Firm's Value-Based Credit Risk Models

Paul Embrechts

London School of Economics

Department of Accounting and Finance

AC 402 FINANCIAL RISK ANALYSIS

Part II

Lent Term, 2003

Basic Idea

Black and Scholes (1973) and Merton (1974):

Shares and bonds are derivatives on the firm's assets.

Limited liability gives shareholders the option to abandon the firm, to *put it to the bondholders*.

Bondholders have a short position in this put option.

Accounting identity:

Assets = Equity + Liabilities
$$V = E + \overline{B}$$

Balance Sheet

Assets		Liabilities	
Assets (Value of Firm)	V	Equity (Shares)	E
		Debt (Bonds)	\overline{B}
	V		$E + \overline{B}$

Note: A real-world balance sheet may not give all the correct numbers because of the accounting rules.

Specification of the Bonds

- ullet Zero Bonds with maturity T and face value (total) K
- ullet Price $\overline{B}(t,T)$ at time t per bond
- Firm is solvent at time T, if

$$V \ge K$$

• Payoff of the bond:

$$\overline{B}(T,T) = \begin{cases} K & \text{if solvent:} \quad V \ge K, \\ V & \text{if default:} \quad V < K \end{cases}$$

Specification of the Share

 \bullet Price E, no dividends

Payoff as 'Residual Claim':
 Gets the remainder of the firm's value after paying off the debt (like Call Option):

$$E(T) = \begin{cases} V - K & \text{if solvent:} \quad V \ge K, \\ 0 & \text{if default:} \quad V < K \end{cases}$$

limited liability for V < K.

Valuation with Option Pricing Theory

The value of the whole firm is *tradeable* and available as hedge instrument:

$$V = E + \overline{B}$$

Assume lognormal dynamics for the firm's value:

$$dV = \mu V dt + \sigma V dW$$

Then \overline{B} and E must satisfy the Black-Scholes p.d.e.:

$$0 = \frac{\partial}{\partial t}\overline{B} + \frac{1}{2}\sigma^2 V^2 \frac{\partial^2}{\partial V^2}\overline{B} + rV \frac{\partial}{\partial V}\overline{B} - r\overline{B}.$$

(r = risk-free interest rate) -

Solution for the share price (Black-Scholes formula)

$$E(t,V) = VN(d_1) - Ke^{-r(T-t)}N(d_2)$$
$$d_{1;2} = \frac{\ln(V/K) + (r \pm \frac{1}{2}\sigma^2)(T-t)}{\sigma\sqrt{T-t}}$$

Value of the bond:

$$\overline{B}(t,T) = V - E(t,V) = Ke^{-r(T-t)}N(d_2) + VN(-d_1)$$

Survival probability: $N(d_2)$

Expected recovery payoff: $VN(-d_1)$

Credit Spreads Implied by the BS/M Model

Hedging

Set up portfolio

$$\Pi = \overline{B}(V, t) + \Delta E(V, t)$$

by Itô's lemma:

$$\begin{split} d\Pi &= d\overline{B} + \Delta dE \\ &= \left(\frac{\partial \overline{B}}{\partial t} + \frac{1}{2} \frac{\partial^2 \overline{B}}{\partial V^2} + \Delta \frac{\partial E}{\partial t} + \frac{1}{2} \Delta \frac{\partial^2 E}{\partial V^2}\right) dt + \left(\frac{\partial \overline{B}}{\partial V} + \Delta \frac{\partial E}{\partial V}\right) dV. \end{split}$$

To eliminate the stochastic dV-term choose

$$\Delta = -rac{rac{\partial \overline{B}}{\partial V}}{rac{\partial E}{\partial V}}.$$

Key Assumptions and Limitations

- Can observe (or imply) the firm's value V
 Critical! Possible solution see KMV-Approach
- The firm's value follows a lognormal random walk Can be relaxed at the cost of tractability (e.g. Zhou).
- Only zero-coupon debt Can be relaxed at the cost of tractability. (e.g. Geske)
- Default only at T: Easy to relax. See Black-Cox and others.
- ullet Constant interest-rates r $Very\ simple\ if\ independence\ between\ interest-rates\ and\ V$. Otherwise see $Briys-de\ Varenne\ and\ Longstaff-Schwartz$.

Extensions:

- ullet Default before maturity T of the bonds.
- Default-free interest rates r stochastic.
- Different Securities: Coupon-Bonds, Callable Bonds, Convertibles
- More details in capital structure: Multiple Claims Maturity, Seniority

Model can be extended in analogy to equity option models:

BSM model for default risk \leftrightarrow BSM model for equity options

Early default \leftrightarrow Barrier options

complicated capital structure \leftrightarrow exotic options

with complicated payoff functions

callability, convertibiliy \leftrightarrow American or Bermudan options

Can use the same numerical methods in both approaches.

Default before maturity

Idea: (Black and Cox 1976)

Default when firm's value less than discounted value of liabilities.

$$V(\tau) \le \bar{S}B(\tau, T) = \bar{S}e^{-r(T-\tau)}$$

 $\tau = \mathsf{time} \; \mathsf{of} \; \mathsf{default}$

Alternatively:

Constant Barrier: Default, as soon as

$$V(\tau) \le \bar{S}$$

Default as soon as insufficient collateral.

Bankruptcy Costs

Need bankruptcy costs to have loss in default. (Otherwise the firm's value would be sufficient for a full payoff of the bonds.)

Payoff of bonds:

K at maturity T, if there was no default previously: $\tau > T$

 $cB(\tau,T)$ at τ , if default before maturity: $\tau \leq T$.

c as in recovery models for intensity models.

Strategic Default

Leland (1994), Leland / Toft (1996), Mella-Barral / Perraudin (1997)

Aim:

Qualitative study of corporate-finance effects

- endogenous capital structure and default barrier
- optimal capital structure
- effects of different bankruptcy regimes
- asset substitution effect / incentives to managers

Time-independent capital structure.

Leland (1994)

Value of firm's assets:

$$dV = rVdt + \sigma VdW$$

Debt:

- ullet infinite maturity, (aggregate) coupon C, market price \overline{B}
- debt generates a tax benefit of τCdt (this is the only reason, why debt is issued at all)

Default:

- ullet at barrier V_B of V
- debt recovers $(1 \alpha)V_B$
- bankruptcy cost αV_B (disadvantage of debt)
- ullet equity can choose V_B

Debt Valuation

- \bullet Cdt: coupon payments to debt
- ullet financed by issuance of new equity (dynamics of V remain unchanged)

O.d.e. for debt as a claim on V:

$$0 = \frac{1}{2}\sigma^2 V^2 \frac{\partial^2}{\partial V^2} \overline{B} + rV \frac{\partial}{\partial V} \overline{B} - r\overline{B} + C$$

with boundary conditions

$$\overline{B}
ightarrow C/r$$
 as $V
ightarrow \infty$ $\overline{B} = (1-lpha)V_B$ at $V = V_B$. -

Solution to the bond pricing equation

$$\overline{B} = (1 - p_B)\frac{C}{r} + p_B(1 - \alpha)V_B$$

where

$$p_B = \left(\frac{V}{V_B}\right)^{-X}, \qquad X = 2r/\sigma^2$$

is the present value of receiving 1 at default.

Then:

 $p_B(1-\alpha)V_B=$ present value of bankruptcy costs $(1-p_B)\tau C=$ present value of tax benefits

The Value of the Firm

$$[Market \ Value \ of \ the \ Firm] = [Value \ of \ Equity] \\ + [Value \ of \ Debt] \\ = [Value \ of \ Assets] \\ + [Value \ of \ Tax \ Break] \\ - [Value \ of \ Bankruptcy \ Costs]$$

Can solve for the value of equity

$$E = V - (1 - \tau)C/r + ((1 - \tau)C/r - V_B)p_B$$

Equity will choose V_B to maximize this.

Results

- Equity holders will hold off bankruptcy . . .
- . . . until the value of the *gamble for resurrection* is less than the cash needed to keep the firm alife.
- Bankruptcy at asset levels significantly below the outstanding debt level
- Empirical tests (Anderson / Sundaresan (1999)): at least as good as other models

Other Securities than Shares and Bonds

By solving the pricing equation with different boundary- and final conditions, more complicated securities can be priced.

Need to take care of:

- consistent development of firm's value
- payoff structures
- Coupon payments:
 Firm's value decreases after coupon is paid out

$$V(T_i+) = V(T_i-) - C$$

Bond price decreases after coupon is paid out

$$\overline{B}_c(T_i+,V,r) = \overline{B}_c(T_i-,V-C,r) - C.$$

ullet Convertible Bonds: One bond for lpha shares

$$\overline{B}(t, V, r) \ge \alpha E(t, V, r),$$

or (with
$$V = E + \overline{B}$$
)

$$\overline{B}(t, V, r) \ge \frac{\alpha}{1 + \alpha} V.$$

• Callable Bonds: bonds can be called for B^* :

$$\overline{B}(t, V, r) \le B^*$$

Empirics: Pricing Accuracy

Eom, Helwege, Huang (2000)

- One-shot pricing of a cross-section of corporate bonds with asset-based models.
- Substantial pricing errors in all models.
- Merton Model:
 - ★ generally underestimates spreads
 - ★ by a significant amount (80% of the spread)
 - * parameter variations do not help much
- Geske Model: similar to Merton model: severe underestimation of spreads
- Longstaff-Schwartz:

- * overestimates spreads severely for risky bonds
- * but could not raise spreads enough for good quality credits
- ★ still slightly better than Merton
- Leland-Toft: coupon size drives variation in predicted spreads
- all models have problems for short maturities or high quality
- \bullet Very poor predictive power in all cases: mean absolute errors in spreads are more than 70% of the true spread

KMV's Distance to Default

- **Default Point:** ('Asset value, at which the firm will default) between total liabilities and short-term liabilities' (implicitly assuming: Barrier Modell)
- **Distance to Default:** Summary Statistic for credit quality

```
\begin{split} & [\mathsf{Distance} \ \mathsf{to} \ \mathsf{Default}] = \\ & \underline{ \ [\mathsf{Market} \ \mathsf{Value} \ \mathsf{of} \ \mathsf{Assets}] - [\mathsf{Default} \ \mathsf{Point}] } \\ & \underline{ \ [\mathsf{Market} \ \mathsf{Value} \ \mathsf{of} \ \mathsf{Assets}] \times [\mathsf{Asset} \ \mathsf{Volatility}] } \end{split}
```

• **Expected Default Frequency** = Frequency, with which firms of the same distance to default have defaulted in history.

Calibration to historical data, leaving the modelling framework.

Linking the Firm's Value Model to Market Variables

Model	Market	
$\overline{}$	unobservable	
K	total debt	
σ_V	unobservable	
r	observable	
T	user choice	
some Outputs		
\overline{E}	market capitalisation	
$\sigma_E = \frac{\partial E}{\partial V} \frac{V}{E} \sigma_V$	equity volatility	

Can use market capitalisation and equity volatility to calibrate.

Advantages of Firm's Value Models

- ✔ Relationships between different securities of same issuer
- ✓ Convertible bonds
- ✓ Collateralized Loans
- ✓ default correlation between different issuers can be modelled realistically.
- ✓ Fundamental orientation
- ✓ well-suited for theoretical questions (corporate finance)

Disadvantages of Firm's Value Models

- **x** observability of firm's value: calibration, fitting
- ✗ bonds are not inputs but outputs defaultable bonds are far from being fundamentals
- **x** all data is rarely available
- **x** souvereign issuers cannot be priced
- **x** often complex and unflexible
- **x** unrealistic short-term spreads

References

- [1] A. Bensoussan, M. Crouhy, and D. Galai. Stochastic equity volatility and the capital structure of the firm. In S.D. Howison, F.P. Kelly, and P. Wilmott, editors, *Mathematical Models in Finance*, pages 81–92. The Royal Society, Chapman and Hall, 1995.
- [2] Fischer Black and John Cox. Valuing corporate securities: Some effects of bond indenture provisions. *Journal of Finance*, pages 351–367, 1976.
- [3] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. Journal of Political Economy, 81:637–54, 1973.
- [4] Eric Briys and Francois de Varenne. Valuing risky fixed rate debt: An extension. Journal of Financial and Quantitative Analysis, 32(2):239–248, June 1997.
- [5] Sanjiv Ranjan Das. Credit risk derivatives. Journal of Derivatives, 2(3):7–23, Spring 1995.
- [6] Satyajit Das, editor. Credit Derivatives: Trading and Management of Credit and Default Risk. Wiley Frontiers in Finance. John Wiley & Sons, New York, Chichester, Singapore, 1998.
- [7] Darrel Duffie and David Lando. Term structures of credit spreads with incomplete accounting information. Working paper, Graduate School of Business, Stanford University, June 1997.
- [8] Young Ho Eom, Jean Helwege, and Jin Zhi Huang. Structural models of corporate bond pricing: An empirical analysis. working paper, Finance Department, Ohio State University, Ohio State University, Columbus, OH 43210, USA, October 2000.
- [9] Christopher C. Finger, Vladimir Finkelstein, George Pan, Jean-Pierre Lardy, Thomas Ta, and John Tierney. Creditgrades technical document. Technical document, Finance Department, Ohio State University, Risk Metrics Group, May 2002.
- [10] R. Geske. The valuation of corporate liabilities as compound options. Journal of Financial and Quantitative Analysis, 12:541–552, 1977.
- [11] Jean Helwege and Christopher M. Turner. The slope of the credit yield curve for speculative grade issuers. *Journal of Finance*, 54:1869–1885, 1999.
- [12] J. Hull and A. White. The impact of default risk on the prices of options and other derivative securities. *Journal of Banking and Finance*, 19(2):299–322, 1995.

- [13] Hayne E. Leland. Risky debt, bond covenants and optimal capital structure. Journal of Finance, 49:1213–1252, 1994.
- [14] Hayne E. Leland and Klaus Bjerre Toft. Optimal capital structure, endogenous bankrupcy and the term structure of credit spreads. Journal of Finance, 50:789–819, 1996.
- [15] Francis A. Longstaff and Eduardo S. Schwartz. A simple approach to valuing risky fixed and floating rate debt. Working Paper 22–93, Anderson Graduate School of Management, University of California, Los Angeles, October 1993. revised November 1994.
- [16] Pierre Mella-Barral and William R. M. Perraudin. Strategic debt service. Journal of Finance, 51, 1997.
- [17] Robert C. Merton. On the pricing of corporate debt: The risk structure of interest rates. Journal of Finance, 29:449–470, 1974.
- [18] L.T. Nielsen, J. Saá-Requejo, and P. Santa-Clara. Default risk and interest rate risk: The term structure of default spreads. Working paper, INSEAD, 1993.
- [19] Yiannos A. Pierides. The pricing of credit risk derivatives. Journal of Economic Dynamics and Control, 21:1579–1611, 1997.
- [20] Oded Sarig and Arthur Warga. Some empirical estimates of the risk structure of interest rates. Journal of Finance, 44:1351–1360, 1989.
- [21] Philipp J. Schönbucher. Valuation of securities subject to credit risk. Working paper, University of Bonn, Department of Statistics, February 1996.
- [22] Oldrich Vasicek. An equilibrium characterisation of the term structure. Journal of Financial Economics, 5:177–188, 1977.
- [23] Chunsheng Zhou. A jump-diffusion approach to modeling credit risk and valuing defaultable securities. Finance and Economics Discussion Paper Series 1997/15, Board of Governors of the Federal Reserve System, March 1997.