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Basic Idea

Black and Scholes (1973) and Merton (1974):

Shares and bonds are derivatives on the firm’s assets.

Limited liability gives shareholders the option to abandon the firm, to put it to the
bondholders.

Bondholders have a short position in this put option.

Accounting identity:

Assets = Equity + Liabilities

V = E + B
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Balance Sheet

Assets Liabilities

Assets Equity
(Value of Firm) V (Shares) E

Debt
(Bonds) B

V E + B

Note: A real-world balance sheet may not give all the correct numbers because of
the accounting rules.
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Specification of the Bonds

• Zero Bonds with maturity T and face value (total) K

• Price B(t, T ) at time t per bond

• Firm is solvent at time T , if
V ≥ K

• Payoff of the bond:

B(T, T ) =

{
K if solvent: V ≥ K,

V if default: V < K

c© Paul Embrechts and Philipp Schönbucher, 2003 3
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Specification of the Share

• Price E, no dividends

• Payoff as ’Residual Claim’:
Gets the remainder of the firm’s value after paying off the debt (like Call Option):

E(T ) =

{
V −K if solvent: V ≥ K,

0 if default: V < K

limited liability for V < K.
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AC 402 Financial Risk Analysis Part II

Valuation with Option Pricing Theory

The value of the whole firm is tradeable and available as hedge instrument:

V = E + B

Assume lognormal dynamics for the firm’s value:

dV = µV dt + σV dW

Then B and E must satisfy the Black-Scholes p.d.e.:

0 =
∂

∂t
B +

1
2
σ2V 2 ∂2

∂V 2B + rV
∂

∂V
B − rB.

(r = risk-free interest rate) -
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Solution for the share price (Black-Scholes formula)

E(t, V ) = V N(d1)−Ke−r(T−t)N(d2)

d1;2 =
ln(V/K) + (r ± 1

2σ
2)(T − t)

σ
√

T − t

Value of the bond:

B(t, T ) = V − E(t, V ) = Ke−r(T−t)N(d2) + V N(−d1)

Survival probability: N(d2)
Expected recovery payoff: V N(−d1)
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Credit Spreads Implied by the BS/M Model
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Hedging

Set up portfolio
Π = B(V, t) + ∆E(V, t)

by Itô’s lemma:

dΠ = dB + ∆dE

=
(

∂B

∂t
+

1
2
∂2B

∂V 2 + ∆
∂E

∂t
+

1
2
∆

∂2E

∂V 2

)
dt +

(
∂B

∂V
+ ∆

∂E

∂V

)
dV.

To eliminate the stochastic dV -term choose

∆ = −
∂B
∂V
∂E
∂V

.
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Key Assumptions and Limitations

• Can observe (or imply) the firm’s value V
Critical! Possible solution see KMV-Approach

• The firm’s value follows a lognormal random walk
Can be relaxed at the cost of tractability (e.g. Zhou).

• Only zero-coupon debt
Can be relaxed at the cost of tractability. (e.g. Geske)

• Default only at T : Easy to relax. See Black-Cox and others.

• Constant interest-rates r
Very simple if independence between interest-rates and V . Otherwise see
Briys-de Varenne and Longstaff-Schwartz.
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Extensions:

• Default before maturity T of the bonds.

• Default-free interest rates r stochastic.

• Different Securities: Coupon-Bonds, Callable Bonds, Convertibles . . . .

• More details in capital structure: Multiple Claims Maturity, Seniority . . . .
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Model can be extended in analogy to equity option models:

BSM model for default risk ↔ BSM model for equity options
Early default ↔ Barrier options

complicated capital structure ↔ exotic options
with complicated payoff functions

callability, convertibiliy ↔ American or Bermudan options

Can use the same numerical methods in both approaches.
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Default before maturity

Idea: (Black and Cox 1976)

Default when firm’s value less than discounted value of liabilities.

V (τ) ≤ S̄B(τ, T ) = S̄e−r(T−τ)

τ = time of default

Alternatively:
Constant Barrier: Default, as soon as

V (τ) ≤ S̄

Default as soon as insufficient collateral.
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Bankruptcy Costs

Need bankruptcy costs to have loss in default. (Otherwise the firm’s value would
be sufficient for a full payoff of the bonds.)

Payoff of bonds:

K at maturity T , if there was no default previously: τ > T

cB(τ, T ) at τ , if default before maturity: τ ≤ T .

c as in recovery models for intensity models.
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Strategic Default

Leland (1994), Leland / Toft (1996), Mella-Barral / Perraudin (1997)

Aim:
Qualitative study of corporate-finance effects

• endogenous capital structure and default barrier
• optimal capital structure
• effects of different bankruptcy regimes
• asset substitution effect / incentives to managers

Time-independent capital structure.
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Leland (1994)

Value of firm’s assets:
dV = rV dt + σV dW

Debt:

• infinite maturity, (aggregate) coupon C, market price B
• debt generates a tax benefit of τCdt

(this is the only reason, why debt is issued at all)

Default:

• at barrier VB of V
• debt recovers (1− α)VB

• bankruptcy cost αVB (disadvantage of debt)
• equity can choose VB
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Debt Valuation

• Cdt : coupon payments to debt
• financed by issuance of new equity (dynamics of V remain unchanged)

O.d.e. for debt as a claim on V :

0 =
1
2
σ2V 2 ∂2

∂V 2B + rV
∂

∂V
B − rB + C

with boundary conditions
B → C/r as V →∞
B = (1− α)VB at V = VB. -
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Solution to the bond pricing equation

B = (1− pB)
C

r
+ pB(1− α)VB

where

pB =
(

V

VB

)−X

, X = 2r/σ2

is the present value of receiving 1 at default.

Then:

pB(1− α)VB = present value of bankruptcy costs
(1− pB)τC = present value of tax benefits
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The Value of the Firm

[Market Value of the Firm] = [Value of Equity]

+ [Value of Debt]

= [Value of Assets]

+ [Value of Tax Break]

− [Value of Bankruptcy Costs]

Can solve for the value of equity

E = V − (1− τ)C/r + ((1− τ)C/r − VB)pB

Equity will choose VB to maximize this.
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Results

• Equity holders will hold off bankruptcy . . .

• . . . until the value of the gamble for resurrection is less than the cash needed to
keep the firm alife.

• Bankruptcy at asset levels significantly below the outstanding debt level

• Empirical tests (Anderson / Sundaresan (1999)): at least as good as other
models
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Other Securities than Shares and Bonds

By solving the pricing equation with different boundary- and final conditions, more
complicated securities can be priced.

Need to take care of:

• consistent development of firm’s value
• payoff structures

• Coupon payments:
Firm’s value decreases after coupon is paid out

V (Ti+) = V (Ti−)− C

Bond price decreases after coupon is paid out

Bc(Ti+, V, r) = Bc(Ti−, V − C, r)− C.
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• Convertible Bonds: One bond for α shares

B(t, V, r) ≥ αE(t, V, r),

or (with V = E + B)

B(t, V, r) ≥ α

1 + α
V.

• Callable Bonds:
bonds can be called for B∗:

B(t, V, r) ≤ B∗
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Empirics: Pricing Accuracy

Eom, Helwege, Huang (2000)

• One-shot pricing of a cross-section of corporate bonds with asset-based models.

• Substantial pricing errors in all models.

• Merton Model:

? generally underestimates spreads
? by a significant amount (80% of the spread)
? parameter variations do not help much

• Geske Model: similar to Merton model:
severe underestimation of spreads

• Longstaff-Schwartz:
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? overestimates spreads severely for risky bonds
? but could not raise spreads enough for good quality credits
? still slightly better than Merton

• Leland-Toft:
coupon size drives variation in predicted spreads

• all models have problems for short maturities or high quality

• Very poor predictive power in all cases: mean absolute errors in spreads are more
than 70% of the true spread

c© Paul Embrechts and Philipp Schönbucher, 2003 25
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KMV’s Distance to Default

• Default Point: (’Asset value, at which the firm will default)
between total liabilities and short-term liabilities’
(implicitly assuming: Barrier Modell)

• Distance to Default: Summary Statistic for credit quality

[Distance to Default] =

[Market Value of Assets]− [Default Point]

[Market Value of Assets]× [Asset Volatility]

• Expected Default Frequency = Frequency, with which firms of the same
distance to default have defaulted in history.
Calibration to historical data, leaving the modelling framework.
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Linking the Firm’s Value Model to Market Variables

Model Market

V unobservable
K total debt
σV unobservable
r observable
T user choice

some Outputs

E market capitalisation
σE = ∂E

∂V
V
EσV equity volatility

Can use market capitalisation and equity volatility to calibrate.
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Advantages of Firm’s Value Models

✔ Relationships between different securities of same issuer

✔ Convertible bonds

✔ Collateralized Loans

✔ default correlation between different issuers can be modelled realistically.

✔ Fundamental orientation

✔ well-suited for theoretical questions (corporate finance)
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Disadvantages of Firm’s Value Models

✘ observability of firm’s value: calibration, fitting

✘ bonds are not inputs but outputs
defaultable bonds are far from being fundamentals

✘ all data is rarely available

✘ souvereign issuers cannot be priced

✘ often complex and unflexible

✘ unrealistic short-term spreads
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