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Abstract

Motivated by too restrictive or even incorrect statements about generalized inverses in
the literature, properties about these functions are investigated and proven. Examples
and counterexamples show the importance of generalized inverses in mathematical
theory and its applications.
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1 Introduction
It is well known that a real-valued, continuous, and strictly monotone function of
a single variable possesses an inverse on its range. It is also known that one can
drop the assumptions of continuity and strict monotonicity (even the assumption of
considering points in the range) to obtain the notion of a generalized inverse. Generalized
inverses play an important role in probability theory and statistics in terms of quantile
functions, and in financial and insurance mathematics, for example, as Value-at-Risk
or return period. Generalized inverses of increasing functions which are not necessarily
distribution functions also frequently appear, for example, as transformations of random
variables. In particular, proving the famous invariance principle of copulas under strictly
increasing transformations on the ranges of the underlying random variables involves
such transformations.
One can often work with generalized inverses as one does with ordinary inverses. To

see this, one has to have several properties about generalized inverses at hand. Although
these properties are often stated in the literature, one rarely finds detailed proofs of these
results. Moreover, some of the statements found and often referred to are incorrect.

The main goal of this paper is therefore to state and prove important properties about
generalized inverses of increasing functions. Furthermore, examples which stress their
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2 Generalized inverses and quantile functions

importance are presented and counterexamples for incorrect statements in the literature
are given.
Before we begin, let us point out some references. Klement et al. (1999) introduce

pseudo- and quasi-inverses and provide properties of such functions. Some properties
of generalized inverses can also be found in Teschl and Falkner (2012). Note that we
only consider univariate functions in this paper. For different notions of multivariate
inverses in the context of quantile functions, see Chakak and Imlahi (2001), Serfling
(2002), Serfling (2008), or Fraiman and Pateiro-López (2011).

2 Generalized inverses and quantile functions
Throughout this article, we understand increasing in the sense of non-decreasingness,
that is, T : R → R is increasing if T (x) ≤ T (y) for all x < y. The following definition
captures the notion of an inverse for such functions. Note that evaluating increasing
functions at the symbols −∞ or ∞ is always understood as the corresponding limit
(possibly being −∞ or ∞ itself).

Definition 2.1
For an increasing function T : R → R with T (−∞) = limx↓−∞ T (x) and T (∞) =
limx↑∞ T (x), the generalized inverse T− : R→ R̄ = [−∞,∞] of T is defined by

T−(y) = inf{x ∈ R : T (x) ≥ y}, y ∈ R, (1)

with the convention that inf ∅ = ∞. If T : R → [0, 1] is a distribution function,
T− : [0, 1]→ R̄ is also called the quantile function of T .

Remark 2.2
(1) If T is continuous and strictly increasing, T− coincides with T−1, the ordinary inverse

of T on ran T = {T (x) : x ∈ R}, the range of T .

(2) Definition 2.1 for generalized inverses and quantile functions essentially appears
throughout the stochastics literature; see for instance Resnick (1987, p. 3), Embrechts
et al. (1997, p. 130, 554), and McNeil et al. (2005, p. 39). By this definition, the
0-quantile of a distribution function F is always F−(0) = −∞. For distribution
functions F with F (x) = 0 for some x ∈ R, this definition might be different from what
one would expect. For example, for the distribution function F (x) = 1− exp(−x)
of the standard exponential distribution, the corresponding quantile function is
F−(y) = − log(1 − y) on y ∈ (0, 1], which is often also considered as the quantile
function on the whole unit interval [0, 1] implying that F−(0) = 0. To get this
from the definition, Witting (1985), for example, specifically defines the 0-quantile
as F−(0) = sup{x ∈ R : F (x) = 0}. In the context of increasing functions in
general, such a definition would require one to treat the case where T is constant
to the left of some point as a special case, which makes statements and proofs
involving generalized inverses more complicated. Another way to obtain F−(0) = 0
for distribution functions with F (x) = 0 for some x ∈ R would be to restrict the
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2 Generalized inverses and quantile functions

domain of F in (1) to a subset of R. For the distribution function of the standard
exponential distribution, for example, one could define the quantile function as
F−(y) = inf{x ∈ [0,∞) : F (x) ≥ y}.
There are several reasons for not treating 0-quantiles any differently. First, as
mentioned above, such definitions make it more complicated to work with these
functions. Second, from the definition of a distribution function F of a random
variable X on a probability space (Ω,F ,P) as F (x) = P(X ≤ x), it makes perfect
sense to ask for the value of F at any x ∈ R, even outside the range of X. So
generally, the domain of a univariate distribution function should always be R and
Definition 2.1 respects that. Finally, let us remark that from a statistical or practical
point of view, the 0-quantile is irrelevant anyway.

Generalized inverses T− are best thought of in terms of Figure 1. It highlights the
two major differences to ordinary inverses. First, T is allowed to be flat. Flat parts of T
precisely correspond to jumps in T−. Second, T is allowed to be non-continuous and the
jumps of T precisely correspond to flat parts of T−.

y1

T−(y1)

y2

T−(y2)

T−(y1)

y1

T−(y2)

y2

Figure 1 An increasing function (left) and its corresponding generalized inverse (right).

When working with generalized inverses, the following properties are often useful.

Proposition 2.3
Let T : R → R be increasing with T (−∞) = limx↓−∞ T (x) and T (∞) = limx↑∞ T (x),
and let x, y ∈ R. Then,
(1) T−(y) = −∞ if and only if T (x) ≥ y for all x ∈ R. Similarly, T−(y) =∞ if and only

if T (x) < y for all x ∈ R.
(2) T− is increasing. If T−(y) ∈ (−∞,∞), T− is left-continuous at y and admits a limit

from the right at y.
(3) T−(T (x)) ≤ x. If T is strictly increasing, T−(T (x)) = x.
(4) Let T be right-continuous. Then T−(y) <∞ implies T (T−(y)) ≥ y. Furthermore,

y ∈ ran T ∪ {inf ran T, sup ran T} implies T (T−(y)) = y. Moreover, if y < inf ran T

3



2 Generalized inverses and quantile functions

then T (T−(y)) > y and if y > sup ran T then T (T−(y)) < y.
(5) T (x) ≥ y implies x ≥ T−(y). The other implication holds if T is right-continuous.

Furthermore, T (x) < y implies x ≤ T−(y).
(6) (T−(y−), T−(y+)) ⊆ {x ∈ R : T (x) = y} ⊆ [T−(y−), T−(y+)], where T−(y−) =

limz↑y T−(z) and T−(y+) = limz↓y T−(z).
(7) T is continuous if and only if T− is strictly increasing on [inf ran T, sup ran T ]. T is

strictly increasing if and only if T− is continuous on ran T .
(8) If T1 and T2 are right-continuous transformations with properties as T , then (T1 ◦

T2)− = T−2 ◦ T−1 .

Proof
(1) This statement directly follows from Definition 2.1.
(2) T− is increasing since {x ∈ R : T (x) ≥ y2} ⊆ {x ∈ R : T (x) ≥ y1} for all

y1, y2 ∈ R : y1 < y2. Now let T−(y) ∈ (−∞,∞) and for convenience, let y0 = y.
To show left-continuity in y0, let (yn)n∈N ⊆ R : yn ↑ y0. Then xn := T−(yn) ≤
x0 := T−(y0), thus xn ↗ x ≤ x0 for n → ∞ for some x ∈ R (where “xn ↗ x” is
used to denote that xn converges monotonically (increasing) to x). By definition
of T−, T (xn − ε) < yn ≤ T (xn + ε) for all ε > 0 and n ∈ N0 = {0, 1, 2, . . . }. If
x < x0, then ε = (x0 − x)/2 implies yn ≤ T (xn + ε) ≤ T (x0 − ε) < y0, thus
y0 = limn↑∞ yn ≤ T (x0 − ε) < y0, a contradiction. To show that T− admits a limit
from the right at y, let yn ↓ y ∈ R : T−(y) > −∞ and note that (T−(yn))n∈N is
decreasing and bounded from below by T−(y).

(3) The first part follows by definition of T−. For the second part, note that T being
strictly increasing implies that there is no z < x with T (z) ≥ T (x), thus T−(T (x)) ≥
x.

(4) For the first part, T−(y) <∞ implies that A = {x ∈ R : T (x) ≥ y} 6= ∅; thus, there
exists (xn)n∈N ⊆ A with xn ↓ inf A = T−(y) for n → ∞. By right-continuity of
T , T (T−(y))↙ T (xn) ≥ y, so T (T−(y)) ≥ y; here “T (T−(y))↙ T (xn)” is used to
denote that T (xn) converges monotonically (decreasing) to T (T−(y)).
Now consider the second part. First let y ∈ ran T and define A = {x ∈ R : T (x) =
y} 6= ∅. Note that inf A = T−(y) and conclude that T (T−(y)) ↙ T (xn) = y,
thus T (T−(y)) = y. Now let y = inf ran T and without loss of generality, assume
y /∈ ran T (otherwise the previous part applies). This implies T−(y) = −∞. Since
T is increasing, we obtain T (T−(y)) = T (−∞) = inf{T (x) : x ∈ R} = inf ran T = y.
Similarly for y = sup ran T .
For the first part of the last statement, note that y < inf ran T implies T−(y) = −∞,
thus T (T−(y)) = T (−∞) = inf ran T > y. Similarly for y > sup ran T .

(5) The first statement follows by definition of T−. For the second statement, note that
T−(y) ≤ x implies y ≤ T (T−(y)) ≤ T (x), where y ≤ T (T−(y)) follows from (4) since
T is right-continuous. For the last part, let x ∈ R be such that T (x) < y and z be any
real number with T (z) ≥ y. Since T is increasing, z ≥ x. This implies T−(y) ≥ x.
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(6) Let Ay = {x ∈ R : T (x) = y}. First, consider (T−(y−), T−(y+)) ⊆ Ay. Assume there
exists an x ∈ (T−(y−), T−(y+))\Ay. This implies that (i) T−(y−) < x < T−(y+)
and (ii) T (x) 6= y. By (i), there exist ε1, ε2 > 0 such that T−(z1) < x− ε1 < x + ε2 <
T−(z2) for all z1 < y < z2. By (2), T− is increasing, thus T−(y) ∈ [x−ε1, x+ε2]. By
(ii) one has either T (x) < y or T (x) > y. If T (x) < y, let z1 = (T (x)+y)/2 ∈ (T (x), y).
Since T (x) < z1, it follows from (5) that x ≤ T−(z1) which contradicts the fact that
T−(z1) < x− ε1 for all z1 < y. If T (x) > y, let z2 = T (x) > y. By definition of T−,
T−(z2) ≤ x, which contradicts T−(z2) > x + ε2 for all z2 > y.
Now consider Ay ⊆ [T−(y−), T−(y+)]. Without loss of generality, assume Ay 6= ∅.
We show T−(y−) ≤ inf Ay and sup Ay ≤ T−(y+). For the former, Ay ⊆ By :=
{x ∈ R : T (x) ≥ y} implies that T−(y−) ≤ T−(y) = inf By ≤ inf Ay. For the latter,
let z > y and x ∈ Ay. Then T (x) = y < z and (5) implies that T−(z) ≥ x. It
follows that for all z > y, T−(z) ≥ x for all x ∈ Ay. This implies that for all z > y,
T−(z) ≥ sup Ay, which in turn implies that T−(y+) ≥ sup Ay.

(7) Consider the first statement. We show that T is discontinuous if and only if T− is not
strictly increasing on [inf ran T, sup ran T ]. For the only if part, let T be discontinuous
at x0 ∈ R. Since T is increasing, this implies that y1 := T (x0−) := limx↑x0 T (x)
and y2 := T (x0+) := limx↓x0 T (x) exist, y1 < y2, and y0 := T (x0) ∈ [y1, y2]. Now
there exist y3, y4 ∈ R such that either y1 ≤ y0 < y3 < y4 < y2 or y1 < y3 < y4 <
y0 ≤ y2, without loss of generality assume the latter. Note that for all y ∈ [y3, y4] ⊆
[inf ran T, sup ran T ], y /∈ ran T . By definition of T−, this implies that T− is constant
on [y3, y4], that is, T− is not strictly increasing on [inf ran T, sup ran T ]. For the if part,
let T− be not strictly increasing on [inf ran T, sup ran T ], that is, there exist y1, y2 ∈ R
with inf ran T ≤ y1 < y2 ≤ sup ran T such that T−(y) = x for all y ∈ [y1, y2] and an
x ∈ R. By definition of T−, this implies that T (x− ε) < y1 < y2 ≤ T (x + ε) for all
ε > 0. Letting ε ↓ 0, we obtain T (x−) ≤ y1 < y2 ≤ T (x+), that is T is discontinuous
at x.
Now consider the second statement. We show that T is not strictly increasing if and
only if T− is discontinuous on ran T . For this we apply (6). For the only if part,
there exists a y ∈ R such that Ay contains an open interval. It follows from the
second inclusion in (6) that T−(y−) < T−(y+), thus T− is discontinuous at y; note
that by definition of Ay, y ∈ ran T . For the if part, there exists a y ∈ ran T such
that T−(−y) < T−(y+). It follows from the first inclusion in (6) that Ay contains
the (non-empty) open interval (T−(−y), T−(y+)), thus T is not strictly increasing.

(8) Applying (5) to T1 and T2 leads to (T1 ◦ T2)−(y) = inf{x ∈ R : T1(T2(x)) ≥ y} =
inf{x ∈ R : x ≥ T−2 (T−1 (y))} = T−2 (T−1 (y)).

Remark 2.4
(1) Many of the properties listed in Proposition 2.3 can be found in the literature.

However, they are often stated under stronger conditions. For example, Embrechts
et al. (1997, p. 555, Proposition A1.6 (a)) state that if T : R→ R is increasing and
right-continuous, then T (x) ≥ y if and only if x ≥ T−(y). According to Proposition

5



3 Examples and counterexamples

2.3 (5), right-continuity is not needed for the only if part of the statement.

(2) Concerning Proposition 2.3 (2), note that the notions of left-continuity and limits
from the right do not exist in their classical definitions if T−(y) =∞. As an example,
consider left-continuity and take a sequence (yn)n∈N ⊆ R : yn ↑ y. Since T− is
increasing and T−(y) =∞ (that is T−(y) =∞ if and only if T (x) < y for all x ∈ R),
it is clear that T−(yn)↗∞ for n→∞. But one can not talk about left-continuity
here, since quantities such as |T−(yn)−T−(y)| do not make sense for the epsilon-delta
definition of left-continuity if T−(y) =∞ (if T−(yn) is finite for all n, this absolute
distance is ∞ for all n; if T−(yn) =∞ from some n on, then it is not even defined).
Similarly for the limit from the right (which can only be ∞ since T−(yn) =∞; but
as before, showing that T−(yn)↘ T−(y) with the definition of convergence is not
possible). The same reasoning applies to the case where T−(y) = −∞.

(3) Consider the second statement in Proposition 2.3 (4). Note that the assumption
y ∈ ran T can not be replaced by y ∈ [inf ran T, sup ran T ] in general, which is clear
from Figure 1 if one considers the point y = y2 for example.

(4) To see that the other implication of the first statement in Proposition 2.3 (5) does
not hold in general, consider T (x) = 1(0,∞)(x) (the indicator function of the positive
real numbers), x = 0, and y = 1/2. Then T (x) = T (0) = 0 < 1/2 = y although
x = 0 ≥ 0 = T−(1/2) = T−(y).

(5) The first statement of Proposition 2.3 (7) is not correct anymore if T− is only
strictly increasing on ran T . As a counterexample, consider T (x) = 1[0,∞)(x), x ∈ R,
the indicator function of the non-negative real numbers. Then T−(y) = −∞ for
y ∈ (−∞, 0], T−(y) = 0 for y ∈ (0, 1], and T−(y) =∞ for y ∈ (1,∞). Thus, T− is
strictly increasing on ran T = {0, 1} but T is not continuous. Let us remark that T
is also a distribution function.

3 Examples and counterexamples
Generalized inverses appear at various points in the literature. In probability and statistics,
they mainly appear as quantile functions, for example, when building confidence intervals
or in terms of quantile-quantile plots for goodness-of-fit tests. Also, the median and
interquartile range are defined in terms of quantile functions. Many of the basic results
in extreme value theory involve generalized inverses; see for instance Embrechts et al.
(1997) and the references therein.

We now prove some important results involving generalized inverses and quantile
functions based on the results of Proposition 2.3. The first establishes the relation between
any univariate distribution function and the uniform distribution on the unit interval.
This is important for sampling and goodness-of-fit testing of univariate distributions.
The second result shows the invariance principle of copulas under strictly increasing
transformations on the ranges of the underlying random variables. This is an important
result from the theory of dependence modeling between random variables via copulas. It
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allows one to study the dependence structure independent of the marginal distribution
functions. Finally, we discuss some incorrect statements which can be found in the
literature.

3.1 Examples
An important application of quantile functions is the inversion method for generating
random variables from univariate distributions in general. This is often applied in Monte
Carlo simulations. The other way around, it can be applied as a goodness-of-fit test for
univariate distributions. Both applications are contained in the following proposition.

Proposition 3.1
Let F be a distribution function and X ∼ F .
(1) If F is continuous, F (X) ∼ U[0, 1].
(2) If U ∼ U[0, 1], F−(U) ∼ F .

Proof
(1) By Proposition 2.3 (7), F− is strictly increasing on [0, 1]. Therefore, P(F (X) ≤

x) = P(F−(F (X)) ≤ F−(x)). Although F may not be strictly increasing, it is so
on ran X; here and in what follows, the range ran X of a random variable X is
defined as ran X = {x ∈ R : P(X ∈ Nx) > 0 for all neighborhoods Nx ∈ B(R) of x}.
By Proposition 2.3 (3), it therefore follows that P(F−(F (X)) ≤ F−(x)) = P(X ≤
F−(x)) = F (F−(x)) for all x ∈ R. By Proposition 2.3 (4) this equals x for all
x ∈ (0, 1) ⊆ ran F . Thus P(F (X) ≤ x) = x, x ∈ (0, 1), which implies F (X) ∼ U[0, 1].

(2) By Proposition 2.3 (5), P(F−(U) ≤ x) = P(U ≤ F (x)) = F (x) for all x ∈ R.

As we can see from Proposition 3.1, transforming a random variable by its continuous
distribution function always leads to the same distribution, the standard uniform distri-
bution. Transforming a random vector componentwise in this way, however, may lead
to different multivariate distributions than the multivariate standard uniform distribu-
tion. This distribution depends on the dependence structure of the transformed random
variables and is captured by the underlying copula.

Copulas are distribution functions with standard uniform univariate margins. They play
an important role in modeling dependencies between random variables. By Sklar’s Theo-
rem (see, for example Sklar (1996) or Rüschendorf (2009)), any multivariate distribution
function H with marginals Fj , j ∈ {1, . . . , d}, can be written as

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), x ∈ Rd, (2)

for a copula C. This decomposition is uniquely defined on
∏d

j=1 ran Fj . Given X ∼ H,
we call any C which fulfills (2) a copula of H (or X); similarly, we say that H (or X)
has copula C.

We now prove some important statistical results about copulas. Here, increasing
transformations T (and their generalized inverses) as well as distribution functions (and
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their quantile functions) naturally appear. Once more, these results are well-known; see
for instance McNeil et al. (2005, p. 188) or Nelsen (2006, p. 25).

Proposition 3.2
Let X = (X1, . . . , Xd)T have joint distribution function H with continuous marginals Fj ,
j ∈ {1, . . . , d}. Then X has copula C if and only if (F1(X1), . . . , Fd(Xd))T∼ C.

Proof
First consider the only if part. Proposition 3.1 (1) implies that Fj(Xj) is continuously
distributed for all j ∈ {1, . . . , d}. By Proposition 2.3 (5), and since Xj is continu-
ously distributed for all j ∈ {1, . . . , d}, we have P(F1(X1) ≤ u1, . . . , Fd(Xd) ≤ ud) =
P(F1(X1) < u1, . . . , Fd(Xd) < ud) = P(X1 < F−1 (u1), . . . , Xd < F−d (ud)) = P(X1 ≤
F−1 (u1), . . . , Xd ≤ F−d (ud)) = H(F−1 (u1), . . . , F−d (ud)) = C(u), where H denotes the
distribution function of X and the last equality follows from Sklar’s Theorem.
For the if part, note that Fj is strictly increasing on ran Xj for all j ∈ {1, . . . , d}. Applying
Proposition 2.3 (3) and (5) leads to P(X ≤ x) = P(F−1 (F1(X1)) ≤ x1, . . . , F−d (Fd(Xd)) ≤
xd) = P(F1(X1) ≤ F1(x1), . . . , Fd(Xd) ≤ Fd(xd)), which, by assumption, equals C(F1(x1),
. . . , Fd(xd)). By Sklar’s Theorem, this means that X has copula C.

The following proposition addresses two versions of the famous invariance principle of
copulas which involves increasing transformations of random variables.

Proposition 3.3 (Invariance principle)
(1) Let X = (X1, . . . , Xd)T have joint distribution function H with continuous marginals

Fj , j ∈ {1, . . . , d}, and copula C. Let Tj : R → R be strictly increasing on ran Xj ,
j ∈ {1, . . . , d}. Then (T1(X1), . . . , Td(Xd))T (also) has copula C.

(2) Let X = (X1, . . . , Xd)T have joint distribution function H with marginals Fj , j ∈
{1, . . . , d}, and copula C. Let Tj : R→ R be right-continuous and strictly increasing
on ran Xj , j ∈ {1, . . . , d}. Then (T1(X1), . . . , Td(Xd))T (also) has copula C.

Proof
(1) Assume without loss of generality that Tj is right-continuous at its (at most count-

ably many) discontinuities. Since Xj is continuously distributed and Tj is strictly
increasing on ran Xj , the distribution function Gj of Tj(Xj) is given by Gj(x) =
P(Tj(Xj) ≤ x) = P(Tj(Xj) < x), which, by Proposition 2.3 (5), equals P(Xj <
T−j (x)) = P(Xj ≤ T−j (x)) = Fj(T−j (x)). Since Fj is continuous and, by Proposition
2.3 (7), T−j is continuous on ran Tj(Xj), Gj is continuous on ran Tj(Xj). Since Tj(Xj)
does not put mass outside ran Tj(Xj), Gj is (even) continuous on R, j ∈ {1, . . . , d}.
As Tj is strictly increasing on ran Xj , j ∈ {1, . . . , d}, it now follows from Proposition
2.3 (3) that P(Gj(Tj(Xj)) ≤ uj , j ∈ {1, . . . , d}) = P

(
Fj
(
T−j (Tj(Xj))

)
≤ uj , j ∈

{1, . . . , d}
)

= P(Fj(Xj) ≤ uj , j ∈ {1, . . . , d}). Since X has copula C, the only if part
of Proposition 3.2 implies that this equals C(u). By continuity of Gj , j ∈ {1, . . . , d},
the claim then follows from the if part of Proposition 3.2.

(2) By Proposition 2.3 (4) and since Tj is strictly increasing on ran Xj , the distribu-
tion function Gj of Tj(Xj) is given by Gj(x) = P(Tj(Xj) ≤ x) = P(Tj(Xj) ≤
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Tj(T−j (x))) = P(Xj ≤ T−j (x)) = Fj(T−j (x)) for all x ∈ ran Tj . Since Tj(Xj)
does not take on values outside ran Tj with non-zero probability, this implies that
Gj(x) = Fj(T−j (x)) for all x ∈ R, j ∈ {1, . . . , d}. Applying the same logic im-
plies P(Tj(Xj) ≤ xj , j ∈ {1, . . . , d}) = P(Tj(Xj) ≤ Tj(T−j (xj)), j ∈ {1, . . . , d}) =
P(Xj ≤ T−j (xj), j ∈ {1, . . . , d}) = H(T−1 (x1), . . . , T−d (xd)). By Sklar’s Theorem,
this equals C

(
F1(T−1 (x1)), . . . , Fd(T−d ( xd))

)
= C(G1(x1), . . . , Gd(xd)). Again from

Sklar’s Theorem, it follows that (T1(X1), . . . , Td(Xd))T has copula C.

3.2 Counterexamples
Some important properties of generalized inverses for increasing functions stated in the
literature are not correct. We now address some popular statements found in textbooks
and give counterexamples. We stress that these counterexamples specifically address
increasing functions which are not distribution functions.

Statement 1
McNeil et al. (2005, p. 495, Proposition A.3 (vi)) states that if T is increasing, then
T (T−(y)) ≥ y.

As a counterexample for Statement 1, consider T (x) = 1(0,∞)(x), x ∈ R, the indicator
function of the positive real numbers. Then T (T−(1/2)) = T (0) = 0 < 1/2, so Statement 1
is not correct in general. From this counterexample we see that T also has to be right-
continuous for T (T−(y)) ≥ y to hold. But even both increasingness and right-continuity
do not suffice, as the following Statement 2 shows.

Statement 2
Both Resnick (1987, p. 3, Inequality (0.6b)) and Embrechts et al. (1997, p. 555, Proposition
A1.6 (d)) state that if T is increasing and right-continuous, then T (T−(y)) ≥ y.

As a counterexample for Statement 2, consider the logistic function T (x) = 1/(1 +
exp(−x)), x ∈ R, and y = 2. Then T (T−(2)) = T (∞) = 1 < 2, so Statement 2 is not
correct in general. From this counterexample we see that T (T−(y)) ≥ y does not have to
hold if T−(y) = ∞ (so if T (x) < y for all x ∈ R, which in particular also implies that
y /∈ ran T ). However, note that it does hold if T−(y) =∞ as long as y = sup ran T , in
which case even T (T−(y)) = y is true; see Proposition 2.3 (4).

To see that the following statement is not correct in general, one may use the same
counterexample as for Statement 2. Also note that by Proposition 2.3 (4), the continuity
assumption can be relaxed to right-continuity.

Statement 3
Embrechts et al. (1997, p. 555, Proposition A1.6 (d)) state that if T is increasing and
continuous, then T (T−(y)) = y.

The following statement is the same as Statement 3, under one additional assumption.
Again, the logistic function can be used as a counterexample, this time taking y = −1.
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Statement 4
McNeil et al. (2005, p. 495, Proposition A.3 (viii)) state that if T−(y) <∞ and if T is
increasing and continuous, then T (T−(y)) = y.

Note that in contrast to Statement 4, the statement T (T−(y)) ≥ y is correct (given
that T−(y) <∞), even under weaker assumptions (only right-continuity); see Proposition
2.3 (4).

Finally, let us now consider the special case of a distribution function F . Under this
assumption, Statements 1 and 2 become correct, by Proposition 2.3 (4). To see this,
note that for y ∈ [0, 1), F−(y) <∞, so the first part of Proposition 2.3 (4) applies; for
y = 1 = sup ran F , the second part applies. Also Statements 3 and 4 become correct
since continuity implies that ran F ⊇ (0, 1), so that ran F ∪{inf ran F, sup ran F} = [0, 1].
Thus, the second part of Proposition 2.3 (4) implies F (F−(y)) = y for all y ∈ [0, 1].

4 Conclusion
We stated and proved several properties about generalized inverses. Furthermore, we
gave examples to stress their importance from both a theoretical perspective and in
applications. Finally, counterexamples for statements found in the literature show that
one has to be aware of the precise statements when working with generalized inverses,
for which this article provides guidance. The latter statement particularly applies when
going from probability distribution functions to more general increasing functions.
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