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Abstract

The dependence scenario yielding the worst possible Value-at-Risk at a given levelα for
X1 + · · · + Xn is known forn = 2. In this paper we investigate this problem for higher
dimensions. We provide a geometric interpretation highlighting the shape of the depen-
dence structures which imply the worst possible scenario. For a portfolio (X1, . . . ,Xn)
with given uniform marginals, we give an analytical solution sustaining the main result of
Rüschendorf (1982). In general, our approach allows for numerical computations.
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1 Introduction

For a portfolio(X1, . . . , Xn) of risks with given marginal distributions, we consider
the problem of finding the worst possible Value-at-Risk at the levelα forX1+ · · ·+
Xn, which we refer to aswVaRα(

∑n
i=1Xi). This question has been widely studied

in the literature, often formulated in terms of the best possible lower bound for the
distribution function of the sum; see for instance Section 6.2 in McNeil et al. (2005)
and references therein. In risk management this question ismotivated by the fact
that the worst-case scenario does not occur under comonotonic dependence; see
Fallacy 3 in Embrechts et al. (2002). We do not emphasize thisissue further. Recent
publications on this subject, which also widely discuss therole of comonotonicity,
are Denuit et al. (2005), Embrechts et al. (2003), Embrechtsand Puccetti (2006)
and Embrechts et al. (2005), where the problem is consideredfor non-decreasing
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functionals. While the above cited papers provide bounds onwVaRα(
∑n
i=1Xi) and

fully explain the two-dimensional situation finding a worstdependence scenario in
terms of copulas, they all fail to catch the nature of the copula solving the problem
in higher dimensions. In this paper we describe this extremedependence scenario
extending some geometrical arguments introduced in Embrechts et al. (2005) for
n = 2. This allows us to numerically answer the question at hand and, for uniform
marginal distributions, to provide an analytical solutionequivalent to that presented
in Rüschendorf (1982). The latter is the only known analytical result for continuous
marginals. Some applications of our results are given in Section 4.

2 Preliminaries and fundamental results

We briefly summarize the basic tools used in the literature and recall the fundamen-
tal results on the problem of bounding the Value-at-Risk. All the theorems are for-
mulated for the sum of risks assuming no information about their interdependence.
For further discussions regarding more general functionals and the assumption of
partial dependence information, we refer to the papers cited in the introduction.

2.1 Value-at-Risk and copulas

For risk management purposes we assumeX1, . . . , Xn to have distribution func-
tionsF1, . . . , Fn with losses represented in their right tails.

Definition 1 Let X be a random variable with distributionFX . For 0 < α < 1
the Value-at-Risk at probability levelα of X is its α-quantile, i.e.VaRα(X) :=
F−1
X (α) := inf{x ∈ R : FX(x) ≥ α}.

In risk management applications, typical values forα are0.95 or 0.99 in the case
of market or credit risk andα = 0.999 for operational risk.

Given the joint distribution functionF (x) = P(X1 ≤ x1, . . . , Xn ≤ xn),x ∈ Rn,
the problem of calculatingVaRα(

∑n
i=1Xi) reduces to a computational issue. In

what follows we assume full knowledge about the marginals but no prior informa-
tion on the dependence structure. In this context, the idea of copula allows for a
precise formulation of the problem separatingF into one part describing the de-
pendence structure and another part containing the information on the marginals.
We refer to Nelsen (1999) for the basic results about copulas.

Definition 2 An n-dimensional copulaC is a distribution function restricted to
[0, 1]n with uniform-(0, 1) marginals. We denote their class byCn.

Remark 1 A copula can be equivalently defined as a functionC : [0, 1]n → [0, 1]
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satisfyingC(u1, . . . , ui−1, 0, ui+1, . . . , un) = 0, C(1, . . . , 1, ui, 1, . . . , 1) = ui and
∑2
i1=1 · · ·

∑2
in=1(−1)i1+···+inC(u1,i1, . . . , un,in) ≥ 0 for u,v ∈ [0, 1]n with u ≤ v

anduj,1 = uj, uj,2 = vj , j = 1, . . . , n.

Sklar’s Theorem yields that, for aC ∈ Cn and marginalsF1, . . . , Fn, the func-
tion F (x) := C(F1(x1), . . . , Fn(xn)) is a distribution with these marginals. Con-
versely, for any joint distribution function with given marginals, there is a copula
linking them. It is unique if the marginals are continuous. Any copulaC lies be-
tween the so called lower and upper Fréchet boundsW (u) := (

∑n
i=1 ui − n+ 1)+

andM(u) := min1≤i≤n ui implying countermonotonic (ifn = 2), respectively
comonotonic dependence for the coupled random variables. TakingΠ(u) := Πn

i=1ui
we obtain independence. Finally, we want to stress that the lower Fréchet bound is
not a copula forn ≥ 3.

2.2 Bound on wVaR and known optimality results

LetF− denote the left-continuous version of a distribution functionF , i.e.F−(x) =
P(X < x) = F (x−). ForC ∈ Cn, univariate distributionsF1, . . . , Fn ands ∈ R
we define

σC,+(F1, . . . , Fn)(s) :=
∫

{

∑

n

i=1
xi<s

} dC(F1(x1), . . . , Fn(xn)),

τC,+(F1, . . . , Fn)(s) := sup
x1,...,xn−1∈RC (F1(x1), . . . , Fn−1(xn−1), F

−
n

(

s−
n−1
∑

i=1

xi

))

,

whereσC,+(F1, . . . , Fn)(s) = P(X1 + · · · +Xn < s) for a portfolio(X1, . . . , Xn)
with marginalsF1, . . . , Fn and copulaC. The following result yields distributional
bounds forσC,+(F1, . . . , Fn)(s) andVaRα(

∑n
i=1Xi) when no information about

the underlying dependence structure is available. A more general version can be
found in Embrechts et al. (2003, Theorem 3.1) and Embrechts and Puccetti (2006,
Theorem 3.1), where results are given for non-decreasing functionals in the pres-
ence of partial information.

Proposition 1 Let (X1, . . . , Xn) have marginalsF1, . . . , Fn and copulaC ∈ Cn.
Then for every reals and everyα ∈ (0, 1) we have that

σC,+(F1, . . . , Fn)(s) ≥ τW,+(F1, . . . , Fn)(s) (1)

implyingVaRα (
∑n
i=1Xi) ≤ wVaRα (

∑n
i=1Xi) ≤ τW,+(F1, . . . , Fn)

−1(α).

Note that for practical applications, theFi’s are assumed to be known butC is un-
known. A long history exists about the sharpness of these bounds. Makarov (1981)
provided the first result for the sum of two random variables.Later, using a geo-
metric approach, Frank et al. (1987) restated the result using the copula language.
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The pointwise best possible nature of the bounds in the two-dimensional case was
finally proved in Williamson and Downs (1990) for non-decreasing functionals.
Below we reformulate their optimality theorem for the sum. More historical refer-
ences can be found in the introduction of Embrechts and Puccetti (2006).

Proposition 2 Let(X1, X2) have marginal distributionsF1, F2 and defineCα̃ ∈ C2

for α̃ ∈ [0, 1] as

Cα̃(u1, u2) :=







max{α̃,W (u1, u2)} if (u1, u2) ∈ [α̃, 1]2,

M(u1, u2) otherwise.
(2)

Then, choosing̃α = α(s) := τW,+(F1, F2)(s), we obtainσCα̃,+(F1, F2)(s) = α(s).
Hence, for anyα ∈ (0, 1), wVaRα (X1 +X2) = τW,+(F1, F2)

−1(α) is attained
underCα̃, α̃ = α.

Remarks 2

(a) Observe that, given someCL ∈ C2, a similar result holds assuming partial
informationC ≥ CL on the unknown copulaC and substitutingW (u1, u2) by
CL(u1, u2).

(b) TakingCL(u),u ∈ [0, 1]n, n ≥ 3 instead ofCL(u1, u2), (2) is not a copula. In
the no information case, this immediately follows from the fact that the lower
Fréchet bounds is not a copula forn ≥ 3. In the presence of partial informa-
tion, we refer to the example by Geiss and Päivinen reportedin Embrechts and
Puccetti (2006).

Without mentioning the idea of copulas, Rüschendorf (1982) gave the same result
stated by Frank et al. (1987) extending it for the sum ofn uniform random variables.

Proposition 3 The best possible lower bound on the distribution of
∑n
i=1Xi with

(X1, . . . , Xn) having standard uniform marginals ismin{(2s/n− 1)+, 1} for s ∈
(0, n). This implieswVaRα (

∑n
i=1Xi) = n(1 + α)/2 for α ∈ (0, 1).

Till now, this and a similar expression for binomial marginals are the only known
analytical results for the multidimensional problem.

3 Worst Value-at-Risk scenarios for the multidimensional problem

The above result of Rüschendorf (1982) provides sharpnessof the bounds for the
n-dimensional problem for uniform marginals. An analyticalgeneralization of (2),
replacingW (u1, u2) by W (u),u ∈ [0, 1]n, n ≥ 3, does not lead to sharp bounds
for the multidimensional case. Below we take a more geometric approach. From
this point of view, the problem at hand consists in maximizing the probability of
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the setGs := {x ∈ Rn : x1 + · · · + xn ≥ s}. We transport the problem onto the
unit square throughh : Rn → [0, 1]n, h(x) := (F1(x1), . . . , Fn(xn)) and denote

As := h(Gs) = {u ∈ [0, 1]n : F−1
1 (u1) + · · ·+ F−1

n (un) ≥ s}. (3)

By definition, fors ∈ R, we have thatwVaRα(s)(X1 + · · · + Xn) = s, when1 −
α(s) := supC∈Cn(1 − σC,+(F1, . . . , Fn)(s)). The worst Value-at-Risk dependence
scenario at levelα therefore solves the equality

PC

(

AwVaRα(X1+···+Xn)

)

= 1 − α. (4)

3.1 Geometrical properties ofCα̃ ∈ C2 with α̃ = τW,+(F1, F2)(s)

In the two-dimensional case, applying Proposition 2, we immediately see thatCα̃
satisfies (4) ifα̃ = α. Moreover, for a uniform portfolio(U1, U2), Embrechts et al.
(2005, Proposition 9) yields that this is the only copula putting measure1 − α on
AwVaRα(U1+U2) with wVaRα(U1 + U2) = 1 + α. Therefore, in this case the density
of Cα in A1+α is concentrated on the boundaryHα = A1+α; see Figure 1 (left).

0
0

1

1

α

α

A1+α

A1+α ≡ Hα

0
0

1

1

α

α

α̃ = α1

α̃ = α2

α̃ = α

As

Hα1

Hα2 HαAs

Fig. 1. SetsAs and boundariesAs for a two-dimensional uniform portfolio for
s = 1.25 (left) and Lognormal(0.4, 1) portfolio for s = 4 (right). Together we plot the
supportHα of Cα̃ for α̃ = α = τW,+(F1, F2)(s) and the (upper) supports for̃α = α1 < α

andα̃ = α2 > α.

Figure 1 highlights the geometric idea underlying the worstscenarioCα̃(u1, u2).
The gray areas represent the setsAs for a uniform portfolio(s = 1+α = 1.25)
and a Lognormal(0.4, 1) portfolio (s = 4), respectively. The boundary ofAs can
be written asAs := {(F1(t), F2(s − t)), t ∈ R}. We denoteH α̃ the support of
Cα̃ restricted to[α̃, 1]2. In general dimensions, we refer to the support restricted to
[α̃, 1]n as upper support. The solution of the problem for the uniformportfolio leads
then to an optimizing copula, which upper support coincideswith the boundary
A1+α.
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Remark 3 The choiceα̃ = τW,+(F1, F2)(s) in Proposition 2 implies thatH α̃

lies in As and is tangent toAs. SinceCα̃ ∈ C2, the density onH α̃ is uniformly
distributed and proportional to its lengthl(H α̃), say. ThereforeCα maximizes the
density onAs. In fact, a different choice of̃α would decrease the probability ofAs.
Trivially l(Hα2

) < l(Hα) for α2 > α, whereas the shape ofAs implies

l(Hα1
) = l(Hα) + 2

√
2(α− α1) − l(Hα ∩Acs) < l(Hα) if α1 < α.

3.2 Worst VaR scenario for an-dimensional uniform portfolio

In this section we consider a uniform portfolio. Similar to the previous section, the
uniform case will lead to an optimizing copula for general marginals.

The solution of the worst VaR question consists of maximizing the probability of a
certain region ofRn. As illustrated in the previous section, we transport the problem
onto then-dimensional unit cube and investigate the shape of the support of the
copulas putting maximal measure on (3). For an-dimensional uniform portfolio
andn−1 ≤s≤n, the region of the space where the probability has to be maximized
isAs = {u ∈ [0, 1]n :

∑n
i=1 ui ≥ s} with boundaryAs = {u ∈ [0, 1]n :

∑n
i=1 ui =

s}. For0 ≤ s≤n−1 the problem has a trivial solution. Because of the uniformity
of the marginals, the upper support of a copula maximizing the probability ofAs
has to lie inAs ∩ [α̃, 1]n for some appropriatẽα ≥ α⋆ := s−(n −1) with α̃ = α⋆

whenn = 2.

Theorem 1 Let α̃ ∈ [α⋆, 1) andCα̃ : [0, 1]n → [0, 1] be a function with support in
{u ∈ [0, α̃)n : u1 = · · · = un} ∪ {u ∈ [α̃, 1]n :

∑n
i=1 ui ≥ s} for s ∈ [n− 1, n]. A

necessary condition forCα̃ to be a copula is that̃α = ᾱ := 2s/n − 1, i.e. that the
support in[α̃, 1]n lies inHα̃ := {u ∈ [α̃, 1]n :

∑n
i=1 ui ≥ n(1 + α̃)/2}.

Proof Assumeα̃ ∈ [α⋆, ᾱ] andCα̃ ∈ Cn with corresponding measureµα̃. Let
Si := {u ∈ [0, 1]n : α⋆ ≤ ui ≤ ᾱ}, i = 1,. . ., n − 1, Sn := {u ∈ [0, 1]n :
1− (ᾱ− α⋆)≤un≤1} and setEi = Si ∩Ans , i = 1, . . . , n. By definition,Ei ∈ En
for all i. SinceCα̃ is a copula with upper support in{u ∈ [α̃, 1]n :

∑n
i=1 ui ≥ s},

µα̃(E1) = · · · = µα̃(En−1) = ᾱ − α⋆ whereasµα̃(En) = ᾱ − α⋆. It immediately
follows thatµα̃(Ei) = 0 for i = 1, . . . , n− 1 andα̃ = α⋆ = ᾱ. 2

Remarks 4

(a) Geometrically, Theorem 1 implies that ifCα̃ ∈ C
n, the set

H α̃ := [α̃, 1]n ∩ An

2
(1+α̃) =

{

u ∈ [α̃, 1]n :
n
∑

i=1

ui =
n

2
(1 + α̃)

}

(5)

is symmetric with respect to its center((1 + α̃)/2, . . . , (1 + α̃)/2).
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(b) Observe that the analytic generalization of (2) withW (u1, u2) replaced by
W (u) has upper support{u ∈ [α̃, 1]3 : u1 + u2 + u3 = 2}.

Next we extend the two-dimensional result of Embrechts et al. (2005, Proposition
9) to general dimensions and we provide the existence of a copula with support as
in (5).

Theorem 2 AssumeC̄, C̃ ∈ Cn to have supports onHn
0 andHn

0 , respectively. Let
µC̃ be the measure induced bỹC. Then forHn+

0 := {u ∈ [0, 1]n :
∑n
i=1 ui > n/2}

andHn−
0 := {u ∈ [0, 1]n :

∑n
i=1 ui < n/2} it holds that

µC̃(Hn−
0 ) = 0 ⇔ µC̃(Hn+

0 ) = 0,

and the two copulas have the same support.

Proof AssumeµC̃(Hn−
0 ) = 0 andµC̃(Hn+

0 ) > 0. Consider the independence
copulaΠ with support[0, 1]n. SinceC̄, C̃ ∈ Cn, there exist operatorsν, ν̃ : Cn →
Cn with ϕ := ν̃ ◦ ν−1 6= Id such thatC̄ = ν(Π) andC̃ = ν̃(Π). It follows that
µϕ(C̄)(H

n−
0 ) = 0 andµϕ(C̄)(H

n+
0 ) > 0. On the contrary, in order to preserve the

uniformity of the marginals, any operator̃ϕ : Cn → Cn with µϕ̃(C̄)(H
n+
0 ) > 0,

impliesµϕ̃(C̄)(H
n−
0 ) > 0, which concludes the proof. 2

Theorem 3 Let Cα̃ : [0, 1]n → [0, 1] have supportH α̃ as in (5) on [α̃, 1]n. Then
there exists a sequence of copulasCN,α̃ ∈ Cn, N ∈ 2N+ 1 such that

Cα̃(u) :=







lim
N→∞

CN,α̃(u) if u ∈ [α̃, 1]n,

M(u) otherwise.

is a copula.

Proof Without loss of generality, we considerα̃=0 with H0 =[0, 1]n ∩ An
n/2. For

N ∈ 2N + 1 we consider the partitionI := [0, 1] =∪Nk=1Ik, whereIk := [k−1
N
, k
N

].
We identify the setIk1 ×· · ·×Ikn

with the point(k1, . . . , kn) and define its measure
as follows. For anyk = 1, . . . , (N+1)/2 and1 ≤ k̄ < k we set the functions

g1(k) := |{Ik × In−1} ∩H(N)
0 |, g2(k, k̄) := |{Ik × Ik̄ × In−2} ∩H(N)

0 |,

whereH(N)
0 := {(k1, . . . , kn) ∈ {1, . . . , N}n : n

2
− 1

N
<
∑n
i=1 ki ≤ n

2
+ 1

N
}. Then

we define

f
(N)
0 (k1, . . . , kn) :=











f ⋆
(

min
1≤d≤n

kd

)

if (k1, . . . , kn) ∈ H
(N)
0 ,

0 otherwise,

wheref ⋆(k) := ( 1
N
− (n−1)

∑

1≤k̄<k

g2(k, k̄)f
⋆(k̄))(g1(k)− (n−1)

∑

1≤k̄<k

g2(k, k̄))
−1.
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The above construction defines a copula on the grid{k1, . . . , kn}N . The setIk ×
In−1 denotes thek-th slice of [0, 1]n along the first dimension. Thereforeg1(k)

counts the number of points on such a slice which also lie inH
(N)
0 . Similarly

g2(k, k̄) counts the number of points onH (N)
0 which are on thek-th slice along

the first dimension and on thēk-th slice along the second one. By the symmetry
of the support, we could define these functions using any other two dimensions.
Moreover, by definition, all the slices have width1/N . The idea is then to consider
I0 × In−1 and weight each point in order to have total measure1/N . In doing this,
by symmetry, we assign a measure to all the points lying on an equivalent slice for
any of the other dimensions. We continue withI1×In−1 assigning a weight only to
the missing points. To do this we only have to take into account the missing points
on slicek, i.e. (n − 1)

∑

1≤k̄<k g2(k, k̄)f
⋆(k̄). By the symmetry ofH(N)

0 , we only
evaluate slicesk = 1, . . . , (N+1)/2. Usingf ⋆ we finally assign probability weights
to the points with respect of the marginal constraints.

For anyN , by construction, the functionCN,0 : [0, 1]n → [0, 1] defined through

CN,0(u) :=
k(u1)
∑

k1=1

· · ·
k(un)
∑

kn=1

f
(N)
0 (k1, . . . , kn), k(u) := sup

{

k ≥ 1 :
k

N
≤ u

}

is a copula. SettingC0(u) := lim
N→∞

CN,0(u) we then obtain that

C0(u1, . . . , ui−1, 0, ui+1, . . . , un) = lim
N→∞

CN,0(u1, . . . , ui−1, 0, ui+1, . . . , un)

≤ lim
N→∞

1/N = 0,

C0(1, . . . , 1, ui, 1, . . . , 1) = lim
N→∞

CN,0(1, . . . , 1, ui, 1, . . . , 1)

= lim
N→∞

k(ui)/N = ui,

and foru,v ∈ [0, 1]n with u ≤ v anduj,1 = uj, uj,2 = vj, j = 1, . . . , n

2
∑

i1=1

· · ·
2
∑

in=1

(−1)i1+···+inC0(u1,i1, . . . , un,in)

= lim
N→∞

2
∑

i1=1

· · ·
2
∑

in=1

(−1)i1+···+inCN,0(u1,i1, . . . , un,in) ≥ 0.

It follows that the conditions given in Remark 1 are satisfiedandC0 ∈ Cn. 2

Remark 5 Similarly as in the above proof, it is possible to construct other copulas
with supportH α̃. We denote the family of the copulas sharing this support byCnα̃.

By Theorems 1, 2 and 3, any copula putting probability1 − α̃ = 1 − (2s/n − 1)
onAn(1+α̃)/2 has supportH α̃ as in (5). Figure 2 illustrates these results in the three-
dimensional case.
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2

)

Fig. 2. SetsA3(1+α̃)/2, Hα̃ andH α̃ for a three-dimensional uniform portfolio. The setH α̃

with α̃ = α is the upper support of any copula leading towVaRα(X1 + X2 + X3).

As a consequence we obtain the result of Rüschendorf (1982)given in Proposition
3. We restate it here using the language of copulas.

Corollary 1 LetCα̃ ∈ Cnα̃ with α̃ = α. Then

PCα
{X1 + · · · +Xn < s} = α (6)

for s = n(1 + α)/2 and the best possible lower bound on the distribution function
ofX1 + · · ·+Xn for uniform marginals ismin{(2s/n− 1)+, 1} for s ∈ (0, n).

Proof The worst dependence scenario for Value-at-Risk at levelα satisfies (4).
TakingCα̃ ∈ Cnα̃, we obtainPCα̃

(An(1+α̃)/2) = PCα̃
(Hn(1+α̃)/2) = 1 − α̃. Then

equality (4) is satisfied for̃α=α andwVaRα(X1+. . .+Xn) = n(1 + α)/2 which
implies (6). 2

3.3 Worst VaR scenario for a general portfolio

Relying on the solution for a the uniform case studied in the previous section, we
provide an answer for a general portfolio with marginalsF1, . . . , Fn. Although we
illustrate the case of a three dimensional portfolio, our arguments remain valid in
higher dimensions. We recall that, for a portfolio(X1, X2), the copula leading to
the worst possible Value-at-RiskwVaRα(X1 + X2) is indeed the solution of the
uniform case for̃α = α. This follows from the uniformity of the density on the
upper support; see Figure 1 and Remark 3. In general, the worst valuewVaRα is
not attained under aCα̃ ∈ Cnα̃ with α̃ = α.

Example 1 Consider the portfolio(X1, X2, X3) for Xi ∼ Pareto(1/ξi) with tail
distribution functionF i(x) = (1+x)−1/ξi , i = 1, 2, 3. Assumeξi = 0.7, i = 1, 2, 3.
In Figure 3 (left) we illustrate the surfaceAs for s = 21.4 together with the upper
supportH α̃ of Cα̃ for α̃ = 0.9. On the right we plotAs for s = 22.7 with H α̃ for
α̃ = 0.895. Computing the probability ofAs under these two dependence structures
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we obtain

PC0.9 (X1 +X2 +X3 ≥ 21.4) = PC0.895 (X1 +X2 +X3 ≥ 22.7) = 0.1

and therefore the Value-at-Risk of the sum at levelα = 0.9 underC0.9 is smaller
that underC0.895.

α̃ = α = 0.9 α̃ = 0.895 < 0.9 = α

1

1

1

1

00

00

Fig. 3. SurfacesAs for a three-dimensional Pareto(0.7) portfolio with s = 21.4 (left) and
s = 22.7 (right). We plotH α̃ for α̃ = 0.9 on the left and̃α = 0.895 on the right.

The message coming from Example 1 is that choosing the upper support tangent
to As, i.e. α̃ = α, in general does not imply a worst dependence scenario. Thisis
due to the distribution of the density on the support. Indeedthe marginal constraints
imply that forn > 2 the density is not uniformly distributed but concentrated on the
border ofH α̃ and more thinly when reaching the center(n(1+α̃)/2,. . ., n(1+α̃)/2).
This can be easily seen in the three-dimensional case looking at the projection of
H α̃ on [0, 1]2.

In Figure 1 (right) we takẽα < α. This implies that the measure on the upper
support is greater than1 − α. Contrary, forα̃ > α, a portion of the support does
not lie inAs. In Remark 3 we discussed the two-dimensional situation, where the
density is proportional to the length of the support and every choice ofα̃ different
fromα leads to a better scenario for the problem at hand. In the general case, cutting
some portion of the support does not necessarily imply a better scenario. In fact the
increment of probability on the boundary could compensate the reduction in some
other region. For̃α sufficiently small, we lose too much density onAs. Trivially,
α̃ > α implies a better scenario. From the solution of the uniform problem given
by Theorems 1, 2 and 3 and the distribution of the probabilityon its upper support,
we immediately obtain the following result.

Theorem 4 Let(X1, . . . , Xn) be a portfolio with given marginalsF1, . . . , Fn. Then
wVaRα(X1 + · · · + Xn) is attained under a copulaCα̃ ∈ Cnα̃ for someα̃ ≤ α
depending on the marginal distributions. Using the same notation as in(4), we
have that

sup{PCα̃

(

AwVaRα(X1+···+Xn)

)

: Cα̃ ∈ C
n
α̃, 0 < α̃ ≤ α} = 1 − α.
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Remark 6 In contrast to the two-dimensional case, in dimensions higher than two
a copulaCα̃ leading towVaRα(X1 + · · · + Xn) depends upon the choice of the
marginals. In fact the region of the support where we lose probability is given by
H α̃ ∩ {u ∈ [0, 1]n : F−1

1 (u1) + · · ·+ F−1
n (un) < s} and depends onF1, . . . , Fn.

4 Applications

In this section we apply Theorem 4 and compute the worst-possible Value-at-Risk
for the sum at levelα for a three-dimensional portfolio(X1, X2, X3). The positions
Xi, i = 1, 2, 3 are Pareto(1/ξi) distributed with tailsF i(x) = (1+x)−1/ξi . We solve
the problem forα = 0.9, 0.95, 0.99 (typically used for market or credit risk) and
α = 0.995, 0.999 (values used in operational risk) and this for various scenarios.

Scenario I:Xi ∼ Pareto(1/ξi) with ξ1 = ξ2 = ξ3 = 0.7,

Scenario II: Xi ∼ Pareto(1/ξi) with ξ1 = 0.7504, ξ2 = 0.6607 andξ3 = 0.2815,

Scenario III: Xi ∼ Pareto(1/ξi) with ξ1 = 1.1905, ξ2 = 1.3889 andξ3 = 1.2195.

The main features of these scenarios are: they are all heavy-tailed, homogeneous
as in I, or heterogeneous as in II and III. Scenario II corresponds to a finite mean
situation whereas III corresponds to an infinite mean model.Theξ-values chosen
correspond to examples often encountered in risk management practice. For Sce-
nario II and III; see for instance Moscadelli (2004). Based on Theorem 4 and the
upper supportH α̃ of Cα̃ ∈ C

n
α̃, we propose the following numerical procedure.

For givens ∈ R and α̃ ∈ (0, 1), analogously as in the proof of Theorem 3, for
N ∈ 2N+ 1, we discretize the unit cube[α̃, 1]3 through

[α̃, 1] = ∪Nk=1Ik, Ik :=

[

α̃ +
k − 1

N
, α̃+

k

N

]

and we identify the setIk1 × Ik2 × Ik3 with the point(k1, k2, k3) ∈ {1, . . . , N}3.

Further we consider the setsA(N)
s andH(N)

α̃ as discretized versions ofAs andH α̃,
respectively. We letw ∈ RN3

be a vector containing the probability weights of
the points in[0, 1]3. We then generate a vectorf ∈ RN3

with entry one when the
corresponding point lies on[0, 1]3 \A(N)

s ∩H(N)
α̃ and zero elsewhere. Similarly we

create aN3 × 3N matrixA providing the marginal restrictions. Finally we solve
the optimization problem

min
w

fTw, Aw =
(

1
N
, . . . , 1

N

)T
, w ∈ [0, 1]N

3

. (7)

It follows thats = wVaRα(X1 +X2 +X3) at levelα = α̃+ fT ŵ, whereŵ is the
solution of (7). Any copula leading towVaRα has supportH(N)

α̃ .
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We illustrate the above procedure for the Scenarios I, II andIII. Together with the
worst-casewVaRα, in the Tables 1, 2 and 3 we provide the values underCα̃ with
α̃ = α and for the comonotonic copulaM for which VaRα(X1 + X2 + X3) =
VaRα(X1) + VaRα(X2) + VaRα(X3).

↓ C,
α→ 0.9 0.95 0.99 0.995 0.999 0.9999

M 13.0 21.4 72.3 119.4 374.7 1889.9

Cα 21.4 36.7 119.5 196.0 611.1 3074.7

Cα̃ 22.7 38.6 123.8 205.2 634.3 3120.0

α̃ 0.895 0.948 0.989 0.9948 0.9989 0.99989

Table 1
Values of VaRα(X1 + X2 + X3) for scenario I underCα, Cα̃ andM . In the last row we
give the values of̃α yielding the worst dependence structure and wVaRα(X1 + X2 + X3).

↓ C,
α→ 0.9 0.95 0.99 0.995 0.999 0.9999

M 9.1 16.0 53.3 87.9 278.3 1453.4

Cα 13.6 22.7 70.5 114.1 348.1 1749.9

Cα̃ 13.6 22.7 70.5 114.1 360.5 1981.0

α̃ 0.9 0.95 0.99 0.995 0.99865 0.999865

Table 2
Values of VaRα(X1 + X2 + X3) for scenario II underCα, Cα̃ andM .

↓ C,
α→ 0.9 0.95 0.99 0.995 0.999 0.9999

M 53.6 135.1 1111.2 2754.2 22946.6 492468.4

Cα 130.7 320.4 2531.2 6161.3 48905 960782

Cα̃ 144.3 351.5 2700 6500 52000 980000

α̃ 0.89 0.947 0.989 0.9943 0.99885 0.99988

Table 3
Values of VaRα(X1 + X2 + X3) for scenario III underCα, Cα̃ andM .

Figures 4 and 5 show the densities onA(N)
s ∩ H

(N)
α̃ as functions of the parameter

α̃ for Scenarios I and II and levelsα = 0.99 andα = 0.9999, respectively. The
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Fig. 4. Densities onA(N)
s ∩ H

(N)
α̃ for s = 123.8 (α = 0.99) (top) ands = 3120

(α = 0.9999) (bottom) as functions of̃α for Scenario I.
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Fig. 5. Densities onA(N)
s ∩ H

(N)
α̃ for s = 70.5.8 (α = 0.99) (top) ands = 1981

(α = 0.9999) (bottom) as functions of̃α for Scenario II.

starting value for̃α is larger thanα. We can observe that in both cases the densities
increase linearly iñα till reachingα. For the two scenarios we observe different
behavior. For Scenario I, the densities continue to increase afterα and, once a
maximum is reached, they tend to zero. Theα̃ corresponding to this maxima,α̃ =
0.989 (α = 0.99) and α̃ = 0.99989 (α = 0.9999), give the worst dependence
scenarios.

For Scenario II, the densities onA(N)
s ∩ H

(N)
α̃ have a first maximum iñα = α

and a second one for somẽα > α. In the caseα = 0.9 the worst dependence
scenario is implied by the first maximum and the upper supportis tangent toAs.
Forα = 0.9999, the second maximum dominates.

In order to understand the different nature between the two scenarios, we look at
the supports plotted in Figure 6. The idea is as follows. We set the upper support
tangent toAs (with s chosen such that̃α = α = 0.9) and we shift it by taking
values ofα̃ smaller thanα. The setA(N)

s ∩ H
(N)
α̃ is illustrated forα̃ = 0.895 and

13



0.895 1 0.885 1
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Fig. 6. Upper supports for Scenarios I (top) and II (bottom).In both cases we takeα = 0.9
and we consider̃α = 0.895 (left) andα̃ = 0.885 (right).

α̃ = 0.885 under Scenarios I and II. Remark that a smallerα̃ implies a larger cut
of the support and an increment of the probability on[α̃, 1]3. At this point we recall
that the density is not homogeneous on the support and more concentrated when
reaching the border. The different dynamics observed in Figures 4 and 5 are due
to the regions where the support is cut. In Scenario I (with equal marginals) the
support loses probability in the center. Hence the probability on A(N)

s ∩ H
(N)
α̃ de-

creases only wheñα is small enough; see Figure 4. On the other hand, if the tail of
one distribution dominates the others, the cut arises near the border. This is the case
for Scenario II for instance, where the loss of probability can not be compensated
for small adjustments of̃α. With larger movements of the parameter, the cutted re-
gion includes the central region as in Figure 6 (bottom/right) and the probability
onA(N)

s ∩ H(N)
α̃ grows again. Besides the region where the loss of probability oc-

curs, the shape of the setAs plays a role. In particular, this explains the differences
arising in Scenario II. Forα = 0.99, we observe a loss of probability for any small
adjustment of̃α, which is not compensated by the augmentation before the second
maximum. The very sharp profile ofAs for α = 0.9999 allows the initial loss to be
compensated as illustrated in Figure 5 (bottom).

As further application of our methodology, we calculatewVaRα(X1+X2+X3) for
an homogeneous portfolio(X1, X2, X3). We solve the problem forα = 0.9, 0.999
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andXi ∼ Pareto(1/ξ), i = 1, 2, 3 for different values ofξ. The following table
gives the results of our numerical computations together with the scaling factors
from wVaR0.9 to wVaR0.999 and fromVaR0.9 underC0.9 to VaR0.999 underC0.999,
respectively. We observe that the scaling curve grows exponentially as a function
of the parameterξ. It is moreover interesting to note that the scaling curve for the
Value-at-Risk computed for̃α = α, i.e. with tangent upper support, does not differ
significantly from the worst one.

ξ wVaR0.9 wVaR0.999
wVaR0.999
wVaR0.9

VaR(C0.9)
0.9 VaR(C0.999)

0.999
wVaR

(C0.999)
0.999

wVaR
(C0.9)
0.9

0.7 22.7 634.3 27.9 21.4 611 28.6

0.8 31.1 1360 43.7 29.9 1310 43.8

0.9 43.8 2940 67.1 41.5 2806 67.6

1.0 60.8 6350 104.4 57 6006 105.4

1.1 84.3 13800 163.7 78 12850 164.7

1.2 116.0 30400 262.1 106.4 27490 258.4

1.3 160.4 65500 408.4 144.7 58805 406.4

1.4 221.0 145000 656.1 196.3 125793 640.8

1.5 304 310000 1019.7 266 269087 1011.6

Table 4
Values forwVaR0.9, wVaR0.999, VaR0.9 underC0.9 andVaR0.999 underC0.999 with the
corresponding scaling factors.

Remark 7 The computational complexity of our numerical procedure increases
exponentially with the dimension of the portfolio. Therefore, even if the values
obtained are numerically not the exact worst-possible VaRs, in high dimensions the
values obtained underCα can be used as a first approximation forwVaRα. More
work on the numerical accuracy of the above procedure is called for.

5 Conclusion

In this paper we extend the geometrical properties of the copulae leading to the
worst-possible Value-at-Risk at levelα for the sum of two risks. These solutions
depend upon the probability levelα. We solve the problem for ann-dimensional
portfolio and explain how, forn ≥ 3, any worst-case scenariosCα̃ depends upon the
choice of the marginals. In particular the worst scenarios are not obtained when the
upper support ofCα̃ is tangent toAs. However, when the dimension of the prob-
lem becomes high, the copulae with tangent upper support turn out to be useful
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in order to approximatewVaRα. We conclude emphasizing that the results pre-
sented in this paper can be easily restated substitutingAs byAψs := {u ∈ [0, 1]n :
ψ(F−1

1 (u1), . . . , F
−1
n (un)) ≥ s} corresponding to the Value-at-Risk optimization

question for general increasing functionalsψ.
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