Rating-Based Credit Risk Models

Paul Embrechts

London School of Economics

Department of Accounting and Finance

AC 402 FINANCIAL RISK ANALYSIS

Part II

Lent Term, 2003

One-year rating transition probabilities

Standard and Poor's 1981-1991, 'no rating' eliminated, in percentages

	AAA	AA	А	BBB	ВВ	В	CCC	D
AAA	89.10	9.63	0.78	0.19	0.30	0	0	0
AA	0.86	90.10	7.47	0.99	0.29	0.29	0	0
Α	0.09	2.91	88.94	6.49	1.01	0.45	0	0.09
BBB	0.06	0.43	6.56	84.27	6.44	1.60	0.18	0.45
ВВ	0.04	0.22	0.79	7.19	77.64	10.43	1.27	2.41
В	0	0.19	0.31	0.66	5.17	82.46	4.35	6.85
CCC	0	0	1.16	1.16	2.03	7.54	64.93	23.19
D	0	0	0	0	0	0	0	100

The Transition Probability Matrix

We want to represent the probabilities of moving from one to another rating class in a convenient form.

Assumptions:

- 1. K different states (rating classes): $1, 2, \ldots K$
- 2. R(t) rating at time t
- 3. $\{P(t,T)\}_{ij}$ transition probability from state i at time t to state j at time T.

$$P(t,T)_{ij} = \mathbf{P} \left[R(T) = j \mid R(t) = i \right]$$

4. (Markov property): $P(t,T)_{ij}$ only depends on i, j and (t,T). No ratings momentum!

5. Obviously P(t,t) = I,

$$P(t,T)_{ij} \ge 0, \qquad \sum_{k=1}^{K} P(t,T)_{ik} = 1$$

6. Transition probabilities are independent of calendar time:

$$P(t,T) = P(T-t)$$

If property 4 is satisfied, the rating process is called a *Markov Process*.

If property 6 is satisfied, the rating process is called *time-homogeneous*.

If there is only a discrete state-space (property 1) we have a Markov Chain.

Time-Homogeneous Markov Chains

Probability of transition from i to j in *one* year:

$$P(1)_{ij}$$

Probability of transition from i to j in two years:

$$P(2)_{ij} = \sum_{k=1}^{K} P(1)_{ik} P(1)_{kj}$$

i.e. Probability of going from i to state k in year one and then from k to j in year two.

(Two-year Chapman-Kolmogorov equations.)

In Matrix writing

$$P(2) = P(1)P(1) = P(1)^{2}.$$

In general: Transition matrix for T-t years:

$$P(T-t) = P(1)^{T-t}.$$

The Chapman-Kolmogorov Equations

For all $s \in [t, T]$

$$P(t,T)_{ij} = \sum_{k=1}^{K} P(t,s)_{ik} P(s,T)_{kj}$$

Probability of going from i in t to j in T equals:

Probability of going from i to intermediate state k at intermediate time s and from state k at time s to state j at time T.

Summed up over all possible intermediate states k.

In matrix multiplication: For all $s \in [t, T]$

$$P(t,T) = P(t,s)P(s,T).$$

For time-homogeneous:

$$P(s+t) = P(s)P(t)$$

The Generating Matrix

Know P(0) = I.

Approximate transition matrix for Δt :

$$P(\Delta t) = I + \Delta t A.$$

A is called the *generating matrix*.

• Interpretation: For $i \neq j$ element A_{ij} is the intensity of the Poisson Process that triggers the transition from class i to class j.

$$A_{ij} = \frac{1}{\Delta t} P_{ij}(\Delta t) \ge 0$$

• Conservation of probability:

$$\sum_{k} P_{ik}(\Delta t) = 1 \qquad \Rightarrow \qquad \sum_{k} A_{ik} = 0$$

 \bullet Probability of remaining at i equals one minus probability of moving:

$$1 - \Delta t A_{ii} = 1 - \sum_{k \neq i} \Delta t A_{ik} \quad \Rightarrow \quad A_{ii} = -\sum_{k \neq i} A_{ik}$$

Properties of A and P

- A_{ij} : intensity of Poisson Process triggering transition from i to j
- Holding time of state i exponentially distributed with parameter A_{ii} .
- Probability of transition to state j given there is a jump: $-\frac{a_{ij}}{a_{ii}}$.
- $\pi = (\pi_1, \dots, \pi_K)$ stationary distribution iff

$$\pi = \pi P$$
 $\pi A = 0$.

Note: A generator matrix does not always exist.

The Generator Matrix:

. . . (approximation) to the previous example

	AAA	AA	А	BBB	BB	В	CCC	D
AAA	-11.59	10.75	0.42	0.13	0.29	0.00	0.00	0.00
AA	0.95	-10.61	8.32	0.81	0.26	0.27	0.00	0.00
Α	0.08	3.24	-12.14	7.46	0.90	0.40	0.00	0.06
BBB	0.06	0.36	7.56	-17.75	7.91	1.40	0.13	0.33
ВВ	0.04	0.22	0.58	8.85	-26.12	12.95	1.36	2.08
В	0	0.21	0.27	0.47	6.40	-19.98	5.90	6.73
CCC	0	0.04	1.44	1.36	2.46	10.13	-43.53	28.10
D	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Historical Default Probabilities vs. Credit Spreads

- Historical default rates do not justify the discounts observed on traded bond prices.
- Credit spreads are too low. (Particularly for higher quality debt.)
- Reasons: Risk Premia, liquidity premia, institutional effects, tax effects (?)
- Historical default transition matrices are observed frequencies and not probabilities.
 - a zero entry does not mean this transition is impossible: it was just not observed in the relevant period
 - we can have inconsistencies: downgrade AAA-BB more frequent than AAA-BBB.
 - or upgrades: CCC-A more frequent than BB-A.

- Need to make adjustments to the historical transition matrix in order to use it for pricing:
 - o incorporate risk premia
 - remove zero entries
 - adjust to achieve consistency and monotonicity

References

- [1] Robert A. Jarrow and Stuart M. Turnbull. Pricing derivatives on financial securities subject to credit risk. *Journal of Finance*, 50:53–85, 1995.
- [2] David Lando. On Cox processes and credit risky bonds. Working paper, Institute of Mathematical Statistics, University of Copenhagen, March 1994. revised December 1994.