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Abstract

Operational risk has become an important risk component in the banking and
insurance world. The availability of (few) reasonable data sets has given some
authors the opportunity to analyze operational risk data and to propose different
models for quantification. As proposed in Dutta and Perry [10], the parametric
g-and-h distribution has recently emerged as an interesting candidate.

In our paper, we discuss some fundamental properties of the g-and-h distribu-
tion and their link to extreme value theory (EVT). We show that for the g-and-h
distribution, convergence of the excess distribution to the generalized Pareto dis-
tribution (GPD) is extremely slow and therefore quantile estimation using EVT
may lead to inaccurate results if data are well modeled by a g-and-h distribution.
We further discuss the subadditivity property of Value-at-Risk (VaR) for g-and-h
random variables and show that for reasonable g and h parameter values, super-
additivity may appear when estimating high quantiles. Finally, we look at the

g-and-h distribution in the one-claim-causes-ruin paradigm.
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1 Introduction

Since the early discussion around Basel II and Solvency II, the pros and cons of a
quantitative (Pillar I) approach to operational risk have been widely put forward.
Some papers, like Danielsson et al. [6], have early on warned against an over op-
timistic view that tools from market (and to some extent credit) risk management
can easily be transported to the Basel II framework for operational risk. Also, the
actuarial community working on Solvency 2 so far defied a precise definition, and as
a consequence a quantitative capital measurement for operational risk. The situation
in the banking world is very different indeed, not only did Basel II settle on a pre-
cise definition, “The risk of loss resulting from inadequate or failed internal processes,
people and systems or from external events. Including legal risk, but excluding strate-
gic and reputational risk.”;, also concrete suggestions for risk capital calculation have
been made. These include the basic-indicator (BI) approach, the standardized (S)
approach and the loss distribution approach (LDA). BI and S are easy to calculate
pure volume based measures. In the LDA however, banks are basically given full
methodological freedom for the calculation of regulatory capital. The main reason
being that for this new and especially from a statistical data point of view poorly
understood risk class, regulators hoped that modeling freedom would yield a healthy
competition among the quant groups of various financial institutions. Whereas this
point of view is no doubt a laudable one, the imposed boundary conditions made a
practical implementation more than difficult. Some of these constraints are the use
of the risk measure (VaR), the level (99.9%) and the “holding” period (1 year). Of
these, the extremely high quantile (corresponding to a 1 in 1000 year event estima-
tion) is no doubt the most critical one. Beyond these, banks are required to augment
internal data modeling with external data and expert opinion. The fact that current
data—especially at the individual bank level—are far from being of high quality or
abundant, makes a reliable LDA for the moment questionable.

By now, numerous papers, reports, software, textbooks have been written on the
subject. For our purposes, as textbooks we would like to mention McNeil et al. [1§]
and Panjer [24]. Both books stress the relevance of the actuarial methodology towards

a successful LDA; it is no coincidence that in McNeil et al. [18], Chapter 10 carries



the title “Operational Risk and Insurance Analytics”. Another recent actuarial text
that at some point will no doubt leave its footprint on the LDA platform is Bithlmann
and Gisler [4].

For the present paper, two fundamental papers, which are center stage to the
whole LDA controversy, are Moscadelli [22] and Dutta and Perry [10]. Both are very
competently written papers championing different analytic approaches to the capital
charge problem. Whereas Moscadelli [22] is strongly based on EVT, Dutta and Perry
[10] introduce as a benchmark model the parametric g-and-h distribution. Moscadelli
[22] concludes that, based on the 2002 Loss Data Collection Exercise (LDCE) of the
Basel Committee, EVT yields reasonable capital estimates when data are pooled at
Business Line (BL) level. A somewhat broader range for BL [-coefficients in the
standardized approach beyond the (12-18)% range is suggested. The overall a = 15%
coefficient in the basic indicator approach is corroborated. The information coming
through from individual banks with respect to the use of EVT is mixed. As explained
in Neslehova et al. [23], the statistical properties of the data are no doubt a main fact
underlying this diffuse image. When it comes to high quantile estimation (and 99.9%
is very high) EVT emerges as a very natural key methodological player; more on this
later in the paper.

In Dutta and Perry [10] the authors conclude that “Many different techniques
being tested by researchers are centered around EVT. In many of those cases we
observe that attempts are made to fit a distribution or apply a method without un-
derstanding the characteristics of the loss data or the limitation of the models”. And
further, “In our experiment we found that EVT often did not work for data where we
observed many large losses”. Based on the 2004 LDCE, Dutta and Perry [10] suggest
the g-and-h distribution as a viable option.

As already stated above, we consider both Moscadelli [22] and Dutta and Perry
[10] as very well written. The latter paper also introduces a fundamental, more qual-

itative yardstick against which any capital charge model ought to be tested:



1. Good Fit - Statistically, how well does the method fit the data?

2. Realistic - If a method fits well in a statistical sense, does it generate a loss

distribution with a realistic capital estimate?

3. Well Specified - Are the characteristics of the fitted data similar to the loss data

and logically consistent?

4. Flexible - How well is the method able to reasonably accommodate a wide

variety of empirical loss data?

5. Simple - Is the method easy to apply in practice, and is it easy to generate

random numbers for the purposes of loss simulation?

In our paper, we will mainly look critically at the very recent g-and-h approach and
compare and contrast its properties with EVT based methodology. As academics we
do not possess real operational risk data so that our comments may be “academic”
in nature; we do however hope that the various results discussed will contribute pos-
itively towards the quest for a reliable (in the sense of 1.-5. above) capital charge for
operational risk. Based on the empirical findings of Dutta and Perry [10] that (1)
operational risk data seem to be modeled appropriately by the g-and-h; and that (2)
the EVT based Peaks Over Threshold (POT) approach does not seem to model the
data well, we like to bridge these findings with theory.

We expect the reader to have studied Moscadelli [22] and Dutta and Perry [10] in
detail. A basic textbook for EVT in the context of insurance and finance is Embrechts
et al. [11]; see also Chapter 7 in McNeil et al. [18|. Before we start our discussion we
find it worthwhile to put the record straight on EVT: Papers like Diebold et al. [§]
and Dutta and Perry [10] highlight weaknesses of EVT when it comes to some real
applications, especially in finance. In Embrechts et al. [11] these points were already
stressed very explicitly. Like any statistical method, EVT (for instance in its Peaks
Over Threshold (POT) or Hill estimator variant) only promises to deliver when a
very precise set of conditions is satisfied. We strongly advice the reader to revisit
Embrechts et al. [11] and look carefully at the following examples: Figure 4.1.13, Fig-
ure 5.5.4 and Figure 6.4.11. Neslehova et al. [23] yields further warnings when EVT



is applied blindly to operational risk data. We very much hope that some of these
underlying issues will become more clear when we progress through the paper.

The paper is organized as follows. In Section 2 we recall the definition of the
g-and-h distribution and discuss some fundamental first order regular variation prop-
erties. In Section 3 we focus on second order regular variation as well as on the (slow)
rate of convergence of a relevant subclass of the g-and-h excess distribution functions
to the GPD. Further we analyze the impact of this on quantile estimation via the POT
method. Subadditivity properties of VaR for g-and-h distributed random variables
(rvs) are discussed in Section 4. In Section 5 we highlight the link between g-and-h

and the one-claim-causes-ruin phenomenon. We conclude in Section 6.

2 The g-and-h distribution

2.1 The basic definition

Throughout this paper, rvs are denoted by capital letters X7, Xo,... and assumed to
be defined on a common probability space (€2, F, P). These rvs will typically represent
one-period risk factors in a quantitative risk management context. The next definition

is basic to the analysis in Dutta and Perry [10].

DEFINITION 2.1 Let Z ~ N(0,1) be a standard normal rv. A rv X is said to have
a g-and-h distribution with parameters a,b, g,h € R, if X satisfies
X=a+ begz;lehzz/{ (1)
g
with the obvious interpretation for ¢ = 0. We write X ~ g-and-h, or when X has
distribution function (df) F', F' ~ g-and-h. O

Instead of g and h being constants, a more flexible choice of parameters may be
achieved by considering ¢ and h to be polynomials including higher orders of Z2.
In Dutta and Perry [10], such a polynomial choice was necessary for some banks and
business lines. For our paper, we restrict our attention to the basic case where g and h
are constants. The parameters g and h govern the skewness and the heavy-tailedness

of the distribution, respectively; see Hoaglin et al. [14].
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In the case h = 0, equation (1) reduces to X =a+b , which is referred
to as the g-distribution. The g-distribution thus corresponds to a scaled lognormal
distribution. In the case g = 0, equation (1) is interpreted as X = a + bZ ehZ?/ 2 which
is referred to as the h-distribution. The case g = h = 0 corresponds to the normal
case. The linear transformation parameters a and b are of minor importance for our
purposes. Unless otherwise stated we restrict our attention to the g-and-h distribution
with parameters a = 0 and b = 1. Furthermore we assume g, h > 0. Parameters of

the g-and-h distributions used in Dutta and Perry [10] to model operational risk (at
enterprise level) are within the following ranges: g € [1.79,2.30] and h € [0.10,0.35].

REMARK 2.1  Since the function k(z) = %ehﬁ/z for h > 0 is strictly increasing,

the df F of a g-and-h rv X can be written as

where ® denotes the standard normal df. This representation immediately yields an

easy procedure to calculate quantiles and hence the Value-at-Risk of a g-and-h rv X,

VaRo(X) = F7Ha) = k(@ Ha)), 0<a<l. 0

In the next section we derive some properties of the g-and-h distribution which are

important for understanding its estimation properties of high quantiles.

2.2 Tail properties and regular variation

In questions on high quantile estimation, the statistical properties of the estimators
used very much depend on the tail behavior of the underlying model. The g-and-h
distribution is very flexible in that respect. There are numerous graphical techniques
for revealing tail behavior of dfs. We restrict our attention to mean excess plots
(me-plots) and log-log density plots. In Figure 1 we show a me-plot for a g-and-h
distribution with parameter values typical in the context of operational risk. Besides
the thick line corresponding to the theoretical mean excess function, we plot 12 em-
pirical mean excess functions based on n = 10° simulated g-and-h data. The upward

sloping behavior of the me-plots indicates heavy-tailedness as typically present in the
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Figure 1: Theoretical mean excess function (thick line) to-
gether with 12 empirical mean excess plots of the g-and-h

distribution.

class of subexponential dfs S (see Embrechts et al. [11], Figure 6.2.4), linear behavior
corresponding to Pareto (power) tails. In the latter case, the resulting log-log-density
plot shows a downward sloping linear behavior; see Figure 2 for a typical example.
Figure 1 also highlights the well-known problem when interpreting me-plots, i.e. a
very high variability of the extreme observations made visible through the simulated
me-plots from the same underlying model. Both figures give insight into the asymp-
totic heavy-tailedness of the g-and-h. We now make this property analytically precise.

A standard theory for describing heavy-tailed behavior of statistical models is
Karamata’s theory of regular variation. For a detailed treatment of the theory, see
Bingham et al. [5]. Embrechts et al. [11] contains a summary useful for our purposes.
Recall that a measurable function L : R — (0, 00) is slowly varying (denoted L € SV)

if for t > 0:
L(t
lim (t)

= 1.
rs0 L(z)

A function f is called regularly varying (at oco) with index o € R if f(x) = 2“L(x)
and is denoted by f € RV,; note that RV = SV. The following proposition is an
immediate consequence of Karamata’s Theorem; see Embrechts et al. [11], Theorem

A3.6. It provides an easy tool for checking regular variation. In the context of EVT,
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Figure 2: Density of the g-and-h distribution plotted on a
log-log scale. Note the different plotting ranges of the axes.

the result is known as von Mises condition for the Fréchet df; see Embrechts et al. [11],

Corollary 3.3.8. Throughout we denote F' =1 — F.

Proposition 2.1 Let F' be an absolutely continuous df with density f satisfying

then F € RV_,. O

Note that we slightly abuse the notation, in the sense that we should restrict RV
to non-negative rvs. Through tail-equivalence (see Embrechts et al. [11], Definition
3.3.3) we can easily bypass this issue.

We proceed by showing that the g-and-h distribution is indeed regularly varying
(at oo) with index —1/h (still assuming h > 0). Assume X ~ g-and-h, then

E1(z
oy = A



where ¢ denotes the density of a standard normal rv. Using Mill’s ratio u(1l —

®(u))/e(u) — 1, as u — oo, we have that
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and hence F € RV_1/p.

REMARK 2.2 In a similar way, one shows that also the h-distribution (h > 0) is
regularly varying with the same index. This was already mentioned in Morgen-
thaler and Tukey [21]|. The g-distribution (g > 0) however is—as a scaled lognormal
distribution—subexponential but not regularly varying. At this point the reader is
advised to have a look at Section 1.3.2 and Appendix A 3.2 in Embrechts et al. [11],

or Section 5 later in the paper. O

In summary, we have the following result.

Theorem 2.1
Suppose F ~ g-and-h with g,h > 0, then F € RV_yp. For h=10 and g > 0, we have
F € S\RV, where S denotes the class of subexponential dfs. O

Hence, if X ~ g-and-h with A > 0 we have by definition of regular variation F(z) =
z~V/"L(z) for some slowly varying function L. A key message from our paper is that
the precise behavior of L may profoundly affect the statistical properties of EVT-
based high quantile estimations. This point was very clearly stressed in Embrechts
et al. [11]; see Figure 4.1.13 and Example 4.1.12. End-users in risk management and
financial applications seem to have missed out on this message. We will show how
absolutely crucial this point is. The quality of high quantile estimation for power
tail data very much depends on the second order behavior of the underlying (often

unknown) slowly varying function L.



Below we derive an explicit asymptotic formula for the slowly varying function L

in the case of the g-and-h distribution. For g, h > 0 we have

L(z) = F(z)z'/"
= (1—®k (2))z"

and hence
L) = (- ora)t
= (- () e
- A= (5 (e (),
leading to

gk~ () _ 1/h
L<x>=¢2—ﬂlg1/h (ekk(_i(x)l) <1+o<(k_11($)>2>>, oo

In order to find an explicit asymptotic inverse function of k, define

~ 1 ;22
k(x) = —eMT 9% ~ k(z), x — oo,
g

with inverse function

~ 1
E N z) = —% + E\/g2 + 2hlog(gz), = >0.

Here and throughout the paper, f(z) ~ g(z), £ — a means that lim @ = 1. Note

‘ 56 g(z)
that k='(z) ~ k~!(x) for  — oco. Altogether we obtain:

Theorem 2.2
Let F be the df of a g-and-h rv with g,h > 0. Then F(z) = x~'/"L(x), where for

T — 00,

L(2) = —— exp (o (4 + v+ 2nTomom) ) 1] <1+0< ! ))

xTr) =
V2rgl/h —4 + /9% + 2hlog(gx) log

10



PRrROOF: Define

. G
L(x) = = .
(=) V2mgl/h k=1(z)

Note that u := k~!(z) is a strictly increasing function for g, h > 0. Hence,

L(x) _ V2rg""k (@) (1 - Ok~ (x))z'/"

L(z) (egfwl(z) _ 1) L/h

V2 gt Pl (B (w)) (1 — @(u)) (k(u)) /"
~ 1/h
(egw(k(u)) _ 1)

_< )1/hl%-1<k<u>><1—<1><u>>
(k(u)) — 1

-1
egk 1 (k(u)) o(u)
1
1
= 1+O( ), T — 00
log

which completes the proof. O

REMARK 2.3 The slowly varying function L in the above theorem is (modulo con-
stants) essentially of the form exp (v/log x)/+/logx. This will turn out to be a partic-
ularly difficult type of slowly varying function in the context of EVT. a

In the next section we will look more carefully into this issue by studying the second
order behavior of L. For this we will first make a link to EVT and discuss how the

properties of L may influence the statistical estimation of high quantiles based on

EVT.

3 Second order regular variation

3.1 The Pickands-Balkema-de Haan Theorem

We assume the reader to be familiar with univariate EVT. The notation used in this
section is adopted from Embrechts et al. [11]. For a g-and-h rv X (with g,h > 0) it
was shown in the previous section that F' € MDA(Hy), i.e. belongs to the maximum

domain of attraction of an extreme value distribution with index £ = h > 0. The

11



Pickands-Balkema-de Haan Theorem, Theorem 3.4.13(b) in Embrechts et al. [11],
implies that for F' € MDA(H¢) there exists a positive measurable function 3(-), such
that

im  sup |Fu(x) — Ge g ()| = 0.

ul@0 pe (0,20 —u)

We denote the upper support point of F' by zg. In the case of a g-and-h distribution,
xo = 0o. By the above theorem, the excess df F,, defined by Fi,(z) = P(X —u <
z|X > w), is well approximated by the df of a GPD, Gg g(,), for high threshold
values u. This first-order convergence result stands at the heart of EVT. For prac-
tical purposes however second-order properties of F' are of even greater importance
(e.g. performance of parameter estimates or calculation of high quantiles). We are
interested in the rate of convergence of Fy, towards G¢ gy, i.e. in how fast does

d(u) == sup ‘Fu(x) — Ggwg(u) (a:)‘

z€(0,z0—u)

converge to 0 for u — zg. Define

V() == 1-F)"'(™
_ V'(logt)
Alt) = V'(logt) -5

for some F' € MDA(H¢). The following proposition (see Raoult and Worms [25],
Corollary 1) gives insight into the behavior of the growth rate d(u) in cases including,

for example, the g-and-h distribution with £ = h > 0.

Proposition 3.1 Let F € MDA(H¢) be a df which is twice differentiable and let
& > —1. If the following conditions are satisfied:

i) lim A(t) =0,
t—o00
ii) A(-) is of constant sign near oo,
iii) there exists p < 0 such that |A| € RV,

then, for u — xq,

d(“’) = sup ‘Fu(x) - Gﬁ,V’(Vfl(u))(fE)} = O(A(evil(u)))
z€(0,z0—u) O

12



The parameter p is called the second order regular variation parameter. Recall that
for a g-and-h distribution F(z) = ®(k~!(z)) and hence F_l(:n) =k(®1(1-2)). In
this case the function V' defined above is given by V(t) = k(®~1(1 — e™t)).

Moreover,
IR (700)
s = o)
and
) B! (w(1) =t (v(8) (9(r(0) + ¢ (D) (b (w(2))))
V'(logt) =

(te(v(t))? ’
where v(t) := ®~!(1 — 1). One easily checks conditions i) and ii) above. In addition,
using Lemma 2 of Raoult and Worms [25], it can be shown that |[A| € RV, with

second order parameter p = 0. By definition of V' we have

ey Vose ) V(g 1/F(w)

A(V ) a V’(logevflu) h= V’(logl/F(u)) -
P )Fe) k' wFw)
P ) e ) | oty L

Lemma 3.1 For X ~ g-and-h with g, h > 0, the following asymptotic relation holds:

A(evil(k(x)» ~ g, T — 00.

Proor: Using Mill’s ratio, we have

R Gl R (k,/((x) z8(2) —i—m( j( z) 1> - hx>

L T i
k' (z

e (5o 2))

-l (SRR (10 (5)) <)

1 h—i—O(l/x)
= lim —2 2 —

|

By Proposition 3.1 and since £7!(-) is increasing (still assuming g, > 0), the rate
of convergence of the excess df of a g-and-h distributed rv towards the GPD G¢ g(y)
with ¢ = h and B(u) = V/(V~1(u)) is given by

d(u) :O(krll(u)> :O<\/1i@>, u — 00.

13



At this point we would like to stress that d(u) = O( \/liﬂ) does not imply that the rate
of convergence is independent of the parameters g and h. Not a detailed derivation
of this fact, but rather a heuristic argument is provided by the following:
log L(x) g r o 1
log = h3/2 \Jlogz gz

Clearly the value 7 affects the rate of convergence of log L(z)/logx as x — oo.

), T — o0.

In Table 1 we have summarized the rates of convergence in the GPD approxi-
mation as a function of the underlying df. For both the exponential as well as the
exact Pareto, d(u) = 0. For dfs like the double exponential parent, normal, Student
t and Weibull, convergence is at a reasonably fast rate. Already for the very popular
lognormal and loggamma dfs, convergence is very slow. This situation deteriorates
further for the g-and-h where the convergence is extremely slow. Note that one can
always construct dfs with arbitrary slow convergence of the excess df towards the
GPD; see Resnick [26], Exercise 2.4.7. This result is in a violent contrast to the rate

of convergence in the Central Limit Theorem which, for finite variance rvs, is always

n_1/2.

Distribution Parameters F(x) P d(u)
Exponential(\) A>0 e A —00 0
Pareto(«) a>0 x= —00 0
Double exp. parent e ¢ -1 O(e™™)
Student ¢ v>0 t,(x)t —2/v O(#)
Normal(0, 1) () 0 O(#)
Weibull(7, ¢) TeR\{1},c>0 e~ (ea)” 0 O(u™")
Lognormal(u, o) peR,0>0 B log;c_“) 0 O(loéu)
Loggammal(7y, «) a>0,v#1 (v, alogx) 0 O(loéu)
g-and-h gh >0 D(k~1(x)) 0 | O( \/liﬂ)

Table 1: Rate of convergence to the GPD for different dis-

tributions, as a function of the threshold w.

T (z) ~ c(v)z (1 + x2/y)f<v+1)/2

14



From a theoretical point of view this already yields a first important result: if data are
well modeled by a g-and-h distribution with g, h > 0, then high quantile estimation
for such data based on the POT method will typically converge very slowly. In the
next section we will look at this issue in somewhat more detail.

It is often stated by some authors that they have solved the (critical) optimal
choice of threshold problem in the POT or Hill method. On several occasions we have
stressed that this problem has no general solution; optimality can only be obtained
under some precise second order properties on the underlying slowly varying function
L (we concentrate on the Fréchet case). It is precisely this L (let alone its second
order properties) which is impossible to infer from statistical data. Hence, the choice
of a reasonable threshold (we avoid using the word “optimal”) remains the Achilles
heel of any high quantile estimation procedure based on EVT. For a more pedagogic
and entertaining presentation of the underlying issues, see Embrechts and Neslehova

12].

3.2 Threshold choice

There exists a huge literature on the optimal threshold selection problem in EVT;
see for instance Beirlant et al. [3] for a review. Within a capital charge calculation
problem, the choice of threshold © above which EVT fits well the tail of the underlying
df may significantly influence the value estimated. We stress the word “may”; indeed in
some cases the quantile estimate is rather insensitive with respect to the choice of u, in
other cases it is very sensitive. This stresses the fact that for the modeling of extremes,
great care as to the underlying model and data properties has to be taken. The
analysis below is indicative of the underlying issues and definitely warrants a much
broader discussion. We have included it to warn the reader for some of the difficulties
in using automatic procedures for determining so-called “optimal” tail regions for the
estimation of high quantiles. We restrict our attention to g-and-h dfs and estimate
quantiles using the Hill estimator. The conclusions obtained also hold for the MLE
based POT method.

We assume that X7, Xo,..., X, are iid realizations from a continuous df F’ with

F € RV_yy, ie Fz)=a"Y¢L(z), L € SV.

15



DEFINITION 3.1  The Hill estimator is defined by

k
1
Hy., = - Zlog Xn—jrin —10g Xn pn (1 <k<n),
j=1

where X, <... <X, are the order statistics of Xy,...,X,,. O

Define the quantile function U(z):= F~'(1 —1/x). Since F € RV_y ¢, we have
U(x) = 28l(z), for some slowly varying function [; see for instance Beirlant et al. [3].
If there exist p < 0 and a positive function b with b(z) — 0 for  — oo, such that for

allt >0

I(t
log l((:f)) ~b(x)k,(t), x— o0,
with
tP—1
— <0,
kp(t) = P g
logt p=0,

then the asymptotic mean square error (AMSE) of the Hill estimator satisfies

AMSEH,, = (ABiasH,)? + AVarHy,,
_ (b(<n+1>/<k+1>>>2 &

T, o (2)

see for instance Matthys and Beirlant [16]. Applying this result to the regularly
varying g-and-h df F with index 1/ =1/h € (0,00), we get
1 e9® t(1-1/2) _q
l(x) =
g(2m)h/2 (@71 (1 = 1/z))"
B 1 e9® M (1-1/) a —g@*l(l—l/x))
—g@mh2 (@711 - 1/x))" '

Using the following approximation for the quantile function of the normal,

1 2 2
@*1(1 — —) ~ \/logx —loglogx—, T — 00,
T 27 2

(see e.g. Dominici [9], Proposition 21) we arrive at

log ll((t;)) g (@711 —1/(tx)) — @ (1 - 1/x))
11 -1/x) 1 — 92 1 (1-1/(tx))
T8 G0 1)) T8 T e e

h 1
= J - - J +o|——-s)|logt, z— co.
(2logz)t/2  2logz  (2logx)3/? (log )3/2
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Hence, in particular, p = 0 for the g-and-h distribution with g,h > 0. Note that,
given the precise model assumptions above, formula (2) yields an obvious approach
to estimating the optimal sample fraction to calculate the Hill estimator.

In practice however, one usually does not have any information about the second
order properties of the underlying df. Thus for each k, 1 < k < n, b(-), p and h have
to be estimated form the data by estimators g(), p and %, which are for example the
maximum likelihood or the least squares estimators; see Beirlant et al. [3]. One then

chooses k in the following way:

kopt = argmin

kelN

b(n+1)/k+1)\" B2
1-p %

We will now apply this procedure to simulated g-and-h data. For each pair of pa-
rameter values g and h (see Table 2 below) we simulate a hundred samples of 2000
observations from a g-and-h distribution. For each of the 100 samples we compute
the Hill estimator EkHD ;ltl of h using k., number of upper order statistics of the 2000
observations of that sample. For every cell in Table 2 we thus get 100 estimates
(iALkHo;ltlm) <100 of h. To analyze the performance of the Hill estimator iALkHoil we

calculate the standardized root mean square error (SRMSE), which for a single cell

is given by

1 | oo 9

w100 2 (P 1)
The SRMSE of the Hill estimator ﬁkHo Ztl is summarized in Table 2. From there we may
deduce a characteristic pattern which essentially remains the same for other threshold
selection procedures. We confirmed this by implementing the optimal threshold se-
lection method proposed by Guillou and Hall [13] and by further applying an ad-hoc
selection method, using a fixed percentage of exceedances of 5%.

An identical study was performed for the MLE estimates WMLE of h, yielding
very similar results to the case of /ﬁkHO;ltl Therefore, whether using Hill or MLE to
estimate h, the key message we infer from Table 2 is that EVT-based tail index es-
timation leads to highly inaccurate results. Moreover, the larger the ratio g/h, the
larger the SRMSE. In particular, for parameter values reported in Dutta and Perry

[10], which are in a range around g = 2, h = 0.2, the SRMSE is close to 400%. The
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g\h 01 02 05 0.7 1 2
0.1 142 82 33 23 18 11
0.2 1656 97 42 32 25 20
0.5 | 224 132 49 38 27 19
0.7 307 170 63 44 29 20

11 369 218 8 58 36 26
2] 696 38 151 108 74 31
31097 613 243 163 115 54

Table 2: SRMSE (in %) of the Hill estimator ﬁkHo Ztl of h for

g-and-h data for different parameter values of g and h.

numbers reported in Table 2 are somewhat counterintuitive. Indeed in papers like
McNeil and Saladin [19] and Dutta and Perry [10] it is stated that heavier tailed
models require higher thresholds and likewise a larger sample size to achieve a sim-
ilar error bound. Table 2 on the other hand indicates, that for fixed g the SRMSE
decreases for increasingly heavier tails.

The poor performance of EVT-based tail index estimation, especially for param-
eter values with a large ratio g/h, e.g. ¢ = 2 and h = 0.2, is further confirmed by a
Hill plot; see Figure 3 (right panel). On the other hand, we expect a “good” Hill plot
for g/h small, e.g. g = 0.1 and h = 1, which is confirmed by Figure 3 (left panel).

In the left panel, the Hill plot is rather flat over a large range of threshold values
yielding an accurate estimate of the true value h = 1. In the right panel however,
the Hill plot is absolutely misleading. Though being temptingly flat, an estimation
of the shape parameter & = h based on the Hill plot would in that case lead to a
completely wrong estimate of RHl ~ 0.7 , whereas the true value is h = 0.2. One
can easily come up with finite mean g-and-h examples (i.e. h < 1) leading to infinite
mean EVT estimates (/HH”Z > 1). Such an example can be constructed by choosing
the skewness parameter sufficiently high. We exemplify this issue in Figure 4, where
we present a Hill plot for n = 10° realizations of a g-and-h rv with parameter values
g =4 and h = 0.2 (finite mean). Again the Hill plot shows a relatively flat behavior,
HHiU

suggesting a value of ~ 1.2, indicating infinite mean.
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Figure 3: Hill plot for g = 0.1,h = 1 and n = 10° (left panel)
and g = 2,h = 0.2 and n = 10° (right panel).

In summary, given that data are well modeled by a g-and-h distribution where g/h
is large, as is the case with the data reported by Dutta and Perry [10], an EVT
based estimation of the tail index h unavoidably leads to highly inaccurate estimates.
Consequently in such cases high quantile estimation using standard EV'T methodology
becomes highly sensitive to specific numerical estimation procedures. We emphasize

this further in the next section.

Threshold

21900000 1250000 551000 332000 232000 176000 137000 113000

15 73 141 219 207 375 453 531 609 687 765 843 921 999 1086 1183 1280 1377

Order Statistics

Figure 4: Hill plot for ¢ = 4,h = 0.2 and n = 10.
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3.3 Quantile estimation

To confirm our findings of the previous section we performed a quantile estimation
study along the lines of McNeil and Saladin [19], [20]. Instead of applying sophisti-
cated optimal threshold selection procedures we likewise concentrated on an ad-hoc
method by taking into account only a certain percentage of the highest data points; see
McNeil and Saladin [19] for details. We generated g-and-h data by rejection sampling
and calculated the POT estimator of the 99% and the 99.9% quantiles for different
values of g and h. We compared our results (h = 0.2 and A = 1) with the findings
of McNeil and Saladin [19] to conclude that the performance of the POT estimator
for the g-and-h distribution is much worse—in terms of high standardized bias and
SRMSE—than for any of the distributions used in that paper.

From a methodological point of view, Makarov [15] is also relevant in this re-
spect. In that paper, the author shows that uniform relative quantile convergence in
the Pickands-Balkema-de Haan Theorem necessarily needs a slowly varying function
L which is asymptotically constant. Clearly, L in the g-and-h case is far from being
constant.

All the results shown so far point to the fact that the slowly varying function L
for the g-and-h distribution for g,h > 0 renders high quantile estimation based on
EVT methodology difficult: for g-and-h type data, all EVT based procedures show
extremely slow convergence and hence these estimators may be highly inaccurate.

In order to better understand the relative merits of EVT and g-and-h, we now
turn to estimating quantiles in cases where EVT is known to do well and see how
g-and-h based estimation compares. In the Tables 3 and 4 we give the estimated
quantiles for two empirical data sets; the daily S&P data from 1960 to 1993 and the
Danish fire insurance data from 1980 to 1990, as discussed in Embrechts et al. [11].
We compare empirical quantile estimation, POT quantile estimation and the g-and-h
method. For the latter we fit a g-and-h distribution to the data, where we allow for
location and scale parameters to be different from ¢ = 0, b = 1. The parameters
a,b,g,h are estimated using Tukey’s percentiles. Using the language of Hoaglin et
al. [14], we take approximately logy(n) letter values, where n is the number of avail-

able data points, with the full spread (FS) for the S&P data and with the upper half

20



spread (UHS) for the Danish fire insurance data; see for instance Hoaglin et al. [14]

and Dutta and Perry [10], Appendix C. The quantile is then given by a+bk(®~!(a)).

Empirical POT g-and-h

90% 093 1.10 0.92
95% 1.30 1.34 1.29
99% 214 213 2.23
99.9% 4.10  4.30 3.98

Table 3: Quantile estimation of S&P-data with n = 8414
data points. In the case of the POT-Method we fix the
threshold to u = 1.45.

Empirical POT g-and-h

90% 5.54 5.64 5.72
95% 9.97 9.30 9.43
99% 26.04 27.51 27.32

99.9% 131.55 121.17  101.51

Table 4: Quantile estimation of Danish fire insurance data
with n = 2167 data points. In the case of the POT-Method
we fix the threshold to u = 5.

We conclude that for the 95% and 99% levels all methods yield rather similar results,
wheras for very high quantiles, the results differ substantially. Of course for the S&P
data a more dynamic modeling, as for instance done in McNeil and Frey [17] including
careful backtesting, would be useful. In the case of the Danish data backtesting to
find the better fitting procedure is not really available. Once more, these results are
in no way conclusive. We have included them to highlight some issues and hopefully
encourage further research.

As a final comparison we test the three quantile estimation methods mentioned
above by means of two selected examples in line with McNeil et al. [18], Section 7.2.5.

We will distinguish between a “soft” and a “hard” problem. With regards to the “soft”
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problem, we generate 1000 realizations of a standard normal rv and estimate the
95%-quantile, whereas for the “hard” problem we generate 1000 realizations of a t3 rv
and estimate the 99.9%-quantile. So in the “soft” problem we estimate a quantile well
within the range of light tailed data. For the “hard” problem we estimate a quantile
at the edge of heavy tailed data. In both problems our estimations are based on the
empirical, the POT and the g-and-h method by means of the procedure mentioned
above. In the case of the g-and-h method the full spread is used to estimate the
parameters a,b, g, h. In Figure 5 we plot the SRMSE as a function of the chosen
threshold of the GPD.
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——— POT quantile
—— g-and-h quantile

Empirical quantile
———  POT quantile
AN ——  g-and-h quantile
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Figure 5: SRMSE for the “soft” case (left panel) and for the
“hard” case (right panel).

In the soft case, where the quantile is estimated at a moderate level, g-and-h fits well
and its SRMSE is smaller than the SRMSE obtained by the POT method. This is
not surprising, as the normal distribution perfectly fits into the g-and-h framework.
In the hard case the g-and-h method as well as the POT method clearly outperforms

the empirical estimator.
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4 Subadditivity of VaR

As stated above, we can give an explicit formula for the Value-at-Risk in the case of
a g-and-h rv:
VaRq(X) = k(@7 1)), 0<a<l,

with

ed* —1 , o
k(z) = ——eh*/2,
(z) p

In Dutta and Perry [10] the authors state: “We have not mathematically verified the
subadditivity property for g-and-h, but in all cases we have observed empirically that
enterprise level capital is less than or equal to the sum of the capitals from business
lines or event types”. Of course, a mathematical discussion of subadditivity would
involve multivariate modeling; we will return to this issue in a future publication.

In order to statistically investigate the subadditivity property for the g-and-h
distribution, we perform a simulation study. Let X, X5 be iid g-and-h rvs with
parameters g = 2.4 and h = 0.2. We estimate (by simulation of n = 107 realizations)
the diversification benefit dg 5 (o) = VaRo(X1) + VaRq(X2) — VaRo (X1 + X2), where
of course 6,41, (cr) will be non-negative if and only if subadditivity occurs. Our results
are displayed in Figure 6. For the above realistic choice of parameters superadditivity
holds for a smaller than a certain level a@ ~ 99.4%. The fact that subadditivity,
ie. VaRo (X1 + X2) < VaR,(X1) + VaR(X2), holds for a sufficiently large is well
known; see Proposition 4.1 below. That superadditivity enters for typical operational
risk parameters at levels below some a may be somewhat surprising. The latter
may be important in the discussion around the scaling of risk measures. Indeed, risk
managers realize that estimating VaR,, at level o > 99%, say, is statistically difficult.
It has been suggested to estimate VaR, deeper down in the data, a = 90%, say,
and then scale up to 99.9%. The change from super- to subadditivity over this range
should be of concern.

Note that one can even construct finite-mean examples (choosing the skewness
parameter g large enough) for levels & = 99.9% and higher, such that subadditivity of
Value-at-Risk fails for all @ < @&. This should be viewed in contrast to the following

proposition by Danielsson et al. [7]. See also that paper for a definition of bivariate
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Figure 6: Plot of §, (o) as a function of « for g = 2.4,h =
0.2;n = 107.

regular variation.

Proposition 4.1  Suppose that the non-degenerate vector (X1, Xo) is reqularly vary-
ing with extreme value index & < 1. Then VaR, is subadditive for a sufficiently

large. O

Figure 6 exemplifies the subadditivity of VaR only in the very upper tail region. The
reader should thus be warned that Proposition 4.1 is an asymptotic statement and
does not guarantee subadditivity for a broad range of high quantiles. Furthermore,
note that for £ = h > 1 subadditivity typically fails. The reason being that for h > 1
one deals with infinite mean models; see Neslehova et al. [23] for more details on this.

For practitioners it will be of prime importance to know for which choices of ¢
and h values one can expect subadditivity. As shown in Figure 6, this depends on
the level a. We restrict ourself to the a-values 99% and 99.9%, relevant for practice.
Assume that the operational risk data of two business lines of a bank are well modeled
by iid g-and-h rvs with parameter values g € [1.85,2.30], h € [0.15,0.35]. Note that
these values roughly correspond to the parameters estimated by Dutta and Perry [10]

at enterprise level. It would be of interest to figure out if aggregation at business line
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level leads to diversification in the sense of subadditivity of VaR. For this purpose we
consider two iid g-and-h rvs with g and h values within the afore mentioned ranges. In
Figure 7 we display a contour plot of o, () for a fixed «, together with the rectangle

containing the parameter values of interest.

-100

T
T
N

18 19 20 21 22 23 24 18 19 20 21 22 23 24

Figure 7: Contour plot of §, () as a function of g and h
for fixed a = 99% (left panel) and a = 99.9% (right panel);
n =107,

The number attached to each contour line gives the value of d4 () and the lines
indicate levels of equal magnitude of diversification benefit. The 0-value corresponds
to these models where VaR,, is additive, VaR, (X1 + X2) = VaRo(X1) + VaR,(X2).
The positive values (bottom left hand corner) correspond to models yielding subaddi-
tivity. The top right hand corner, corresponding to negative values for 6,4 (), leads
to superadditivity for the corresponding parameter values. Note that for o = 99.9%,
the entire parameter rectangle lies within the region of subadditivity; see right panel
of Figure 7. It is though important to realize that with only relatively small changes
in the underlying g and h parameters, one may end up in the superadditivity region.
The situation becomes more dramatic at lower quantiles. The left panel of Figure 7
corresponds to a = 99% (which is still relatively high!). There the superadditivity
region extends and a substantial fraction of our parameter rectangle lies therein.
The above statements were made under the iid assumption. In the example below

we allow for dependence. For this we link the marginal g-and-h distributions with the
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same parameters as in Figure 6 by a Gauss-copula; see McNeil et al. [18], p. 191. In
Figure 8 we plot d4 4 () for three different correlation parameters p = 0,0.5 and 0.7.

This figure should be compared with Figure 6.

corr=0
corr=0.5
ol | ----- corr=0.7
&

delta
0

Figure 8: Plot of 0, ,(c) as a function of a for g = 2.4,h =
0.2,n = 107 and Gauss-copula with correlation p = 0,0.5
and 0.7. Note that p = 0 corresponds to the independence

case in Figure 6.

It appears that in a range below 95%, |01 ()| becomes smaller when the correlation
parameter increases. This is not surprising because VaR is additive under comono-
tonic dependence, i.e. for risks with maximal correlation; see McNeil et al. [18], The-
orem 5.25. As a consequence d4 () would be tending to 0 for p — 1. The effect of
dependence can clearly be seen for large values of a. Based on our simulation study,
it appears that with increasing correlation p, the range of superadditivity extends to
even higher values of a. Hence the stronger the dependence the higher the level «
has to be in order to achieve a subadditive model. Formulated differently, for strong
dependence (p large), most levels o chosen in practice will lie within the range of su-
peradditivity. We have worked out these results also for other dependence structures,
like the ¢t- and the Gumbel-copula. For these cases we also elaborated contour plots as
in Figure 7. The results do not differ significantly from Figure 7 and thus we refrain

from displaying these plots here.
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The situation in any LDA is of course in general much more complicated than in
our simple example above. Practitioners and risk managers should therefore interpret
our statements rather from a methodological and pedagogical point of view. It seems
that diversification of operational risk can go the wrong way due to the skewness and

heavy-tailedness of this type of data.

5 The one-claim-causes-ruin paradigm

In several publications on operational risk it is stated that often relatively few claims
cause the major part of the total operational risk loss. Papers highlighting this phe-
nomenon in an operational risk context are Neslehova et al. [23] and Bocker and
Kliippelberg [2]. Though these publications contain the relevant results, for matter of
completeness we reformulate the main conclusions in terms of the g-and-h distribu-
tion. We concentrate on the iid case, changes incorporating dependence between the
different loss rvs along the lines of Bocker and Kliippelberg 2] can easily be made.

Let X1,..., X4 be iid g-and-h rvs and Sy = 2?21 X, the total loss. Recall that
for ¢ > 0, h > 0 the g-and-h distribution is subexponential, i.e.

P[Sg > z] ~ P[lrgaélX >z]l, = — o0.
(2

The above relation expresses the fact that for subexponential distributions the tail
distribution of the total loss S, is determined by the tail distribution of the maximum
loss. We are in the so-called “one-claim-causes-ruin” regime; see Embrechts et al. [11]
or Asmussen [1].

More generally, consider (X;);>0 a sequence of iid g-and-h rvs, independent of a

counting process (N¢)i>0 and Sy = vaztl X;. Hence we have
Gi(z) :=P[S; < x] = Z]P n|F" (z),

where F™ denotes the n-th convolution of F. Furthermore, by Theorem 1.3.9 of

Embrechts et al. [11], if there exists € > 0 such that

o0

> (14&)"P[N, = n] < o, (3)
n=0
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then the tail df of S; satisfies
P[S; > z] ~ E[N]F(x), x — oc.

Note that condition (3) is for instance satisfied in the Poisson, Binomial and Negative

Binomial case. The above representation implies

Gl o)~ F (M) a1,

and hence for ' ~ g-and-h with ¢ > 0,h > 0,

VaRq (S;) ~ k (cbl (1 - M)) . a— 1.

Though these results yield explicit analytic approximations for VaR,, « large, their

practical importance is questionable.

6 Conclusion

In this paper we have highlighted some of the modeling issues for g-and-h severity
distributions within an LDA for operational risk. There seems to be a discrepancy in
practice between results which strongly favor EVT methodology (Moscadelli [22]) and
g-and-h methodology (Dutta and Perry [10]). Our main results are as follows. First,
the g-and-h class of dfs yields an overall very slow rate of convergence in applications
using EVT based techniques. This is mainly due to the second order behavior of the
slowly varying function underlying the g-and-h for h > 0. As a consequence, setting
an optimal threshold for an EVT based POT approach becomes very difficult and
hence quantile (risk capital) estimates may become unreliable. Second, the issue of
sub- or superadditivity of g-and-h based VaR estimation very much depends on the
parameter values g and h. It is shown that, both for iid as well as for dependent data,
small changes in the underlying parameters may lead VaR to switch regime (super to
sub or vice versa). Finally, since the class of g-and-h distributions is subexponential
(for g > 0,h > 0), this class of dfs also yields the one-claim-causes-ruin phenomenon.

Several of the above results (observations) were based on simulation studies. We
do however believe that the message delivered in our paper may already have consid-

erable relevance for practical application of the LDA for operational risk. In future
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publications we shall come back to some of these issues in a more analytic form.
In particular, we are working on QRM relevant properties of multivariate g-and-h

models.
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