Extremes from meta distributions and the shape of the sample clouds

Guus Balkema Paul Embrechts Natalia Lysenko

Department of Mathematics and RiskLab ETH Zurich, Switzerland

э

・ロト ・雪ト ・ヨト

Structure of the talk

- Introduction: motivation & main questions
- Meta distributions: formal definition & some properties
- Preliminary results
 - review of useful definitions
 - consequences of relaxing some of the underlying assumptions
- Setting up the framework & assumptions
- Key steps to compute the limit set
- Main result
- Sensitivity of the limit shape
- Concluding remarks & further questions

Image: A Image: A

Motivation: Why multivariate extremes?

Quantitative Risk Management (QRM):

• a new field of research

Key ingredients:

- Regulatory framework for financial institutions: Basel Accords and Solvency II
- Quantile-based risk measures: Value-at-Risk (VaR) and Expected Shortfall (ES)
- Extremes matter: high quantiles ($\alpha \in \{99\%, 99.9\%, 99.97\%\}$)
- Dependence matters: risk aggregation, diversification/ concentration
- Dimensionality matters: high-dimensional portfolios

Conclusion:

• Extremal behaviour in multivariate models

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Motivation: A few examples

Some concrete underlying models:

- multivariate normal (KMV model)
- multivariate Student t
- and refinements
 - (mixture of) Gaussian copula(s) with exponential marginals (Li model)
 - meta-t with normal marginals
 - etc.

 \longrightarrow The subprime crisis questions some of these developments/models

・ 回 ト ・ ヨ ト ・ ヨ ト

Why meta distributions?

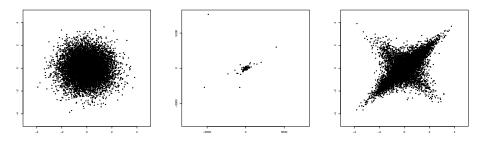
- Asymptotic independence of coordinatewise maxima as a shortcoming of the multivariate Gaussian model
- Go beyond normality by introducing stronger tail dependence while preserving normal marginals
- A typical example:
 - Start with a multivariate Student *t* distribution (tail dependence and heavy tails)
 - Transform each coordinate so that the new distribution has normal marginals (light tails)
 - The new distribution is referred to as meta distribution with normal marginals based on the original *t* distribution (tail dependence and light tails)

Extremes and asymptotic shape of sample clouds and level sets

- Global shape of sample clouds vs. classical EVT of coordinatewise maxima
- The limit shape describes the relation between maximal observations in different directions
- Relation of the shape of density level sets and the shape of risk regions to the conditional laws (cf. *Barbe, P. (2003)*)

- 4 同 6 4 日 6 4 日 6

Examples of sample clouds



standard normal

elliptic Cauchy with dispersion matrix $\Sigma = \begin{pmatrix} 5/4 & 3/4 \\ 3/4 & 5/4 \end{pmatrix}$

meta-Cauchy with normal marginals

Main questions of this talk

 The shape of level sets {g > c} for the meta density g depends on the level c.

Does the shape converge as $c \downarrow 0$?

What is the limit shape of the level sets?

- Can sample clouds from the meta density g be scaled to converge? What is the limit shape of scaled sample clouds?
- Properties of the limit set?

- 4 目 ト - 4 日 ト - 4 日 ト

Definition (Meta distribution)

- Random vector **Z** in \mathbb{R}^d with df **F** and continuous marginals F_i , i = 1, ..., d
- $\textit{G}_1, \ldots, \textit{G}_d$: continuous df's on $\mathbb{R},$ strictly increasing on $I_i = \{0 < G_i < 1\}$
- Define transformation:

 $K(x_1,...,x_d) = (K_1(x_1),...,K_d(x_d)), \quad K_i(s) = F_i^{-1}(G_i(s)), \quad i = 1,...,d$

- The df G = F

 K is the meta distribution (with marginals G_i) based on original df F
- **X** is said to be a meta vector for **Z** (with marginals G_i) if $\mathbf{Z} \stackrel{d}{=} K(\mathbf{X})$

 The coordinatewise map K = K₁ ⊗ · · · ⊗ K_d which maps x = (x₁,...,x_d) ∈ I = I₁ × · · · × I_d into the vector z = (K₁(x₁),...,K_d(x_d)) is called the meta transformation

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Meta density

Proposition

lf

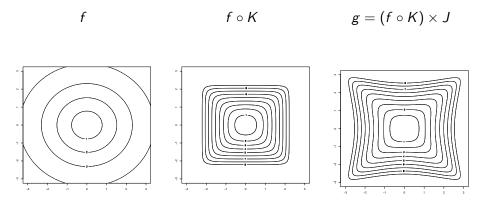
- Original vector Z has a density, f
- Marginals of meta distribution have densities, g_i

then the meta distribution has a density, g, and g is of the form

$$g(\mathbf{x}) = f(\mathcal{K}(\mathbf{x})) \prod_{i=1}^{d} \frac{g_i(x_i)}{f_i(z_i)} \qquad z_i = \mathcal{K}_i(x_i), \ x_i \in I_i = \{0 < G_i < 1\}$$

- 4 同 6 4 日 6 4 日 6

Level sets: from original density to meta density



11 / 38

(ETH Zurich)

Preliminary results

크

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Useful definitions

Definition (weak asymptotic equivalence)

 $\tilde{h}(\mathbf{x}) {\asymp} h(\mathbf{x})$ for $\|\mathbf{x}\| \to \infty$ if

- \tilde{h} and h are positive eventually
- both $\frac{\tilde{h}(\mathbf{x})}{h(\mathbf{x})}$ and $\frac{h(\mathbf{x})}{\tilde{h}(\mathbf{x})}$ are bounded outside a compact set

< □ > < @ > < 注 > < 注 > ... 注

Useful definitions

Definition (univariate regular variation)

A measurable function h on $(0, \infty)$ is regularly varying at ∞ with index ρ (written $h \in RV_{\rho}$) if for x > 0

$$\lim_{t\to\infty}\frac{h(tx)}{h(t)}=x^{\rho}$$

・ロッ ・聞 ・ ・ 聞 ・ ・ 聞 ・

Question:

What is the effect on the meta density when changing the original density into a density which is (weakly) asymptotic to it?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

On asymptotic behaviour of multivariate functions

Proposition

Assume:

- $F \& \tilde{F}$: multivariate df's with continuous marginals $F_i \& \tilde{F}_i, i = 1, ..., d$
- G_1, \ldots, G_d are strictly increasing df's on $\mathbb R$
- $F_i(-t)\in RV_{
 ho^-}$ and $1-F_i(t)\in RV_{
 ho^+}$ with $ho^\pm < 0$
- $ilde{F}_i(-t) \sim F_i(-t)$ and $1 ilde{F}_i(t) \sim 1 F_i(t)$ as $t o \infty$

Then the meta transformations satisfy:

$$\frac{\|\tilde{K}(\mathbf{x}) - K(\mathbf{x})\|}{1 + \|K(\mathbf{x})\|} \to 0 \qquad \|\mathbf{x}\| \to \infty$$

(日) (圖) (E) (E) (E)

Proposition

Assume:

- Densities f and \tilde{f} are continuous and positive outside a bounded set
- Marginal densities f_i and \tilde{f}_i are continuous

-
$$\widetilde{f}(\mathsf{z}) \asymp f(\mathsf{z})$$
 for $\|\mathsf{z}\| o \infty$

- $f(\mathbf{z}_n + \mathbf{p}_n) \asymp f(\mathbf{z}_n)$ if $\|\mathbf{z}_n\| \to \infty$ and $\|\mathbf{p}_n\| / \|\mathbf{z}_n\| \to 0$
- Meta densities g and \tilde{g} have all marginals equal to a continuous positive symmetric density g_d

lf

•
$$F_i(-t) \in RV_{
ho^-}$$
 and $1 - F_i(t) \in RV_{
ho^+}$ with $ho^\pm < 0$

•
$$ilde{F}_i(-t) \sim F_i(-t)$$
 and $1 - ilde{F}_i(t) \sim 1 - F_i(t)$ as $t o \infty$

then the meta densities $\widetilde{g}(\mathbf{x})$ and $g(\mathbf{x})$ satisfy: $\widetilde{g}(\mathbf{x}) \asymp g(\mathbf{x}) = \|\mathbf{x}\| \to \infty$

(日) (圖) (E) (E) (E)

Framework & assumptions

A class of densities with level sets of the same shape (1/2)

- Set *D*: bounded convex open set containing the origin
- Gauge function of D: a unique function n_D with the properties

$$\{n_D < 1\} = D$$
 $n_D(r\mathbf{z}) = rn_D(\mathbf{z})$ $r > 0, \ \mathbf{z} \in \mathbb{R}^d$

- f_0 : continuous, strictly decreasing positive function on $[0,\infty)$
- Then f : z → f₀(n_D(z)) is unimodal with convex level sets all of the same shape
- Assume f is a probability density

- 4 目 ト - 4 日 ト - 4 日 ト

A class of densities with level sets of the same shape (2/2)

Note:

- If $f_0 \in RV_{-(\lambda+d)}$ then
 - (i) f integrable
 - (ii) marginal densities $f_i \in RV_{-(\lambda+1)}$
- (i) & (ii) remain true if
 - $f(\mathbf{z}) \sim f_0(n_D(\mathbf{z}))$ for $\|\mathbf{z}\|
 ightarrow \infty$
 - D is a bounded star-shaped open set with continuous boundary

ヘロト 人間ト 人間ト 人間ト

Definition (Standard set-up)

- f: a continuous density on \mathbb{R}^d , positive outside a bounded set
- $f(\mathbf{z}) \sim f_0(n_D(\mathbf{z}))$ for $\|\mathbf{z}\| \to \infty$, where
 - f₀: continuous, strictly decreasing
 - $f_0 \in RV_{-(\lambda+d)}$
 - D: bounded star-shaped open set containing the origin, with continuous boundary
- meta density g with marginal densities gd satisfying
 - g_d: continuous, positive, symmetric
 - $g_d \sim e^{-\psi}$, a von Mises function; i.e.

 $\psi'(s)>0, \quad \psi'(s) o\infty, \quad (1/\psi')'(s) o 0 \qquad s o\infty$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ● 回 ● ● ● ●

• Additional condition:

$$\psi \in RV_{\theta}, \quad \theta > 0 \qquad (\bigstar)$$

- Remarks:
 - (★) is necessary to have a limit shape
 - (\bigstar) is satisfied for normal, Laplace, Weibull densities and densities of the form $g_d(s) \sim as^b e^{-ps^{\theta}}$, $s \to \infty$, $a, p, \theta > 0$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Derivation of the limit set

Main idea: The limit set may be described as the level set of a continuous function obtained from the meta density by scaling and power norming

Limit set

- Under the standard set-up & (★), level sets of g may be scaled to converge to a limit set, E
- There exists a compact set E such that

$$\frac{g(s\mathbf{u})}{g(s\mathbf{1})} \to \begin{cases} \infty & \mathbf{u} \in \mathsf{int}(E) \\ 0 & \mathbf{u} \in E^c \end{cases} \qquad s \to \infty$$

• For a proper limit function for the quotient, use power norming to dampen exponential decrease by constructing functions

$$\left(rac{g(s\mathbf{u})}{g(s\mathbf{1})}
ight)^{\epsilon(s)} \qquad ext{where} \quad \epsilon(s)
ightarrow \mathbf{0} \qquad s
ightarrow \infty$$

 Exponent ε(s) may be chosen so that χ_s converges to a continuous function uniformly on compact sets in R^d

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Limit set

• Write $g = e^{-\gamma}$

Then

$$\left(\frac{g(s\mathbf{u})}{g(s\mathbf{1})}\right)^{\epsilon(s)} = \exp\left\{\left(\gamma(s\mathbf{1}) - \gamma(s\mathbf{u})\right)\frac{\epsilon(s)}{\epsilon(s)}\right\}$$

• We show

$$\chi_{s}(\mathbf{u}) := \frac{\gamma(s\mathbf{1}) - \gamma(s\mathbf{u})}{\psi(s)/\lambda} \to \chi(\mathbf{u}) \qquad s \to \infty, \ \mathbf{u} \neq \mathbf{0}$$

That is,

$$\gamma(s\mathbf{1}) - \gamma(s\mathbf{u}) \sim \chi(\mathbf{u}) \psi(s) / \lambda \qquad s \to \infty$$

• Hence

$$\operatorname{int}(E) = \{\chi > 0\}$$
 $\partial E = \{\chi = 0\}$

Next step: determine the limit function χ

Э

The limit function χ

- First assume f(z) = f₀(||z||_∞) for a continuous strictly decreasing function f₀ ∈ RV_{-(λ+d)}
- Under the standard set-up & (\bigstar) , it can be shown for $v = \|\mathbf{u}\|_{\infty} > 0$

 $\chi_{s}(\mathbf{u}) \rightarrow \chi(\mathbf{u}) = |u_{1}|^{\theta} + \dots + |u_{d}|^{\theta} + \lambda - (\lambda + d)v^{\theta} \qquad s \rightarrow \infty$

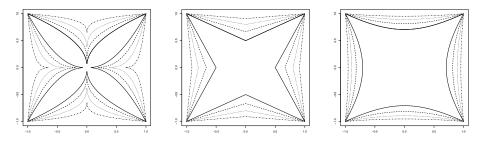
- Convergence is uniform on $\Pi_r \setminus \epsilon B$ for any $r \ge 1$ and $\epsilon > 0$, where $\Pi_r = \{ \mathbf{x} \mid |x_i| \le x_d \le r \}$ (upside down pyramid)
- Hence, the limit set is given by

$$E := E_{\lambda,\theta} := \{ \mathbf{u} \in \mathbb{R}^d \setminus \{ \mathbf{0} \} \mid |u_1|^{\theta} + \dots + |u_d|^{\theta} + \lambda \ge (\lambda + d) \|\mathbf{u}\|_{\infty}^{\theta} \} \quad (\clubsuit$$

(日) (圖) (E) (E) (E)

Examples of limit sets

$$\theta = 0.1$$
 $\theta = 1$ $\theta = 2$



Legend: $\lambda = 1$ (solid), $\lambda = 2$ (dashed), $\lambda = 4$ (dotted), $\lambda = 10$ (dotdash)

(日) (同) (日) (日)

Limit sets for sample clouds

We show:

- For sample clouds from the meta density g there is a limit shape
- If
- X_1 , X_2 ,... is a random sample from meta density g
- Scaling factor r_n is chosen s.t. $ng(r_n \mathbf{1}) \to 1$

then the scaled sample cloud $N_n = {X_1/r_n, ..., X_n/r_n}$ roughly fills out the limit set E

イロト 不得 トイヨト イヨト

Definition (convergence of measures and sample clouds onto a set)

- E: a compact set in \mathbb{R}^d
- μ_n: finite measures

We say μ_n converge onto E if

- $\mu_n(\mathbf{p} + \epsilon B) \rightarrow \infty$ for any ϵ -ball centered in a point $\mathbf{p} \in E$
- $\mu_n(U^c) \rightarrow 0$ for all open sets U containing E

The finite point processes $N_n = {\mathbf{X}_1/r_n, \dots, \mathbf{X}_n/r_n}$ converge onto E if

- $\mathbb{P}\{N_n(\mathbf{p}+\epsilon B)>m\} \to 1$ $m>1, \epsilon>0, \mathbf{p}\in E$
- $\mathbb{P}{N_n(U^c) > 0} \rightarrow 0$ for open sets U containing E

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● の Q @

Proposition (criterion for convergence of sample clouds)

- N_n : an *n*-point sample cloud from a probability distribution π_n on \mathbb{R}^d
- N_n converges onto E if the mean measures $\mu_n = n\pi_n$ converge onto E

イロト 不得 トイヨト イヨト

Main result

Theorem

Let:

- $f \& g_d$ satisfy assumptions of the standard set-up $\& (\bigstar)$
- g: meta density with marginals g_d based on original density f
- $r_n > 0$ satisfies $g_d(r_n) \sim 1/n$
- $E = E_{\lambda,\theta}$: closed subset of $C = [-1,1]^d$ defined in (\clubsuit)

Then:

- Level sets $\{g \ge 1/n\}$ scaled by r_n converge to E
- For any sequence of independent observations X_n from meta density g, the scaled sample clouds N_n = {X₁/r_n,..., X_n/r_n} converge onto E

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

How sensitive is the limit shape to small perturbations of the original density?

Exploring sensitivity of the limit shape (1/4)

Example

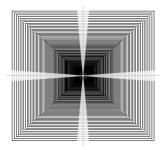
- Assume f: a density on \mathbb{R}^2 with square levels sets and Student t marginals $f_d(t) \sim 1/2t^2$, $t \to \infty$
- Delete the mass on a strip T = {(x, y) | |x| ≤ y/log y, y ≥ e}, and on sets obtained by reflections (x, y) → (y, x), (-x, -y), (-y, -x)
- Compensate for the lost mass by increasing *f* in compact neighbourhood of the origin
- We obtain a new density \tilde{f} ; assume $\tilde{f}_d(t) \sim 1/2t^2, \quad t
 ightarrow \infty$
- Choose $K_d(s) = e^s$, $s \ge s_0$
- Then $g_d(s) \sim e^{-s}/2, \quad s \to \infty$

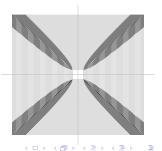
Exploring sensitivity of the limit shape (2/4) Example (cont'd)

- Edge of a square: $[-e^n, e^n] \times \{e^n\} \stackrel{\mathrm{K}^{-1}}{\mapsto} [-n, n] \times \{n\}$
- Strip T on the edge: $[-e^n/n, e^n/n] \times \{e^n\} \stackrel{\mathrm{K}^{-1}}{\mapsto} [-n + \log n, n \log n] \times \{n\}$

Squares $C_n = e^n C$ in **z**-space

Squares $C_n = nC$ in **x**-space





Exploring sensitivity of the limit shape (3/4)

Example (cont'd)

We have:

- \tilde{f} close to f such that \tilde{g} vanishes everywhere except on a thin strip around the diagonals
- Scaled sample clouds from \tilde{g} converge onto the cross consisting of the two diagonals of the standard square $C = [-1, 1]^2$
- Scaled sample clouds from \tilde{f} and f converge to the same Poisson point process with intensity $h(\mathbf{w}) = 1/\|\mathbf{w}\|_{\infty}^3$
- Hence
 - Coordinatewise maxima from $ilde{f}$ and f have the same limit $\, \Rightarrow \,$
 - Coordinatewise maxima from \tilde{g} and g also have the same limit
 - But drastic change in the shape of the limit sets for \tilde{g} and g

Exploring sensitivity of the limit shape (4/4)

Theorem

- F: a df on $[0,\infty)^d$ with marginals F_d continuous, strictly increasing
- $1 F_d \in RV_{-\lambda}$
- Suppose dF does not charge set $T = T_{\epsilon} \setminus \epsilon^{-1}B$ for some $\epsilon > 0$, where

$$T_{\epsilon} = \{ \mathbf{z} = (z_1, \dots, z_d) \mid \frac{\min_i |z_i|}{r} < \frac{\epsilon}{\log r}, \ r = \|\mathbf{z}\|_2 > 1 + 1/\epsilon \}$$

- G: meta df with marginals G_d continuous, strictly increasing on $[0,\infty)$
- $1-G_d\sim e^{-\psi}$, $\psi\in RV_ heta$, heta>0
- Scaling factor r_n : $1 G_d(r_n) = 1/n$

Then measures $d\mu_n(\mathbf{u}) = ndG(r_n\mathbf{u})$ converge onto the set $E = \{t\mathbf{1} \mid 0 \le t \le 1\}$ in $[0,\infty)^d$

Concluding remarks

- Original and meta densities have the same copula, yet a relation between the shapes of their level sets is lost in the limit
- The limit set is unchanged if we replace the original density f by a density which is weakly asymptotic to f
- Sensitivity of the limit shape may be radical due to even slight perturbations of the original density
- The limit shape gives a very rough picture
- Next step: closer look at the edge of the scaled sample clouds under a more refined scaling

References

- Balkema, G., Embrechts, P., and Lysenko, N. (2008). Meta densities and the shape of their sample clouds. *Submitted*..
- Balkema, G., and Embrechts, P. (2007). *High Risk Scenarios and Extremes. A geometric approach.* European Mathematical Society.
- Barbe, P. (2003). *Approximation of Integrals over Asymptotic Sets.* Available on-line.
- Fang, H.-B., Fang, K.-T., and Kotz, S. (2002) The meta-elliptical distributions with given marginals. J. of Multivariate Analysis, 82:1-16.
- McNeil, A.J., Frey, R., and Embrechts, P. (2005) Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press.
- Resnick, S. (1987) *Extreme Values, Regular Variation, and Point Processes.* Springer.

ヘロト 人間ト 人造ト 人造ト