
Extremes from meta distributions and the shape of the

sample clouds

Guus Balkema Paul Embrechts Natalia Lysenko

Department of Mathematics
and

RiskLab
ETH Zurich, Switzerland

(ETH Zurich) 1 / 38



Structure of the talk

• Introduction: motivation & main questions

• Meta distributions: formal definition & some properties

• Preliminary results

- review of useful definitions

- consequences of relaxing some of the underlying assumptions

• Setting up the framework & assumptions

• Key steps to compute the limit set

• Main result

• Sensitivity of the limit shape

• Concluding remarks & further questions
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Motivation: Why multivariate extremes?

Quantitative Risk Management (QRM):

• a new field of research

Key ingredients:

• Regulatory framework for financial institutions: Basel Accords and
Solvency II

• Quantile-based risk measures: Value-at-Risk (VaR) and Expected
Shortfall (ES)

• Extremes matter: high quantiles (α ∈ {99%, 99.9%, 99.97%})

• Dependence matters: risk aggregation, diversification/ concentration

• Dimensionality matters: high-dimensional portfolios

Conclusion:

• Extremal behaviour in multivariate models

(ETH Zurich) 3 / 38



Motivation: A few examples

Some concrete underlying models:

• multivariate normal (KMV model)

• multivariate Student t

• and refinements

- (mixture of) Gaussian copula(s) with exponential marginals (Li model)

- meta-t with normal marginals

- etc.

−→ The subprime crisis questions some of these developments/models
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Why meta distributions?

• Asymptotic independence of coordinatewise maxima as a shortcoming
of the multivariate Gaussian model

• Go beyond normality by introducing stronger tail dependence while
preserving normal marginals

• A typical example:

- Start with a multivariate Student t distribution (tail dependence and
heavy tails)

- Transform each coordinate so that the new distribution has normal
marginals (light tails)

- The new distribution is referred to as meta distribution with normal
marginals based on the original t distribution (tail dependence and
light tails)
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Extremes and asymptotic shape of sample clouds and level

sets

• Global shape of sample clouds vs. classical EVT of coordinatewise
maxima

• The limit shape describes the relation between maximal observations in
different directions

• Relation of the shape of density level sets and the shape of risk regions
to the conditional laws (cf. Barbe, P. (2003))
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Examples of sample clouds
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Main questions of this talk

• The shape of level sets {g > c} for the meta density g depends on the
level c .

Does the shape converge as c ↓ 0?

What is the limit shape of the level sets?

• Can sample clouds from the meta density g be scaled to converge?

What is the limit shape of scaled sample clouds?

• Properties of the limit set?
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Definition (Meta distribution)

- Random vector Z in R
d with df F and continuous marginals Fi , i = 1, . . . , d

- G1, . . . ,Gd : continuous df’s on R, strictly increasing on Ii = {0 < Gi < 1}

- Define transformation:

K (x1, . . . , xd ) =
(

K1(x1), . . . ,Kd(xd )
)

, Ki(s) = F−1
i

(

Gi (s)
)

, i = 1, . . . , d

• The df G = F ◦ K is the meta distribution (with marginals Gi ) based on
original df F

• X is said to be a meta vector for Z (with marginals Gi ) if Z
d
= K (X)

• The coordinatewise map K = K1 ⊗ · · · ⊗ Kd which maps
x = (x1, . . . , xd ) ∈ I = I1 × · · · × Id into the vector z = (K1(x1), . . . ,Kd(xd ))
is called the meta transformation
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Meta density

Proposition

If

• Original vector Z has a density, f

• Marginals of meta distribution have densities, gi

then the meta distribution has a density, g , and g is of the form

g(x) = f (K (x))

d
∏

i=1

gi (xi )

fi (zi)
zi = Ki(xi ), xi ∈ Ii = {0 < Gi < 1}
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Level sets: from original density to meta density
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Preliminary results
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Useful definitions

Definition (weak asymptotic equivalence)

h̃(x)�h(x) for ‖x‖ → ∞ if

• h̃ and h are positive eventually

• both
h̃(x)

h(x)
and

h(x)

h̃(x)
are bounded outside a compact set
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Useful definitions

Definition (univariate regular variation)

A measurable function h on (0,∞) is regularly varying at ∞ with index ρ
(written h ∈ RVρ) if for x > 0

lim
t→∞

h(tx)

h(t)
= xρ

(ETH Zurich) 14 / 38



Question:

What is the effect on the meta density when changing the original density
into a density which is (weakly) asymptotic to it?
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On asymptotic behaviour of multivariate functions

Proposition

Assume:

• F & F̃ : multivariate df’s with continuous marginals Fi & F̃i , i = 1, . . . , d

• G1, . . . ,Gd are strictly increasing df’s on R

• Fi (−t) ∈ RVρ− and 1 − Fi (t) ∈ RVρ+ with ρ± < 0

• F̃i (−t) ∼ Fi(−t) and 1 − F̃i(t) ∼ 1 − Fi (t) as t → ∞

Then the meta transformations satisfy:

‖K̃(x) − K (x)‖

1 + ‖K (x)‖
→ 0 ‖x‖ → ∞
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Proposition

Assume:

- Densities f and f̃ are continuous and positive outside a bounded set

- Marginal densities fi and f̃i are continuous

- f̃ (z) � f (z) for ‖z‖ → ∞

- f (zn + pn) � f (zn) if ‖zn‖ → ∞ and ‖pn‖/‖zn‖ → 0

- Meta densities g and g̃ have all marginals equal to a continuous positive
symmetric density gd

If

• Fi (−t) ∈ RVρ− and 1 − Fi (t) ∈ RVρ+ with ρ± < 0

• F̃i (−t) ∼ Fi(−t) and 1 − F̃i(t) ∼ 1 − Fi (t) as t → ∞

then the meta densities g̃(x) and g(x) satisfy: g̃(x) � g(x) ‖x‖ → ∞
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Framework & assumptions

(ETH Zurich) 18 / 38



A class of densities with level sets of the same shape (1/2)

• Set D: bounded convex open set containing the origin

• Gauge function of D: a unique function nD with the properties

{nD < 1} = D nD(rz) = rnD(z) r > 0, z ∈ R
d

• f0: continuous, strictly decreasing positive function on [0,∞)

• Then f : z 7→ f0(nD(z)) is unimodal with convex level sets all of the
same shape

• Assume f is a probability density
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A class of densities with level sets of the same shape (2/2)

Note:

• If f0 ∈ RV
−(λ+d) then

(i) f integrable

(ii) marginal densities fi ∈ RV−(λ+1)

• (i) & (ii) remain true if

- f (z) ∼ f0(nD(z)) for ‖z‖ → ∞

- D is a bounded star-shaped open set with continuous boundary
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Definition (Standard set-up)

• f : a continuous density on R
d , positive outside a bounded set

• f (z) ∼ f0(nD(z)) for ‖z‖ → ∞, where

- f0: continuous, strictly decreasing

- f0 ∈ RV−(λ+d)

- D: bounded star-shaped open set containing the origin, with continuous
boundary

• meta density g with marginal densities gd satisfying

- gd : continuous, positive, symmetric

- gd ∼ e−ψ, a von Mises function; i.e.

ψ′(s) > 0, ψ′(s) → ∞, (1/ψ′)′(s) → 0 s → ∞
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• Additional condition:

ψ ∈ RVθ, θ > 0 (F)

• Remarks:

- (F) is necessary to have a limit shape

- (F) is satisfied for normal, Laplace, Weibull densities and densities of

the form gd(s) ∼ asbe−psθ

, s → ∞, a, p, θ > 0
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Derivation of the limit set

Main idea: The limit set may be described as the level set of a continuous
function obtained from the meta density by scaling and power norming
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Limit set

• Under the standard set-up & (F), level sets of g may be scaled to
converge to a limit set, E

• There exists a compact set E such that

g(su)

g(s1)
→

{

∞ u ∈ int(E )

0 u ∈ E c
s → ∞

• For a proper limit function for the quotient, use power norming to
dampen exponential decrease by constructing functions

(g(su)

g(s1)

)ε(s)
where ε(s) → 0 s → ∞

• Exponent ε(s) may be chosen so that χs converges to a continuous
function uniformly on compact sets in R

d
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Limit set

• Write g = e−γ

• Then
(g(su)

g(s1)

)ε(s)
= exp

{

(

γ(s1) − γ(su)
)

ε(s)
}

• We show

χs(u) :=
γ(s1) − γ(su)

ψ(s)/λ
→ χ(u) s → ∞, u 6= 0

That is,
γ(s1) − γ(su) ∼ χ(u)ψ(s)/λ s → ∞

• Hence
int(E ) = {χ > 0} ∂E = {χ = 0}

Next step: determine the limit function χ
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The limit function χ

• First assume f (z) = f0(‖z‖∞) for a continuous strictly decreasing
function f0 ∈ RV

−(λ+d)

• Under the standard set-up & (F), it can be shown for v = ‖u‖∞ > 0

χs(u) → χ(u) = |u1|
θ + · · · + |ud |

θ + λ− (λ+ d)v θ s → ∞

- Convergence is uniform on Πr \ εB for any r ≥ 1 and ε > 0, where
Πr = {x | |xi | ≤ xd ≤ r} (upside down pyramid)

• Hence, the limit set is given by

E := Eλ,θ := {u ∈ R
d\{0} | |u1|

θ+· · ·+|ud |
θ+λ ≥ (λ+d)‖u‖θ

∞
} (♣)
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Examples of limit sets
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Limit sets for sample clouds

We show:

• For sample clouds from the meta density g there is a limit shape

• If

- X1, X2,. . . is a random sample from meta density g

- Scaling factor rn is chosen s.t. ng(rn1) → 1

then the scaled sample cloud Nn = {X1/rn, . . . ,Xn/rn} roughly fills out
the limit set E

(ETH Zurich) 28 / 38



Definition (convergence of measures and sample clouds onto a set)

• E : a compact set in R
d

• µn: finite measures

We say µn converge onto E if

• µn(p + εB) → ∞ for any ε-ball centered in a point p ∈ E

• µn(U
c ) → 0 for all open sets U containing E

The finite point processes Nn = {X1/rn, . . . ,Xn/rn} converge onto E if

• P{Nn(p + εB) > m} → 1 m > 1, ε > 0, p ∈ E

• P{Nn(U
c) > 0} → 0 for open sets U containing E
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Proposition (criterion for convergence of sample clouds)

• Nn: an n-point sample cloud from a probability distribution πn on R
d

• Nn converges onto E if the mean measures µn = nπn converge onto E
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Main result

Theorem

Let:

• f & gd satisfy assumptions of the standard set-up & (F)

• g : meta density with marginals gd based on original density f

• rn > 0 satisfies gd (rn) ∼ 1/n

• E = Eλ,θ: closed subset of C = [−1, 1]d defined in (♣)

Then:

• Level sets {g ≥ 1/n} scaled by rn converge to E

• For any sequence of independent observations Xn from meta density g ,
the scaled sample clouds Nn = {X1/rn, . . . ,Xn/rn} converge onto E
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How sensitive is the limit shape to small perturbations of
the original density?
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Exploring sensitivity of the limit shape (1/4)

Example

• Assume f : a density on R
2 with square levels sets and Student t

marginals fd (t) ∼ 1/2t2, t → ∞

• Delete the mass on a strip T = {(x , y) | |x | ≤
y

log y
, y ≥ e},

and on sets obtained by reflections (x , y) 7→ (y , x), (−x ,−y), (−y ,−x)

• Compensate for the lost mass by increasing f in compact
neighbourhood of the origin

• We obtain a new density f̃ ; assume f̃d (t) ∼ 1/2t2, t → ∞

• Choose Kd (s) = es , s ≥ s0

• Then gd (s) ∼ e−s/2, s → ∞
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Exploring sensitivity of the limit shape (2/4)
Example (cont’d)

• Edge of a square: [−en, en] × {en}
K

−1

7→ [−n, n] × {n}

• Strip T on the edge: [−en/n, en/n] × {en}
K

−1

7→ [−n + log n, n − log n] × {n}

Squares Cn = enC in z-space Squares Cn = nC in x-space
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Exploring sensitivity of the limit shape (3/4)

Example (cont’d)

We have:

• f̃ close to f such that g̃ vanishes everywhere except on a thin strip
around the diagonals

• Scaled sample clouds from g̃ converge onto the cross consisting of the
two diagonals of the standard square C = [−1, 1]2

• Scaled sample clouds from f̃ and f converge to the same Poisson point
process with intensity h(w) = 1/‖w‖3

∞

• Hence

- Coordinatewise maxima from f̃ and f have the same limit ⇒

- Coordinatewise maxima from g̃ and g also have the same limit

- But drastic change in the shape of the limit sets for g̃ and g
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Exploring sensitivity of the limit shape (4/4)

Theorem

• F : a df on [0,∞)d with marginals Fd continuous, strictly increasing

• 1 − Fd ∈ RV−λ

• Suppose dF does not charge set T = Tε \ ε
−1B for some ε > 0, where

Tε = {z = (z1, . . . , zd) |
mini |zi |

r
<

ε

log r
, r = ‖z‖2 > 1 + 1/ε}

• G : meta df with marginals Gd continuous, strictly increasing on [0,∞)

• 1 − Gd ∼ e−ψ, ψ ∈ RVθ, θ > 0

• Scaling factor rn: 1 − Gd (rn) = 1/n

Then measures dµn(u) = ndG (rnu) converge onto the set E = {t1 | 0 ≤ t ≤ 1} in
[0,∞)d
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Concluding remarks

• Original and meta densities have the same copula, yet a relation
between the shapes of their level sets is lost in the limit

• The limit set is unchanged if we replace the original density f by a
density which is weakly asymptotic to f

• Sensitivity of the limit shape may be radical due to even slight
perturbations of the original density

• The limit shape gives a very rough picture

• Next step: closer look at the edge of the scaled sample clouds under a
more refined scaling
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