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Abstract

The dependence scenario yielding the worst possible \&hitisk at a given levek for
X1+ -+ X, is known forn = 2. In this paper we investigate this problem for higher
dimensions. We provide a geometric interpretation higtiiigg the shape of the depen-
dence structures which imply the worst possible scenai@o.aFportfolio (X1, ..., X,)
with given uniform marginals, we give an analytical solatgustaining the main result of
Ruschendorf (1982). In general, our approach allows fonerical computations.
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1 Introduction

For a portfolio( X1, ..., X,,) of risks with given marginal distributions, we consider
the problem of finding the worst possible Value-at-Risk atlévelo for X; +- - -+
X, which we refer to asrVaR,, (31" ; X;). This question has been widely studied
in the literature, often formulated in terms of the best g@edower bound for the
distribution function of the sum; see for instance Secti@i®McNeil et al. (2005)
and references therein. In risk management this questiomoisated by the fact
that the worst-case scenario does not occur under comdoatependence; see
Fallacy 3 in Embrechts et al. (2002). We do not emphasizedbige further. Recent
publications on this subject, which also widely discussrtile of comonotonicity,
are Denuit et al. (2005), Embrechts et al. (2003), EmbreahtsPuccetti (2006)
and Embrechts et al. (2005), where the problem is consideraabn-decreasing
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functionals. While the above cited papers provide boundssR (>, X;) and
fully explain the two-dimensional situation finding a wodglpendence scenario in
terms of copulas, they all fail to catch the nature of the ¢@polving the problem
in higher dimensions. In this paper we describe this extrdependence scenario
extending some geometrical arguments introduced in Erhbsast al. (2005) for
n = 2. This allows us to numerically answer the question at hamkl fam uniform
marginal distributions, to provide an analytical solutexuivalent to that presented
in Rischendorf (1982). The latter is the only known anagjtresult for continuous
marginals. Some applications of our results are given iniGed.

2 Preliminaries and fundamental results

We briefly summarize the basic tools used in the literatuderaaall the fundamen-
tal results on the problem of bounding the Value-at-RisktlA¢ theorems are for-
mulated for the sum of risks assuming no information aboeit ihterdependence.
For further discussions regarding more general funct®aatl the assumption of
partial dependence information, we refer to the paperd aitéhe introduction.

2.1 Value-at-Risk and copulas

For risk management purposes we assuqe. .., X,, to have distribution func-
tions 1y, ..., F,, with losses represented in their right tails.

Definition 1 Let X be a random variable with distributiofy. For0 < o < 1
the Value-at-Risk at probability level of X is its a-quantile, i.e.VaR,(X) :=
Fil(a):=inf{z € R: Fx(x) > a}.

In risk management applications, typical valuesdoare (.95 or 0.99 in the case
of market or credit risk and = 0.999 for operational risk.

Given the joint distribution functiod’(x) = P(X; < zy,..., X, < x,),z € R",
the problem of calculatinaR,, (>, X;) reduces to a computational issue. In
what follows we assume full knowledge about the marginatsbuprior informa-
tion on the dependence structure. In this context, the idempula allows for a
precise formulation of the problem separatiignto one part describing the de-
pendence structure and another part containing the infowman the marginals.
We refer to Nelsen (1999) for the basic results about copulas

Definition 2 An n-dimensional copula’ is a distribution function restricted to
0, 1]™ with uniform{0, 1) marginals. We denote their class &Y.

Remark 1 A copula can be equivalently defined as a function|0, 1]* — [0, 1]



satisfyingC'(uyq, . .., ui—1,0, uiy1, . - ., ) 0, C(l oL, 1.0001) = u; and
221:1 e 22":1(—1)“*"'”"0(21171-1, ey Upg,) > 0foru,v € [0,1]" withu < v
andeJ = Uj, Uj2 = Uj,j = 1, o, N

Sklar's Theorem yields that, for & € ¢" and marginalsF, ..., F,, the func-
tion F(x) := C(Fi(zy),..., F.(x,)) is a distribution with these marginals. Con-
versely, for any joint distribution function with given nganals, there is a copula
linking them. It is unique if the marginals are continuousiyAcopulaC' lies be-
tween the so called lower and upper Fréchet bouiids) := (X", u; —n+ 1)*
and M (u) := min;<,;<, u; implying countermonotonic (i = 2), respectively
comonotonic dependence for the coupled random variatd&mgll(w) = 117 u;
we obtain independence. Finally, we want to stress thawilverl Fréchet bound is
not a copula fon > 3.

2.2 Bound on wVaR and known optimality results

Let 7'~ denote the left-continuous version of a distribution fimet, i.e. F'~ () =
P(X <z) = F(z—). ForC € ¢, univariate distributiong, ..., F,, ands € R
we define

oo (Fr, ... Fy)(s) = /{ﬂ ) dC(Fi(x1), ..., Fulzn),

o4+ (F1, ..., F,)(s) == sup C(Fl(xl),. S Fn (), F, (5—2:51)),

whereoc  (F1, ..., F,)(s) = P(X1+ -+ X,, < s)foraportfolio(X,...,X,)
with marginalsfFi, . . ., F,, and copulaC'. The following result yields distributional
bounds foroc 4 (F1,. .., F,)(s) andVaR,(>;-; X;) when no information about
the underlying dependence structure is available. A moremge version can be
found in Embrechts et al. (2003, Theorem 3.1) and Embrectad$accetti (2006,
Theorem 3.1), where results are given for non-decreasingtifunals in the pres-
ence of partial information.

Proposition 1 Let (X}, ..., X,,) have marginalg, ..., F,, and copulaC' € ¢".
Then for every reat and everyy € (0, 1) we have that

oo (Fryo o F)(s) 2 T (R F)(s) (1)
implyingVaR,, (37, X;) < wVaR, (X0, Xi) < 1w i (Fu, ..., F) 7 Ha).

Note that for practical applications, tl#é's are assumed to be known litis un-

known. A long history exists about the sharpness of thesadmMakarov (1981)
provided the first result for the sum of two random variableger, using a geo-
metric approach, Frank et al. (1987) restated the resuigubie copula language.



The pointwise best possible nature of the bounds in the tweesional case was
finally proved in Williamson and Downs (1990) for non-de@ieg functionals.
Below we reformulate their optimality theorem for the sunorél historical refer-
ences can be found in the introduction of Embrechts and FRwu2@06).

Proposition 2 Let (X, X,) have marginal distributions}, I, and define”; € ¢>
fora € [0,1] as

max{a, W(uy,uz)} if (ug,ug) € [@,1]?,
M (uy, uz) otherwise

C&(U/l,UQ) = { (2)

Then, choosing = a(s) := mw 1 (F1, F5)(s), we obtainoe, 4 (F1, F5)(s) = a(s).
Hence, for anyn € (0,1), wVaR,, (X; + Xz) = 7w, ([, F>) () is attained
underCys, & = a.

Remarks 2

(a) Observe that, given sontg, € ¢2, a similar result holds assuming partial
informationC' > Cf, on the unknown copul&' and substituting?V' (u,, us) by
Cr(uy, us).

(b) TakingC'(u),u € [0,1]",n > 3 instead ofCy,(uy, uz), (2) is not a copula. In
the no information case, this immediately follows from thetfthat the lower
Fréchet bounds is not a copula fer> 3. In the presence of partial informa-
tion, we refer to the example by Geiss and Paivinen repanté&nbrechts and
Puccetti (2006).

Without mentioning the idea of copulas, Riischendorf (3%f2e the same result
stated by Frank et al. (1987) extending it for the sum ohiform random variables.

Proposition 3 The best possible lower bound on the distributiofy ¥, X; with
(Xy, ..., X,) having standard uniform marginals igin{(2s/n — 1)*, 1} for s €
(0,n). This implieswVaR,, (31, X;) = n(l + «)/2for a € (0, 1).

Till now, this and a similar expression for binomial margsare the only known
analytical results for the multidimensional problem.

3 Worst Value-at-Risk scenarios for the multidimensional poblem

The above result of Rischendorf (1982) provides sharpoietbe bounds for the
n-dimensional problem for uniform marginals. An analytigaheralization of (2),
replacingWV (uy, ug) by W(w),uw € [0,1]", n > 3, does not lead to sharp bounds
for the multidimensional case. Below we take a more geomeapproach. From
this point of view, the problem at hand consists in maxingzihe probability of



the setGy == {x € R" : 21 + --- + x,, > s}. We transport the problem onto the
unit square through : R" — [0, 1], h(x) := (Fi(x1),. .., F,(x,)) and denote

Ay = h(G) ={uc[0,1]": F, Y (ug) + -+ F Huy,) > s (3)

By definition, fors € R, we have thatvVaR . (X; + --- + X,,) = s, whenl —
a(s) == supgeen(l — oc 4 (F1, ..., Fy,)(s)). The worst Value-at-Risk dependence
scenario at levek therefore solves the equality

Pc (AWVaRQ(X1+"'+Xn)) =1l-a (4)

3.1 Geometrical properties @f; € €% with & = 7y (F1, F)(s)

In the two-dimensional case, applying Proposition 2, we ediately see that';
satisfies (4) ifx = a. Moreover, for a uniform portfoligU,, Us,), Embrechts et al.
(2005, Proposition 9) yields that this is the only copulatipgtmeasurd — o on
Awvar,, (U, +02) With wVaR, (U + Us) = 1 + «. Therefore, in this case the density
of C, in Ay, is concentrated on the bounddtdy, = A, ,; see Figure 1 (left).
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Fig. 1. Sets A, and boundariesA, for a two-dimensional uniform portfolio for
s = 1.25 (left) and Lognormdl.4, 1) portfolio for s = 4 (right). Together we plot the
supportH , of C; for & = o = Ty 4+ (F1, F2)(s) and the (upper) supports far= o) < «
anda = ag > a.

Figure 1 highlights the geometric idea underlying the warstnarioCs (uy, us).
The gray areas represent the sdtsfor a uniform portfolio(s = 1+« = 1.25)
and a Lognormal.4, 1) portfolio (s = 4), respectively. The boundary of; can

be written asA, := {(Fi(t), Fx(s — t)),t € R}. We denoteH the support of
Cj; restricted tda, 1]2. In general dimensions, we refer to the support restrigied t
(@, 1]™ as upper support. The solution of the problem for the unifpamtfolio leads

then to an optimizing copula, which upper support coincidés the boundary
AlJra'



Remark 3 The choicea = 7y (F1, F>)(s) in Proposition 2 implies thatf

lies in A, and is tangent tol,. SinceC; € €2, the density onH is uniformly

distributed and proportional to its lengttd ;), say. Therefor&”, maximizes the
density onA,. In fact, a different choice af would decrease the probability df,.

Trivially I(H,,,) < I(H,) for ay > «, whereas the shape df, implies

I(H,,)=1(H,)+2V2(a —ay) = I(H,NAY) <I(H,) ifa <a.
3.2 Worst VaR scenario foradimensional uniform portfolio

In this section we consider a uniform portfolio. Similar keetprevious section, the
uniform case will lead to an optimizing copula for generargnaals.

The solution of the worst VaR question consists of maxingztre probability of a
certain region oRR™. As illustrated in the previous section, we transport thedbfm
onto then-dimensional unit cube and investigate the shape of thewtpp the
copulas putting maximal measure on (3). Fa-dimensional uniform portfolio
andn—1 <s<n, the region of the space where the probability has to be magn
isA; ={u € [0,1]": X", u; > s} with boundary4, = {uw € [0, 1]" : >, u; =
s}. For0 <s<n-—1 the problem has a trivial solution. Because of the unifoymit
of the marginals, the upper support of a copula maximizirgptobability of A,
has to lie in4; N [&, 1]" for some appropriaté > o* := s —(n —1) with @ = o*
whenn = 2.

Theorem 1 Leta € [o*, 1) andCj; : [0, 1]" — [0, 1] be a function with support in
{uel0,a)" :uy=-=u,U{uelal]": X u>s}forse[n—1,n]. A
necessary condition faf'; to be a copula is thaft = a := 2s/n — 1, i.e. that the
supportin[a, 1]" liesin Hs := {u € [&,1]" : 37 u; > n(l + &)/2}.

Proof Assumeda € [o*, a] andC; € € with corresponding measuye;. Let
Si i ={uw e [0,1]" : a* <wy; < a},i =1,...,n—-1,85, = {u € [0,1]" :
l—(a—a")<u,<l}andsett; = S;NA”,i=1,...,n. Bydefinition,E; € E,
for all .. SinceCy is a copula with upper support i € [a, 1] : >0 u; > s},

pa(Er) =+ = pa(FEn_1) = a — a* whereagus(E,) = a — o*. It immediately
follows thatus(E;) =0fori=1,...,n — 1 anda = o* = a. O
Remarks 4

(a) Geometrically, Theorem 1 implies thatif, € ¢, the set

is symmetric with respect to its centgnt + &)/2, ..., (1 + &)/2).



(b) Observe that the analytic generalization of (2) with(u,, us) replaced by
W (u) has upper suppoftu € [a, 1] : uy + us + uz = 2}.

Next we extend the two-dimensional result of Embrechts.g&l05, Proposition
9) to general dimensions and we provide the existence of al@ayth support as
in (5).

Theorem 2 Assume&”, C' € ¢" to have supports ol and Hy, respectively. Let
ue be the measure induced by Then ford) ™ := {u € [0,1]" : 31 w; > n/2}
andH]~ :={u € [0,1]" : 3, u; < n/2} it holds that

pe(Hy™) =0 ua(Hg™) =0,
and the two copulas have the same support.

Proof Assumepus(Hy ™) = 0 andps(Hy") > 0. Consider the independence
copulall with support[0, 1]". SinceC, C' € ¢, there exist operatons i : ¢" —
¢ with ¢ := 7 o v™! # Id such thatC' = v(II) andC' = #(II). It follows that
oy (Hg ™) =0 anduw(@)(Hg”) > 0. On the contrary, in order to preserve the
uniformity of the marginals, any operatgr : €” — & with u@(@)(Hg”) > 0,
implies .z (Hy ™) > 0, which concludes the proof. O

Theorem 3 Let C; : [0,1]™ — [0, 1] have supportd; as in(5) on [a, 1]™. Then
there exists a sequence of copulas; € €", N € 2N + 1 such that

lim Cy 4 ifu € [a,1]",
Calu)om | v Oealw) T €l ]
M (u) otherwise

is a copula.

Proof Without loss of generality, we considér=0 with H, = [0, 1]" N A7 ,. For
N € 2N + 1 we consider the partition:= [0, 1] = U}, I, wherel;, := [5L X].
We identify the sef,, x - - - x [}, with the point(k4, ..., k,) and define its measure

as follows. Forany: = 1,..., (N+1)/2andl < k < k we set the functions
gi(k) = [{ Lo x YOV HEY | go(k R) o= [{0ox o< 'y n B,

whereH™ := {(ky, ... k,) € {1,...,N}": 2~ <Yk <%+ %} .Then
we define

0y 4 (i) G Y
0 ey ) o— -
0 otherwise

wheref*(k):= (5 —(n—1) = gz(/’f,/’5)]‘1*(’5))(91(16)—(n—l)1 %<kg2(k,75))’1-

1<k<k



The above construction defines a copula on the ¢id. . ., k,}V. The setl}, x
I"~! denotes the:-th slice of [0, 1]" along the first dimension. Thereforg(k)
counts the number of points on such a slice which also Iié_{gﬁ). Similarly
g2(k, k) counts the number of points ") which are on the:-th slice along
the first dimension and on theth slice along the second one. By the symmetry
of the support, we could define these functions using anyr dit@ dimensions.
Moreover, by definition, all the slices have widthN. The idea is then to consider
Iy x I"~! and weight each point in order to have total meadyre€. In doing this,
by symmetry, we assign a measure to all the points lying orgaivalent slice for
any of the other dimensions. We continue withx /"~! assigning a weight only to
the missing points. To do this we only have to take into acttdummissing points
on slicek, i.e. (n — 1) X ,<iop g2(k, k) f*(k). By the symmetry of 7", we only
evaluate slices = 1,..., (N+1)/2. Using f* we finally assign probability weights
to the points with respect of the marginal constraints.

For anyN, by construction, the functiofi’y  : [0, 1]* — [0, 1] defined through

Cro(u Z Zfo (K1, ooy kn), k(u)::sup{k> %<u}

k1=1 kn=1

is a copula. Settings(u) := ]\}im Cn.o(u) we then obtain that

Co(’ul, c. ,ui,l,O,qu, C. ,’U,n) = ]\}1_1}1;1)0 CNo(ul, c. ,ui,l,O,uiH, c. ,un)
< lim 1/N =0,
N—o00
C’O(l,...,l,ui,l,...,l):]\}im CN70(17...,1,U7;,1,...,1)

A}l_lgo k(u;)/N =u

and foru, v € [0,1]" with w < v andu;; = u;, ujo =v;,j=1,...,n

2

2
Z - Z (_1)i1+”'+i”00(u1,z’1, N 7umn)

i1=1 in=1

= lim Z Z DAt Oy o(uriys - - Uni,) > 0.

N—oo T i

It follows that the conditions given in Remark 1 are satisaed(C, € ¢". O

Remark 5 Similarly as in the above proof, it is possible to construbeo copulas
with supportd ;. We denote the family of the copulas sharing this suppo&/y

By Theorems 1, 2 and 3, any copula putting probability & = 1 — (2s/n — 1)
on A, +4)/2 has supportl,; as in (5). Figure 2 illustrates these results in the three-
dimensional case.



Fig. 2. SetsA3(14.4)/2, Ha and H ; for a three-dimensional uniform portfolio. The gét,
with & = « is the upper support of any copula leadingitWaR,, (X7 + X5 + X3).

As a consequence we obtain the result of Riischendorf (f@2) in Proposition
3. We restate it here using the language of copulas.

Corollary 1 LetCj; € €2 with & = «. Then
Po, {Xi+ - +X,<s} =« (6)

for s = n(1 + a)/2 and the best possible lower bound on the distribution famcti
of X1 + - - - + X, for uniform marginals isnin{(2s/n — 1), 1} for s € (0, n).

Proof The worst dependence scenario for Value-at-Risk at levsatisfies (4).
Taking Cd S Q:g, we ObtainPC& (An(1+d)/2) - PC@ (ﬂn(ler)/Q) == 1 - 6[ Then

equality (4) is satisfied foft =a andwVaR, (X;+...+X,,) = n(1 + «)/2 which
implies (6). O

3.3 Worst VaR scenario for a general portfolio

Relying on the solution for a the uniform case studied in thexjpus section, we
provide an answer for a general portfolio with margin&ys. . ., F,,. Although we
illustrate the case of a three dimensional portfolio, oguarents remain valid in
higher dimensions. We recall that, for a portfoli&;, X), the copula leading to
the worst possible Value-at-RiskVaR,, (X; + X5) is indeed the solution of the
uniform case folc = «. This follows from the uniformity of the density on the
upper support; see Figure 1 and Remark 3. In general, the waltee wVaR,, is
not attained under @; € ¢2 with a = «.

Example 1 Consider the portfolid X;, X5, X3) for X; ~ Pareto(1/¢;) with tail
distribution functionF;(z) = (1+2z)~ "%, i = 1,2,3. Assumet; = 0.7,i = 1,2, 3.

In Figure 3 (left) we illustrate the surfacg, for s = 21.4 together with the upper
supportH; of Cy for & = 0.9. On the right we plotd, for s = 22.7 with H; for

a = 0.895. Computing the probability ofi, under these two dependence structures



we obtain
Peoyo (X1 + Xo+ X3 >21.4) =Pry oo (X1 + Xo+ X3 >22.7) =0.1

and therefore the Value-at-Risk of the sum at levek 0.9 underCy 4 is smaller
that UndeC(]_895.

A A =0.895<09=a

1

Fig. 3. Surfacesi, for a three-dimensional Paréto?) portfolio with s = 21.4 (left) and
s = 22.7 (right). We plotH ; for @ = 0.9 on the left andx = 0.895 on the right.

The message coming from Example 1 is that choosing the upipgost tangent
to A,, i.e.a = «, in general does not imply a worst dependence scenario.ig his
due to the distribution of the density on the support. Indeednarginal constraints
imply that forn. > 2 the density is not uniformly distributed but concentratadiee
border ofH ; and more thinly when reaching the cente(1+a)/2,. . ., n(1+a&)/2).
This can be easily seen in the three-dimensional case lga@kithe projection of
H;on|0, 1]

In Figure 1 (right) we takex < «. This implies that the measure on the upper
support is greater thah— «. Contrary, fora > «, a portion of the support does
not lie in A,. In Remark 3 we discussed the two-dimensional situatiorathe
density is proportional to the length of the support and eeboice ofa different
from « leads to a better scenario for the problem at hand. In therglraese, cutting
some portion of the support does not necessarily imply &bstenario. In fact the
increment of probability on the boundary could compendata¢duction in some
other region. Forx sufficiently small, we lose too much density a@n. Trivially,

& > « implies a better scenario. From the solution of the unifonsbfem given
by Theorems 1, 2 and 3 and the distribution of the probalmlityts upper support,
we immediately obtain the following result.

Theorem 4 Let(X,, ..., X,) be a portfolio with given marginalg;, . . ., F,,. Then
wVaR, (X, + --- + X,,) is attained under a copulé’; € €% for somea < «
depending on the marginal distributions. Using the samatin as in(4), we
have that

Sllp{].:)cd (AWVaRa(X1+“'+Xn)) Oy € (’:g, O<a<L a} =1-—a.

10



Remark 6 In contrast to the two-dimensional case, in dimensionsdrigfan two

a copulaCj; leading towVaR, (X + - - - + X,,) depends upon the choice of the
marginals. In fact the region of the support where we los&dabdity is given by
HyNn{uecl0,1]": Fy (uy) +---+ F; Y (u,) < s} and depends ofy, . .., F,.

4 Applications

In this section we apply Theorem 4 and compute the worstiplesgalue-at-Risk
for the sum at levek for a three-dimensional portfoligX;, X», X3). The positions
X;,i=1,2,3are Paretfl /¢;) distributed with tailsF"; (z) = (1+2)~ /4. We solve
the problem fora. = 0.9,0.95,0.99 (typically used for market or credit risk) and
a = 0.995,0.999 (values used in operational risk) and this for various sgesa

Scenario |: X; ~ Pareto(1/§;) with & = & = &3 = 0.7,
Scenario Il: X; ~ Pareto(1/¢;) with & = 0.7504, &, = 0.6607 andé; = 0.2815,
Scenario lll: X; ~ Pareto(1/¢;) with & = 1.1905, &, = 1.3889 and¢; = 1.2195.

The main features of these scenarios are: they are all adeyg; homogeneous
as in |, or heterogeneous as in Il and Ill. Scenario Il coroesis to a finite mean
situation whereas Ill corresponds to an infinite mean motet.¢-values chosen
correspond to examples often encountered in risk managemnactice. For Sce-
nario Il and lll; see for instance Moscadelli (2004). Basedltheorem 4 and the
upper supportd; of C; € €%, we propose the following numerical procedure.
For givens € R anda € (0, 1), analogously as in the proof of Theorem 3, for
N € 2N + 1, we discretize the unit cujé&, 1] through
k—1 k

1) =Up I, Iyi=|a+—, 0+ —
[aa ] k=11k> k a+ N 7a+N

and we identify the sek,, x I, x I, with the point(ky, ks, k3) € {1,..., N}3.

Further we consider the setg) andﬂfiN) as discretized versions of; and 4,
respectively. We lew € R™’ be a vector containing the probability weights of
the points in[0, 1]3. We then generate a vectgre R with entry one when the
corresponding point lies g, 113\ AN N ﬂ(&N) and zero elsewhere. Similarly we
create aV? x 3N matrix A providing the marginal restrictions. Finally we solve
the optimization problem

win fw,  Aw= (4., D welo " @

It follows thats = wVaR, (X, + X, + X;3) atlevela = a + f7 v, wherew is the
solution of (7). Any copula leading t®@VaR,, has supporﬁfiN).

11



We illustrate the above procedure for the Scenarios I, Illdndogether with the
worst-casevVaR,,, in the Tables 1, 2 and 3 we provide the values uridewvith
& = « and for the comonotonic copul® for which VaR,(X; + X5 + X3) =
VaR,(X1) + VaR,(X2) + VaR,(X3).

1c, %S 09 095 099 0995 0.999  0.9999

M 13.0 214 723 1194 3747  1889.9
Cq 214 36.7 119.5 196.0 611.1  3074.7
Ca 227 38.6 123.8 205.2 634.3  3120.0

o 0.895 0.948 0.989 0.9948 0.9989 0.99989

Table 1
Values of VaR (X; + X2 + X3) for scenario | undet’,,, Csz and M. In the last row we
give the values oft yielding the worst dependence structure and wMaR, + X + X3).

1C,— 09 095 099 0995 0.999 0.9999

M 9.1 16.0 53.3 879 278.3 1453.4
Cy 13.6 22.7 70.5 114.1  348.1 1749.9
Ca 13.6 22.7 70.5 114.1  360.5 1981.0

o 0.9 095 0.99 0.995 0.99865 0.999865

Table 2
Values of VaR, (X + X2 + X3) for scenario Il unde€’,,, C5 and M.

1C,— 09 0.95 0.99 0.995 0.999 0.9999

M 53.6 135.1 1111.2 2754.2 22946.6 492468.4
Cy 130.7 3204 2531.2 6161.3 48905 960782
Ca 144.3 351.5 2700 6500 52000 980000

o 0.89 0.947 0989 0.9943 0.99885  0.99988

Table 3
Values of VaR, (X + X2 + X3) for scenario Ill undel’,,, C5 and M.

Figures 4 and 5 show the densities.afi") N ﬂfiN) as functions of the parameter
a for Scenarios | and 1l and levets = 0.99 anda = 0.9999, respectively. The
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Fig. 4. Densities onAgN) N ﬂé{m for s = 123.8 (o = 0.99) (top) ands = 3120
(v = 0.9999) (bottom) as functions ok for Scenario .
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Fig. 5. Densities o4 0 H™) for s = 70.5.8 (a = 0.99) (top) ands = 1981
(v = 0.9999) (bottom) as functions ok for Scenario II.

starting value forx is larger thanv. We can observe that in both cases the densities
increase linearly inx till reaching«. For the two scenarios we observe different
behavior. For Scenario I, the densities continue to ineedtera and, once a
maximum is reached, they tend to zero. Theorresponding to this maxima, =
0.989 (o« = 0.99) anda = 0.99989 (o« = 0.9999), give the worst dependence
scenarios.

For Scenario II, the densities ot™ N HY) have a first maximum iw = o
and a second one for sonae > «. In the casex = 0.9 the worst dependence
scenario is implied by the first maximum and the upper suppdeangent toA,.
Fora = 0.9999, the second maximum dominates.

In order to understand the different nature between the teoaios, we look at
the supports plotted in Figure 6. The idea is as follows. Welseupper support
tangent toA, (with s chosen such that = o« = 0.9) and we shift it by taking
values ofa smaller tham. The setd™) N H™ is illustrated fora = 0.895 and

—
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0.895 1 0.885 1

0.895 1 0.885 1

Fig. 6. Upper supports for Scenarios | (top) and Il (bottom)oth cases we take = 0.9
and we consideft = 0.895 (left) anda = 0.885 (right).

a = 0.885 under Scenarios | and Il. Remark that a smalléemplies a larger cut

of the support and an increment of the probability@nl]3. At this point we recall
that the density is not homogeneous on the support and moeestated when
reaching the border. The different dynamics observed inrég 4 and 5 are due
to the regions where the support is cut. In Scenario | (withaégnarginals) the
support loses probability in the center. Hence the proligtaih AXY) N ﬂéN) de-
creases only whed is small enough; see Figure 4. On the other hand, if the tail of
one distribution dominates the others, the cut arises hedydrder. This is the case
for Scenario 1l for instance, where the loss of probabiliy eot be compensated
for small adjustments af. With larger movements of the parameter, the cutted re-
gion includes the central region as in Figure 6 (bottomtjigimd the probability

on AM N ﬂgN) grows again. Besides the region where the loss of probgabiti
curs, the shape of the sét plays a role. In particular, this explains the differences
arising in Scenario Il. Forr = 0.99, we observe a loss of probability for any small
adjustment ofy, which is not compensated by the augmentation before tlandec
maximum. The very sharp profile &f, for o = 0.9999 allows the initial loss to be
compensated as illustrated in Figure 5 (bottom).

As further application of our methodology, we calculaféaR,, (X, + X, + X3) for
an homogeneous portfolioY;, X, X3). We solve the problem far = 0.9, 0.999
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and X; ~ Pareto(1/¢),i = 1,2,3 for different values of. The following table
gives the results of our numerical computations togethén tne scaling factors
from wVaRg ¢ to wVaRg 999 and fromVaR o underCy g to VaRg 999 UnderCy g99,
respectively. We observe that the scaling curve grows expimadly as a function
of the parametef. It is moreover interesting to note that the scaling curvetie
Value-at-Risk computed fai = «, i.e. with tangent upper support, does not differ
significantly from the worst one.

§ WVaRyy WVaRjgey “Ltesw  Va b Var(Ge) %
o 0.9
0.7 22.7 634.3 27.9 214 611 28.6
0.8 31.1 1360 43.7 29.9 1310 43.8
0.9 43.8 2940 67.1 41.5 2806 67.6
1.0 60.8 6350 104.4 57 6006 105.4
1.1 84.3 13800 163.7 78 12850 164.7
1.2 116.0 30400 262.1 106.4 27490 258.4
1.3 160.4 65500 408.4 144.7 58805 406.4
14 221.0 145000 656.1 196.3 125793 640.8
1.5 304 310000 1019.7 266 269087 1011.6
Table 4

Values forwVaRg.9, wVaRg 999, VaRg.9 underCyg andVaRg 999 underCy g99 With the
corresponding scaling factors.

Remark 7 The computational complexity of our numerical procedurereases
exponentially with the dimension of the portfolio. Themefpeven if the values
obtained are numerically not the exact worst-possible YaRsgh dimensions the
values obtained under,, can be used as a first approximation fovaR,. More
work on the numerical accuracy of the above procedure isad#dir.

5 Conclusion

In this paper we extend the geometrical properties of thelle@pleading to the
worst-possible Value-at-Risk at levelfor the sum of two risks. These solutions
depend upon the probability level We solve the problem for an-dimensional
portfolio and explain how, for > 3, any worst-case scenarios depends upon the
choice of the marginals. In particular the worst scenanesat obtained when the
upper support of’; is tangent tad,. However, when the dimension of the prob-
lem becomes high, the copulae with tangent upper supportdut to be useful
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in order to approximatevVaR,. We conclude emphasizing that the results pre-
sented in this paper can be easily restated substitutidgy AY := {u € [0, 1]" :
Y(F7 (u), ..., F74u,)) > s} corresponding to the Value-at-Risk optimization
guestion for general increasing functionals
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