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AC 402 Financial Risk Analysis Part II

In this Unit You Will Learn. . .

• the pricing building blocks

? unconditional payoffs
? payoffs in survival
? payoffs at default

• how to price standard instruments: coupon bonds, CDS

• how to extract from the credit spread curve:

? implied default and survival probabilities
? conditional survival probabilities

• the calibration of a credit spread curve
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What are We Going to Do?

We are looking for a probability distribution for the time of default which is
consistent with observed market prices.

There are many such possible probability distributions.

Here, the modeller’s / user’s intuition is needed, to eliminate implausible default
probability distributions.

Therefore we need a setup where it is easy to build an intuition. A setup where
the model quantities have a direct relationship to real-world quantities that are

known and on which we have experience (and therefore also an opinion).

Mathematically, we are choosing a martingale measure in an incomplete market.
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Implied Probabilities

We use:

• Default-free zero coupon bond (ZCB) curve

• Defaultable zero coupon bond (ZCB) curve

• risk-neutral probabilities

• independence of:

? [defaults and credit spreads dynamics]
? [interest-rate dynamics]

c© Paul Embrechts and Philipp Schönbucher, 2003 3
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Default-Free Zero Coupon Bonds:

Payoff: = 1 at time T

Value: = discounted expected payoff

B(t, T ) = E [ βt,T · 1 ] = E [ βt,T ] .

βt,T is the discount factor over [t, T ].

βt,T = exp{−
∫ T

t

r(s)ds}

where r(s) is the continuously compounded short rate at time t.
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Defaultable Zerobonds:

Payoff = 1{τ>T} =

{
1 if default after T , i.e. τ > T ,

0 if default before T , i.e. τ ≤ T .

Value = discounted expected payoff

B(t, T ) = E
[

βt,T1{τ>T}
]
.

1{A} is the indicator function of event A:
1{A} = 1 if A is true, and 1{A} = 0 if A is false.

-
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If there is no correlation:

B(t, T ) = E
[

βt,T1{τ>T}
]

= E [ βt,T ]E
[
1{τ>T}

]
= B(t, T )E

[
1{τ>T}

]
= B(t, T )P (t, T )

P (t, T ) is the implied probability of survival in [t, T ].

(βt,T is the discount-factor over [t, T ].)
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The Implied Survival Probability

the implied survival probability is the ratio of the ZCB prices:

P (t, T ) =
B(t, T )
B(t, T )

• Default Probability = 1- Survival Probabilities
• initially at one

P (t, t) = 1

• eventually there is a default:
P (t,∞) = 0

• P (t, T ) is decreasing in T .
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Conditional Survival Probabilities

Want to focus on one time interval in the future.

Probability of survival in [T1, T2] . . .
. . . given that there was no default until T1.:

P (t, T1, T2) =
P (t, T2)
P (t, T1)

=
B(t, T2)
B(t, T2)

B(t, T1)
B(t, T2)

.

• Survival to T = survival to s AND survival from s to T

P (t, T ) = P (t, s)P (t, s, T )

• P (t, T, T ) = 1, unless default is ’scheduled’ at T .
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Note: Bayes’ Rule:

Pr[A|B] =
Pr[A ∩B]

Pr[B]
.

Here: A = survival until T2 B = survival until T1

A ∩B = [survival until T2] AND [survival until T1]
= [survival until T2]

c© Paul Embrechts and Philipp Schönbucher, 2003 9
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Numerical Example

Yield (%) ZCB Probabilities (%)
Mat Gov Issuer Gov Issuer Surv. CSurv. CDef/T

0,5 5,75 7 0,9724 0,9667 99,41 99,41 1,17
1 6,10 7,85 0,9425 0,9272 98,38 98,96 2,09
3 6,25 8,25 0,8337 0,7883 94,56 96,12 1,94
5 6,40 8,65 0,7333 0,6605 90,07 95,25 2,38
7 6,78 9,08 0,6318 0,5442 86,14 95,64 2,18

10 6,95 9,70 0,5107 0,3962 77,58 90,06 3,31
Numbers taken from Das (1997)
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Forward Rates

define the default-free forward rate Fk(t), the defaultable forward rate F k(t) and
the discrete forward default intensity Hk(t) over [Tk, Tk+1] as seen from t:

Fk(t) =
1
δk

(
Bk(t)

Bk+1(t)
− 1
)

.

F k(t) =
1
δk

(
Bk(t)

Bk+1(t)
− 1
)

.

Hk(t) =
1
δk

(
Pk(t)

Pk+1(t)
− 1
)

.

where δk = Tk+1 − Tk and Pk(t) = P (t, Tk).

c© Paul Embrechts and Philipp Schönbucher, 2003 11
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Relation to Forward Spreads

the conditional probability of default over [Tk, Tk+1] is given by:

1
δk

P def(t, Tk, Tk+1) =
F k(t)− Fk(t)
1 + δkF k(t)

=
Hk(t)

1 + δkHk(t)

[Default Probability]

=[Length of time interval]× [Spread of forward rates]

× [Discounting with defaultable forward rate]
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Local Default Probabilities

use continuously compounded forward rates:

f(t, T ) = lim
∆t↘0

F (t, T, T + ∆t) = − ∂

∂T
lnB(t, T )

f̄(t, T ) = lim
∆t↘0

F (t, T, T + ∆t) = − ∂

∂T
lnB(t, T )

The local probability of default at time T is:

lim
∆t↘0

P def(t, T, T + ∆t)
∆t

= f̄(t, T )− f(t, T )

The probability of default in [T, T + ∆t] is approximately proportional to the
length of the interval [T, T + ∆t]
with proportionality factor (f̄(t, T )− f(t, T ))
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Why Poisson Processes?

Ultimate goal:
A mathematical model of defaults that is realistic and tractable and useful for
pricing and hedging.

Defaults are

• sudden, usually unexpected
• rare (hopefully :-)
• cause large, discontinuous price changes.

Require from the mathematical model the same properties.

Furthermore: Previous section

The probability of default in a short time interval is approximately
proportional to the length of the interval.
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What is a Poisson Process?

N(t) = value of the process at time t.

• Starts at zero: N(0) = 0

• Integer-valued: N(t) = 0, 1, 2, . . .

• Increasing or constant

• Main use: marking points in time
T1, T2, . . . the jump times of N

• Here Default: time of the first jump of N
τ = T1

• Jump probability over small intervals proportional to that interval.
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• Proportionality factor = λ

BTW: Except for the last two points, the same notation and properties apply to
Point Processes, too.
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AC 402 Financial Risk Analysis Part II

Discrete-time approximation:

• divide [0, T ] in n intervals of equal length

∆t = T/n

• Make the jump probability in each interval
[ti, ti + ∆t] proportional to ∆t:

p := P [ N(ti + ∆t)−N(ti) = 1 ] = λ∆t.

(these are independent across intervals.)

• more exact approximation: p = 1− e−λ∆t

• Let n →∞ or ∆t → 0.
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Important Properties

Homogeneous Poisson process with intensity λ
Jump Probabilities over interval [t, T ]:

• No jump:
P [ N(T ) = N(t) ] = exp{−(T − t)λ}

• n jumps:

P [ N(T ) = N(t) + n ] =
1
n!

(T − t)nλne−(T−t)λ.

• Inter-arrival times P [ (Tn+1 − Tn) ∈ t dt ] = λe−λtdt.
• Expectation (locally) E [ dN ] = λdt.

c© Paul Embrechts and Philipp Schönbucher, 2003 18
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Distribution of the Time of the first Jump

T1 time of first jump.
Distribution: F (t) := P [ T1 ≤ t ]

Know probability of no jump until T :

P [ N(T ) = 0 ] = e−λT

= probability of T1 > T . Thus

1− F (t) = e−λt

F (t) = 1− e−λt

F ′(t) = f(t) = λe−λt.

-
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➭ T1 is exponentially distributed with parameter λ.

➭ This is also the distribution of the next jump, given that there have been k
jumps so far.

➭ Independently of how much time has passed so far:
It never is ’about time a jump happened’
or ’nothing has happened, I don’t think anything will happen any more. . . ’
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Inhomogeneous Poisson Process

Imhomogeneous = with time-dependent intensity function λ(t)

Probability of no jumps (survival):

P [ NT = Nt ] = exp

{
−
∫ T

t

λ(s)ds

}
.

Probability of n jumps:

P [ NT −Nt = n ] =
1
n!

(∫ T

t

λ(s)ds

)n

e−
∫ T
t λ(s)ds.
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Density of the time of the first jump:

P [ T1 ∈ [a, b] ] =
∫ b

a

f(t, u)du

=
∫ b

a

λ(u)e−
∫ u
t λ(s)dsdu.
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Cox Processes

default rate = Intensity of PP = credit spread.

Credit spreads are stochastic. ☞ Need stochastic intensity

• define a stochastic intensity process λ, e.g.

dλ = µλdt + σλdW

• λ(t)∆t : default probability over the next time-interval [t, t + ∆t].
(That’s all we need to know at t.)

• at t + ∆t: Intensity has changed, λ(t + ∆t) = λ(t) + dλ is new (local) default
probability.

• Conditional on the realisation of the intensity process, the Cox process is an
inhomogeneous Poisson process.

c© Paul Embrechts and Philipp Schönbucher, 2003 23
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Cox Processes: The Conditioning-Trick

The Gods are gambling in a certain sequence:

• First, the full path of the intensity λ(t) is drawn from all possible paths for λ(t).

• Then they take this λ(t) and use it as intensity for an inhomogeneous Poisson
process N .
They draw the jumps of N(t) according to this distribution.

• Then the information is revealed to the mortals:
At time t they may only know λ(s) and N(s) for s up to t.

c© Paul Embrechts and Philipp Schönbucher, 2003 24
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The Conditioning Trick

First, pretend you knew the path of λ, what would the price be? (Depending on
λ, of course.)

Then average over the possible paths of λ.

Let X(N) be a payoff that we want to value. It depends on the question whether
a default occurred (N = 1) or not (N = 0).

E [ X(N) ] = E [ E [ X(N) |λ(t) ∀t ] ]

The inner expectation is easily calculated treating N as an inhomogeneous
Poisson Process.
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Properties of Cox Processes

Probability of no jumps (survival):

P [ NT = Nt ] = E

[
exp

{
−
∫ T

t

λ(s)ds

} ]
.

Probability of n jumps:

P [ NT −Nt = n ] = E

[
1
n!

(∫ T

t

λ(s)ds

)n

e−
∫ T
t λ(s)ds

]
.

Density of the time of the first jump:

P [ T1 ∈ [a, b] ] =
∫ b

a

f(t, u)du
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=
∫ b

a

E
[

λ(u)e−
∫ u
t λ(s)ds

]
du.

The expectations always only refer to the realisation of λ.
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Models using Poisson-type Default Times

Jarrow / Turnbull (JoF 50(1), p. 53ff.):
default triggered by constant intensity Poisson Process

Duffie / Singleton (JoF 52, pp. 1287 ff., 1997):
stochastic-intensity default trigger

Madan / Unal: (Review of Derivatives Research 2, pp. 121 ff., 1998)
Default intensity depends on firm’s value

Jarrow / Lando / Turnbull:
default intensity is a function of the rating. The rating follows a Markov chain.

Schönbucher (1998, 1999):
stochastic intensity, modelling a full term-structure of future default intensities
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A Simple Tree Model
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Setup of the Basic Model

discrete points in time
0 = T0, T1, T2, . . . , TN

converge to continuous-time when distances → 0

• B(t, Tk) or Bk(t): default-free zerobond price with maturity Tk

• B(t, Tk) or Bk(t): defaultable zerobond price with maturity Tk

• τ : time of default

The conditional survival probability is the “across” branching probability here.
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Price Building Blocks

Payoffs independent of default (possibly stochastic)

• ’classical’ pricing problem
• building block

Bk(t) default-free zero coupon bond with maturity Tk

Payoffs in survival (possibly stochastic)

• zero recovery (we get the payoff only in survival)
• building block

Bk(t) defaultable ZCB, maturity Tk, zero recovery
• B-prices follow directly from defaultable forward rates F k (defined later)

-
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Payoffs at default

• for example recoveries
• building block:

ek(t) price at time t of $1 at default iff default in [Tk−1, Tk]
• prices ek(t) are already fully determined by the prices and dynamics of Bk and

Bk
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Pricing the Building Blocks ek(t)

Payoff of ek = 1 at Tk if and only if default in [Tk−1, Tk]

• Probability of default in [Tk−1, Tk]

= Pk−1(t)− Pk(t) = δk−1Hk−1(t)Pk(t)

• Discounting until Tk using Bk(t) yields

ek(t) = δk−1Hk−1(t)Bk(t)

(remember PkBk = Bk)

Here we used independence again. Pricing is more complicated otherwise. (See
approximative solutions in paper.)
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Pricing Defaultable Securities

• Identify the payoffs in events of survival and default

• Payoffs in default:

? recovery rate π
? take care specifying the claim size in default (notional, accrued interest,

amortisation)
? observe seniority

• For calibration securities this should be straightforward.

• Model price = weighted sum of building-block prices
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Pricing a Defaultable Coupon Bond
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Pricing a Credit Default Swap
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Pricing with Building Blocks

Fixed Coupon Bonds: coupon c, payable at Ti, recovery π

∑N
i=1 cBi +BN +π(1 + c)

∑N
i=1 ei︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

coupons +principal +recovery

Credit Default Swap: fee s, payable at Ti, payoff at default π

−
∑N

i=1 sBi +π
∑N

i=1 ei︸ ︷︷ ︸ ︸ ︷︷ ︸
−fee +default payoff

Exercise: Amortisation, Floating-Rate Notes
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What have we reached?

• Prices of defaultable securities are given in terms of the building blocks Bk, Bk

and ek

• The prices of the building blocks can be represented in terms of “forward-rates´´
Fk and Hk

• Fitting default-free forward rates Fk is standard.

• Can adapt forward rate - fitting methods to fit Hk
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[3] Pierre Brémaud. Point Processes and Queues. Springer, Berlin, Heidelberg, New York, 1981.

[4] Sanjiv Ranjan Das. Credit risk derivatives. Journal of Derivatives, 2:7–23, 1995.

[5] Gregory R. Duffee. Estimating the price of default risk. Working paper, Federal Reserve Board, Washington DC, September 1995.

[6] Darrel Duffie and Kenneth Singleton. An econometric model of the term structure of interest rate swap yields. Journal of Finance,
52(4):1287–1321, 1997.

[7] Darrell Duffie. Forward rate curves with default risk. Working paper, Graduate School of Business, Stanford University, December 1994.

[8] Darrell Duffie and Ming Huang. Swap rates and credit quality. Working paper, Graduate School of Business, Stanford University, October
1994.

[9] Darrell Duffie, Mark Schroder, and Costis Skiadas. Recursive valuation of defaultable securities and the timing of resolution of uncertainty.
Working Paper 195, Kellogg Graduate School of Management, Department of Finance, Northwestern University, November 1994. revised
March 1995.

[10] Darrell Duffie and Kenneth J. Singleton. Econometric modeling of term structures of defaultable bonds. Working paper, Graduate School
of Business, Stanford University, June 1994. revised November 1994.

[11] Bjorn Flesaker, Lane Houghston, Laurence Schreiber, and Lloyd Sprung. Taking all the credit. Risk Magazine, 7:105–108, 1994.

[12] Robert A. Jarrow, David Lando, and Stuart M. Turnbull. A Markov model for the term structure of credit risk spreads. Working paper,
Johnson Graduate School of Management, Cornell University, December 1993. revised January 1994.

[13] Robert A. Jarrow and Stuart M. Turnbull. Pricing derivatives on financial securities subject to credit risk. Journal of Finance, 50:53–85,
1995.

c© Paul Embrechts and Philipp Schönbucher, 2003 39
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