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Abstract

The worst-possible Value-at-Risk for a non-decreasing function ψ of n dependent risks is
known whenn = 2 or the copula of the portfolio is bounded from below. In this paper we
analyze the properties of the dependence structures leading to this solution, in particular
their form and the implied functional dependence between the marginals. Furthermore we
criticise the assumption of the worst-possible scenario for VaR-based risk management and
we provide an alternative approach supporting comonotonicity.
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1 Introduction

Consider an insurer holding a portfolio consisting ofn policies with individual risks
X1, . . . , Xn over a fixed time period. Given some measurable functionψ : R

n → R,
a relevant task in insurance mathematics is the investigation of the risk position as-
sociated withψ(X1, . . . , Xn), when the marginal distributions of the single risks
are known. Actuarial examples of the functionψ include

∑n
i=1 xi, simply charac-

terizing the aggregate claim amount deriving from the policies or
∑n
i=1 hi(xi) and

h(
∑n
i=1 xi), providing the risk positions for a reinsurance treaty withretention func-

tionshi, i = 1, . . . , n and a global reinsurance treaty with global retention function
h, respectively.
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The problem of finding the best-possible lower bound on the distribution function
(df) of ψ(X1, . . . , Xn) has received a considerable interest in insurance mathemat-
ics. From a financial risk management point of view, the problem is equivalent
to finding the worst-possible Value-at-Risk (VaR) for the corresponding aggregate
position. Here we refer to the Introduction in Embrechts andPuccetti (2004) for
details.

Modelling the interdependence arising in a random portfolio calls for the use of
copulas. If a lower bound on the copula of the vector(X1, . . . , Xn) is given, the
above problem is fully solved and the bounds provided in Embrechts et al. (2003)
are sharp. In the no-information case the latter do hold onlyif n = 2. Rather than
treating the technical proof of such results, for which we refer to the above cited
references, in this paper we analyse in more details the properties of their solu-
tions. We concentrate mainly on the no-information case, when a lower bound on
the copula of the portfolio is not available and a solution isknown only for two-
dimensional portfolios. Without loss of generality, we study the optimizing copula
for the sum of two dependent risks, which is well-known to differ from comono-
tonicity. In particular we discuss its shape, its implications in terms of dependence
and we criticise it as not being a rational scenario for an insurance company. Finally,
we provide an alternative optimization approach leading toa suitable measure of
risk, which supports the assumption of comonotonicity for aprudent evaluation of
the VaR for the aggregate position.

2 Preliminaries and fundamental results

In this section we present some well-known concepts about copulas and briefly
recall the fundamental results about the problem of bounding the VaR for functions
of dependent risks. For more details about copulas, we referto Nelsen (1999).

2.1 Value-at-Risk and dependence structures

On some probability space(Ω,A,P), let the random vectorX := (X1, . . . , Xn)
represent a portfolio of risks. Given a measurable functionψ : R

n → R we face
the problem of finding the supremum of the VaR for the aggregate positionψ(X)
over the class of possible dfs forX having fixed marginalsF1, . . . , Fn.

Definition 1 Let ϕ : R → R be a non-decreasing function. Itsgeneralized left
continuous inverseis the functionϕ−1 : R → R defined byϕ−1(y) := inf{x ∈
R |ϕ(x) ≥ y}. For 0 ≤ α ≤ 1 the Value-at-Risk at probability levelα for a
random variableY with distribution functionG is itsα-quantile, i.e.

VaRα(Y ) := G−1(α).
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Of course, quantiles of the df ofψ(X) can be computed if the joint distribution
functionF (x1, . . . , xn) = P[X1 ≤ x1, . . . , Xn ≤ xn] is known. At this point, the
notion of copula becomes useful.

Definition 2 An n -dimensional copulais ann-dimensional distribution function
restricted to[0, 1]n having standard uniform marginals. We denote withCn the fam-
ily of n-dimensional copulas.

Given a copulaC ∈ Cn and a set of univariate marginalsF1, . . . , Fn, we can always
define a dfF onR

n having these marginals by

F (x1, . . . , xn) := C(F1(x1), . . . , Fn(xn)). (1)

Hence, givenn dfs F1, . . . , Fn, we letXC = (X1, . . . , Xn) be the random vector
on R

n having a copulaC satisfying (1). Observe that this copula is unique for
continuous marginal dfs. Conversely, Sklar’s Theorem (Sklar (1973), Theorem 1)
states that there always existsC ∈ Cn coupling the marginals of a fixed dfF
trough (1).

Comparing copulas pointwise and defining the riskiness of a dependence structure
through this comparison, we recall that any copulaC lies between thelowerandup-
per Fréchet boundsW (u1, . . . , un) := (

∑n
i=1 ui − n + 1)+ andM(u1, . . . , un) :=

min1≤i≤n ui, namely
W ≤ C ≤M. (2)

Observe that, contrary toM , the lower Fréchet boundW is not a distribution func-
tion for n > 2. Random variables coupled throughC = M (C = W , respectively)
are calledcomonotonic(countermonotonic). The independence copula is denoted
by Π(u1, . . . , un) :=

∏n
i=1 ui.

Remark 3 Comonotonicity characterizes the risks of the portfolio asbeing in-
creasing functions of a common random variable. It is therefore a strong depen-
dence and measure of dependence such as Kendall’sτ or Spearman’sρ will de-
scribeM as a perfect structure, i.e.τ(M) = ρ(M) = 1. It is precisely this rep-
resentation which motivates the use of the concept of comonotonicity in financial
applications. Moreover, assuming comonotonicity leads toalmost all the computa-
tional benefits of independence, yielding, in addition, a prudent scenario in many
contexts as we will emphasize in Section 4. For an in depth discussion of comono-
tonicity, see Dhaene et al. (2001).

2.2 Bounds on value at risk for functions of dependent risks

We now recall the two fundamental results being the object ofour analysis. For a
proof of both theorems and further discussions, we refer to Embrechts and Puccetti
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(2004) and the references therein. For a copulaC and marginalsF1, . . . , Fn, define

σC,ψ(F1, . . . , Fn)(s) :=
∫

{ψ<s}
dC(F1(x1), . . . , Fn(xn)),

τC,ψ(F1, . . . , Fn)(s) := sup
x1,...,xn−1∈R

C(F1(x1), . . . , Fn−1(xn−1), F
−
n (ψx̂−n

(s))),

whereψx̂−n
(s) := sup{xn ∈ R |ψ(x−n, xn) < s} for x−n := (x1, . . . , xn−1) ∈

R
n−1. In the following, we refer to non-decreasing functionsψ : R

n → R as being
non-decreasing in each component.

Remark 4 Observe thatσC,ψ(F1, . . . , Fn)(s) = P[ψ(XC) < s] for XC having
marginalsF1, . . . , Fn. In the Appendix, Proposition 23, we show that the operator
τC,ψ in (3) is actually the left-continuous version of a df, i.e. there exists a random
variableK with P[K < s] = τCL,ψ(F1, . . . , Fn)(s). This result extends a claim
of Denuit et al. (1999), p. 37. As first noted in Schweizer and Sklar (1974) for the
sum of two risks, ifCL 6= M there does not exist a measurable real functiong such
thatK = g(X), withX having marginalsF1, . . . , Fn.

Theorem 5 LetXC = (X1, . . . , Xn) be a random vector onRn (n > 1) having
marginal distribution functionsF1, . . . , Fn. Assume that there exists a copulaCL
such thatC ≥ CL. If ψ : R

n → R is non-decreasing, then for every reals we have

σC,ψ(F1, . . . , Fn)(s) ≥ τCL,ψ(F1, . . . , Fn)(s). (3)

Translated in the language of VaR, the above statement becomes

VaRα(ψ(X1, . . . , Xn)) ≤ τCL,ψ(F1, . . . , Fn)
−1(α)

for everyα in the unit interval.

The bounds stated in Theorem 5 are pointwise best-possible and cannot be tight-
ened ifn = 2 or a lower boundCL > W on the copula of the portfolioXC is
assumed.

Theorem 6 Further to the hypotheses of Theorem 5, we assume thatψ is also
right-continuous in its last argument. Define the copulaCα : [0, 1]n → [0, 1] as

Cα(u) :=





max{α,CL(u)}, if u = (u1, . . . , un) ∈ [α, 1]n,

min{u1, . . . , un}, otherwise,

whereα = τCL,ψ(F1, . . . , Fn)(s). Then this copula attains bound(3), i.e.

σCα,ψ(F1, . . . , Fn)(s) = α. (4)

The latter theorem motivates the investigation of the dependence structures leading
to the worst-case VaR scenario whenn = 2 or CL > W . ForCL = W andn > 2
the bound stated in (3) is still valid but no more sharp.
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3 Analysis of the worst-case portfolios

The aim of the present paper is to give more insight into the shape of the copula
yielding the worst-possible VaR forψ(XC) = ψ(X1, . . . , Xn) and to understand
the implied dependence between the marginals. Under all possible dependence
structures, the worst-case scenario for the VaR at levelα is given by the copula
minimizingP[ψ(XC) < s] over s-regions depending onα. Indeed, according to
Definition 1 with

mψ(s) := inf
C∈Cn

{P[ψ(XC) < s]}, s ∈ R, (5)

we have that VaRα(ψ(XC)) ≤ m−1

ψ (α), α ∈ [0, 1]. The problem at hand becomes
also the characterization of the copula minimizingmψ, or equivalently maximizing

mψ(s) = 1 −mψ(s) = sup
C∈Cn

{P[ψ(XC) ≥ s]}, s ∈ R. (6)

Such a copula will be referred to as a worst-casescenariofor the aggregate position
ψ(XC). We use the term scenario to indicate a (possibly degenerate) set of probabil-
ity measures in line with Artzner et al. (1999). Analogous tothe above definitions,
in the presence of partial information, we writemCL,ψ (respectivelymCL,ψ) and the
infimum (supremum) is taken over allC ∈ Cn satisfying the boundary condition
C ≥ CL.

In the next subsections, we concentrate on the sum of risks (generalizations to non-
decreasing continuous functionsψ being straightforward) and we chooseCL = W .
See however Section 5 for some comments on the latter choice of ”no dependence
information”.

3.1 Two-dimensional portfolios

If we take two risks, the bound given in Theorem 5 cannot be tightened and there
always exists a two-dimensional copula meeting that bound at a given points. We
restate Theorem 6 in this particular case.

Theorem 7 LetXC = (X1, X2) be a random vector onR2 having marginal dis-
tribution functionsF1, F2. Define the copulaCα : [0, 1]2 → [0, 1],

Cα(u) :=





max{α,W (u)}, if u = (u1, u2) ∈ [α, 1]2,

min{u1, u2}, otherwise,

whereα = τW,+(F1, F2)(s). Then this copula attains bound(3), i.e.

σCα,+(F1, F2)(s) = α. (7)
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Fig. 1. Support of the copulaCα, setsAs, Bs and curveγ for: N(0, 1)-N(1, 2)-normal
marginals ands = 1 (which givesα = 0.1613) (left); LN(0.4, 1)-LN(0.4, 1)-marginals
ands = 4 (α = 0.2306) (right).

Proofs of Theorem 7 can be found in Frank et al. (1987) and Rüschendorf (1982).
Our aim here is to restate the problem of maximizing (6) from ageometric point
of view and illustrate the properties of the optimizing copulas leading to the worst-
case scenario for VaR. Without loss of generality, in what follows, we take contin-
uous, increasing marginals. Let moreover

Gs := {(x1, x2) ∈ R
2 | x1 + x2 ≥ s}

and
h : R

2 → [0, 1]2, h(x1, x2) := (F1(x1), F2(x2)).

The basic idea is to use the functionh to transport the optimization problem on
the unit square[0, 1]2. In fact,UC := h(XC) is a random vector, with distribution
functionC on [0, 1]2. The functionh is invertible, hence we have thatP[XC ∈ Gs] = P[h(XC) ∈ h(Gs)] = µC(As),

whereµC is the measure corresponding toC on [0, 1]2 and

As := h(Gs) = {(u1, u2) ∈ [0, 1]2 |F−1

1 (u1) + F−1

2 (u2) ≥ s}.

The maximization function (6) can now be rewritten as

m+(s) = sup
C∈C2

{µC(As)}. (8)

For α = 1, (3) leads toσC,+(F1, F2)(s) = 1 for every copulaC, hence takeα ∈
[0, 1). The boundary ofAs is the image of the curve

γ : R → [0, 1]2, γ(t) := (F1(t), F2(s− t)).

In Figure 1 the curveγ delimiting the setAs is drawn, with the support of the copula
Cα, in case of normal (N) and log-normal (LN) marginals.
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The copulaCα is uniformly distributed on its support, hence, defining

Bs := {(u1, u2) ∈ [0, 1]2 | u1 + u2 = 1 + α}

we haveµCα
(Bs) = 1 − α. As noted in Nelsen (1999), p. 187, this is the crucial

property leading to the statement of Theorem 7. In fact, when0 < α < 1, the
continuity of theFi’s implies that

α = τW,+(F1, F2)(s) = F1(x
′
1) + F2(s− x′1) − 1 (9)

for somex′1. Hence the curveγ meets the segmentBs at least in one point. The
technical (and for generaln andCL > W rather laborious) part of the proof consists
in showing thatγ always lies below the segmentBs, henceAs ⊃ Bs and

µCα
(As) ≥ µCα

(Bs) = 1 − α.

Noting thatµCα
(As) ≤ 1 − α, from Theorem 5 we obtain (7). Forα = 0, instead,

the existence of a tangent point betweenγ andBs is not necessary, since the copula
W yields the theorem. Analogous geometric considerations can be given for the
caseCL > W and for non-decreasing continuousψ.

Remark 8 Observe that the geometric properties of the support ofCα, illustrated
in Figure 1, can be extended to a whole family of copulas, which implies that the
dependence structure leading to the worst-case VaR is not unique.

Let Ĉ2
α and C2

α denote the family of copulas leading to the worst possible VaR
and the family of copulas sharing their support on[α, 1]2 with Cα, respectively.
Formally:

Ĉ
2

α : = {C ∈ C
2 | σC,+(F1, F2)(s) = α},

C
2

α : = {C ∈ C
2 |C(u1, u2) = Cα(u1, u2) for α ≤ u1, u2 ≤ 1}.

Observe that we can writêC2
α = {C ∈ C2 |µC(As) = µCα

(As)}. In particular, it
trivially follows that, every copula inC2

α attains bound (3), sinceC2
α ⊂ Ĉ2

α.

We now focus on the dependence implied by the copulas inC2
α. The support

Rα := {(u1, u2) ∈ [0, α)2 | u1 = u2} ∪ {(u1, u2) ∈ [α, 1]2 | u1 + u2 = 1 + α}

of the copulaCα implicitly defines the dependence of the coupled random variables
by the substitutionui = Fi(xi), i = 1, 2. In fact, if the copulaCα couplesX1 and
X2 into the random vectorXCα and if we assumeF1, F2 to be increasing on their
domain, then we haveX2 = g(X1), where the functiong : R → R is defined as

g(x) :=





F−1

2 (F1(x)), if x < F−1
1 (α),

F−1
2 (1 + α− F1(x)), otherwise.

(10)
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Analogously, every other copula inC2
α defines a functional dependence identical to

that ofg for x ≥ F−1
1 (α). For example, the copulaC1

α given by

C1

α(u1, u2) :=





max{CL(u1, u2), α}, when(u1, u2) ∈ [α, 1]2,
u1u2

α
, otherwise,

couples two marginals, which are independent if the first lies below the threshold
F−1

1 (α) and behaves likeCα otherwise. Figure 2 comparesRα with the support of
C1
α.
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Fig. 2. Supports of the copulasC0.5(left) andC1
0.5(right).

Merging the two marginals byCα is therefore equivalent to lettingX2 = g(X1).
Hence, the two risks aremutually completely dependent. Moreover, the copulaCα
is a so-calledshuffle-of-Mand hence implies thatX1 andX2 arestrongly piecewise
strictly monotonefunctions of each other, in the sense defined in Mikusiński et al.
(1991). Nevertheless, measures of dependence such as Kendall’s τ or Spearman’s
ρ describeCα as a non-perfect structure when0 ≤ α < 1, i.e. τ(Cα), ρ(Cα) < 1.
This is due to the fact that this copula only represents piecewise comonotonicity.

Mathematically, the dependence structure induced byCα is, however, as strong
ad the one induced byM , since the two variables coupled byCα are in a one-
to-one correspondence. Finally, note that every df onR

2 defined by applying a
Ĉ2
α-copula to the given set of marginals has asingular component, i.e. is mixed

with a continuous distribution having zero derivative except for a set of Lebesgue
measure zero. For instance,Cα is singular on its whole domain, whereasC1

α only
on [α, 1]2. For more details about singular distribution functions see Billingsley
(1995), Section 31 and Nelsen (1999), p. 23.

At this point, it is relevant to note that, in general,M /∈ Ĉ2
α when0 ≤ α < 1,

the caseα = 1 being the trivial one in whicĥC2
α = C2. This provides a further

geometric proof that comonotonicity does not lead to the worst possible scenario
for VaR and emphasizes the non-coherence of VaR as stated in Artzner et al. (1999).
Suppose thatX1 andX2 are identically distributed with unbounded, absolutely
continuous df having positive densityf . If f is eventually decreasing, it is easy to
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show that fors large enough we have thatα = 2F (s/2) − 1, while

σM,+(F, F ) = F (s/2) > α. (11)

A necessary condition forM to be inĈ2
α is that the point(α, α) lies in [0, 1]2 \ As.

Equation (11) implies that this condition is not satisfied for s large enough. Finally,
M ∈ Ĉ2

0 if and only if As = [0, 1]2, i.e. the sumX1 + X2 isP-a.s. bounded from
below by the thresholds. In this case the problem of bounding the VaR for the
sum does not arise. We conclude that, apart from pathological cases of no actuarial
importance, we have that

σM,+(F1, F2)(s) > m+(s)

when 0 ≤ α < 1. This equation shows that the assumption of comonotonicity
among the risks of the portfolio may lead to a dangerous under-valuation of the
VaR for the aggregate position. At first, the worst dependence scenario could seem
to be the one implied byM , since under comonotonicity it is indeed known that
every random variable is a non-decreasing function of the other, so that high values
for the first imply high values for the second. Theorem 6 provides a deeper view on
this issue, stating, instead, that for every thresholds such thatα < 1, there exists a
copulaCα yielding a value for the VaR which is higher than that of comonotonicity.
The following example further stresses the fact thatM does not belong, in general,
to Ĉ2

α.

Example 9 LetX1 be normally distributedN(0, 1) with df Φ and putX2 = −X1

to obtainP[X1 + X2 = 0] = 1. The copula describing this dependence is the
countermonotonic copulaW , under whichX2 is a non-increasing function ofX1.
According to Theorem 6,m+(0) = 0. In this set-up, the maximizing solution of(8)
is then the structure of dependence which is opposite to comonotonicity (note that
happens wheneverα = 0), for which we have instead:σM,+(Φ,Φ)(0) = 1/2. Fig-
ure 3 (left) illustrates how, in the case of standard normal marginals, for every posi-
tives ∈ R, there exists a copulaC ∈ Ĉ2

α such thatσC,+(Φ,Φ)(s) < σM,+(Φ,Φ)(s).
In the same figure (right) we also provide the shape of the bivariate distribution ob-
tained by applyingCα to standard normal marginals fors = 4.898 (α = 0.9857).
The reader should compare this figure to Figure 2 (right).
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Fig. 3. Range forP[X1 + X2 < s] for a N(0, 1)-N(0, 1)-portfolio. Together with
the independence and comonotonic value we plot the lower bound m+(s) (left); the
density of the distribution of(X1,X2) obtained by applying the copulaC0.9857 to a
N(0, 1)-N(0, 1)-portfolio is given in the figure on the right.

3.2 Two-dimensional uniform portfolios

We now state some simple results for uniform marginals that will turn out to be
useful in understanding then-dimensional case.

Proposition 10 Let the hypotheses of Theorem 7 be satisfied withF1, F2 uniformly
distributed on the unit interval. Then

Ĉ
2

α = C
2

α. (12)

Proof If α = 1, Ĉ2
1 = C2

1 = C2. Let 0 ≤ α = s− 1 < 1 andC ∈ Ĉ2
α.

H00

H20

H10

H21

H22 H11

H23

u1u1

u2u2

D1

D2

0 01

1

1

1

α

α α

α

As

E1

E2

Fig. 4. Sets defined in Proposition 10.

Observe that, for uniform marginals, the boundary ofAs coincides withBs. For the
region underlying such boundary we define

Ei := {(u1, u2) ∈ [0, 1]2 | u1 + u2 < s, ui ≥ α}, i = 1, 2
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as illustrated in Figure 4 (left). By the definition of copulaandC ∈ Ĉ2
α we have

that

µC(Ei ∪ As) = µC(Ei) + µC(As) = 1 − α, i = 1, 2,

µC(As) = 1 − α,

which impliesµC(Ei) = 0, i = 1, 2 andµC([0, α)2) = α. For the upper region we
introduce the following partition:

Hni := (α +
i(1 − α)

2n
+

1 − α

2n+1
, α+

(i+ 1)(1 − α)

2n
]

× (α +
(2n − i)(1 − α)

2n
−

1 − α

2n+1
, α +

(2n − i)(1 − α)

2n
]

for n ≥ 0 and i = 0, . . . , 2n − 1. See Figure 4 (right). In particular, consider
H00 = (1+α

2
, 1]2 and let

Ci : = {(u1, u2) ∈ [0, 1]2 | u1 + u2 > 1 + α, ui ≤
1 + α

2
}, i = 1, 2,

D1 : = {(u1, u2) ∈ [0, 1]2 | u1 + u2 = 1 + α, α ≤ u1 ≤
1 + α

2
},

D2 : = {(u1, u2) ∈ [0, 1]2 | u1 + u2 = 1 + α,
1 + α

2
< u1 ≤ 1}.

Using the properties of a copula and considering thatE1 andE2 have zeroµC-
measure, we have that

µC(H00) + µC(C1) + µC(D1) = 1 −
1 + α

2
=

1 − α

2
,

µC(C1) + µC(D1) =
1 + α

2
− α =

1 − α

2

and henceµC(H00) = 0. Analogously, applying the same arguments to the upper-
right triangles of the squares

[α,
1 + α

2
] × [

1 + α

2
, 1] and [

1 + α

2
, 1] × [α,

1 + α

2
],

respectively, we obtain thatµC(H10) = µC(H11) = 0. By iteration we have that
µC(Hni) = 0 for all n ≥ 0, i = 0, . . . , 2n − 1 and we trivially obtain

µC

(
∞⋃

n=0

2n−1⋃

i=0

Hni

)
= 0.

Hence the only possibility forC is to assign probability mass(1 − α) to the set
D1 ∪D2 = Bs, which implies thatC ∈ C2

α. �

Remark 11 With respect to(10), for 1 ≤ s ≤ 2 andXC = (X1, X2) having
standard uniform marginals and copulaC = Cα, X2 = g(X1), whereg : [0, 1] →
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[0, 1] is the linear function

g(x) =





x, if x < s− 1,

s− x, otherwise.

The above remark, together with Lemma 10, imply that the copulaC of a uniform
portfolioXC = (X1, X2) belongs tôC2

α if and only ifP[X1 +X2 = s|X1 +X2 ≥ s] = 1. (13)

3.3 Multidimensional portfolios

Though the bound (3) holds in arbitrary dimensions, Theorem7 fails to be valid
if we taken > 2. Proposition 12 below shows in a simple way that, if we choose
uniformly distributed marginals, it is not always possibleto choose a copulaC so
as to obtainmψ(s) = τC,+(F1, . . . , Fn)(s) =: α. Analogously tôC2

α in the previous
section, we define

Ĉ
n
α = {C ∈ C

n | σC,+(F1, . . . , Fn)(s) = α}.

Proposition 12 LetXC = (X1, . . . , Xn) be a random vector having marginal dfs
uniformly distributed on[0, 1]. Taken > 2 andn− 1 < s < n. ThenĈnα = ∅.

Proof Let Sn :=
∑n
i=1Xi and note that, for uniform marginals, we haveα =

s−n+1. If there existsk ∈ {1, . . . , n−2} such thatP[Sn−k < s−k] = 1 we haveP[Sn ≥ s] = 0 and the statement trivially holds. Suppose thenP[Sn−k ≥ s−k] > 0
for all k ∈ {1, . . . , n− 2}. In this case we haveP[Sn ≥ s] = P[Sn ≥ s, Sn−1 ≥ s− 1] +P[Sn ≥ s, Sn−1 < s− 1]

= P[Sn ≥ s|Sn−1 ≥ s− 1] ·P[Sn−1 ≥ s− 1],

sinceXn is uniformly distributed on[0, 1]. Proceeding by iteration we obtainP[Sn ≥ s] = P[Sn ≥ s|Sn−1 ≥ s− 1] . . .P[S3 ≥ s− n+ 3|S2 ≥ s− n+ 2]

·P[S2 ≥ s− n+ 2|X1 ≥ s− n+ 1](n− s).

(14)

Assume now that̂Cnα 6= ∅, i.e. there existsXC = (X1, . . . , Xn) with copulaC ∈
Ĉnα. It immediately follows thatP[Sn ≥ s] = P[X1 + · · · +Xn ≥ s] = n − s and
hence all factors in (14), apart from the last one, must be equal to one. In particular,
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Fig. 5. Range forP[X1 + X2 + X3 < s] for a standard uniform portfolio. Together with
the independence and comonotonic scenario, we plot the worst-case valuem+(s) which
differs from the lower boundτCL,+(s) given by (3).

this yields that P[X1 +X2 ≥ s− n+ 2|X1 ≥ s− n + 1] = 1, (15)P[S3 ≥ s− n + 3|S2 ≥ s− n + 2] = 1. (16)

According to (13), (15) implies thatP[S2 = s− n + 2|S2 ≥ s− n + 2] = 1,

which, together with (16), leads to

1 = P[S3 ≥ s− n + 3|S2 ≥ s− n+ 2] = P[X3 ≥ 1|S2 ≥ s− n + 2]

=
P[X3 ≥ 1, S2 ≥ s− n + 2])P[S2 ≥ s− n + 2]

.

The latter equation is clearly a contradiction to the fact thatX3 is uniformly dis-
tributed on[0, 1]. �

Remark 13 The bound given in(3) fails to be sharp whenn > 2 andCL = W .
This derives from the fact thatW is not a copula forn > 2, i.e. for more than
two random variables it is impossible for each of them to be almost surely a non-
increasing function of each of the remaining ones. In Rüschendorf (1982), the
worst-case VaR for uniform and binomial marginals is provided. Till now, this
is the only known analytical result. In fact, the optimum dependence for uniform
marginals does not solve the general problem, showing that,contrary to the two-
dimensional case forn > 2, the dependence structure maximizing(6) may depend
upon the choice of the marginals. In Embrechts and Puccetti (2004), however, an
improved bound for the VaR is provided. Figure 5 illustratesthe optimum values
for uniform portfolios.
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4 Evaluating risk through comonotonicity

In the following, we show that the assumption of comonotonicity among theXi’s
may lead to a prudent evaluation of the risk associated with the aggregate position
ψ(X). To this purpose, we first illustrate that such kind of dependence leads to the
more dangerous scenario with respect to both stop-loss and supermodular order.
Then, changing the optimization approach discussed in the previous sections, we
show that comonotonicity also arises as a suitable dependence assumption for our
original VaR problem.

4.1 Stochastic orders and comonotonicity

In this section we provide some motivation for the assumption of comonotonicity
among risks based on stochastic orders. In this framework weillustrate an important
application in actuarial mathematics. We first recall some concepts about stochastic
orders.

Definition 14 LetX andY be two real random variables. We say thatX is smaller
thanY in stop-lossorder and we writeX ≤sl Y if for all non-decreasing convex
functionsg : R → R we have

E[g(X)] ≤ E[g(Y )], (17)

provided the expectationsE[g(X)], E[g(Y )] are finite.

The stop loss-order compares one-dimensional random variables. A multidimen-
sional stochastic order implying stop-loss order is the so-calledsupermodularor-
der, i.e. the order based on a comparison of integrals of supermodular functions
f : R

n → R satisfying

f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y), for all x, y ∈ R
n,

wherex ∨ y (x ∧ y) is the componentwise maximum (minimum) ofx, y.

Definition 15 LetX andY be twon-dimensional random vectors. We say thatX is
smaller thanY in supermodularorder and writeX ≤sm Y if for all supermodular
functionsg : R

n → R,
E[g(X)] ≤ E[g(Y )], (18)

provided the expectationsE[g(X)], E[g(Y )] are finite.

The next theorem recalls two important results about supermodular and stop-loss
orders. In particular it states that comonotonicity represents the worst possible de-
pendence scenario with respect to both such orders.
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Theorem 16 Let XC = (X1, . . . , Xn) be an-dimensional random vector hav-
ing marginal distributionsF1, . . . , Fn and copulaC. Letψ : R

n → R be a non-
decreasing supermodular function. Then

(a) XC ≤sm XM ,
(b) ψ(XC) ≤sl ψ(XM).

Proof As noted in Müller (1997), part (a) follows from Theorem 5 inTchen (1980).
Sinceψ(XC) ≤sl ψ(XM) holds if and only if (18) holds for all non-decreasing
convex functionsg : R → R for which expectations exists, to prove part (b) it is
sufficient to show that for such a functiong the functiong◦ψ is supermodular. This
follows from Lemma 2.2(b) in Bäuerle (1997). �

Remark 17 Note that Theorem 16(b) applies to a large class of interesting func-
tionals, includingψ(x) =

∑n
i=1 hi(xi), where thehi’s are non-decreasing (see

also Müller (1997)) andψ(x) = h(
∑n
i=1 xi) for h non-decreasing and convex.

For more examples of supermodular functions or some interesting methods of con-
structing them, Marshall and Olkin (1979), pp. 150–155 is the standard reference.
Here we want to point out that Theorem 16(b) does not apply to(6) because the
indicator function of the set{ψ(X) ≥ s} is not supermodular.

Consider again a portfolio of risksXC = (X1, . . . , Xn). In insurance mathematics
if ψ(XC) is to be insured with a retention leveld, the net premiumE[ψ(XC)−d]+ is
called thestop-losspremium. A stop-loss premium is determined once the retention
d and the multivariate df ofXC are given. Hence we set

πC,ψ(F1, . . . , Fn)(d) := E[ψ(XC) − d]+,

Pψ(d) := sup
C∈Cn

{πC,ψ(F1, . . . , Fn)(d)}. (19)

Next proposition states that the univariate stop-loss order based on the comparison
of integrals of non-decreasing convex functions is equivalent to the stochastic order
based on the comparison of stop-loss premiums. It also explains the name stop-loss
for the stochastic order≤sl.

Proposition 18 Let X and Y be two real random variables. Then the following
statements are equivalent:

(a) X ≤sl Y ,
(b) For all real d

E[X − d]+ ≤ E[Y − d]+. (20)

A simple proof can be found in Müller and Stoyan (2002), Theorem 1.5.7.
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According to Proposition 18, part (b) of Theorem 16 is equivalent to

Pψ(d) = πM,ψ(F1, . . . , Fn)(d) (21)

for all non-decreasing supermodular functionsψ, real retentiond and arbitrary
dimensionn. HenceπC,ψ(F1, . . . , Fn)(d) is maximized overCn when the fixed
marginals of the portfolio have a comonotonic joint distribution, providedψ is a
non-decreasing supermodular function. Observe that this is a much stronger re-
sult if confronted with Theorem 6. It is remarkable to note that this solution is not
unique pointwise. In Figure 6 (right) we plot the density of adf onR

2 which, though
differing from comonotonicity (left), maximizesπC,+(Φ,Φ)(0) overCn. However,
M is the only dependence structures that attains (19) for all real retentionsd.

Fig. 6. Densities of two-dimensional distributions obtained by comonotonic dependence
(left) and by maximizingπC,+(Φ,Φ)(0) overC2 (right).

4.2 Changing the optimization approach in the VaR problem

Theorem 5 provides a lower bound for the probabilityσC,ψ(F1, . . . , Fn)(s), respec-
tively, an upper bound for the VaRα(ψ(X1, . . . , Xn)). Hence an insurance company
holding the risky positionψ(XC) knows that

VaRα(ψ(XC)) ≤ τW,ψ(F1, . . . , Fn)
−1(α), C ∈ C

n.

This equation represents the worst-case VaR scenario and can be very expensive
for the insurer to handle. Recalling the definition of the family of copulas reaching
the above levelα, i.e.

Ĉ
n
α = {C ∈ C

n | σC,ψ(F1, . . . , Fn)(s) = α},

two quite natural conditions the insurer may ask to be satisfied are

(a) Ĉnα 6= ∅,
(b) Ĉnα does not depend ons.
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Fig. 7. Range forP[X1 + X2 < s] under different dependence scenarios for a standard
uniform portfolio.

Indeed (a) requires the bound to be sharp, i.e. that there exists a structure of depen-
dence which determines the worst-case VaR scenario. Condition (b) requires the
worst scenario for the insurance company to be independent of the thresholds or,
equivalently, independent of the parameterα that is chosen by the company or by
the regulator to evaluate the aggregate risk.

In the previous sections we showed that (a) is violated whenn > 2 but it holds
in the two-dimensional case, while (b) is violated even whenn = 2. Our aim here
is to change the optimization approach so that the solutionssatisfy conditions (a)
and (b). In order to do this, we define the worst-case VaR scenario over a suitable
range for the thresholds, rather than on a single value. Figure 7 explains how that
can be done.

In this graph we plotσCr ,+(F1, F2)(s) for different values ofr ∈ (0, 1) in case of
two uniform marginals together with the best-possible lower boundm+(s) and the
comonotonic curveσM,+(F1, F2)(s). As a consequence of Theorem 7, every copula
Cr gives a lower bound that meets the curvem+(s) at the corresponding threshold
and then becomes one. The intuition behind this plot is that the comonotonic cop-
ula, though never meeting the boundm+(s), is closer to it than any other copulaon
average.

This idea can now be formalized by introducing a loss function Λ to measure the
error committed by evaluating the risky position using a fixed copulaC ∈ Cn rather
than the appropriate worst-possible structure of dependence. We then integrate the
loss function over a suitable setB and we search for the infimum over the class of
all n-copulas. Defining

rψ := inf
C∈Cn

{∫

B
Λ[σC,ψ(F1, . . . , Fn)(s) −mψ(s)]ds

}
(22)

for some non-decreasing functionalΛ : [0, 1] → R
+
0 , we therefore introduce a

measure for the distance between the worst and the comonotonic scenario in Fig-
ure 7, whereΛ can be viewed as a weighting function. Let̂Cn(B) denote the set of
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copulas leading to (22). To focus our attention, we chooseB = [d,∞).

Theorem 19 Let Λ = Id andB = [d,∞). Then, for every real thresholdd and
non-decreasing supermodular functionψ satisfyingE[ψ(XM)] <∞, we have that

M ∈ Ĉn([d,∞)).

Proof Let
∫∞
d mψ(s)ds <∞. Note thatmψ(s) depends only on the fixed marginals,

so we obtain

rψ = inf
C∈Cn

{∫ ∞

d
[σC,ψ(F1, . . . , Fn)(s) −mψ(s)] ds

}

= − sup
C∈Cn

{∫ ∞

d
[P[ψ(XC) ≥ s] −mψ(s)] ds

}

=
∫ ∞

d
mψ(s) ds− sup

C∈Cn

{∫ ∞

d
P[ψ(XC) ≥ s] ds

}

=
∫ ∞

d
mψ(s) ds− sup

C∈Cn

{∫ ∞

d
P[ψ(XC) > s] ds

}
,

where the last step is obtained sinceP[ψ(XC) = s] can be positive at most for
countably many values ofs, so that the last two integrals contained in the brackets
are the same. Finally, recalling that

∫ ∞

d
P[ψ(XC) > s] ds = E[ψ(XC) − d]+,

it follows that

rψ =
∫ ∞

d
mψ(s)ds− sup

C∈Cn

{∫ ∞

d
P[ψ(XC) > s] ds

}

=
∫ ∞

d
mψ(s)ds− sup

C∈Cn

{E[ψ(XC) − d]+}

=
∫ ∞

d
mψ(s)ds− Pψ(d).

SinceE[ψ(XM)] is finite, (21) finally implies thatM ∈ Ĉn([d,∞)). If the integral∫∞
d mψ(s)ds = ∞, trivially Ĉn([d,∞)) = Cn. �

Remark 20 Theorem 19 is valid for right-open intervals but it does not hold in
full generality. For instance, if we fix a trivial interval consisting of a single point,
we go back to the originalVaR problem. In such case,M does not lead to the
worst-possible scenario.

Remark 21 For the above theorem, the only relevant portfolios(X1, . . . , Xn) are
those for which

∫∞
d mψ(s)ds is finite. This technical condition is satisfied for all

marginal distributions of interest. As described in the previous sections and illus-
trated in Figure 8 for the density of theN(0, 1)-N(0, 1)-portfolio of Example 9,
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under the optimizing copula, the massm+(s) is concentrated on the upper trian-
gle. On the remaining strips, where only one marginal takes high values, the mass
is zero. Observe that, by the definition of copula,m+(s) can not exceed the sum
of the marginal tails relative to these strips, i.e.2Φ(s/2). In arbitrary dimensions,
with the same argument, we have that

∫ ∞

d
mψ(s) ds ≤

n∑

i=1

∫ ∞

d
F i(s/n) ds <∞ (23)

for marginal dfsF1, . . . , Fn satisfying
∫∞
d/n F i(s)ds <∞. The latter trivially holds

if the marginal rvs are integrable. In particular, ifX1, . . . , Xn denote losses and
assume only positive values, condition(23) is satisfied provided that their expecta-
tions are finite. The finiteness of

∫∞
d mψ(s)ds is equivalent to the finiteness of the

expectation of the rvK in Proposition 23. We prove this result in full generality for
non-decreasing, continuousψ and increasing marginals in Proposition 24 in the
Appendix.

−3 −2 −1 0 1 2 3−2

0

2

Fig. 8. Density and contour plot of the joint distribution of(X1,X2) maximizingP[X1 +X2 ≥ s] in Example 9.

The main issue underlying Theorem 19 is that, even if the comonotonic dependence
structure does not lead to the worst-case scenario for the original VaR problem,
if an insurance company wants to bound wellσC,ψ(F1, . . . , Fn)(s) for all thresh-
olds in [d,∞) in the sense defined by (22), comonotonicity provides a prudent
evaluation for the aggregate risk. The next theorem delivers an insight into an ex-
tension of Theorem 19 for generalloss functionsΛ, i.e. every increasing, convex
function Λ : [0, 1] → R

+
0 satisfyingΛ(0) = 0. For a copulaC, let eC,ψ(s) :=

σC,ψ(F1, . . . , Fn)(s) −mψ(s) denote the error function in (22).
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Theorem 22 ConsiderXC = (X1, . . . , Xn) with marginal distributionsF1, . . . , Fn
and letψ be as in Theorem 19 with

∫∞
0 mψ(s)ds < ∞. Then there existsdC ∈

[dC , dC ] such that for all loss functionsΛ:

∫ ∞

d
Λ[σC,ψ(F1, . . . , Fn)(s) −mψ(s)]ds ≥

∫ ∞

d
Λ[σM,ψ(F1, . . . , Fn)(s) −mψ(s)]ds

(24)
for everyd ≥ dC , where

dC := sup{d ∈ R | eC,ψ(s) ≤ eM,ψ(d) ∀s ≥ d

andeM,ψ(s) > eC,ψ(s) on some interval(d∗C , d)},

dC := inf{d ∈ R | eC,ψ(s) ≥ eM,ψ(s) ∀s ≥ d}.

Proof Theorem 19 yields
∫∞
d eC,ψ(s)ds ≥

∫∞
d eM,ψ(s)ds for all d ∈ R. The latter

integrals are finite since
∫∞
0 mψ(s)ds <∞. Denote withB(d,∞) andm the Borel

sets on(d,∞) and the Lebesgue measure, respectively. Applying Chong (1974),
Theorem 1.6, Theorem 2.1 and Corollary 1.2 toeC,ψ andeM,ψ, with Φ = Λ and
(X,Λ, µ) = (X ′,Λ′, µ′) = ((d,∞),B(d,∞), m), (24) is equivalent to

∫ ∞

d
[eC,ψ(s) − u]+ds ≥

∫ ∞

d
[eM,ψ(s) − u]+ds (25)

for all u ∈ R. By definition,dC ≤ dC andeC,ψ ≥ eM,ψ on [dC ,∞) implying dC ≤
dC . Assume now−∞ < dC < dC and letd ∈ (d∗C, dC ]. Choosingu = eM,ψ(dC) in
(25) we have that

∫ ∞

d
[eC,ψ(s)−u]+ds =

∫ d
C

d
[eC,ψ(s)−eM,ψ(dC)]+ds+

∫ ∞

d
C

[eC,ψ(s) − eM,ψ(dC)]+ds

=
∫ d

C

d
[eC,ψ(s)−eM,ψ(dC)]+ds<

∫ d
C

d
[eM,ψ(s)−eM,ψ(dC)]+ds

≤
∫ ∞

d
[eM,ψ(s) − u]+ds,

which concludes the proof. �

With respect to a copulaC and any loss functionΛ, comonotonicity is hence a
suitable dependence scenario on[dC ,∞) and it provides a prudent VaR on the
correspondingα-set. Note that, for a copulaC, the set in the definition ofdC may
be empty and hencedC arbitrarily small. Contrarily, sinceψ(XC) ≤sl ψ(XM),
we have thatdC < ∞ if the two dfs cross finitely many times. Unfortunately, in
general,dC anddC may become arbitrary large. For instance, if the functionψ is
unbounded, Rüschendorf (1981), Theorem 5 yields the existence of a copulâC
depending onψ, s and the marginals such that

mψ(s) = σ
Ĉ,ψ

(F1, . . . , Fn)(s) ≤ σM,ψ(F1, . . . , Fn)(s),
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where, in general,̂C 6= M implying supC∈Cn dC = ∞. Analogously there exist
dependence structures leading tosupC∈Cn dC = ∞. We therefore conclude that an
extension of Theorem 19 to loss functionals can only exist for suitable subclasses
of Cn.

5 The Presence of Information

Throughout this paper we mainly assumed a no-information scenario and put the
lower Fréchet boundW as lower bound for the unknown copulaC in Theorem 5.
From a mathematical point of view this is an unsatisfactory initial assumption,
since, forn > 2,W is not a copula anymore and the bound provided in Theorem 6
fails to be sharp. However, we want to warn the reader from choosing some a priori
assumption such asC ≥ Π and we emphasize that similar restrictions may lead to
a critical undervaluation of the portfolio risk. The assumptionC ≥ Π, for instance,
is justified by the idea that the worst-VaR scenarios is implied by the so-called
positive lower orthant dependentrisks withP[X1 ≤ x1, . . . , Xn ≤ xn] ≥ P[X1 ≤
x1] · . . . ·P[Xn ≤ xn]. Unfortunately, this is not true and restricting the optimization
to the class{C ≥ Π} substantially changes the initial problem, since it does not
allow to focus on riskier portfolios, as long asm+ > mΠ,+. This is a consequence of
the fact that the componentwise ordering in the classC

n is not complete and, putting
a lower bound on a copula, excludes all copulas not comparable to such bound. To
point out this aspect, we observe that countermonotonicityplays a central role in
the definition of the familŷCnα arising from (6), whereas every copula shuffled with
it is not comparable with the independence scenario.

6 Conclusions

In this paper we focus on the copulas leading to the worst-possible VaR for a func-
tion of dependent risks and we emphasize that comonotonicity does not lie in this
family. Such worst-case scenarios depend upon the levelα where the VaR is eval-
uated and therefore are not reasonable from a practical point of view. Moreover,
these solutions are known only for two-dimensional portfolios or in presence of
partial information. The investigation of optimal bounds in arbitrary dimensions
with no prior information remains open. Therefore, we provide an alternative ap-
proach supporting the assumption of comonotonicity in a prudent evaluation of the
quantiles of the aggregate position.
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Appendix The operator τC,ψ

In this section we extend a claim of Denuit et al. (1999), p. 37by showing that the
operator

τC,ψ(F1, . . . , Fn)(s) = sup
x1,...,xn−1∈R

C(F1(x1), . . . , Fn−1(xn−1), F
−
n (ψx̂−n

(s))),

with ψx̂−n
(s) = sup{xn ∈ R |ψ(x−n, xn) < s}, for fixedx−n ∈ R

n−1, is actually
the left-continuous version of a df.

Proposition 23 For ψ : R
n → R non-decreasing, there exists a random variable

K such thatτC,ψ(F1, . . . , Fn)(s) = P[K < s].

Proof Sinceψ is non-decreasing in each component,τC,ψ(s) := τC,ψ(F1, . . . , Fn)(s)
is a non-decreasing function. Hence, we have to show that it is also left-continuous
and that its right and left limits converge to one and zero, respectively. To prove
that lims→∞ τC,ψ(s) = 1, we fix ε > 0 and defineuε = (uε1, . . . , u

ε
n) as a vector

satisfying

Fi(u
ε
i ) ≥ 1 −

ε

n
, i = 1, . . . , n.

The existence of such a vector is straightforward, sinceF1, . . . , Fn are non-defective
dfs. By definition, the functionψûε

−n

is non-decreasing and its right limit is either
finite or infinite. Suppose it is finite. For every reals, it follows that

sup{xn ∈ R |ψ(uε−n, xn) < s} ≤ lim
s→∞

ψûε
−n

(s) =: R <∞,

which implies

ψ(uε−n, xn) ≥ s for all xn ≥ R.

Thereforeψ(uε−n, R) = ∞, which contradictsψ having R as its range. Hence
R = ∞ and it is always possible to select a realsε, depending only onε, such that
ψûε

−n

(sε) > uεn implying

Fn(ψûε
−n

(sε)) ≥ Fn(u
ε
n) ≥ 1 −

ε

n
.

For τC,ψ(sε) we also obtain that

τC,ψ(sε) = sup
x1,...,xn−1∈R

C(F1(x1), . . . , Fn−1(xn−1), F
−
n (ψx̂−n

(sε)))

≥ C(F1(u
ε
1), . . . , Fn−1(u

ε
n−1), F

−
n (ψûε

−n

(sε)))

≥ W (F1(u
ε
1), . . . , Fn−1(u

ε
n−1), F

−
n (ψûε

−n

(sε)))

≥ (1 −
ε

n
)n− n+ 1 = 1 − ε,
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and, sinceτC,ψ is non-decreasing,τC,ψ(s) ≥ τC,ψ(sε) ≥ 1 − ε for everys ≥ sε.
Hence the right limit converges to one. Similarly, for the left limit, we fix ε > 0 and
chooseuε satisfyingFi(uεi ) < ε, i = 1, . . . , n for whichL := lims→−∞ ψûε

−n

(s) =

−∞. It is always possible to select a realsε, depending only onε, such thatψûε
−n

(sε) <

uεn and

F−
n (ψûε

−n

(sε)) < Fn(u
ε
n) < ε.

Let nowAuε := {x−n ∈ R
n−1 | xi′ ≤ uεi′ for somei′ ∈ {1, . . . , n − 1}} and

Auε := {x−n ∈ R
n−1 | xi > uεi for all i = 1, . . . , n− 1}. Then

sup
x−n∈Auε

C(F1(x1), . . . , Fn−1(xn−1), F
−
n (ψx̂−n

(sε)))

≤ sup
x−n∈Auε

M(F1(x1), . . . , Fn−1(xn−1), F
−
n (ψx̂−n

(sε)))

≤ Fi′(u
ε
i′) < ε.

(26)

If x ∈ Auε, thenψx̂−n
(sε) ≤ ψûε

−n

(sε) and hence

sup
x−n∈Auε

C(F1(x1), . . . , Fn−1(xn−1), F
−
n (ψx̂−n

(sε)))

≤ sup
x−n∈Auε

C(F1(x1), . . . , Fn−1(xn−1), F
−
n (ψûε

−n

(sε)))

≤ F−
n (ψûε

−n

(sε)) < ε.

(27)

From (26) and (27) we have thatτC,ψ(sε) < ε. SinceτC,ψ is non-decreasing,
τC,ψ(s) < τC,ψ(sε) < ε for all s < sε and the left limit goes to zero.

It remains to show thatτC,ψ is left-continuous. For non-decreasing functionsf :
R → R left-continuity is equivalent to lower-semicontinuity. By Rudin (1974),
p. 39, the supremum of any collection of lower-semicontinuous function is lower-
semicontinuous. It is sufficient then to show that

C(F1(x1), . . . , Fn−1(xn−1), F
−
n (ψx̂−n

(s)))

is left-continuous ins for everyx−n ∈ R
n−1. By uniform continuity ofC, left-

continuity and non-decreasingness ofF−
n , and non-decreasingness ofψx̂−n

(s), the
problem is reduced to show thatψx̂−n

(s) is left-continuous. By definition, it is non-
decreasing and hence, for every reals, there existsl(s) := limx→s− ψx̂−n

(x). As-
sume now thatψx̂−n

(s) is not left-continuous. Then there existss1 with l(s1) <
ψx̂−n

(s1). Let l(s1) be finite (otherwise there is nothing to prove). Then, for arbi-
trary positiveε, we have

sup{xn ∈ R |ψ(x−n, xn) < s1 − ε} ≤ l(s1) <∞
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and hence, wheneverxn ≥ l(s1), it follows thatψ(x−n, xn) ≥ s1 − ε. Sinceε is
arbitrary, it follows thatψ(x−n, l(s1)) ≥ s1, contradicting the fact that

ψ(x−n, xn) < s for everyxn < ψx̂−n
(s1),

which concludes the proof. �

The following proposition states that, under suitable assumptions, the rvK has
finite expectation.

Proposition 24 Let XC have increasing, continuous marginalsF1, . . . , Fn, ψ :
R
n → R be non-decreasing continuous and increasing in the last argument. Then,

for K as in Proposition 23,E[K] ≤ const +
∫∞
d mψ(s)ds < ∞ for all d ∈ R if

and only ifE[ψ(XM)] <∞.

Proof A random variableY with dfF has finite expectation if and only if
∫

0

−∞ F (x)dx <
∞ and

∫∞
0 F (x)dx <∞, which is equivalent toE[Y −d]+ <∞ for all d ∈ R. We

therefore have to show that

∫ ∞

d
mψ(s) ds <∞ ⇐⇒ E[ψ(XM) − d]+ <∞ (28)

for all d ∈ R. By the definition ofmψ(s), we have that ford ∈ R,

E[ψ(XM) − d]+ =
∫ ∞

d
P[ψ(XM) ≥ s] ds ≤

∫ ∞

d
mψ(s) ds

and hence ”⇒” immediately follows.

Assume now that the rhs of (28) holds and letU be uniformly distributed on[0, 1].
By Dhaene et al. (2001), Theorem 2 we have that

E[φ(U) − d]+ = E[ψ(XM) − d]+ <∞,

whereφ : [0, 1] → R, φ(u) := ψ(F−1
1 (u), . . . , F−1

n (u)). Under the assumptions of
the theorem,φ is continuous andφ(φ−1(s)) = s. We can write

mψ(s) ≤ 1 − τW,ψ(F1, . . . , Fn)(s)

= 1 − sup
x−n∈Rn−1

{(F1(x1) + · · · + Fn−1(xn−1) + F−
n (ψx̂−n

(s)) − n + 1)+}

≤ inf
x−n∈Rn−1

{F 1(x1) + · · ·+ F n−1(xn−1) +P[Xn ≥ ψx̂−n
(s)]}. (29)
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Choosingx−n = (F−1
1 (φ−1(s)), . . . , F−1

n−1(φ
−1(s))) in (29) and sinceψ is increas-

ing in the last argument,ψx̂−n
(s) = F−1

n (φ−1(s)). Integrating, we finally obtain:

∫ ∞

d
mψ(s)ds ≤

∫ ∞

d

n∑

i=1

P[Xi ≥ F−1

i (φ−1(s))]ds

=
n∑

i=1

∫ ∞

d
P[F−1

i (U) ≥ F−1
i (φ−1(s))]ds

=
n∑

i=1

∫ ∞

d
P[U ≥ φ−1(s)]ds ≤

n∑

i=1

∫ ∞

d
P[φ(U) ≥ φ(φ−1(s))]ds

= n
∫ ∞

d
P[φ(U) ≥ s]ds = nE[φ(XM) − d]+ <∞.

�
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Rüschendorf, L., 1982. Random variables with maximum sums. Advances in

Applied Probability 14, 623-632.
Schweizer, B. and Sklar, A., 1974. Operations on distribution functions not

derivable from operations on random variables. Studia Mathematica 52, 43-
52.

Sklar, A., 1973. Random variables, joint distribution functions, and copulas. Ky-
bernetica 9, 449-460.

Tchen, A. H., 1980. Inequalities for distributions with given marginals. The An-
nals of Probability 8, 814-827.

26


