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1 Introduction

On dealing with multivariate risks, the dynamics of the dependence structure is of impor-
tance. For example, there is considerable interest in the dynamic behaviour of correlation
between different risks as a function of time; see for instance Boyer et al. (1999), Longin
and Solnik (2001) and Loretan and Phillips (1994). Because of the fundamental impor-
tance of the notion of linear correlation in finance and insurance, such dynamics may have
a non-trivial impact on the pricing and hedging of underlying instruments, or on the risk
measurement of such positions. As a consequence, a more systematic modelling for the
dynamic behaviour of the dependence structure underlying multivariate risks is called for.

In Breymann et al. (2003) we investigated the stylized facts of the dependence structure
in a set of high-frequency data, namely tick-by-tick observations of foreign exchange (FX)
spot rates for US Dollar quoted against German Mark (USD/DEM) and quoted against
Japanese Yen (USD/JPY). After an initial data deseasonalization, bivariate log-return
time series for six different frequencies were considered, from one hour up to one day.
At each frequency we evaluated the dependence structure, fitting copula-based models by
the pseudo log-likelihood method introduced by Genest et al. (1995); see also Chen and
Fan (2002). It is important to stress that the above analysis assumed the vectors to be
independent and identically distributed (iid). We know however that this assumption is
violated in practice due for instance to volatility effects; papers like Fortin and Kuzmics
(2002), Patton (2002), Rockinger and Jondeau (2001) discuss this issue.

In the present paper, starting from the deseasonalized FX data, we first model the
volatility dynamics with GARCH type models. The dependence between the resulting
residuals is then analysed through dynamic copula models. Of main concern will be the

detection of change-points.



There is an enormous econometric literature on the use of regime changes for describing
non-stationary economic data. In the context of time series analysis, see for instance
Hamilton (1990). In the field of monetary policy, regime switches may come about as a
consequence of new policy implementation, see Francis and Owyang (2004). In the latter
context, tools have been developed to measure the influence of both regime changes as
well as policy shocks. A further series of publications concentrates on the relationship
between long-memory and the existence of structural breaks, so-called “spurious long
memory process”; see Choi and Zivot (2003). In many of the above publications, the issue
of changes in correlations is important. One of the main reasons for writing our RiskLab
report, Embrechts et al. (1999, 2002), was to encourage a more structured dialogue between
practicioners and academics on the issue of dependence. Through many examples, we now
know that “there is more to dependence as can be measured through (linear) correlation”.
It turns out that the notion of copula as discussed in Embrechts et al. (2002) yields an
excellent tool for the modelling of nonlinear dependences. By now, these techniques have
achieved the text book level, see for instance Cherubini et al. (2004). The present paper
contributes to our knowledge of dependence modelling beyond linear correlation by adding
an analysis on conditional dependence across sampling frequencies in two-dimensional FX
data, and also explores the existence of structural changes in the dependence. Concretely,
we introduce a new methodology for testing for change-points in conditional copulae. The
main aim of the paper is to give, through an economically relevant example, the financial
experts a new tool that we hope will have potential for a more careful analysis of financial
data. As such, our paper is very much in line with the goals set out in Andersen et al.
(2004).

After a preliminary data analysis in Section 2, in Section 3.1 we first filter the data

through univariate GARCH models and analyze, in Section 3.2, the copula function of



the residuals. In Section 3.3 we propose a multivariate dynamic model where the copula
is time-varying. The model presented allows the use of any copula to link the univariate
innovations. In Section 3.3.1 we explain how to estimate the parameters of the time-
varying copula-based model. We apply this model to the several frequencies of FX returns
on USD/DEM and USD/JPY in Section 3.3.2. Based on the models from Section 3.2,
Section 4.2 is devoted to testing for the existence of change points in the dependence

parameters; we estimate both the size and time of the changes.

2 Preliminary data analysis

The data considered are bivariate log-returns of FX spot rates USD/DEM and USD/JPY
after being deseasonalized, as in Breymann et al. (2003). The observations cover the period
from April 27, 1986 until October 25, 1998. The six different frequencies considered are
one, two, four, eight, twelve hours and one day periods. In order to make the paper more
self-contained, in the next section we summarise the deseasonalization procedure. For

further details we refer the reader to Breymann et al. (2003) and the references therein.

2.1 Deseasonalization of the data

After being collected by Olsen Data, the observations (tick-by-tick FX quotes) are cor-
rected for transmission errors, fake quotes originated by transmission tests, etc. A de-
scription of this filtering process is to be found in Dacorogna et al. (2001).

Originally the number of quotes emitted by the FX market is very high (around ten
million for USD/DEM in the given period) and they are irregularly spaced in time. Regular
time series are obtained through a reduction of the observations to a time step ¢ of five
minutes. Missing observations are obtained by linear interpolation. For a given currency,

a single quote at time ¢ consists of a bid price, p; piq and an ask price, p; .. As we are



not interested in the effects related to the bid-ask spread, we consider logarithmic middle

prices, defined at time ¢ as:

Dt = = (10g pr.bid + 10g P ask) -

N | —

These are displayed in Figure 1 for the USD/DEM and USD/JPY spot rates. The log-
arithmic return at ¢ with respect to the time horizon (or frequency) At, Z; A; is given
as

Ty, At = Dt — Dt—At- (1)

We may occasionally drop the frequency subscript At in (1).

The changing market activity induces a cyclic behaviour on the variability of the
returns. In other words, the market volatility possesses a seasonal component, the so-
called seasonal volatility pattern. This is very pronounced in high-frequency data.

Specific approaches to the deseasonalization of high-frequency data can be found in the
literature; at a text book level, see Dacorogna et al. (2001). We use a deseasonalization
method referred to as volatility weighting, which consists of standardising the time series
of the returns by a volatility, estimated conditionally on the time of the week. Formally,
denote by )?t the log-return at time ¢ for the time frequency of five minutes. Suppose that

the return time series data is a realisation of the process
Xi = p+ve Xy, (2)

where p is the mean log-return, v; is the five minutes expected volatility at t and X; is a
random component corresponding to a deseasonalized log-return at moment ¢ for the five
minutes frequency. We assume in (2) that the trend component of the process is constant,
the expected volatility however depends strongly on market activity, a;. For our data we

have to consider the activity of the European, the American and East Asian markets and



hence split a; in three components:

Q¢ = Ot America T Ot East Asia T @t,Europe-

For a normal day, the market activity a; is taken to be one. If a given time %, falls within
a public holiday, in Europe say, then a;, gurope = 0 and ay, is less than one. Moreover, the
expected volatility is subject to the shift of daylight saving time (DST) periods. Hence,
we have to compute separately the expected volatility for winter and for summer DST
periods. We have to estimate the volatility also conditional on the moment of the week
because there is a weekly and intra-day seasonality. We denote t = t; + 76, where t; is the
beginning of week ¢ (Sunday 00:00:00 GMT) and 7 € {0,1,...,T} with 7' the number of
five minutes periods ¢ in a seven days week. Taking the above facts into consideration, v;
is modelled as

o7 =a (v9)", (3
where vi‘? is the expected volatility at moment 7J of the week in the DST period d, winter

(d)

or summer. Then, v s is estimated as
Ng
2 1
_(d ~ 2
(”ia)) =N D @)’
4=
where Ny is the number of weeks in the DST period d.
Using the volatility patterns estimated by (3), we can compute the five minutes desea-

sonalized log-returns

Ty = —— (4)

where Z is the sample mean of the log-returns Z; which were computed from (1) with
At = §. For simplicity, and without loss of generality, assume in the following that the
returns X are already centred by their mean py. Now we need to know how to obtain the

deseasonalized returns for any time frequency At rather than for five minutes. Consider



the simple generalisation of (2) from a five minutes to a At time frequency process:

jzt,At = v AL X¢, At (5)

The expected volatility at time ¢ for an arbitrary time frequency At is defined in terms of

the five minutes volatility as

1l 1/2
_ 2
Ut,At = Vi_is >
i=0

where nd = At. Denote by P; the logarithmic middle price at time ¢. Then, (5) can be
rewritten in the form
n—1 1/ 2
Py — Py nr = (Z Uf_i(s) Xt,Ats (6)
i=0
with nd = At. Using (6), we can compute the deseasonalized log-returns for any time

frequency At through

Te,At = Pt~ Pioat 172’ (7)
(5? +07 5+t ’5?7(7171)5)

this is a function of the logarithmic middle prices and the five minutes volatility pattern
estimated from the data.

The mean activity of the FX market during weekends is very low. The usual approach
to handle this cyclic behaviour consists of dropping the weekends from the middle price
series. However, big jumps may appear between closing Friday and opening Monday
prices, so that dropping the weekends without a special treatment could produce wrong
large return values. This would then induce spurious seasonality. Therefore, a weekend
volatility has to be calculated in order to avoid this. Define the beginning and the end

of a weekend respectively as t,, = Friday, 21:00:00 GMT and t,, = Sunday, 21:00:00

GMT. Let Aty = ty, — tw, be the weekend length. The expected volatility for weekends

5 \1/2
vy = ii'twl,Atw‘ (F) ; (8)
w

7

1s estimated as



if t € (fwg,tw,]- After the volatility pattern estimation is done, the weekends can be
dropped in the middle price series and in the volatility. Because of (8), the first volatility
estimate of the week is in tune with a possible price jump during the weekend and no
spurious seasonality remains in the deseasonalized returns.

With the volatility patterns estimated, we computed the series of deseasonalized log-

returns for six frequencies: one, two, four, eight, twelve hours and one day.

2.2 Analysis of the margins

As mentioned before, the FX data set available covers the period from April 1986 until
October 1998. Tables 1 and 2 contain some summary statistics of the deseasonalized log-
returns. From those tables we observe that neither exchange rate return shows a significant
trend. The skewness of the USD/JPY deseasonalized returns is negative for all frequencies.
For the USD/DEM returns, the skewness is closer to zero and even positive for the two
and eight hours frequencies. At all frequencies, both series show excess kurtosis.

The univariate normality of the deseasonalized returns can be formally tested using
the Jarque-Bera test from Jarque and Bera (1987). We ran this test and normality is
rejected throughout; see Table 3.

Furthermore, Figures 2 and 3 contain normal QQ-plots for the empirical quantiles of
the deseasonalized returns. As it is usually found in the econometric literature, from those
two figures we can see that the univariate distributions are clearly heavy tailed for short
time horizons and become more thin tailed as the frequency decreases.

In order to test for conditional heteroscedasticity, we consider the ARCH(p) process



(Xt)yey defined as

Xe=p+e
€ = 0144 9)

2 2 2
oy =optore 1+ ...+ apep_y,

where (Z;),; is a sequence of iid random variables with zero mean and unit variance.
Moreover, ap > 0, a; > 0 for i = 1,2,...,p and Z; is independent of (X;),., for all ¢; see
Engle (1982). At all the frequencies, the test for absence of ARCH effects is rejected; see

Table 4.

3 Conditional copula modelling across frequencies

Our main goal is to model the conditional dependence underlying the bivariate
USD/DEM, USD/JPY spot rate returns across the different frequencies. By now, a stan-
dard approach is based on the notion of conditional copula, as discussed in Patton (2002).

In this two-stage procedure, one first models the marginal dynamics.

3.1 Modelling the marginal dynamics

In the marginal tests performed in Section 2.2, the deseasonalized returns reveal the
presence of time-varying variance and heavy taileness. In our discrete-time setting, we
model stochastic volatility effects by GARCH type models. In particular, we fit univariate
ARMA-GARCH models to each of the marginal series with innovations assumed to come
from a t-distribution.

Formally, consider the sequence of iid random variables with zero mean and unit vari-

ance (Zi),cy- The process (Xy),cy is an ARMA(p1,q1)-GARCH(p2, ¢2) if it satisfies the



equations
Xe=pe+ e

P1 q1
pe=pt+ Y i (X i—p)+ > 0
=1

=1

€ = 0144
P2 q2
2 2 2
oy = o+ E ai€;_; + E :ﬁjat—j
=1 j=1

where ap >0, o; > 0 for i =1,2,...,p2, B; > 0 for j =1,2,...,¢2 and Z; is independent
of (Xs),<;- The polynomials ¢(z) =1—¢1z—...—¢p, 2P and 0(z) = 1 —b1z—...—0p 2"
have no common roots and no roots inside the unit circle. See Brockwell and Davis (1991)
and Zivot and Wang (2003) for more details.

We fitted univariate ARMA-GARCH models by maximum likelihood to each of the
marginal series assuming that the innovations Z; come from a t-distribution with v degrees
of freedom. Table 5 gives the order of the models fitted and the estimates of v for the
t-innovations; we refrain from listing the other parameter values as, for our analysis, these
are less important. Note that, the t-distributions fitted at the one, two and four hours
frequencies have infinite kurtosis (& < 4) and so the fourth moment does not exist.

In each univariate model we considered an extra parameter v in the GARCH dynamics.
The parameter v attempts to take into account that innovations of different signs may
have asymmetric impacts on the future variance; see for example Bollerslev et al. (1992)
and references therein. This improvement is also possible in the model specified in (10);
see Ding et al. (1993) and Zivot and Wang (2003) where the GARCH component of model
(10) is treated as a special case of a power GARCH model. The last equation in (10) then

becomes

b2 q2
Uf =ap+ Z%‘(\Et—ﬂ + ’Yzft—i)2 + Zﬁjag—j-
i=1 j=1
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We use the usual t-statistic &/G4 to test whether the general model parameter « is zero.
For the USD/DEM returns we cannot reject the null hypothesis of v, = 0 for the estimated
v parameter, and this at all frequencies. In the case of USD/JPY, the situation is almost
the complete reverse. In this case, we reject the null hypothesis for all frequencies lower
than (and including) four hours. In Table 5 we put a superscript * in the ARCH order of
such frequencies. Rejecting the null hypothesis for the USD/JPY model parameter -y, = 0,
and using that the estimated values 4 are negative, we have that negative shocks on the
USD/JPY rate have a larger impact on volatility than positive shocks.

From the fitted ARMA-GARCH model parameters we recover the residuals or filtered

returns Z; for each univariate time series (z1,z2,...,Ty):

2t: (eTt_/A//t)/a'ta t= 1523""’”' (11)

Once the univariate models are selected and fitted, the dynamics as well as the
goodness-of-fit of the t-density, must be checked. We use the Ljung-Box (L-B) test for
testing for serial correlation and the Anderson-Darling (A-D) test for the goodness-of-fit
of the t-density. For the USD/DEM residuals, in Table 6 we report the p-values of the
LB test for the residuals and for the absolute values of the residuals, and the p-values
of the goodness-of-fit test. The corresponding results for the USD/JPY residuals are in
Table 7.

The LB test for the residuals gives indication of no autocorrelation on the lower
frequencies of one day, twelve and eight hours. Also the one hour frequency of USD/JPY
residuals do not reveal serial correlation. The remaining frequencies fail the L-B test. For
the absolute values of the residuals we have that only the one hour frequency fails the
autocorrelation test for a significance level of 5%. The t goodness-of-fit of the marginal

densities, according to the A-D test, is not rejected at all frequencies except for the one

11



and two hours residuals. We also tried to include crossed lagged returns in these models
but without success. Hence, the non-inclusion of a model taking into account the crossed
lagged dependence is not responsible for the bad fit at the higher frequencies. On the other
hand, there is a significant contemporaneous linear correlation between the two residuals
time series, see Table 8, and this at all frequencies. The estimated linear correlation turns
out to be of the same order as the one obtained for the deseasonalized returns, listed in
Table 2. Tt is this dependence that we want to model using copulae. In the next section

we perform a copula analysis of the bivariate residuals or filtered returns (z;) in (11).

3.2 A static copula model

Though the main aim of this paper concerns a dynamic model for the residual dependence,
we first perform a static copula analysis in order to restrict the class of parametric copula
families we want to concentrate on.

Figure 4 shows the scatter-plots of residuals (z;) obtained through the GARCH mod-
elling in Section 3.1. Assuming at first stationarity, suppose that the USD/DEM residuals
are represented by the random variable Z; and the USD/JPY by the random variable Zs.
Assume that (Z1, Z2) has multivariate distribution function F' and continuous univariate
marginal distribution functions F; and F5. In order to investigate the residual dependence,

we fit copula-based models of the type
F(z1,29;0) = C(Fi(21), F2(22); 0), (12)

where C is a copula function, which we know to exist uniquely by Sklar’s Theorem (Sklar
(1959)), parameterized by the vector 8 € R? with ¢ € N. The corresponding model density

is the product of the copula density ¢ and the marginal densities fi; and fo:

2

f(21,22:0) = c(Fi(21), Fa(22);0) [ | fi(=),

=1
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where c is the copula density of model (12) and is given by

820(”1; U2; 9)

2
aul auz ’ (u17u2) e [07 1] °

C(u17 u2; 0) =

Denote by Z = {(Z1;,Z2) : ¢ = 1,2,...,n} a general random sample of n bivari-
ate observations. The dependence parameter 8 of C is estimated by the pseudo log-
likelihood estimator introduced by Genest et al. (1995) where the marginal distribution
functions F;, ¢ = 1,2, are estimated by the rescaled empirical distribution functions
Fi(z) = n+-1 > i=1Liyer :y<z} (Zij)- As usual I denotes the indicator function of the set A.
After the marginal transformations to so-called pseudo observations (Fi,(Z1;), Fon(Z2;))
for i = 1,2,...,n, the copula family C is fitted. Suppose that its density exists, we then
maximize the pseudo log-likelihood function

n
L(0;2) = > log c(Fin(21:), Fan(22i); 9). (13)
i=1
The pseudo log-likelihood estimator @ that maximizes (13) is known to be consistent and
asymptotically normally distributed when the data are known to be iid; see Genest et al.
(1995). Note however that the preliminary ARMA-GARCH filtering may have increased
the variance of the estimates 6.

The copula families used are: t, Frank, Plackett, Gaussian, Gumbel, Clayton and the
mixtures Gumbel with survival Gumbel, Clayton with survival Clayton, Gumbel with
Clayton and survival Gumbel with survival Clayton; for details on these classes see Em-

brechts et al. (2002), Joe (1997) and Nelsen (1999). Denoting the copula family A with

parameter @ by C4(-,;0), the fitted mixtures have distribution functions of the form
C(’U,l, Uu2; 0) = 03 CA(’U,l, U2, 91) + (1 — 03) CB(U,1, Uu2; 92) (14)

The above choice of time invariant-copula models is partly based on previous analyses,

on tractability and flexibility and also to allow for a fairly broad class with respect to

13



extremal clustering and possible asymmetry. The Gaussian copula is included mainly for
comparison.

The models were ranked using Akaike’s information criterion
AIC = —2L(6;x) + 2¢

where ¢ is the number of parameters of the family fitted. Parameter estimates and standard
errors (s.e.) for all fitted models are listed in Tables 9 and 10.

Overall, the t-copula comes out as the best. The exception is for the daily observations
where a Gumbel mixture performs slightly better.

Based on this analysis, in Section 3.3 we will analyse our data with a dynamic t-copula
model. Further support for the t-based models is to be found in Breymann et al. (2003),
Demarta and McNeil (2004), Daul et al. (2003), Rosenberg and Schuermann (2004) and
Pesaran et al. (2004).

This may seem in contrast to Patton (2002) where for the daily data, an asymmetric
copula model was used. We performed a likelihood ratio (LR) test for possible asymmetry

in a Gumbel mixture model as in (14); we tested for the null hypothesis
H() : 61 = 92 and 93 =0.5

versus the alternative

HA:917592 or 937505

A low p-value indicates that a three parameter asymmetric Gumbel mixture model is
significantly better than the one model with one parameter symmetric one. This turns
out to be the case for the frequencies other than daily and four hours; see Table 11. As
the t-copula came out best based on the AIC, we decided to continue our analysis with

this copula model.
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3.3 A dynamic copula model

In this section we start again from the deseasonalized FX data (z;) in (7). A dynamic
copula model will be achieved through a combination of two univariate ARMA-GARCH
models with a time-varying copula. With such a procedure we investigate the constancy
of the conditional dependence structure allowing for time-varying dependence parameters
and assuming a fixed copula family. As before, we look at several frequencies for the FX
data considered. This is a multivariate GARCH-type model; for a survey on multivariate
GARCH models, see Bauwens et al. (2003).

Let (X),cz be a sequence of observable d-dimensional random vectors. Consider the

process description given by

X = c+e
€ = O'tzt (15)

P q
o} = Ap+ Z A; ® (er—i€)_;) + Z Bj® o}
i=1 j=1

where A; for ¢ = 0,1,...,p and B; with j = 1,2,...,q are diagonal d x d matrices, c is
a vector in R? and p and ¢ are positive integers. In (15), ® stands for the Hadamard

product, the element by element multiplication. Moreover, (Z;;), ., for i =1,2,...,d are

teEZ
assumed to be univariate, strict white noise processes with zero mean and unit variance.
The set of equations (15) defines each marginal process as a univariate GARCH. Now we
couple the d processes (15) assuming a copula family C for the multivariate distribution
of Z; with time dependent parameter vector @;. The search for suitable dynamics for
0, depends very much on the interpretation that a specific dependence parameter may
have; see Section 3.3.2. Patton (2002) and Rockinger and Jondeau (2001) contain specific

examples for the Gaussian, the symmetrised Joe-Clayton and Plackett copula. A further

interesting paper is Cappiello et al. (2003).
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3.3.1 Model estimation: general theory

The natural estimation method for (15) is (conditional) maximum likelihood. Further-
more, the definition of the model suggests a two step estimation procedure. In fact, this
is used in similar situations in Engle and Sheppard (2001), Patton (2002) and Rockinger
and Jondeau (2001).

For a random sample (X1, Xa,...,X,), assume that the conditional distribution of X;

can be written as
F(X; A1,y...,004, 075) = C(Fl(acl; al), . ,Fd(.Td; ad); 075)

where we assume that the F;’s are absolutely continuous with density f;; the vectors
aq,...,0q parameterize the marginal distribution functions; the time-varying parameter
0, parameterizes the copula family. Assuming that C' has density ¢, then the conditional
density of X; is given by:

f(X; al,...,04, 0t) ==

d
= c(Fi(z1;00),.. ., Fa(zg; aa); 01) [ | filwi; i)

=1
The conditional log-likelihood function of the model therefore is

n

d
Z (10gC(F1(iB1,t; ai1),..., Fa(zas; aa); 04) + Zlogfi(ﬂﬁi,t; ai)) J (16)

t=m-+1 i=1

where m = max(p,7). Numerical maximization of (16) gives the maximum likelihood
estimates of the model. However, the optimization of the likelihood function with possibly
many parameters is numerically difficult and time consuming. It is more tractable to
estimate first the marginal model parameters and then the dependence model parameters
using the estimates from the first step. In order to do so, the d marginal likelihood

functions

n
Z logfi(wi,t;ai)a 1= 1327"'ad7 (17)

t=p+1

16



are independently maximised, yielding the estimates é&j,...,&4. The final function to

maximise then is

n
Z log c(F1(z1,4581), .-, Fa(za; &q); ). (18)
t=m+1

From this, estimates for the dependence parameter 8, are obtained. In Section 3.3.2 below

we apply the above procedure to our FX data.

3.3.2 Fitting the time-varying copula model to the FX returns

For the USD/DEM and USD/JPY spot rate returns, in Section 3.2 we found that the
t-copula yields the best model for the cross dependence. For the t-copula, 8; = (v, p;)’
with possibly time-varying degrees of freedom v; and correlation coefficient p;. In a first
attempt, we take as a parsimonious model:

V=V for all ¢,
(19)

pr=h o+ riz1—1204-1 + s1h(p1—1)),

where h(-) is Fisher’s transformation

This choice of model is motivated by the fact that in first instance we want to model the
dependence structure of the data and hence concentrate on the dynamics of the correlation
function py; a generalisation of the procedure to time-varying v, is definitely possible. The
regression-type dynamics in the z;’s in (19) have as a natural consequence that when both
innovations have the same sign we have a positive contribution in (19). In case innovations

have opposite signs, a negative contribution results.

3.3.3 Dynamic copula estimation: the results

From the marginal ARMA-GARCH models from Section 3.1, we obtain the estimated

degrees of freedom 7; see Table 5. Denote by {(214,22¢) : t = 0,...,n} the standardised

17



residual return series obtained from this GARCH filtering. The standardised residuals

[ U .
; =1,2
( ﬁi_2z’t,t>7 ? )4y

are mapped into the unit square by the standard t probability-integral transformation,

yielding the pseudo-observations:

[ 1 [ 2
{(tﬁ1< mZLt),t,;Q( 1}2_222’t)>:t:1""’n}' (20)

These data are plugged into (18) with ¢ being the t-copula density function and using

(19) for the dynamics of the dependence parameters. Maximisation yields 0= (0, p)' For
the one and two hours frequencies we used the empirical distribution function instead of
the t-distribution. The reason was the poor results obtained for the goodness-of-fit test
reported in Tables 6 and 7. The results are reported in Table 12. We added the t-copula
parameter estimates from the static copula model.

The AIC of the time-varying copula model is lower than the AIC of the static copula
model; see Table 12, hence we have an improvement in the goodness-of-fit. The estimate
for ro in (19) can be considered zero for eight hours, twelve hours and daily returns. But 71
and s; are definitely different from zero for all frequencies. In other words, the estimated
(copula) correlation depends on the marginal returns and on the correlation from the
previous moment in time. From the estimated parameters for the correlation dynamics
we compute, through the second equation of (19), the time-varying estimated correlation
which is plotted in Figures 5 and 6. These also show the estimated constant correlation
with a 95% confidence interval (see Section 3.2). Given these results we can infer that the
conditional dependence is definitely time-varying and so its dynamics has to be modelled.

The degrees of freedom estimated for the dependence structure is always larger for the
dynamic copula model than for the static one; compare the values listed in Table 12. We

observe an increasing pattern in the estimated degrees of freedom from higher to lower
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frequencies.

4 A change-point model

Looking at Figures 5 and 6, the implied correlation function estimated in Section 3.3 shows
possible level changes. We analyse this issue though a change-point detection technique
for parametric copula models. There are several well known tests on structural breaks
in econometric time-series analysis; see for instance Bai (1997), Bai and Perron (1998)
and Hansen (2001). See also Polzehl and Spokoiny (2004). Here, we test for changes in
the copula parameters, estimate the size of those changes and the corresponding time of
occurrence. For related work, see for instance Gombay and Horvath (1999). For a detailed
treatment of the change-point theory underlying our approach, see Csorgé and Horvéath

(1997) and references therein, and Dias and Embrechts (2002).

4.1 Detecting change-points in copula parameters

Let uj,ug,...,u, be a sequence of independent random vectors in [0, 1]d with univari-
ate uniformly distributed margins and copulae C(u;01,7n;), C(u;02,n5),...,C(u;0,,n,)
respectively, where @; and n; are the copula parameters such that 6; € 0 C R? and
n; € ©®) C RY. We will consider the 7; as nuisance parameters and look for one single

change-point in @;. Formally, we test the null hypothesis
Hy:0,=06,=...=60, and N =nNy=...=1,
versus the alternative
Hy:0,=...=0p« #6011 =...=06, and N =Ny=...=1n,.

If we reject the null hypothesis, k* is the time of the change. All the parameters of the

model are supposed to be unknown under both hypotheses. If k* = k were known, the
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null hypothesis would be rejected for small values of the likelihood ratio
Sup H C(ui; 07 n)
(0. m)ce)xe®@ 1<i<n

sup I1 c(ui;0,m) II c(ui;6',m)’
0,0’ m)co® xo xe® 1<i<k k<i<n

Ap =

(21)

where we assume that C has a density c¢. The estimation of Ay is carried out through
maximum likelihood and so all the necessary conditions of regularity and efficiency have
to be assumed (see Lehmann and Casella (1998)).

Denote

Li(0,m) = > logc(u;6,n)
1<i<k

and

Li(0,m) = ) logc(us;0,m).
k<i<n

Then the likelihood ratio equation can be written as

_210g(Ak) =2 (Lk:(éka ’f’k) + LZ(OZ, ’f’k) - Ln(éna ’f’n)) .
As k is unknown, Hy will be rejected for large values of

Zn = lrsnggn(—Qlog(Ak))- (22)

4.1.1 Asymptotic critical values

The asymptotic distribution of Z}/ 2 is known but has a very slow rate of convergence;
see Csorgd and Horvath (1997), page 22. In the same reference we can also find an
approximation for the distribution of Z,l/ ? derived to give better small sample rejection

regions. Indeed, for 0 < h <[ < 1, the following approximation holds:

D 2
P (lez > x) ~, Trexp(=27/2)
g 2°/2T(p/2)

(log%—%log%+%+0(%)), (23)
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as z — 0o and where h and [ can be taken as h(n) = I(n) = (logn)®/?/n. Note that in (23)
p is the number of parameters that may change under the alternative. This result turns
out to be very accurate as shown in a simulation study in Dias and Embrechts (2002)

where it is applied to the Gumbel copula.

4.1.2 The time of the change

If we assume that there is exactly one change-point, then the maximum likelihood esti-
mator for the time of the change is given by

~

kp=min{l <k <n:Z, =—2log(Ag)}. (24)

In the case that there is no change, k, will take a value near the boundaries of the sample.
This holds because under the null hypothesis, and given that all the necessary regularity
conditions hold, for n — oo, lAcn/n 4, &, where P(¢ = 0) = P(§ = 1) = 1/2; see Csorgd
and Horvéath (1997), page 51. This behavior was verified in a simulation study for the

Gumbel copula under the no-change hypothesis in Dias and Embrechts (2002).

4.1.3 Multiple Changes

The detection of several change-points in multidimensional processes with unknown pa-
rameters can be done using the so called binary segmentation procedure. This method was
proposed by Vostrikova (1981) and allows us to simultaneously detect the number and the
location of the change-points. The method consists of first applying the likelihood ratio
test for one change. If Hy is rejected then we have the estimate of the time of the change
kp,. Next, we divide the sample in two subsamples {u; : 1 <1i < lAcn} and {u; : kp <i < n}
and test Hy for each one of them. If we find a change in any of the sets we continue this
segmentation procedure until we don’t reject Hy in any of the subsamples. An alternative

method is discussed in Mercurio and Spokoiny (2004).
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4.2 An application to the FX data

In this section we test for the occurrence of change-points in the copula parameters of the
deseasonalized FX filtered returns. Concretely we use the procedures from the previous
section to estimate change-points in the correlation parameter of a constant parameter
t-copula fitted to the residuals of daily USD/DEM and USD/JPY returns. A similar
analysis can be done at other frequencies. For the change-points found, we estimate the
size of those changes and the corresponding time of occurrence. We also look at macro
economic reasons possibly triggering the changes.

After filtering the univariate returns using the GARCH type models specified in Table 5
of Section 3.1, we start with the assumption that the residuals do not depend on time.
Hence, we can use (21) and (23) for detecting possible change-points in the parameters of
the multivariate contemporaneous conditional distribution and in particular in the copula.

For the copula fitting, we use the empirical distribution function to map the residuals
into the unit square. In a first step, we assume that the degrees of freedom of the copula are
constant over time and hence we only test for change-points in the correlation parameter.

We evaluate Ay for k = 1,2,...,n where n = 3259; see (21). The values obtained are

1/2
n obs

displayed in the top panel of Figure 7. The test statistic (21) takes the value z =13.26
and by (23) we have that P(Zrl/ 2> 13.26) ~ 0. The null hypothesis of no change-point is
to be rejected and the estimated time of the change is k, = November 8, 1989; coinciding
with the fall of the Berlin wall. In the next step, the sample is divided in two sub-samples,
one up to November 8, 1989 and another from the estimated time of change onwards. For
each sub-sample Ay is computed as well as Z}L/ ?_ The middle panel of Figure 7 plots these

1/2

estimates and Table 13 has the values for 2/, and all the information about the testing
procedure. As the obtained p-values are close to zero we reject the null hypothesis of no

change for each sub-sample and estimate two more times of change, December 29, 1986
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and June 18, 1997. The later date corresponds to the beginning of the Asia crisis starting
with the devaluation of the Thai Baht. Each sub-sample is again divided in two and the
procedure is repeated yielding the estimates in the bottom panel of Figure 7.

For the results of the analysis shown in the bottom panel of Figure 7 only for the
maximum attained at October 23, 1990 the null hypothesis is rejected at a 5% level. So
we still have to split this sub-sample further. The first from November 8, 1989 until

2

October 23, 1990 and the second from this date up to June 18, 1997. The z}l/ »s Obtained

0
in these cases are low, see Table 13, and we do not reject the null hypothesis of no change
in both cases. In Table 13 we give the time where the test statistic (22) is attained for each
sub-sample. If the null hypothesis is not rejected the date found is put in parentheses. In
summary we found four change-points: December 29, 1986, November 8, 1989, October
23, 1990 and June 18, 1997. For the five periods between the times of change we estimated
for the copula correlation (s’e.): p; = 0.6513 (0.0384), po = 0.8312 (0.0113), p3 = 0.3099
(0.0608), py = 0.5752 (0.0149) and p5; = 0.3505 (0.0460). To visualise these results we
redisplay in Figure 8 the time-varying correlation estimated in Section 3.3, first plotted
in the bottom panel of Figure 6 (daily data), super-imposed with the estimated change-
point cross-correlation for the five periods between the times of change. The change-point
analysis seems to detect the main features of the changes in the dynamic correlation curve.
No change-points were detected from October 23, 1990 until June 18, 1997 which may seem
a rather long period for the correlation to be constant. It may be interesting to note that
the former date (October 23, 1990) corresponds to the burst in the Japanese asset price
bubble. On October 18, 1990, the USD/JPY ended a fall from about 158 to 125.

We can compare the AIC value for the three models discussed: static copula (Sec-

tion 3.2), dynamic copula (Section 3.3) and change-points (Section 4). The values obtained

are:
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non-dynamic dynamic change-points

AIC -1644.549 -1881.760 -1925.482
The t-copula model with the change-points in the correlation parameter yields a superior
fit.
We also tested the existence of change points in the parameters of the distribution
of the univariate residuals. If the marginal models are appropriate then the residuals
should come from a t-distribution with constant parameters (location, scale and degrees

of freedom). The null hypothesis corresponds to no change points in any of the three

1/2
n 0bs

parameters. For the daily USD/DEM we obtain a test statistic value of z = 3.195

to which corresponds a p-value of 42% according to (23). In the case of the USD/JPY
residuals we have that zrlb/ 02,) s = 3.915 which implies a p-value of 9.2%.

The above analysis were partly repeated at the higher frequencies yielding finer esti-
mates of the possible change points. In particular, we put some data windows around the
change point found in the daily data and then proceeded as above. We shall come later to
some of these findings in further work. We want to stress at this point that, for instance at

the higher frequency of one hour, the computational complexity for the full change point

procedure is considerable.

5 Conclusion

The aim of the paper is essentially twofold. First of all, we want to contribute to the ongo-
ing discussion between practitioners and academics in order to advance the methodological
basis for risk measurement technology. No doubt, thinking beyond linear correlation, and
this through the notion of copula, contributes to this goal. Second, through the example

of the high-frequency, two-dimensional FX data, we were able to come up with a parsi-
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monious conditional dependence model taking changes in the dependence structure into
account. The change points found relate to specific macro-economic events. We have not
made the next step: undertaking the full economic reasons underlying the final model
presented. We do however hope that the tools introduced will eventually lead to such,

more economic studies.
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6 Tables and figures

USD/DEM USD/JPY
Frequency Mean Std. dev. Mean Std. dev.
1 hour 0.0031 0.9539 0.0001 0.9521
2 hours 0.0030 0.9724 -0.0010 0.9585
4 hours | -0.0005 0.9877 -0.0050 0.9509
8 hours | -0.0033 0.9878 -0.0092 0.9611
12 hours | -0.0039 0.9767 -0.0100 0.9457
1 day -0.0112 1.0182 -0.0128 1.0026

Table 1: Summary statistics of the USD/DEM and USD/JPY deseasonalized returns at

the six frequencies.

USD/DEM USD/JPY Linear
Frequency | Skewness Kurtosis | Skewness Kurtosis | correlation

1 hour -0.0113 5.9903 -0.1831 7.3674 0.5604
2 hours 0.0615 6.9665 -0.1058 7.7071 0.5858
4 hours -0.0035 5.5195 -0.1855 5.4950 0.5973
8 hours 0.0026 3.9248 -0.2718 5.0043 0.6112
12 hours | -0.1036 2.4768 -0.3448 3.5822 0.6186
1 day -0.1234 1.6838 -0.3171 2.7735 0.6243

Table 2: Summary statistics of the USD/DEM and USD/JPY deseasonalized returns at

the six frequencies.
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USD/DEM USD/JPY

Frequency Test statistic P-value Test statistic p-value

1 hour 114 785.4 0.0 174 000.0 0.0
2 hours 78 207.3 0.0 95 757.0 0.0
4 hours 24 619.7 0.0 24 551.5 0.0
8 hours 6 246.1 0.0 10 276.3 0.0
12 hours 1 668.0 0.0 3 594.3 0.0
1 day 391.3 0.0 1094.2 0.0

Table 3: Jarque-Bera test statistic values and the p-values for the USD/DEM and

USD/JPY deseasonalized returns at the six frequencies.

USD/DEM USD/JPY
Frequency Test statistic ~P-value Test statistic p-value
1 hour 2 893.13 0.0 3 083.30 0.0
2 hours 857.24 0.0 1178.70 0.0
4 hours 578.51 0.0 614.08 0.0
8 hours 190.61 0.0 336.04 0.0
12 hours 117.80 0.0 160.43 0.0
1 day 35.25 0.0 75.99 0.0

Table 4: ARCH effects test statistic values and the p-values for the USD/DEM and

USD/JPY deseasonalized returns at six frequencies.
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USD/DEM

Frequency p1 ¢1 p2 @2 D (s’e.)
1 hour - - 1 1 3.693 (0.054)
2 hours 2 2 2 1 3.708 (0.044)
4 hours - 5 1 1 3.975(0.105)
Shours 2 4 1 1 4679 (0.234)
12hours 1 - 1 1 5.385 (0.326)
1 day 1 - 1 1 5797 (0.556)

USD/JPY

Frequency p1 ¢1 p2 @2 U (se.)
1 hour - - 1 1 3.654 (0.052)
2hours 1 - 2 1 3.759 (0.077)
d4hours 4 4 2* 1 3.819 (0.109)
8 hours 2 2 1 1 4.357(0.195)
12hours 1 - 1* 1 4574 (0.251)
1 day 10 - 1* 1 4889 (0.412)

Table 5: Order of the ARMA(p1,q1)-GARCH(p2,g2) models fitted to the USD/DEM
and USD/JPY returns at the several frequencies. Degrees of freedom estimated for the
marginal conditional distribution t of the innovations and corresponding standard errors

are also given.

L-B test A-D
Frequency 2t |2¢] test

1 hour 0.0002 0.0000 0.0000
2 hours 0.0000 0.0911 0.0014
4 hours  0.0000 0.0836 0.3137
8 hours 0.4107 0.8764 0.1904
12 hours 0.3917 0.3114 0.5189
1 day 0.1204 0.8456 0.6452

Table 6: Autocorrelation and density goodness-of-fit p-values for the USD/DEM residuals

at the six frequencies.
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LB test A-D

Frequency 2zt | 2¢] test

1 hour 0.0795 0.0000 0.0000
2 hours 0.0000 0.0478 0.0100
4 hours 0.0046 0.3618 0.0832
8 hours 0.1702 0.2291 0.1640
12 hours 0.1423 0.9169 0.0953
1 day 0.5328 0.6803 0.3105

Table 7: Autocorrelation and density goodness-of-fit p-values for the USD/JPY residuals

at the six frequencies.

Frequency Linear correlation

1 hour 0.5441
2 hours 0.5723
4 hours 0.5836
8 hours 0.6018
12 hours 0.6139
1 day 0.6180

Table 8: Linear correlation of the USD/DEM and USD/JPY bivariate residuals at the six

frequencies.
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Frequency Copula model 6 (s.e.) AIC

Clayton 0.859 (0.006) -23401.101
Frank 3.979 (0.024) -27032.306
1 hour Gaussian 0.550 (0.002) -28267.108
Gumbel 1.562 (0.004) -28146.727
Plackett 6.503 (0.061) -29324.002
Clayton 0.913 (0.009)  -12730.906
Frank 4.200 (0.035)  -14806.051
2 hour Gaussian 0.571 (0.002) -15483.028
Gumbel 1.605 (0.006) -15506.480
Plackett 7.038 (0.093) -16020.855
Clayton 0.944 (0.013)  -6652.147
Frank 4.341 (0.050)  -7821.259
4 hour Gaussian 0.584 (0.004) -8176.122
Gumbel 1.634 (0.009)  -8251.189
Plackett 7.361 (0.137)  -8446.380
Clayton 0.984 (0.019)  -3536.107
Frank 4.563 (0.072)  -4260.632
8 hour Gaussian 0.603 (0.005) -4413.271
Gumbel 1.669 (0.013)  -4412.292
Plackett 7.752 (0.201)  -4533.552
Clayton 1.025 (0.024)  -2487.922
Frank 4.659 (0.088)  -2941.280
12 hour  Gaussian 0.615 (0.006) -3092.874
Gumbel 1.681 (0.016)  -3007.219
Plackett 7.949 (0.252)  -3113.152
Clayton 1.034 (0.035)  -1252.289
Frank 4.599 (0.124)  -1446.464
1 day Gaussian 0.617 (0.009) -1552.695
Gumbel 1.679 (0.023)  -1500.065
Plackett 7.772 (0.350)  -1526.993

Table 9: Residuals on USD/DEM and USD/JPY log-returns. Estimates and standard
errors of dependence parameters in Clayton, Frank, Gaussian, Gumbel and Plackett mod-
els. For each model fitted we provide the AIC value. The reading of this table must be

complemented with Table 10.
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Freq. Copula model 61 (s.e.) 6 (s.e.) 05 (s.e.) AIC
Cl&s. Cl 1.125 (0.025) 1.171 (0.027) 0.516 (0.007) -29924.80
Cl & Gumbel  1.568 (0.014) 1.363 (0.066) 0.659 (0.009) -30642.91
l1hour s.Cl& s.Gum  1.552 (0.010) 1.510 (0.065) 0.701 (0.008) -30665.31
Gum & s.Gum  2.038 (0.030) 1.405 (0.009) 0.421 (0.010) -31061.35
t 4.935 (0.108) 0.558 (0.002) - -31517.70
Cl & s. Cl 1.164 (0.033) 1.316 (0.041) 0.517 (0.010) -16430.36
Cl & Gumbel  1.674 (0.034) 1.233 (0.114) 0.650 (0.014) -16803.66
2 hour s.Cl & s.Gum 1.576 (0.013) 1.723 (0.086) 0.695 (0.011) -16801.39
Gum & s.Gum  2.109 (0.039) 1.420 (0.013) 0.441 (0.013) -17015.86
t 4.822 (0.147)  0.580 (0.003) - -17192.73
Cl&s. Cl 1.238 (0.048) 1.325 (0.051) 0.499 (0.014) -8653.704
Cl & Gumbel  1.682 (0.032) 1.359 (0.128) 0.674 (0.017) -8863.199
4hour s.Cl& s.Gum  1.640 (0.024) 1.535 (0.115) 0.669 (0.016) -8847.032
Gum & s.Gum  1.501 (0.028) 1.991 (0.064) 0.545 (0.020) -8932.445
t 4.748 (0.201)  0.593 (0.004) - -9088.884
Cl & s. Cl 1.265 (0.060) 1.472 (0.071) 0.502 (0.018) -4607.028
Cl & Gumbel  1.771 (0.053) 1.265 (0.170) 0.667 (0.024) -4722.141
8hour s.Cl& s.Gum  1.663 (0.028) 1.710 (0.140) 0.668 (0.021) -4713.239
Gum & s.Gum  1.991 (0.072) 1.534 (0.040) 0.496 (0.027) -4764.398
t 5.323 (0.343) 0.612 (0.006) - -4818.328
Cl&s. Cl 1.492 (0.095) 1.286 (0.084) 0.503 (0.024) -3157.357
Cl & Gumbel 1.653 (0.031) 1.893 (0.184) 0.679 (0.025) -3242.862
12 hour s.0l & s.Gum  1.787 (0.060) 1.307 (0.206) 0.673 (0.030) -3248.558
Gum & s.Gum  1.556 (0.046) 2.018 (0.088) 0.511 (0.033) -3281.252
t 5.837 (0.505) 0.621 (0.007) - -3304.250
Cl&s. Cl 1.548 (0.120)  1.280 (0.099) 0.494 (0.032) -1599.798
Cl & Gumbel 1.665 (0.045) 1.844 (0.249) 0.671 (0.037) -1629.394
1day s.Cl&s.Gum 1.816 (0.071) 1.234 (0.195) 0.656 (0.039) -1632.435
Gum & s.Gum  1.588 (0.072) 1.952 (0.117) 0.501 (0.048) -1642.460
t 6.012 (0.786) 0.620 (0.010) - -1640.061

Table 10: Residuals on USD/DEM and USD/JPY log-returns. Estimates and standard

errors of parameters for the t-copula and for the four mixture copulae considered. In case

of the mixture copulae, #; and 6, are the dependence parameters respectively for the first

and second terms of the mixture. 3 is the mixture parameter which gives the proportion

of the first term. For the t-copula, 01 are the degrees of freedom and 65 is the correlation.

For each model fitted we provide the AIC. The reading of this table must be complemented

with Table 9.
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p-values of the LR test

Frequency for the Gumbel mixture

1 hour 0.0000
2 hour 0.0000
4 hour 0.1371
8 hour 0.0048
12 hour 0.0164
1 day 0.1842

Table 11: p-values for a likelihood ratio test for the Gumbel and survival Gumbel mixture

model with three versus one parameter.
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Time Parameter Estimates (s’e.)
frequency non-dynamic dynamic
1 4.935 (0.108) 1 6.330 (0.167)
p 0.558 (0.002) | 7o 0.0005 (0.0002)
1 hour 71 0.0193 (0.0010)
§1 0.9921 (0.0005)
AlIC -31517.70 AIC -34488.72
1 4.822 (0.147) v 6.203 (0.230)
p 0.580 (0.003) | 7  -0.0004 (0.0002)
2 hours 71 0.0128 (0.0009)
§1 0.9952 (0.0004)
AIC -17192.73 AIC -19349.29
1% 4.669 (0.195) 1 6.072 (0.313)
p 0.592 (0.005) | 7o  -0.0008 (0.0002)
4 hours 71 0.0147 (0.0011)
51 0.9947 (0.0004)
AIC -9085.848 AIC -10262.23
1% 5.296 (0.339) 1 7.206 (0.584)
p 0.612 (0.006) | 7o 0.0005 (0.0005)
8 hours 71 0.0173 (0.0014)
§1 0.9927 (0.0006)
AIC -4813.6 AIC -5456.312
1% 5.830 (0.499) 1 8.053 (0.884)
p 0.620 (0.008) | 7o 0.0002 (0.0008)
12 hours 71 -0.0249 (0.0023)
§1 0.9901 (0.0010)
AIC -3299.16 AIC -3744.28
1 5.945 (0.758) v 8.573 (1.455)
p 0.619 (0.011) | 7  -0.0023 (0.0017)
1 day 71 -0.0343 (0.0041)
§1 0.9846 (0.0021)
AIC -1644.549 AIC -1881.760

Table 12: Parameter estimates, standard errors and AIC values for the two copula models,

without and with dynamics in the correlation, fitted to the hourly up to daily returns on

USD/DEM and USD/JPY rates.

38




z}l/fbs n P (Z}/2 > z;/ozbs) Ho(0.95) Time of change Event

13.26 3259 0 reject 8 Nov. 1989 Fall of the
Berlin wall

5.96 923 0.0000004 reject 29 Dec. 1986

531 2336 0.0000143 reject 18 June 1997 Beginning of
Asia crisis

2.99 176 0.0689621 not rej. (23 June 1986)

3.10 747 0.0709747 not rej. (31 July 1989)

5.86 1985 0.0000007 reject 23 Oct. 1990 Burst in the
Japanese asset
price bubble

2.36 351 0.3380491 not rej. (8 Sep. 1998)

2.78 1736 0.1873493 not rej. (21 Oct. 1996)

2.86 249 0.1061709 not rej. (21 March 1990)

Table 13: Change-point analysis for USD/DEM and USD/JPY spot rate residuals. In

the last column we refer to economic or political events around the estimated date of the

change-point that could have triggered it.
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Figure 1: Logarithmic middle prices for USD/DEM (top) and USD/JPY (bottom) spot
rates.
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Figure 2: QQ-plots of the normal versus the empirical quantiles of deseasonalized log-
returns on USD/DEM spot rate for the six frequencies considered.
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Figure 3: QQ-plots of the normal versus the empirical quantiles of deseasonalized log-
returns on JPY/JPY spot rate for the six frequencies considered.
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Figure 4: FX spot rates for USD/DEM and USD/JPY. The figure displays the scatter-
plots of the filtered returns for the several frequencies.
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Conditional cross-correlation of 1 hour returns
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Figure 5: Time-varying cross-correlations estimated by a time-varying copula-based model
for the one, two and four hours returns on the FX USD/DEM and USD/JPY spot rates.
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Conditional cross-correlation of 8 hour returns
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Figure 6: Time-varying cross-correlations estimated by a time-varying copula-based model
for the eight hours, twelve hours and daily returns on the FX USD/DEM and USD/JPY
spot rates.
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Change—point statistical analysis
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Figure 7: Change-point analysis of daily returns on the FX rates USD/DEM and
USD/JPY spot rates. The three panels display three steps of the change-point analy-
sis. Each panel plots the likelihood ratio values —2log (Ag) for £k = 1,2,...,n. In each
sub-sample its maximum, the test statistic Z,, gives the time of the change in case the
no change null hypothesis is rejected. If the null hypothesis is not rejected the moment
where 7, is achieved is put in parentheses.
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Conditional cross—correlation of daily returns
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Figure 8: Estimated t-copula correlation paths of daily returns on the FX USD/DEM and
USD/JPY spot rates. The long-dashed line is the estimated correlation by the change-
point tests. This is super-imposed on the estimated correlation using the time-varying
copula model from Chapter 3. The short-dotted line is the time-invariant correlation
estimate after marginal GARCH filtering. The change-points model seems to react quicker
to important economic events than the time-varying copula model but ignores smaller
changes, at least at the daily frequency.
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