probabil-
ity measures in line with Artzner et al. (1999). Analogous$ite above definitions,
in the presence of partial information, we write:, ., (respectivelym, ,,) and the
infimum (supremum) is taken over &ll € ¢" satisfying the boundary condition
C > (.

In the next subsections, we concentrate on the sum of rigkee(glizations to non-
decreasing continuous functiongeing straightforward) and we chooSg = .
See however Section 5 for some comments on the latter chbioe dependence
information”.

3.1 Two-dimensional portfolios

If we take two risks, the bound given in Theorem 5 cannot bat¢iged and there
always exists a two-dimensional copula meeting that botiladg@aven points. We
restate Theorem 6 in this particular case.

Theorem 7 Let X = (X1, X,) be a random vector oRR? having marginal dis-
tribution functionsFy, F». Define the copul&,, : [0,1]* — [0, 1],

o) max{a, W(u)}, ifu= (ui,us) € [a, 1%
a\ll) 1= .
min{uy, us}, otherwise

wherea = 1y (F1, F2)(s). Then this copula attains bour{@), i.e.

0Cq+(F1, F2)(s) = a. (7)
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Fig. 1. Support of the copul&',, setsA;, Bs and curvey for: N(0,1)-N(1,2)-normal
marginals ands = 1 (which givesa = 0.1613) (left); LN (0.4,1)-LN (0.4, 1)-marginals
ands = 4 (o = 0.2306) (right).

Proofs of Theorem 7 can be found in Frank et al. (1987) anatigrgdorf (1982).
Our aim here is to restate the problem of maximizing (6) frogeametric point
of view and illustrate the properties of the optimizing clgsieading to the worst-
case scenario for VaR. Without loss of generality, in whibWws, we take contin-
uous, increasing marginals. Let moreover

Gs = {(z1,79) € R? |21 + 19 > 5}

and
h:R? —[0,1)%,  h(xg,20) := (Fy(21), Fa(xs)).

The basic idea is to use the functiénto transport the optimization problem on
the unit squard0, 1)2. In fact, U® := h(X) is a random vector, with distribution
functionC on [0, 1]2. The function’ is invertible, hence we have that

P[X® € Gi] = P[h(XY) € h(Gy)] = ne(Ay),
wherep is the measure correspondingoon [0, 1]? and
Ay = 0(Gy) = {(ur,us) € [0, 1| F(wr) + Fy H(ug) > s}
The maximization function (6) can now be rewritten as

Ty (s) = sup {pc(As)}- (8)
Cee?

Fora = 1, (3) leads tore 4 (F1, F»)(s) = 1 for every copulaC, hence taker
[0,1). The boundary of4; is the image of the curve

VR =017 y(t) = (F(1), Fas — 1))

In Figure 1 the curve delimiting the set4, is drawn, with the support of the copula
C,, in case of normalX) and log-normal [ NV) marginals.



The copula’,, is uniformly distributed on its support, hence, defining
BS = {(ul,u2) € [0, 1]2 ‘ Uy + Uy = 1+ Oé}

we haveuc, (Bs) = 1 — a. As noted in Nelsen (1999), p. 187, this is the crucial
property leading to the statement of Theorem 7. In fact, when o < 1, the
continuity of theF;'s implies that

a = T (Fr, ) (s) = Fi(o)) + Fa(s — o)) — 1 9

for somexz). Hence the curve meets the segmet, at least in one point. The
technical (and for generalandC;, > W rather laborious) part of the proof consists
in showing thaty always lies below the segmeaft, henced, > B, and

MCQ(AS) > ,UCQ(BS> =1-a.

Noting thatu, (As) < 1 — «, from Theorem 5 we obtain (7). Far= 0, instead,
the existence of a tangent point betweesnd B, is not necessary, since the copula
W yields the theorem. Analogous geometric considerationsbeagiven for the
caseC;, > W and for non-decreasing continuous

Remark 8 Observe that the geometric properties of the suppoét gfillustrated
in Figure 1, can be extended to a whole family of copulas, wintplies that the
dependence structure leading to the worst-case VaR is nquen

Let @3 and ¢2 denote the family of copulas leading to the worst possibIR Va
and the family of copulas sharing their support jon1]? with C,,, respectively.
Formally:

€2 = {C e ?|oci(F1, F)(s) =al,
2 ={C € €| Clu1,uz) = Culuy, up) for a < uy,upy < 1},

Observe that we can writ€2 = {C' € €2 uc(A,) = pc, (As)}. In particular, it
trivially follows that, every copula irt? attains bound (3), sina® C ¢2.

We now focus on the dependence implied by the copuldg iThe support
Ro = {(u1,u2) € 0,0) |ur = us} U {(u1,u0) € [0, 1] | s + 1z = 1+ a}

of the copula’,, implicitly defines the dependence of the coupled randonatstes
by the substitution; = F;(z;),7 = 1,2. In fact, if the copulaC,, couplesX; and
X, into the random vectoK “> and if we assumé, F}, to be increasing on their
domain, then we hav&, = ¢(X;), where the functiorg : R — R is defined as

o Fy'(Fy(x)), if z < F7 o),
gle) = {F21(1 +a — Fi(z)), otherwise. (19)



Analogously, every other copula &} defines a functional dependence identical to
that ofg for z > ! (a). For example, the copuld! given by

O (uty, 11p) 1= max{Cp(uy, us), a}, When(llbl,lbg) € [, 1%,
wz otherwise
couples two marginals, which are independent if the first lielow the threshold
F () and behaves lik€, otherwise. Figure 2 comparég, with the support of
CL.

0
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Fig. 2. Supports of the copula$ 5(left) andC} ;(right).

Merging the two marginals by, is therefore equivalent to letting, = ¢(X;).
Hence, the two risks amautually completely dependeiMoreover, the copuld’,
is a so-calleghuffle-of-Mand hence implies that; and X, arestrongly piecewise
strictly monotondunctions of each other, in the sense defined in Mikusifnskl.e
(1991). Nevertheless, measures of dependence such aslkenda Spearman’s
p describeC,, as a non-perfect structure wher< a < 1, i.e.7(C,), p(C,) < 1.
This is due to the fact that this copula only represents piesgecomonotonicity.

Mathematically, the dependence structure induced’pyis, however, as strong
ad the one induced by/, since the two variables coupled 6y, are in a one-
to-one correspondence. Finally, note that every dffdndefined by applying a
¢2-copula to the given set of marginals hasiagular component.e. is mixed
with a continuous distribution having zero derivative eptcr a set of Lebesgue
measure zero. For instanag, is singular on its whole domain, where@$ only
on [a, 1]2. For more details about singular distribution functions &llingsley
(1995), Section 31 and Nelsen (1999), p. 23.

At this point, it is relevant to note that, in general, ¢ ¢2 when0 < a < 1,
the casev = 1 being the trivial one in whickt2 = ¢2. This provides a further
geometric proof that comonotonicity does not lead to thestvpossible scenario
for VaR and emphasizes the non-coherence of VaR as statetzimetet al. (1999).
Suppose thatX; and X, are identically distributed with unbounded, absolutely
continuous df having positive densify If f is eventually decreasing, it is easy to



show that fors large enough we have that= 2F'(s/2) — 1, while

o (F,F) = F(s/2) > a. (11)

A necessary condition fal/ to be in¢2 is that the pointa, ) lies in[0, 1] \ A,.
Equation (11) implies that this condition is not satisfieddtarge enough. Finally,
M € @3 if and only if A, = [0,1]?, i.e. the sumX; + X, is P-a.s. bounded from
below by the threshold. In this case the problem of bounding the VaR for the
sum does not arise. We conclude that, apart from patholiogcasas of no actuarial
importance, we have that

ou1+ (1, Bo)(s) > mi(s)

when0 < « < 1. This equation shows that the assumption of comonotonicity
among the risks of the portfolio may lead to a dangerous unaleiation of the
VaR for the aggregate position. At first, the worst dependesoenario could seem
to be the one implied by/, since under comonotonicity it is indeed known that
every random variable is a non-decreasing function of therpso that high values
for the first imply high values for the second. Theorem 6 ptesia deeper view on
this issue, stating, instead, that for every thresikadch thaitx < 1, there exists a
copulaC, yielding a value for the VaR which is higher than that of comimmicity.

The following example further stresses the fact thiatloes not belong, in general,
to €2,

Example 9 Let X; be normally distributedV (0, 1) with df  and putX, = —X;
to obtainP[X; + X, = 0] = 1. The copula describing this dependence is the
countermonotonic copuld/, under whichX, is a non-increasing function of;.
According to Theorem 6n, (0) = 0. In this set-up, the maximizing solution (&)
is then the structure of dependence which is opposite to notonicity (note that
happens whenever = 0), for which we have instead:, . (¢, ®)(0) = 1/2. Fig-
ure 3 (left) illustrates how, in the case of standard normatgmals, for every posi-
tives € R, there exists a copuld € €2 such thavc . (P, ®)(s) < a4 (P, D)(s).
In the same figure (right) we also provide the shape of therlateadistribution ob-
tained by applying”,, to standard normal marginals for = 4.898 (o« = 0.9857).
The reader should compare this figure to Figure 2 (right).
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density of the distribution of X;, X») obtained by applying the copul@ ¢ss7 to a
N(0,1)-N(0,1)-portfolio is given in the figure on the right.

3.2 Two-dimensional uniform portfolios

We now state some simple results for uniform marginals thittwn out to be
useful in understanding thedimensional case.

Proposition 10 Let the hypotheses of Theorem 7 be satisfied Witlh, uniformly
distributed on the unit interval. Then

¢2 = ¢2, (12)

Proof If « = 1,82 =¢? =¢2 Let0<a =s—1 < 1andC e ¢2.

1 1 .
&9 Hyo
As DN i, Hyo
Ug Us H22 Hp
RN
1 “
0 e 0 e uy 1

Fig. 4. Sets defined in Proposition 10.

Observe that, for uniform marginals, the boundarylpttoincides withB,. For the
region underlying such boundary we define

E; = {(u1,u) € [0,1 |ug +ug < s,u; >}, i=1,2

10



as illustrated in Figure 4 (left). By the definition of cop@adC & @i we have
that

MC(EZUAS):MC(EZ)—i_MC(AS):l_av i:1727
MC(AS) =1- Q,

which impliesuc(E;) = 0,7 = 1,2 anduc([0, a)?) = a. For the upper region we
introduce the following partition:

il—a) 11—« (t+1)(1—a)
omn + on+1 o+ n ]
(2" =i)(l-a) l-o (2" —i)(1 — )

on on+1 & + on ]

X (o +

forn > 0and: = 0,...,2" — 1. See Figure 4 (right). In particular, consider

Hgy = (12, 1]? and let

1
Ci::{(u17u2)6[071]2|u1+u2>1+a7ui§ ;a}v i:1727
1+
Dlzz{(ul,ug)e[0,1]2|u1+u2:1+04,oz§u1§ Oé}’
1
DQ::{(ul,UQ)E[0,1]2|U1—|—u2:1+04, +a<u1§1}

Using the properties of a copula and considering thatnd £, have zerouc-
measure, we have that

14+« 11—«
pe(Hoo) + pe(Cr) + pe(Dy) =1 — = ’

2 2
pe(Ch) + po(Dr) =

1+« 1l—«
— =
2

and hence.c(Hyo) = 0. Analogously, applying the same arguments to the upper-
right triangles of the squares

1 1
9 ) % o, —Y,

respectively, we obtain thaic(Hyy) = pc(Hi) = 0. By iteration we have that
puc(Hy) =0foralln >0,i=0,...,2" — 1 and we trivially obtain

e (U UH) o

n=0 =0

1+« 1+«

5 ] x [ 5 .1 and |

[ev,

Hence the only possibility fo€' is to assign probability magd — «) to the set
D, U D, = By, which implies that” € ¢2. O

Remark 11 With respect to(10), for 1 < s < 2 and X¢ = (X1, X3) having
standard uniform marginals and copua= C,, X, = g(X;), whereg : [0, 1] —

11



[0, 1] is the linear function

(z) x, ifr <s—1,
i =
g s —x, otherwise.

The above remark, together with Lemma 10, imply that the tzopuof a uniform
portfolio X© = (X, X,) belongs taz? if and only if

IP[X1+X2:S|X1+XQZS] =1. (13)

3.3 Multidimensional portfolios

Though the bound (3) holds in arbitrary dimensions, Theorefails to be valid

if we taken > 2. Proposition 12 below shows in a simple way that, if we choose
uniformly distributed marginals, it is not always possitdechoose a copul&@ so

as to obtainn(s) = 7¢,+ (Fy, ..., F,)(s) =: a. Analogously taZ? in the previous
section, we define

@Z = {C € Q:n‘O-CHr(Flu"'aFn)(S) :OZ}.

Proposition 12 Let X¢ = (X,..., X,,) be a random vector having marginal dfs
uniformly distributed o0, 1]. Taken > 2 andn — 1 < s < n. Theng” = ().

Proof Let S, := >, X; and note that, for uniform marginals, we hawve=
s—n+1. Ifthere existg: € {1,...,n—2} suchthafP[S,_, < s—k] = 1 we have
P[S,, > s| = 0 and the statementtrivially holds. Suppose tfgéf,,_, > s—k| > 0
forall k € {1,...,n — 2}. In this case we have

P[S, > s|=P[S, > 5,51 >s—1]+P[S, >s,5,-1 <s—1]
= P[Sn > S|Sn71 > 85— 1] . P[Snfl > 85— 1],

sinceX,, is uniformly distributed on0, 1]. Proceeding by iteration we obtain

P[S, > s]| =P[S, > s|Spn1>s—1]...P[S3>s—n+3|5 >s—n+2]
‘PlSy>s—n+2|X;>s—n+1](n—2s).
(14)

Assume now tha@g # (), i.e. there existsX“ = (X, ..., X,) with copulaC €

¢”. It immediately follows thalP[S,, > s] = P[X; +--- 4+ X,, > s] = n — s and
hence all factors in (14), apart from the last one, must baldquone. In particular,

12



Fig. 5. Range folP[X; + X3 + X3 < s| for a standard uniform portfolio. Together with
the independence and comonotonic scenario, we plot thet-aase valuen, (s) which
differs from the lower boundc, - (s) given by (3).

this yields that

PXi+Xo>s—n+2/X;>s—n+1]=1, (15)
P[S3>s—n+3|S2>s—n+2]=1. (16)
According to (13), (15) implies that
PlSo=s—n+2|S3>s—n+2]=1,
which, together with (16), leads to

1=P[S3>s—n+3|S2>s—n+2]=P[X3>1|S2>s—n+2]
IP[Xng,SQZS—TL+2])
P[Sy > s—n+2] '

The latter equation is clearly a contradiction to the faett tki; is uniformly dis-
tributed on0, 1]. O

Remark 13 The bound given i§3) fails to be sharp when > 2 andC, = W.
This derives from the fact that” is not a copula forn > 2, i.e. for more than
two random variables it is impossible for each of them to meagt surely a non-
increasing function of each of the remaining ones. liséendorf (1982), the
worst-case VaR for uniform and binomial marginals is pre@dd Till now, this
is the only known analytical result. In fact, the optimum elegience for uniform
marginals does not solve the general problem, showing twattrary to the two-
dimensional case fat > 2, the dependence structure maximiz{6ymay depend
upon the choice of the marginals. In Embrechts and Pucc2@4), however, an
improved bound for the VaR is provided. Figure 5 illustraties optimum values
for uniform portfolios.

13



4 Evaluating risk through comonotonicity

In the following, we show that the assumption of comonotitypi@mong theX,’s
may lead to a prudent evaluation of the risk associated Wwelaggregate position
¥ (X). To this purpose, we first illustrate that such kind of desree leads to the
more dangerous scenario with respect to both stop-loss @metraodular order.
Then, changing the optimization approach discussed in iévqus sections, we
show that comonotonicity also arises as a suitable depeerdessumption for our
original VaR problem.

4.1 Stochastic orders and comonotonicity

In this section we provide some motivation for the assunmpdibcomonotonicity
among risks based on stochastic orders. In this frameworkugéate an important
application in actuarial mathematics. We first recall soorecepts about stochastic
orders.

Definition 14 Let X andY be two real random variables. We say thais smaller
thanY in stop-lossorder and we writeX <, Y if for all non-decreasing convex
functionsg : R — R we have

Elg(X)] < E[g(Y)], 17
provided the expectatiori&g(X )], E[g(Y")] are finite.

The stop loss-order compares one-dimensional randomblesiaA multidimen-
sional stochastic order implying stop-loss order is theaéedsupermodulaor-
der, i.e. the order based on a comparison of integrals ofrswguilar functions
f : R™ — R satisfying

flaVy)+ flzny) = flz)+ f(y), forallz,y € R,
wherez V y (z A y) is the componentwise maximum (minimum)afy.

Definition 15 Let X andY be twon-dimensional random vectors. We say thais
smaller thanY” in supermodulaorder and writeX <, Y if for all supermodular
functionsg : R" — R,

Elg(X)] < Elg(¥)], (18)

<
provided the expectatioi&g(X )], E[¢g(Y)] are finite.

The next theorem recalls two important results about supéutar and stop-loss
orders. In particular it states that comonotonicity reprgs the worst possible de-
pendence scenario with respect to both such orders.

14



Theorem 16 Let X© = (X,...,X,,) be an-dimensional random vector hav-
ing marginal distributionsf, ..., F,, and copulaC. Lety : R® — R be a non-
decreasing supermodular function. Then

(@) X <., XM,
(b) V(X)) <g w(XM).

Proof As notedin Muller (1997), part (a) follows from Theorem Slichen (1980).
Sincey(X%) <4 ¥(XM) holds if and only if (18) holds for all non-decreasing
convex functiong; : R — R for which expectations exists, to prove part (b) it is
sufficient to show that for such a functigrithe functiong o ¢ is supermodular. This
follows from Lemma 2.2(b) in Bauerle (1997). O

Remark 17 Note that Theorem 1) applies to a large class of interesting func-
tionals, includingy(z) = Y, hi(z;), where theh;’s are non-decreasing (see
also Muller (1997)) andy)(z) = h(X~, ;) for h non-decreasing and convex.
For more examples of supermodular functions or some iniegmethods of con-
structing them, Marshall and Olkin (1979), pp. 150-155 is $tandard reference.
Here we want to point out that Theorem (@ does not apply t§6) because the
indicator function of the seft)(X) > s} is not supermodular.

Consider again a portfolio of risk§“ = (X, ..., X,,). In insurance mathematics
if »(X°) isto be insured with a retention levglthe net premiuni|y)(X ) —d]* is
called thestop-losgpremium. A stop-loss premium is determined once the reignti
d and the multivariate df ok are given. Hence we set

Tew(Fry .. Fy)(d) = E(XY) —d]T,
Py(d) := gggn{ﬂc,w(ﬂ, s Fa)(d) ) (19)

Next proposition states that the univariate stop-lossrdsdeed on the comparison
of integrals of non-decreasing convex functions is eqeiitio the stochastic order
based on the comparison of stop-loss premiums. It also iegalae name stop-loss
for the stochastic ordet;.

Proposition 18 Let X and Y be two real random variables. Then the following
statements are equivalent:

(a) X Ssl Ya
(b) For all real d
E[X —d]t <E[Y —d]*. (20)

A simple proof can be found in Muller and Stoyan (2002), Tieeo 1.5.7.
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According to Proposition 18, part (b) of Theorem 16 is eql@rato
Py(d) = mprp(Fr, ..., Fu)(d) (22)

for all non-decreasing supermodular functiansreal retentiond and arbitrary
dimensionn. Hencernc (£, ..., F,)(d) is maximized over™ when the fixed
marginals of the portfolio have a comonotonic joint distitibn, providedy is a
non-decreasing supermodular function. Observe that sh& much stronger re-
sult if confronted with Theorem 6. It is remarkable to notattthis solution is not
unigue pointwise. In Figure 6 (right) we plot the density af@anR? which, though
differing from comonotonicity (left), maximizes. . (®, ¢)(0) overc™. However,
M is the only dependence structures that attains (19) foeallretentions!.

Fig. 6. Densities of two-dimensional distributions ob&inby comonotonic dependence
(left) and by maximizingr¢ . (®, ®)(0) overe? (right).

4.2 Changing the optimization approach in the VaR problem

Theorem 5 provides a lower bound for the probabtity, (F1, . . ., F,)(s), respec-
tively, an upper bound for the VaRy (X1, ..., X,,)). Hence an insurance company
holding the risky position)(X“) knows that

VaR, (Y( X)) < twy(Fr, ..., F) Ha), Ceem

This equation represents the worst-case VaR scenario andecaery expensive
for the insurer to handle. Recalling the definition of the ifgraf copulas reaching
the above level, i.e.

¢ ={C e |aey(F,...,F)(s) =a},
two quite natural conditions the insurer may ask to be satisire
(2) € # 0,

(b) ¢" does not depend on
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Fig. 7. Range fofP[X; + X, < s| under different dependence scenarios for a standard
uniform portfolio.

Indeed (a) requires the bound to be sharp, i.e. that thesésexistructure of depen-
dence which determines the worst-case VaR scenario. Gomdk) requires the
worst scenario for the insurance company to be independené ahresholds or,
equivalently, independent of the parametetihat is chosen by the company or by
the regulator to evaluate the aggregate risk.

In the previous sections we showed that (a) is violated when 2 but it holds

in the two-dimensional case, while (b) is violated even whesa 2. Our aim here

is to change the optimization approach so that the solusatisfy conditions (a)
and (b). In order to do this, we define the worst-case VaR senger a suitable
range for the thresholg, rather than on a single value. Figure 7 explains how that
can be done.

In this graph we plot¢, (F1, F3)(s) for different values of- € (0,1) in case of
two uniform marginals together with the best-possible lolb@undm , (s) and the
comonotonic curve,, . (F1, F5)(s). As a consequence of Theorem 7, every copula
C, gives a lower bound that meets the curne(s) at the corresponding threshold
and then becomes one. The intuition behind this plot is thetbmonotonic cop-
ula, though never meeting the boumd (s), is closer to it than any other copuwa
average

This idea can now be formalized by introducing a loss fumciato measure the
error committed by evaluating the risky position using adigepulaC' € ¢ rather
than the appropriate worst-possible structure of depesedéife then integrate the
loss function over a suitable sBtand we search for the infimum over the class of
all n-copulas. Defining

Py = jnf, { /B A[o—aw(Fl,...,Fn)(s)—mw(s)]ds} 22)

for some non-decreasing function&l : [0,1] — R{, we therefore introduce a
measure for the distance between the worst and the comaastemario in Fig-
ure 7, where\ can be viewed as a weighting function. &t B) denote the set of
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copulas leading to (22). To focus our attention, we chd®se [d, oo).

Theorem 19 Let A = Id and B = [d, ). Then, for every real threshold and
non-decreasing supermodular functigrsatisfyingE[ (X )] < oo, we have that

M e & ([d, c0)).

Proof Let [;°m,(s)ds < co. Note thatm,(s) depends only on the fixed marginals,
So we obtain

o= uf {/-oo[gw(pl, ) (s) — my(s)] ds}

== sup { ["PW(X) 2 5] —my(s)] ds

- .Oomlﬂ ds—su Py XC > s] ds
d

3y
_/ My (s ds—sup{ P(XO) >5]ds}

Ceen

where the last step is obtained sirB@)(X“) = s] can be positive at most for
countably many values af so that the last two integrals contained in the brackets
are the same. Finally, recalling that

[ P(XY) > o] ds = Ep(X€) - d*,
it follows that

Ty = my(s)ds —gélel’:)n {/doolp[w(lc) > g ds}

:/d My (s)ds — sup {E[(XY) —d]T}
Ceen

SinceE[y(X™M)] is finite, (21) finally implies that/ € ¢7([d, 00)). If the integral
[ my(s)ds = oo, trivially €7([d, 00)) = €". O

Remark 20 Theorem 19 is valid for right-open intervals but it does notchin
full generality. For instance, if we fix a trivial interval ogisting of a single point,
we go back to the originaVaR problem. In such casel/ does not lead to the
worst-possible scenario.

Remark 21 For the above theorem, the only relevant portfolios, . . ., X,,) are
those for which/;* m,(s)ds is finite. This technical condition is satisfied for all
marginal distributions of interest. As described in theyoeis sections and illus-
trated in Figure 8 for the density of th&(0,1)-N (0, 1)-portfolio of Example 9,
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under the optimizing copula, the mass (s) is concentrated on the upper trian-
gle. On the remaining strips, where only one marginal takgh kalues, the mass
is zero. Observe that, by the definition of copuata,(s) can not exceed the sum
of the marginal tails relative to these strips, i22(s/2). In arbitrary dimensions,
with the same argument, we have that

/d my(s) ds < Zzl/d Fi(s/n) ds < oo (23)

for marginal dfsfy, . . ., F,, satisfying/;7, Fi(s)ds < co. The latter trivially holds

if the marginal rvs are integrable. In particular, X1, ..., X,, denote losses and
assume only positive values, condit(@3) is satisfied provided that their expecta-
tions are finite. The finiteness §f° 7, (s)ds is equivalent to the finiteness of the
expectation of the k™ in Proposition 23. We prove this result in full generality fo
non-decreasing, continuous and increasing marginals in Proposition 24 in the
Appendix.

Fig. 8. Density and contour plot of the joint distribution ¢X;, X>) maximizing
P[X; + X3 > s] in Example 9.

The main issue underlying Theorem 19 is that, even if the catamic dependence
structure does not lead to the worst-case scenario for tlgenar VaR problem,

if an insurance company wants to bound well,,(F1, ..., F,)(s) for all thresh-
olds in [d, o0) in the sense defined by (22), comonotonicity provides a prude
evaluation for the aggregate risk. The next theorem daigerinsight into an ex-
tension of Theorem 19 for generalss functions\, i.e. every increasing, convex
function A : [0,1] — R{ satisfyingA(0) = 0. For a copulaC, let ecy(s) :=
ocw(F1, ..., Fy)(s) —my(s) denote the error function in (22).
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Theorem 22 ConsiderX® = (X1, ..., X,) with marginal distributiondg?, . . ., F,,
and lety be as in Theorem 19 witly m, (s)ds < oo. Then there existdc €
ld¢, de| such that for all loss functionaA:

/d “Noey(F,. . F)(s) — my(s)]ds > /d “Aowo(Fry .oy F)(s) — my(s)ds
(24)
for everyd > d., where

de :=sup{d € R|ecy(s) < emyp(d) Vs > d
andey 4 (s) > ecy(s) on some intervald;., d)},
de = inf{d € Rlecy(s) > enry(s) Vs > d}.

Proof Theorem 19 yieldg,;* ec.,(s)ds > []° en(s)ds for all d € R. The latter
integrals are finite sincg™ m,(s)ds < co. Denote withi3(d, co) andm the Borel
sets on(d, o) and the Lebesgue measure, respectively. Applying Chong4(19
Theorem 1.6, Theorem 2.1 and Corollary 1.2:t9, ande,; ., with @ = A and
(X, A, p) = (X', N 1) = ((d, 00), B(d, 00), m), (24) is equivalent to

| Tecuts) —ultds = [ learsls) —ul*ds (25)

for all u € R. By definition,d < dc andec, > enry 0N [de, 00) implying de <
dc. Assume now-oco < d¢ < de- and letd € (d, d]. Choosingu = ey, (de) in
(25) we have that

[ eewts)=utas = [ lecs)—emuldol s + [ feculs) = enolie)]ds
do
|

_ /fc ecu(s)—emu(de)] “ds< [

< [ learuls) —ul*ds,

enw(8)—enp(de)| ds

which concludes the proof. O

With respect to a copulé’ and any loss functiolh, comonotonicity is hence a
suitable dependence scenario [da, o) and it provides a prudent VaR on the
correspondingy-set. Note that, for a copuld, the set in the definition af, may
be empty and hencé. arbitrarily small. Contrarily, since/(X%) <, ¥(X™),
we have thatls < oo if the two dfs cross finitely many times. Unfortunately, in
generald, andd. may become arbitrary large. For instance, if the functiois
unbounded, Riischendorf (1981), Theorem 5 yields theemdst of a copuld
depending on), s and the marginals such that

my(s) = og ,(F1, ..., Fo)(s) < ony(F1, .. Fo)(s),
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where, in generalC' # M implying Supceen do = oo. Analogously there exist
dependence structures leadingt® ... do = co. We therefore conclude that an
extension of Theorem 19 to loss functionals can only exisstotable subclasses
of ¢".

5 The Presence of Information

Throughout this paper we mainly assumed a no-informatienago and put the
lower Fréchet boundll’ as lower bound for the unknown copulain Theorem 5.
From a mathematical point of view this is an unsatisfactonial assumption,
since, forn > 2, W is not a copula anymore and the bound provided in Theorem 6
fails to be sharp. However, we want to warn the reader fronosimg some a priori
assumption such & > II and we emphasize that similar restrictions may lead to
a critical undervaluation of the portfolio risk. The assuiopC' > 11, for instance,

is justified by the idea that the worst-VaR scenarios is iegpby the so-called
positive lower orthant dependenisks withP[X; < z4,..., X, < x,] > P[X; <
x1]-...-P[X, < x,]. Unfortunately, this is not true and restricting the optiation

to the clas§C' > I} substantially changes the initial problem, since it does no
allow to focus on riskier portfolios, as longas,. > my ;. Thisis a consequence of
the fact that the componentwise ordering in the ci&sis not complete and, putting

a lower bound on a copula, excludes all copulas not compatalduch bound. To
point out this aspect, we observe that countermonotonptéys a central role in
the definition of the family¢™ arising from (6), whereas every copula shuffled with
it is not comparable with the independence scenario.

6 Conclusions

In this paper we focus on the copulas leading to the worssiptesvaR for a func-

tion of dependent risks and we emphasize that comonotgmiois not lie in this
family. Such worst-case scenarios depend upon the tewdiere the VaR is eval-
uated and therefore are not reasonable from a practicat pbiiew. Moreover,

these solutions are known only for two-dimensional poiflor in presence of
partial information. The investigation of optimal boundsarbitrary dimensions
with no prior information remains open. Therefore, we pdevan alternative ap-
proach supporting the assumption of comonotonicity in @aent evaluation of the
guantiles of the aggregate position.
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Appendix  The operator ¢,

In this section we extend a claim of Denuit et al. (1999), pb@Bhowing that the
operator

Tow(F1, .. Fo)(s) = sup C(Fi(x1),..., Faoi(2p1), F, (V7 (5))),

Tlyenny Tn—1€R

with ¢7 (s) = sup{z, € R|¢(x_,,z,) < s}, for fixedz_,, € R"!, is actually
the left-continuous version of a df.

Proposition 23 For ¢y : R® — R non-decreasing, there exists a random variable
K such thatre (F1, ..., F)(s) = P[K < s.

Proof Sincey is non-decreasing in each componenty(s) := ¢ (Fi1, ..., F,)(s)
is a non-decreasing function. Hence, we have to show traalsb left-continuous
and that its right and left limits converge to one and zerspeetively. To prove

thatlim, .. 7¢,4(s) = 1, we fixe > 0 and defineu® = (ug,...,u;) as a vector
satisfying
£
Fu)>1——, i=1,...,n.
n

The existence of such a vector is straightforward, siige. ., F;, are non-defective
dfs. By definition, the function): is non-decreasing and its right limit is either
finite or infinite. Suppose it is finite. For every realit follows that

sup{z, € R|¢(us,,x,) < s} < lim 93 (s) =: R < oo,
which implies
v(us,,,x,) > sforalz, > R.

Thereforey(u®,,, R) = oo, which contradicts) havingR as its range. Hence
R = oo and it is always possible to select a regldepending only om, such that

Ve (se) > ug, implying

Ful (s2) = Falug) = 1- =

For ¢4 (s.) we also obtain that
Top(ss) = sup C(Fi(21), .o Foor(@n-), 7 (¥, (50))

> C(R), ., Far (), Fiy (05 (52))
> W(F(u1), .., Fooaug ), By (W5 (se)))
> (1—%)n—n+1:1—5,
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and, sincerc,, is non-decreasingy(s) > 7¢(s.) > 1 — ¢ for everys > s..
Hence the right limit converges to one. Similarly, for thi lenit, we fix ¢ > 0 and
chooseu satisfyingF;(u;) <e,i=1,...,nforwhichL := lim, . ¢3: (s) =
—oo0. Itis always possible to select a rea) depending only on, such that);- . (se) <
u;, and

Fy (e (se)) < Fu(uy) <e.

Let now A, := {z_, € R"'|z; < u forsomei € {1,...,n — 1}} and
Ay i={r_, e Rz >usforalli=1,...,n—1}. Then

sup C(Fi(21), .- Foa(na), By (U7 (52))

$7n614u5

< sup M(Fi(1),..., Faa(@na), Fy (07 (s0)  (26)

T_n€Aue

If © € A, thenyy (s.) <1y (s.) and hence

sup C(Fi(z1),..., Faci(zn-), F, (V5 (s2)))

r_pEAue

< sup C(Fi(x1),..., Fooi(@n-1), F, (¥ (s2))) (27)

T_n€Aue "

< Fn_("vz);\f_n(sa)) <é&.

From (26) and (27) we have that ,(s.) < e. Sincerc, IS non-decreasing,
Top(8) < Toy(se) < e forall s < s. and the left limit goes to zero.

It remains to show that. , is left-continuous. For non-decreasing functighs

R — R left-continuity is equivalent to lower-semicontinuityyBrudin (1974),
p. 39, the supremum of any collection of lower-semicontusifunction is lower-
semicontinuous. It is sufficient then to show that

C(Fi(21), - Fooa(znoa), Fy (Y7 (5)))

is left-continuous ins for everyz_,, € R""!. By uniform continuity ofC, left-
continuity and non-decreasingness/gf, and non-decreasingnesswf (s), the
problem is reduced to show that  (s) is left-continuous. By definition, it is non-
decreasing and hence, for every reathere existd(s) := lim,_.,_ ¢, (z). As-
sume now thaty; (s) is not left-continuous. Then there existswith I(s;) <
Y, (s1). Letl(s;) be finite (otherwise there is nothing to prove). Then, foii-arb
trary positives, we have

sup{z, € R|¢Y(x_p,x,) < 51—} <I(s1) < 00
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and hence, whenever, > [(s;), it follows thaty(z_,,, x,) > s; — €. Sincee is
arbitrary, it follows that)(x_,,, (s1)) > s1, contradicting the fact that

(o a) < s TOT everyz, < v7_ (s:),

which concludes the proof. O

The following proposition states that, under suitable agstions, the rvK has
finite expectation.

Proposition 24 Let X¢ have increasing, continuous marginals, ..., F,, ¢ :
R"™ — R be non-decreasing continuous and increasing in the lastrzgnt. Then,
for K as in Proposition 23E[K] < const + [;° T, (s)ds < oo forall d € R if
and only ifE[y)(X™)] < co.

Proof Arandom variablé” with df /' has finite expectation if and only jf_ F(z)dx <
oo and [3° F(x)dz < oo, which is equivalent t&[Y — d|* < oo for all d € R. We
therefore have to show that

/doo ip(s) ds < 0o <= E[p(XM) — d* < oo 28)
for all d € R. By the definition ofz,(s), we have that for € R,

My _ g+ [T My S < [T
B[p(X™) —dJ* = [ TPR(X™) 2 s]ds < [ m(s) ds
and hence =" immediately follows.

Assume now that the rhs of (28) holds andlebe uniformly distributed off0, 1].
By Dhaene et al. (2001), Theorem 2 we have that

Elp(U) —d" = E[p(X") — d|* < oo,

whereo : [0,1] — R, ¢(u) := ¢(F; *(u),. .., F7(u)). Under the assumptions of

? n

the theoremg¢ is continuous ana(¢(s)) = s. We can write

mw(S) <1- TW,qj)(Fla ey Fn)(S)
=1— sup {(Fi(z1)+ -+ Foa(zn) + Fy (07 (s) —n+1)"}

:E_nER"_l

< 1nf I{Fl (l‘l) —+ e+ Fn—l(xn—l) + IP[Xn Z ’QZ);_"(S)]}. (29)

T x_,€Rn—
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Choosingzr_,, = (F; ' (¢7(s)), .. n 1(<Z> 1(s))) in (29) and since) is increas-
ing in the last argumentzr (3) F1(¢71(s)). Integrating, we finally obtain:
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