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Motivation: Why multivariate extremes?

Quantitative Risk Management (QRM):

e a new field of research

Key ingredients:

e Regulatory framework for financial institutions: Basel Accords and
Solvency I1

Quantile-based risk measures: Value-at-Risk (VaR) and Expected
Shortfall (ES)

e Extremes matter: high quantiles (« € {99%, 99.9%,99.97%})

e Dependence matters: risk aggregation, diversification/ concentration

e Dimensionality matters: high-dimensional portfolios

Conclusion:

e Extremal behaviour in multivariate models
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Motivation: A few examples

Some concrete underlying models:

e multivariate normal (KMV model)

e multivariate Student t
e and refinements

- (mixture of) Gaussian copula(s) with exponential marginals (Li model)
- meta-t with normal marginals

- etc.

—— The subprime crisis questions some of these developments/models
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Why meta distributions?

e Asymptotic independence of coordinatewise maxima as a shortcoming
of the multivariate Gaussian model

e Go beyond normality by introducing stronger tail dependence while
preserving normal marginals

e A typical example:
- Start with a multivariate Student ¢t distribution (tail dependence and
heavy tails)

- Transform each coordinate so that the new distribution has normal
marginals (light tails)

- The new distribution is referred to as meta distribution with normal
marginals based on the original t distribution (tail dependence and
light tails)
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Extremes and asymptotic shape of sample clouds and level
sets

e Global shape of sample clouds vs. classical EVT of coordinatewise
maxima

e The limit shape describes the relation between maximal observations in
different directions

e Relation of the shape of density level sets and the shape of risk regions
to the conditional laws (cf. Barbe, P. (2003))
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Examples of sample clouds

L
standard normal elliptic Cauchy with meta-Cauchy with
dispersion matrix normal marginals
5/4 3/4
> =
3/4 5/4
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Main questions of this talk

e The shape of level sets {g > c} for the meta density g depends on the
level c.

Does the shape converge as ¢ | 07

What is the limit shape of the level sets?

e Can sample clouds from the meta density g be scaled to converge?

What is the limit shape of scaled sample clouds?

e Properties of the limit set?
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Definition (Meta distribution)

- Random vector Z in RY with df F and continuous marginals F;, i=1,...,d
- Gi,..., Gg: continuous df's on R, strictly increasing on I; = {0 < G; < 1}

- Define transformation:
K(le"‘7Xd): (Kl(X1)7"'7Kd(Xd))7 Ki(s):Fiil(Gi(s))v I:]-vad

e The df G = F o K is the meta distribution (with marginals G;) based on
original df F

e X is said to be a meta vector for Z (with marginals G;) if Z 4 K(X)
e The coordinatewise map K = K1 ® - - - ® Ky which maps

x=(x1,...,xq) €I=1; x --- x I3 into the vector z = (Ki(x1), ..., Ka(xq))
is called the meta transformation
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Meta density

Proposition
If

e Original vector Z has a density, f

e Marginals of meta distribution have densities, g;
then the meta distribution has a density, g, and g is of the form

g(X) = f(K(X)) H gl( I) zZi = K,'(X,'), xiel; = {0 <Gi< 1}
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Level sets: from original density to meta density

f foK g=(foK)xJ

(ETH Zurich) 11 / 38



Preliminary results

=] F = = £ DA
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Useful definitions

Definition (weak asymptotic equivalence)
h(x)=h(x) for ||x|| — oo if

e hand h are positive eventually

h
e both ﬁ and N(x) are bounded outside a compact set
(<) *" B
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Useful definitions

Definition (univariate regular variation)

A measurable function h on (0, 00) is regularly varying at co with index p
(written h € RV,) if for x > 0

im h(tx) _

o
too h()
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Question:

What is the effect on the meta density when changing the original density
into a density which is (weakly) asymptotic to it?
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On asymptotic behaviour of multivariate functions

Proposition
Assume:

e F & F: multivariate df’s with continuous marginals F; & F;, i=1,...,d
e Gi,..., Gy are strictly increasing df's on R
e Fi(—t) € RV, and 1 — Fj(t) € RV, with p* <0

o Fi(—t) ~ Fi(—t)and 1 — Fi(t) ~ 1 — Fj(t) as t — o0

Then the meta transformations satisfy:

1K(x) = K(x)]

-0 x| —o0
L+ (KMl
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Proposition

Assume:

then

Densities f and f are continuous and positive outside a bounded set
Marginal densities f; and 7‘, are continuous

f(z) = f(z) for ||z]| — oo

f(zn + pn) < f(zn) if ||z4|| — oo and [|pa||/|zal| — O

Meta densities g and g have all marginals equal to a continuous positive
symmetric density gy

Fi(—t) € RV,- and 1 — Fi(t) € RV,+ with p* <0
Fi(—t) ~ Fi(—t) and 1 — Fi(t) ~ 1 — Fi(t) as t — o0

the meta densities g(x) and g(x) satisfy:  g(x) =< g(x) Ix|| — oo
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Framework & assumptions

=] F = = £ DA
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A class of densities with level sets of the same shape (1/2)

e Set D: bounded convex open set containing the origin

Gauge function of D: a unique function np with the properties

{np <1} =D np(rz) = rnp(z) r>0,zcR?

fo: continuous, strictly decreasing positive function on [0, 00)

Then f : z+— fy(np(z)) is unimodal with convex level sets all of the
same shape

Assume f is a probability density
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A class of densities with level sets of the same shape (2/2)

Note:
o If fh € RV_()\+d) then
(i) f integrable
(ii) marginal densities f; € RV_(x,1)
e (i) & (ii) remain true if

- f(2) ~ fo(np(2)) for |z]| — oo

- D is a bounded star-shaped open set with continuous boundary
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Definition (Standard set-up)

e f: a continuous density on RY, positive outside a bounded set

e f(z) ~ fo(np(z)) for ||z]] — oo, where
- fo: continuous, strictly decreasing
- fo € RV_(nta)

- D: bounded star-shaped open set containing the origin, with continuous
boundary

e meta density g with marginal densities g4 satisfying

- g4: continuous, positive, symmetric

- g4~ e~%, a von Mises function: i.e.

YP'(s) >0, ¢'(s)—o0, (1/¢')(s)—0 s — 00

(ETH Zurich) 21 /38



e Additional condition:

P € RVy, f>0 (*)

e Remarks:
- () is necessary to have a limit shape

- (%) is satisfied for normal, Laplace, Weibull densities and densities of
the form gy(s) ~ ase=P", s — 0o, a,p,0 > 0
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Derivation of the limit set

Main idea: The limit set may be described as the level set of a continuous
function obtained from the meta density by scaling and power norming
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Limit set

e Under the standard set-up & (%), level sets of g may be scaled to
converge to a limit set, E

e There exists a compact set E such that

g(su) . {oo u € int(E)

g(s1) |0 wueEe

e For a proper limit function for the quotient, use power norming to
dampen exponential decrease by constructing functions

where €(s) — 0 s — 00

su)\ €(s)
(5eD)

e Exponent ¢(s) may be chosen so that ys converges to a continuous
function uniformly on compact sets in R¢
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Limit set

o Write g =e™7
e Then ©

()™ = e { (2051 = (sw)) ()}
e We show

Xs(u) IZ%HKU) s—o00, u#0
That is,

Y(s1) —y(su) ~ x(u)¥(s)/A s — o0

e Hence

int(E) = {x > 0} 0E = {x =0}
Next step: determine the limit function x

(ETH Zurich)
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The limit function y
e First assume f(z) = fy(||z|]|~) for a continuous strictly decreasing
function fo € RV_(\1.q)
e Under the standard set-up & (%), it can be shown for v = ||u|[oc > 0
xs(u) = x(u) = ug|] + -+ Jug)” + A= A+ d)  s—
- Convergence is uniform on 1, \ €B for any r > 1 and € > 0, where
M, = {x||xi| < x4 < r} (upside down pyramid)

e Hence, the limit set is given by

E:=Evp:={uc RN{O} ||+ +]ugl’+A = A+d)[u]l%} (%)
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Examples of limit sets

Legend: A =1 (solid), A = 2 (dashed), A = 4 (dotted), A = 10 (dotdash)
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Limit sets for sample clouds

We show:

e For sample clouds from the meta density g there is a limit shape

o If

- X1, Xa,...is a random sample from meta density g

- Scaling factor r, is chosen s.t. ng(r,1) — 1

then the scaled sample cloud N, = {X1/ry,...,X,/ra} roughly fills out
the limit set E
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Definition (convergence of measures and sample clouds onto a set)

e E: a compact set in R?

e L, finite measures

We say u, converge onto E if
o Ln(p + €B) — oo for any e-ball centered in a point p € E
e 1p(U) — 0 for all open sets U containing E

The finite point processes N, = {X1/rn,...,X,/rn} converge onto E if

o P{Ny(p+¢eB)>m} —1 m>1¢e¢>0 peckE
e P{N,(U°) > 0} — 0 for open sets U containing E
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Proposition (criterion for convergence of sample clouds)

e N,: an n-point sample cloud from a probability distribution 7, on RY

e N, converges onto E if the mean measures u, = nmw, converge onto E
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Main result

Theorem
Let:
o f & gy satisfy assumptions of the standard set-up & (%)

e g: meta density with marginals g4 based on original density f

e r, > 0 satisfies g4(r,) ~1/n

e E = E)4: closed subset of C = [1,1]9 defined in (&)
Then:

o Level sets {g > 1/n} scaled by r, converge to E

e For any sequence of independent observations X, from meta density g,
the scaled sample clouds N, = {X1/r,,...,X,/r,} converge onto E
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How sensitive is the limit shape to small perturbations of
the original density?
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Exploring sensitivity of the limit shape (1/4)

Example

Assume f: a density on R? with square levels sets and Student t
marginals fy(t) ~ 1/2t?, t — oo

Delete the mass on a strip T = {(x,y) | x| < é, y > e},
y

and on sets obtained by reflections (x,y) — (y, x), (—x, —y), (—y, —x)

Compensate for the lost mass by increasing f in compact
neighbourhood of the origin

We obtain a new density 7; assume fy(t) ~ 1/2t2, t— oo
Choose K4(s) = e®, s > sg

Then gy(s) ~e°/2, s— o0
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Exploring sensitivity of the limit shape (2/4)

Example (cont'd)

Tx (e} o
e Strip T on the edge: [—e"/n,e"/n] x {e"} K7 [-n+logn,n—logn] x {n}

x {n}

]

e: [—e" e

of a squar

e Edge




Exploring sensitivity of the limit shape (3/4)
Example (cont'd)
We have:

e f close to f such that g vanishes everywhere except on a thin strip
around the diagonals

e Scaled sample clouds from g converge onto the cross consisting of the
two diagonals of the standard square C = [—1,1]?

e Scaled sample clouds from fand f converge to the same Poisson point
process with intensity h(w) = 1/|jw/|3,
e Hence
- Coordinatewise maxima from f and f have the same limit =
- Coordinatewise maxima from g and g also have the same limit

- But drastic change in the shape of the limit sets for g and g
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Exploring sensitivity of the limit shape (4/4)
Theorem

e F: adfon [0,00)¢ with marginals F, continuous, strictly increasing
e 1—F,eRV_,

e Suppose dF does not charge set T = T, \ e 1B for some ¢ > 0, where

min; |z; €
Tez{z:(zl,...,zd)|é< ,r=|lzl2>1+1/€}

r log r

G: meta df with marginals G, continuous, strictly increasing on [0, 00)
e 1-Gy~e ¥, YeERV 6>0
Scaling factor r,: 1 — Gy(rn) =1/n

Then measures du,(u) = ndG(r,u) converge onto the set E = {t1 |0 <t <1} in
[0, 00)¢
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Concluding remarks

e Original and meta densities have the same copula, yet a relation
between the shapes of their level sets is lost in the limit

e The limit set is unchanged if we replace the original density f by a
density which is weakly asymptotic to f

e Sensitivity of the limit shape may be radical due to even slight
perturbations of the original density

e The limit shape gives a very rough picture

o Next step: closer look at the edge of the scaled sample clouds under a
more refined scaling
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