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Standard and Poor's 1981-1991,

One-year rating transition probabilities

'no rating’ eliminated,

in percentages

AAA AA A  BBB BB B CCC D
AAA 89.10 9.63 0.78 0.19 0.30 0 0 0
AA 0.86 90.10 7.47 0.99 0.29 0.29 0 0
A 0.09 291 88.94 6.49 1.01 0.45 0 0.09
BBB 0.06 0.43 6.56 84.27 6.44 1.60 0.18 0.45
BB 0.04 0.22 0.79 719 7764 10.43 1.27 2.41
B 0 0.19 0.31 0.66 5.17  82.46 4.35 6.85
CCC 0 0 1.16 1.16 2.03 7.54 64.93 | 23.19
D 0 0 0 0 0 0 0 100
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The Transition Probability Matrix

We want to represent the probabilities of moving from one to another rating class
in a convenient form.

Assumptions:

1. K different states (rating classes): 1,2,... K
2. R(t) rating at time ¢
3. {P(t,T)};; transition probability from state ¢ at time ¢ to state j at time 7.

P, T)ij=P|R(T) =7 | R(t) =]

4. (Markov property): P(t,T);; only depends on i, j and (¢,T).
No ratings momentum!
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5. Obviously P(t,t) =1,

K

P(t,T);; >0, Y P(t,T)y=1
k=1

6. Transition probabilities are independent of calendar time:
P(t,T)= P(T —t)

If property 4 is satisfied, the rating process is called
a Markov Process.

If property 6 is satisfied, the rating process is called
time-homogeneous.

If there is only a discrete state-space (property 1) we have a Markov Chain.
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Time-Homogeneous Markov Chains

Probability of transition from ¢ to 5 in one year:
P(1)i;

Probability of transition from ¢ to j in two years:

K
ZP )i P(1

k=1

i.e. Probability of going from ¢ to state k£ in year one
and then from £ to j in year two.
(Two-year Chapman-Kolmogorov equations.)

In Matrix writing
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In general: Transition matrix for T — t years:

P(T —t)=P(1)' .
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The Chapman-Kolmogorov Equations

For all s € [t,T]

K
P(t,T)i; =Y P(t,s)P(s,T);
k=1
Probability of going from 2 in ¢ to 5 in T equals:

Probability of going from 7 to intermediate state k£ at intermediate time s
and from state k at time s to state ;5 at time T

Summed up over all possible intermediate states k.

In matrix multiplication: For all s € [t,T]
P(t,T) = P(t,s)P(s,T).

For time-homogeneous:
P(s+1t) = P(s)P(t)
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The Generating Matrix
Know P(0) = I.
Approximate transition matrix for At:

P(At) = I + AtA.

A is called the generating matrix.

e Interpretation: For i # j element A;; is the intensity of the Poisson Process
that triggers the transition from class ¢ to class j.

1

e Conservation of probability:

Y Pp(Aty=1 = > Ay=0
k

k
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e Probability of remaining at ¢ equals one minus probability of moving:

1 - AtA; =1-Y AtAy = Au=-) Ay,
k#i k71
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Properties of A and P

e A;;: intensity of Poisson Process triggering transition from ¢ to j
e Holding time of state 7 exponentially distributed with parameter A;;.
e Probability of transition to state j given there is a jump: —a

e m=(my,..., k) stationary distribution iff

T=m7P TA = 0.

Note: A generator matrix does not always exist.
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The Generator Matrix:

.. . (approximation) to the previous example

AAA AA A BBB BB B CCC D
AAA -11.59  10.75 0.42 0.13 0.29 0.00 0.00 0.00
AA 0.95 -10.61 38.32 0.81 0.26 0.27 0.00 0.00
A 0.08 3.24 -12.14 7.46 0.90 0.40 0.00 0.06
BBB 0.06 0.36 7.56 -17.75 7.91 1.40 0.13 0.33
BB 0.04 0.22 0.58 8.8b -26.12 12.95 1.36 2.08
B 0 0.21 0.27 0.47 6.40 -19.98 5.90 6.73
CCC 0 0.04 1.44 1.36 246  10.13 -43.53 | 28.10
D 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Historical Default Probabilities vs. Credit Spreads

Historical default rates do not justify the discounts observed on traded bond
prices.

Credit spreads are too low. (Particularly for higher quality debt.)
Reasons: Risk Premia, liquidity premia, institutional effects, tax effects (7)

Historical default transition matrices are observed frequencies and not
probabilities.

o a zero entry does not mean this transition is impossible: it was just not
observed in the relevant period
o we can have inconsistencies: downgrade AAA-BB more frequent than AAA-

BBB.
o or upgrades: CCC-A more frequent than BB-A.
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e Need to make adjustments to the historical transition matrix in order to use it
for pricing:

o incorporate risk premia
o remove zero entries
o adjust to achieve consistency and monotonicity
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