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1 Introduction

Both in insurance and �nance, the stochastic modelling of extremes is of importance.
Think for instance of such notions as large (catastrophic) claims, value at risk,
probable maximal loss or the so{called Pareto \law" which says that for portfolios
with large claims typically \20% of the claims is responsible for 80% of the total
claim amount". For a discussion on the latter, see for instance Aebi, Embrechts and
Mikosch [1]. A review paper on extremes in insurance and �nancce is Embrechts
and Schmidli [9]. A comprehensive textbook treatment of extremes in insurance and
�nance is Embrechts, Kl�uppelberg and Mikosch [6], where also a very extensive list
of references is to be found. See also Beirlant, Teugels and Vynckier [2] and Reiss
and Thomas [24]. Within the realm of extreme value theory, most of the material
published concerns the one dimensional case, the main reason being that in higher
dimensional Euclidean space there is no standard notion of order, and consequently,
there is no standard notion of extremes. A good discussion on possible approaches
is to be found in Resnick [25]. An interesting recent review is Joe, Smith and
Weisman [19] in which threshold methods play a key role, see also Sinha [26] and
Pickands [22]. Both [25] and [19] give references for further reading. The main
aim of our paper is to present one possible approach for modelling tail events in
the multivariate case. For reasons of notational simplicity, we concentrate on two
dimensions. It is important to stress at this point the fact that current multivariate
extreme value theory, from an applied point of view, only allows for a treatment of
fairly low{dimensional problems. The latter often suÆces in insurance where two-
or three{line (i.e. dimension two or three) products already are fairly advanced.
In �nance however, a typical investment portfolio involves several hundred if not
more than a thousand instruments. The truly multivariate extreme value analysis
of such problems for the moment is well outside the reach of the available theory.
An approach by the second author embedding such high dimensional problems in
an in�nite dimensional one may prove to be useful here; see de Haan [13], de Haan
and Tao Lin [16].
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Suppose F is the distribution function (d.f.) of the random vector (X; Y ), we
want to discuss methods for describing 1� F (x; y) with x, y large in some sense.
In most practical problems in insurance and �nance one is faced with extremal
events based on correlated data. Think for instance of the estimation of pro�t{
loss distributions in �nance where the underlying portfolio consists of many highly
correlated �nancial instruments. In housing insurance, large losses can occur by
a combination of various meteorological conditions (rain, wind : : : ) resulting in an
extreme event.

The notion of tail dependence function we shall introduce is by no means the only
one available, by concentrating however on one particular measure for multivariate
extremes, we hope to confront the applied reader (actuary, �nancial analyst) with
some of the important issues underlying multivariate extremes in general. The
references will guide the interested reader into more extensive treatments on this
subject.

2 A multivariate tail function

Suppose F (x; y) is the d.f. of the random vector (X; Y ) de�ned on some probability
space (
;F ; P ). We call

DF (u1; u2) = F (F 1 (u1) ; F
 

2 (u2)) ; 0 � u1 ; u2 � 1 ; (1)

the tail dependence function of F , where F1 and F2 are the marginal distribution
functions of X and Y , and

F i (ui) = inf fy 2 R : Fi(y) � uig ; 0 � ui � 1 ; i = 1; 2 ;

are the generalised inverse functions of F1, F2. By de�nition

F i (Fi(x)) = x ; x 2 R ; i = 1; 2 ;

and for x; y 2 R,
F (x; y) = DF (F1(x); F2(y)) :

In order to avoid some non{essential technicalities, we assume that F1 and F2 are
continuous. For a discussion on generalised inverses and their use in probability, see
[25]. Through the transformation (1) we have \uniformised" the marginal distribu-
tions of F , indeed DF (u1; u2) = Pr (U1 � u1; U2 � u2) where U1, U2 are (possibly
dependent) uniform (0; 1) variables. This transformation is also referred to as the
copula{transformation. For a full discussion on its use in �nancial and insurance
risk management, see Embrechts, McNeil and Straumann [7, 8] and the references
therein. For some recent publications in the realm of insurance, see Frees and Valdez
[10], and Klugman and Parsa [21]. Though one could study DF in full generality,
for applications in insurance and �nance it turns out that some tail condition on the
underlying F is useful. The latter can be motivated either by a domain of attrac-
tion condition for stable r.v.'s or for extreme value distributions; see for instance
de Haan [12], Huang [17], Geluk and de Haan [11], Bingham, Goldie and Teugels [3]
and Smith [27].

2



De�nition 2.1 Suppose F is the d.f. of (X; Y ) and assume that there exists a func-
tion lF : [0;1)� [0;1)! [0;1), such that for all x; y � 0,

lim
t!0

t�1 f1�DF (1� tx; 1� ty)g (exists) = lF (x; y) ; (2)

then lF is called the stable tail dependence function (STDF) of F .

We shall often write D, l instead of DF , lF . The following properties of l hold:

(L1) l(x; y) + l (x1; y1) � l (x; y1) + l (x1; y) ; x � x1 ; y � y1 ;

(L2) l(x; 0) = l(0; x) = x ; x � 0 ;

(L3) l(sx; sy) = sl(x; y) ; s; x; y � 0 :

The motivation behind De�nition 2.1 (i.e. condition (2)) is to be found in [17]:
it turns out that (2) holds whenever F belongs to a so{called extreme domain of
attraction. The latter amounts to the condition:

lim
n!1

f1� F (anx+ bn ; cny + dn)g exists, =2 f0;1g ; (3)

for x, y real, an > 0, cn > 0 and bn, dn real. For the precise link between (2) and
(3), see [17], where also a more detailed discussion of (3) is given. In practice,
typical situations where (3) may hold are so{called heavy{tailed (or Pareto{type)
distributions where

1� Fi(x) � Cix
��i ; x!1 ; �i > 0 ; Ci > 0 ; i = 1; 2 :

Throughout this paper, we shall write � to denote asymptotic equivalence, i.e.
f(x) � g(x), x!1, if limx!1 f(x)=g(x) = 1. The symbol � will be used to denote
`approximately' equal. In all cases where we use the latter symbol, we can make its
meaning mathematically precise.

The homogeneity property (L3) implies that the function l is determined by the
level curve

QF =
�
(x; y) 2 R2

+ : lF (x; y) = 1
	
:

For our purpose, the knowledge of QF suÆces. We shall refer to it as the Q{curve
of l. Because of (L3) we can solve the equation

l(� cos �; � sin �) = 1

to obtain the following polar coordinate representation of Q (again we drop the F
from QF ):

Q =
�
(�; �) 2 [0;1)� [0; �=2] : � = q(�) := (l(cos �; sin �))�1

	
:

Then

l(x; y) =
p
x2 + y2 l

 
xp

x2 + y2
;

yp
x2 + y2

!
=

p
x2 + y2

q(arctan(y=x))
:

The next theorem characterises Q{curves, for a proof see [17].

Theorem 2.2 For a given d.f. F , the Q{curve is concave ending at (1; 0) and (0; 1).
Conversely, any curve satisfying the previous properties is the Q{curve of some
d.f. F .

Typical examples of Q{curves are given in Figure 1.

3



0 1
0

1

← Q−curve

Figure 1: Typical Q{curve

3 From theory to praxis

Various concepts in extreme value theory originate from applied problems in envi-
ronmental science. For an interesting series of papers on this, see for instance [20]
and [23]. We will use the language of insurance and �nance to indicate how the pre-
viously introduced notions of tail dependence l and Q{curves provide useful tools in
the analysis of multivariate extremes. In an insurance setting, we typically think of
a two{line product (X; Y ) where X (resp. Y ) stands for the loss variable in the �rst
(resp. second) line of business. Within �nance, we can think of X and Y as rep-
resenting the pro�t and loss variables of two �nancial products/portfolios/trading
desks, say. For ease of discussion, we will stick to the insurance language. We there-
fore model the loss experience for the two lines of business by X, Y respectively. To
make the problem more concrete, we could also think of 
ood{damage{insurance,
where X and Y would then correspond to the sea{level at two di�erent locations.
A catastrophic event occurs when X (resp. Y ) exceeds the dyke height dx (resp. dy)
at the respective locations. In the latter example, a link to the insured losses in
case of a 
ood (at at least one of the two locations) would have to be established.
Finally, one could also look for the dyke height example at the events fX > dxg
and/or fY > dyg as triggering events for a catastrophe bond, say.

We neglect time dependence in our discussion below. Suppose F is the d.f. of
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(X; Y ), then the following probabilities are of crucial interest:

p1 = P (X > x) = 1� F1(x)

p2 = P (Y > y) = 1� F2(y)

p12 = P (X > x or Y > y)

= 1� F (x; y)

= 1�DF (F1(x); F2(y))

= 1�DF (1� p1; 1� p2) :

Typically, p1 and p2 are (should be!) very small so that we can hope to be working
under the basic assumption (2), yielding the following approximation:

p12 �
q
p21 + p22 l

 
p1p

p21 + p22
;

p2p
p21 + p22

!
=

p
p21 + p22
q(�)

; (4)

where � = arctan(p2=p1). Hence the calculation of the probability p12 of the extremal
event \a large (catastrophic) loss occurs in either of the two lines of business" is
reduced to the calculation of the marginal probabilities p1, p2 (by using standard
one dimensional methods) and the Q{curve q(�), the latter being obtained via the
tail dependence function l. In other words, the problem of bivariate estimation
can be decomposed into two parts: one part concerns univariate tail estimation not
taking dependence between the underlying variables into account, the other part
makes use of the dependency. Using the function q(�), approximations to various
functionals of interest can be obtained.

Let � for instance denote the number of lines where a catastrophic claim oc-
curs. Using (4) we immediately get estimates for the conditional probability of such
simultaneous events:

P (� = 2 j � � 1) =
P (X > x; Y > y)

P (X > x or Y > x)

=
p1 + p2
p12

� 1

� (cos � + sin �) q (�)� 1 (5)

=
q(�)� q0(�)

q0(�)
; (6)

where q0(�) = (cos � + sin �)�1. Clearly, in (5) we have again used asymptotic esti-
mates based on p1 and p2 small. Formula (6) allows for an interesting geometrical
interpretation. Indeed, q(�)=q0(�) is the quotient of the distance to (0; 0) from the
point on the Q{curve corresponding to (�) and the distance from the corresponding
point on the straight line connecting (1; 0) and (0; 1) also to (0; 0). This interpre-
tation is made clear in Figure 2. It is precisely geometric interpretations like these
which render the proposed tail dependence function l and its associated Q{curves
so elegant and useful for practical applications.
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Figure 2: Conditional probability

Another quantity of interest is E(� j � � 1), which is the expected number of
joint catastrophic events, given that at least one such event occurs. One immediately
derives that (approximately)

E(� j � � 1) =
q(�)

q0(�)
: (7)

Summing up (6) and (7) we can say that the conditional distribution of two simulta-
neous extreme events, given that at least one such event occurs, essentially depends
on the ratio p2=p1 (through �) and the shape of the Q{curve (through q(�)). The
more concave the Q{curve, the more likely such events will happen simultaneously.
It therefore becomes interesting to use Q{curves as graphical measures of danger-
ousness, especially in comparing and contrasting various risks.

Besides the above formulae for the calculation of extreme event probabilities,
one often uses these results backwards. In the dyke example, take for instance
a (typically very) small threshold probability p; we want to minimise the combined
dyke height x+ y (amount of sand involved for example) while keeping the 
ood
probability p12 equal to p. The crucial equation (4) becomes:q

p21 + p22 = pq(�) :

We also have

cos �
q
p21 + p22 = p1 ;

sin �
q
p21 + p22 = p2 :

Hence, (
p1 = pq(�) cos �

p2 = pq(�) sin � :
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Combining this with the de�nition of p1 and p2 before relation (4) yields, for
0 � � � �=2, (

xp(�) = F 1 (1� pq(�) cos �)

yp(�) = F 2 (1� pq(�) sin �)
(8)

therefore f(xp(�); yp(�)) : 0 � � � �=2g is the required 1� p quantile curve, i.e. for
all 0 � � � �=2 we have

p12 = 1� F (xp(�); yp(�)) = p :

The problem posed can now be solved as follows:

i) Estimate the tail of the marginal quantile functions F 1 (1�px) and F 2 (1�py)
using univariate techniques, see for instance [4], [6] and [15].

ii) Estimate the Q{curve q(�). For a discussion on this topic, see next section.

iii) Use the results from the above two steps and (8) to obtain an estimate for the
quantile curve ((xp(�); yp(�)).

iv) Move the line x+ y = c, c > 0 by increasing c till it touches the quantile line in
iii) for the �rst time, the coordinates of the touching point being the solution
to our problem. For a pictorial representation of this procedure see Figure 3
below.

0
0

← p quantile curve

X
uv

(p) X
biv,op

(p)

Y
uv

(p)

Y
biv,op

(p)

Figure 3: Optimum dyke heights at 2 places. Note that when we treat two locations
together, the required dyke height for overall safety is higher than when treated
separately. Something for �nancial people to notice as well.
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4 Estimating the tail dependence function

Our �nal goal is obtaining an estimator for the Q{curve; since the latter is de�ned
via the underlying d.f. F , a natural estimator can be based on the empirical d.f.

Fn(x; y) =
1

n

nX
i=1

I (Xi � x; Yi � y) ;

where (X1; Y1) ; : : : ; (Xn; Yn) are i.i.d. r.v's with common d.f. F , and I(A) denotes
the indicator function of A (taking value 1 on A and 0 on Ac). Denote by X1;n �
: : : � Xn;n the order statistics of X1 : : :Xn. Let [x] denote the integer part of x.
Since

Fn

�
X[nx];nYn;n

�
=

[nx]

n
� x ; 0 � x � 1 ; n!1 ;

we see that the empirical counter part of F 1 (x) is X[nx] and likewise Y[ny] for F
 

2 (y).
This motivates the following empirical estimator for lF (x; y):

l̂F;n(x; y) = 1� Fn

�
X[n�kx];n; Y[n�ky];n

�
=

1

k

nX
i=1

I
�
Xi > X[n�kx];n or Yi > Y[n�ky]:n

�
for 0 � x, y � 1 and k = k(n) is chosen in such a way that typically k is large
(k(n)!1), but also k is small in comparison to n, i.e. k(n)=n! 0. For a discussion
of the latter condition see [17], p. 14. Using the notion of ranks, there is another
way to calculate the above estimator. Let

Rx
i =

nX
j=1

I (Xj � Xi) ; Ry
i =

nX
j=1

I (Yj � Yi)

be the ranks of Xi, Yi, i = 1 : : : n. Using this notation we immediately have that

Xi = XRx
i ;n

; Yi = YR
y
i ;n

; i = 1 : : : n ;

and

l̂F;n(x; y) =
1

k

nX
i=1

(Rx
i > n� kx or Ry

i > n� ky) :

From this expression it immediately follows that l̂F;n only depends on the relative
order of the observation and hence is invariant under any monotone transformation
of the marginals. Using the above estimator of lF we also obtain a natural estimator
for the Q{curve:

q̂n(�) =
�
l̂F;n(cos �; sin �)

�
�1

; 0 � � � �=2 :

The following is an example from hydrology, related to the 
ood{insurance problem
brie
y discussed above: see de Haan and de Ronde [14] for more details.
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Example 4.1 At a point on the northern Dutch coast, which is protected by a sea
dyke called \Pettemer zeedijk", during 828 storm events spanning 13 years, two
parameters were recorded, the high tide seawater levels (SWL, a kind of short term
average of the water level) and wave height (HmO). Both play a role in the possible
failure of the dyke. The data are represented in Figure 4. Also a failure area
is indicated in Figure 4, i.e. if 0.3 HmO + SWL exceeds 7.6 meters, the dyke is
in danger. The problem is to assess the probability of failure of the dyke during
a future storm event.

0 2 4 6 8 10 12
−2

−1

0

1

2

3

4

5

6

7

8

Hm0 

S
W

L 

Figure 4: Wave{height (Hm0) and high{tide water level (SWL) at the Eierland
station (North Sea), recorded during 828 storm events. The area above the line
represents the failure area for the \Pettemer zeewering".

In order to estimate this probability, we �rst focus on the two marginal distribu-
tions. The tail can be modelled using an extreme value distribution. This involves
estimating a shape parameter 
i and scale and shift constants bi and ai, i = 1; 2 (see
for example [5]). The b
i's turn out to be negative, pointing to a possible boundedness
of the probability distributions. The values of 
i, ai and bi are given in Table 1.

parameter HmO SWL

1, 
2 -0.0074 -0.12
b; d 553 169
a; c 49.5 27.46

Table 1: Extreme value distribution parameter estimates

Next we turn our attention to the Q{curve representing the dependence in the
tail. Figure 5 gives estimates of the Q{curve using smaller and smaller portions
of the tail observations. One sees that the shapes of the various estimates are not
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too di�erent (see property L3) and that the curves represent approximately convex
functions (see Theorem 2.2). This inspires some con�dence in our model. The
curve seems to deviate somewhat from a straight line; this points to the absence of
independence of the two marginals in the tail.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Hm0 

S
W

L 

0.072
0.06

0.048
0.036

0.024
0.012

Figure 5: Q{curves for wave{height (Hm0) and high{tide water level (SWL). The
axes are transformed to the empirical estimates of 1�Fi, i = 1; 2. Curves are labeled
with the empirical estimates of 1�Df .

In the �nal estimation procedure we do not use the Q{curve explicitly. Rather we
use the homogeneity property (L3) directly: it means that if every element of a set
is multiplied by s > 0, the probability of the set is multiplied by s. The property
is approximately true in the tail after transforming the marginal distributions to
uniform ones. This is precisely what has been done in Figure 6. The observations
and the failure region have been transformed to marginal uniformity. Note that the
origin is now in the upper right corner.

Next the failure region is multiplied by a factor which is chosen in such a way
that the boundary falls just inside the range of the observations. The result is
shown in Figure 7 (note that as a result of the logarithmic scale, multiplication is
now a shift). The multiplication factor used is 1:36� 107.

Finally the number of observations in the transformed failure region is counted
(the number is 26).

So the estimated probability of failure is

1

1:36� 107
�
26

828
= 0:23� 10�8 :

This is well below the government requirement of a failure probability of 10�4 in
a year.

10



10
−15

10
−10

10
−5

10
0

10
5

10
−15

10
−10

10
−5

10
0

10
5

Hm0 

S
W

L 

Figure 6: Data and failure region after transformation. Axes transformed are to the
empirical estimates of 1� Fi, i = 1; 2.
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Figure 7: Data and multiplied failure region (solid line) after transformation. The
original failure region is indicated by the dotted line.
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5 Conclusion

In this paper we have discussed some of the issues underlying the theory of mul-
tivariate extremes. A brief discussion of an example from the sea dyke protection
area showed how the already available theory can be used. Such analysis can be
applied for instance within the construction of catastrophy bonds (alternative risk
transfer). Often in these cases, the triggering event is a catastrophe expressed in
terms of environmental factors. A typical example is the Tokyo Marine bond where
the trigger consists of an earthquake in the Tokyo area with well de�ned location
(place, depth) of the epicenter and a minimal strength on the Richter scale. Other
applications could involve derivatives written on an extremal event of two or more
underlying �nancial factors. A �ne example of the use of these methods in �nance
(foreign exchange) is Starica [28]. Finally, potential applications de�nitely exist
within the wide area of Integrated Risk Management. As already indicated in the
paper, various methodological problems still have to be resolved; the core theory
however is there. Future applications will guide its further development.
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