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Introduction

• Key tools:

✤ sample clouds

✤ densities

• Limiting shape of sample clouds
is at the heart of many results
of the thesis

✤ Global description of multivariate extremes

✤ The shape of the sample clouds and of the level sets of densities is crucial
in determining various probabilistic properties of light-tailed distributions
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Sample clouds: Notation

• X1,X2, . . . i.i.d. random vectors on R
d

• Nn = {X1/an, . . . ,Xn/an}: n-point sample cloud with scaling constants
an > 0, an → ∞ as n → ∞

• Nn(A) =
∑n

i=1 1A(Xi/an) for any Borel set A ⊂ R
d

↑

number of points of Nn contained in set A
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Examples of sample clouds (n = 10, 000)
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Sample clouds: Convergence onto a set

Definition

The sample clouds Nn converge onto a compact set E in R
d if

• P{Nn(U
c) > 0} → 0 for open sets U containing E, and

• P{Nn(p+ ǫB) > m} → 1, m ≥ 1, ǫ > 0, p ∈ E

where B denotes the unit Euclidean ball

The set E is called a limit set
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Part I

Meta densities and the shape of their sample clouds

References:

A.A. Balkema, P. Embrechts and N. Nolde (2010). Meta densities and the
shape of their sample clouds. J. Multivariate Analysis 101: 1738-1754.

A.A. Balkema, P. Embrechts and N. Nolde (2010). Sensitivity of the

asymptotic behaviour of meta distributions. Submitted.
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Why meta distributions?

Recent popularity in applications of multivariate probability theory,
especially in finance

• Asymptotic independence of coordinatewise maxima as a shortcoming
of the multivariate Gaussian model

• Go beyond normality by introducing stronger tail dependence while
preserving normal marginals
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Why meta distributions?

Recent popularity in applications of multivariate probability theory,
especially in finance

• Asymptotic independence of coordinatewise maxima as a shortcoming
of the multivariate Gaussian model

• Go beyond normality by introducing stronger tail dependence while
preserving normal marginals

• A typical example:

✤ Start with a multivariate t distribution (tail dependence and heavy tails)

✤ Transform each coordinate so that the new distribution has normal
marginals (light tails)

✤ The new distribution is called a meta distribution with normal marginals
based on the original t distribution (tail dependence and light tails)
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Definition (Meta distribution)

- Random vector Z in R
d with df F and continuous marginals Fi , i = 1, . . . , d

- G1, . . . ,Gd : continuous df’s on R, strictly increasing on Ii = {0 < Gi < 1}

- Define transformation:

K (x1, . . . , xd ) =
(

K1(x1), . . . ,Kd (xd )
)

, Ki (s) = F−1
i

(

Gi (s)
)

, i = 1, . . . , d
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Definition (Meta distribution)

- Random vector Z in R
d with df F and continuous marginals Fi , i = 1, . . . , d

- G1, . . . ,Gd : continuous df’s on R, strictly increasing on Ii = {0 < Gi < 1}

- Define transformation:

K (x1, . . . , xd ) =
(

K1(x1), . . . ,Kd (xd )
)

, Ki (s) = F−1
i

(

Gi (s)
)

, i = 1, . . . , d

• The df G = F ◦ K is the meta distribution (with marginals Gi ) based on
original df F

• The coordinatewise map K = K1 ⊗ · · · ⊗ Kd which maps
x = (x1, . . . , xd ) ∈ I = I1 × · · · × Id into the vector z = (K1(x1), . . . ,Kd (xd ))
is called the meta transformation
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Definition (Standard set-up)

In the standard set-up, the meta density g is based on the original density f
and has marginals which are all equal to g0, where

• f ∼ f∗(nD(z)) with

✤ f∗ ∈ RV
−(λ+d) for some λ > 0, continuous and decreasing on [0,∞)

✤ nD : the gauge function of the set D

✤ D: bounded, open, star-shaped set with a continuous boundary and
containing the origin

• g0 is continuous, positive, symmetric, and asymptotic to a von Mises
function e−ψ with ψ ∈ RVθ for θ > 0
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Theorem

• Let f , g and g0 ∼ e−ψ satisfy the assumptions of the standard set-up

• Let ψ(sn) ∼ log n

For the sequence of independent observations Xn from the meta density g,
the sample clouds Nn = {X1/sn, . . . ,Xn/sn} converge onto
the limit set Eλ,θ given by

Eλ,θ := {u ∈ R
d | |u1|

θ + · · ·+ |ud |
θ + λ ≥ (λ+ d)‖u‖θ∞}
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Examples of limit sets Eλ,θ in R
2

θ = 0.5
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Legend: λ = 1 (solid), λ = 2 (dashed), λ = 4 (dotted), λ = 10 (dotdash)
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Examples of limit sets Eλ,θ in R
3 (λ = 1)

θ = 0.5 θ = 1 θ = 2
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• How stable is the shape of the limit set?

✤ How much the original distribution can be altered without affecting its
marginal tail behaviour and the shape of the limit set?

✤ How sensitive is the shape of the limit set to perturbations of the original
distribution?
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• How stable is the shape of the limit set?

✤ How much the original distribution can be altered without affecting its
marginal tail behaviour and the shape of the limit set?

✤ How sensitive is the shape of the limit set to perturbations of the original
distribution?

• We investigate above questions using two procedures:

✤ block partitions

✤ mixtures
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Assumption:

marginal dfs of F are all equal to F0 with positive continuous
symmetric density

⇒ meta transformation K has equal components:

K : x 7→ z = (K0(x1), . . . ,K0(xd))

K0 = F−1
0 ◦ G0 K0(−t) = −K0(t)
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Theorem 1

• Assume the standard set-up

• Let ρ̃ be an excess measure on R
d \ {0} with marginal densities

λ/|t|λ+1, λ > 0

One may choose F̃ such that

• sample clouds converge to Poisson point process Ñ with mean
measure ρ̃

• marginals are tail asymptotic to those of F

• meta dfs G̃ = F̃ ◦ K and G have the same asymptotics:

✤ the sample clouds converge onto Eλ,θ with the same scaling

✤ the marginals are tail asymptotic
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Block partitions - Construction

• Partitions of Rd into bounded
Borel sets Bn, where Bn are
coordinate blocks

• Start with an increasing
sequence of cubes:
snC = [−sn, sn]

d with
0 < s1 < s2 < · · · , sn → ∞

• Subdivide ring
Rn = sn+1C \ snC into blocks by
a symmetric partition of interval
[−sn+1, sn+1] with division
points ±snj , j = 1, . . . ,mn, with

− sn+1 − sn − sn1 sn1 sn sn+1

− sn+1

− sn

− sn1

sn1

sn

sn+1

−sn+1 < −sn < · · · < −sn1 < sn1 < · · · < snmn = sn < snmn+1 = sn+1
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Regular block partitions

• If blocks are relatively small, the asymptotic behaviour of a distribution
is not affected if the distribution is replaced by one which gives
(asymptotically) the same mass to each block

✤ regular block partitions: a block partition is regular if and only if

sn+1 ∼ sn and ∆n/sn → 0

where ∆n = max{sn1, sn2 − sn1, . . . , snmn
− snmn−1}
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Proof of Theorem 1 - sketch of construction

Notation:

(An): block partition in x-space with division points sn

(Bn): block partition in z-space with division points tn = K0(sn)

• Suppose (An) is regular ( ⇒ sn+1 ∼ sn)

It is possible that tn << tn+1 ( ⇒ (Bn) is non-regular)

• Choose snmn−1 = sn−1; define sets:

✤ U =
⋃

n[tn−1, tn+1]
d

✤ Note: U/t → (0,∞)d for t → ∞ if tn << tn+1

✤ Let Uδ be the image of U in orthant Qδ for δ ∈ {−1, 1}d
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Sketch of construction (cont’d)

• Choose density f̂ such that sample
clouds converge to Ñ with mean
measure ρ̃

• Let f̃ agree with f̂ on sets Uδ and
with f elsewhere ⇒ f̃ and f̂ differ
only on asymptotically negligible set

• Alter f̃ on a bounded set to make it a
probability density

⇒ sample clouds from F̃ converge to Ñ

• In corr. partition (An) on x-space, the
measure is changed only on “tiny”
blocks [sn−1, sn+1]

d (with
sn−1 ∼ sn+1) and their reflections

⇒ sample clouds from G̃ = F̃ ◦ K
converge onto Eλ,θ

z−space (non−regular)

x−space (regular)
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Theorem 2

• Assume the standard set-up

• A ⊂ [−1, 1]d : a star-shaped closed set with continuous boundary and
containing the origin as interior point

• E00 = {rδ | 0 ≤ r ≤ 1, δ ∈ {−1, 1}d}: the diagonal cross

There exists a df F̃ such that

• F̃ and F have the same asymptotics:

✤ the sample clouds converge to the same point process

✤ the marginals are tail asymptotic

• the sample clouds from the meta distribution G̃ converge onto the set
E = A ∪ E00
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Idea behind a proof of Theorem 2

• Replace dF by a probability measure dF̃ which agrees outside a
bounded set with d(F + F o), where F o has lighter marginals than F :

F o
j (−t) << F0(−t), 1−F o

j (t) << 1−F0(t), t → ∞ (j = 1, . . . , d)

⇒ F̃ and F have the same asymptotics

• dfs G̃ and G may have different asymptotics:

✤ the scaling constants aon ∼ an even though G o has lighter tails than G

✤ suppose sample clouds from G o converge onto a compact set E o

then: sample clouds from G̃ converge onto Eλ,θ ∪ E o
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Some concluding remarks

• Distributions with the same asymptotics in one space (x- or z-space)
may give rise to different asymptotic behaviour in the other space

✤ Sensitivity of the limit shape may be radical due to even slight
perturbations of the original distribution, perturbations which do not
affect the asymptotics of the coordinatewise extremes or the marginals

• It is possible to manipulate the shape of the limit set without affecting
the distribution of coordinatewise extremes
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Part II

Asymptotic independence for unimodal densities

References:

A.A. Balkema and N. Nolde (2010). Asymptotic independence for unimodal
densities. Advances in Applied Probability: 42(2), in press.

N. Lysenko, P. Roy and R. Waeber (2009). Multivariate extremes of

generalized skew-normal distributions. Statist. Probab. Let. 79:525-533.
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Early work goes back to 1960’s...

Masaaki Sibuya
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For bivariate data, asymptotic independence means:

large values in one coordinate are unlikely to be accompanied by large
values in the other coordinate

Definition (Sibuya’s condition)

Let X and Y have continuous dfs F1 and F2, resp.

Define a function P on [0, 1]2 via

P(F1(x),F2(y)) = P{X > x ,Y > y}

X and Y are asymptotically independent if and only if

P(1− s, 1− s) = o(s) s → 0+ [Sibuya (1960)]
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Motivation (1/2): Relevance for applications

• The concept of asymptotic independence has been used in many
applications

✤ e.g. modelling of environmental, financial, and traffic network data

• Model risk: not being aware of the properties of a model with respect
to extremal dependence may potentially lead to risk underestimation

✤ e.g. the Gaussian copula model and the recent financial crisis
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Motivation (2/2): Densities vs. distribution functions (dfs)

• ”Simple” to check asymptotic independence using dfs as the standard
criteria are given in terms of dfs

• However, explicit expressions for dfs are not always available

• Typically we are given a density in analytic form

• For a light-tailed density, the shape of sample clouds may give a good
geometric image of the asymptotic shape of its level sets
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Motivation (2/2): Densities vs. distribution functions (dfs)

• ”Simple” to check asymptotic independence using dfs as the standard
criteria are given in terms of dfs

• However, explicit expressions for dfs are not always available

• Typically we are given a density in analytic form

• For a light-tailed density, the shape of sample clouds may give a good
geometric image of the asymptotic shape of its level sets

Objective:

Give sufficient conditions for asymptotic independence in terms of the
(asymptotic) shape of the level sets of the density or of suitably scaled
sample clouds
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The class A(D)

• Dd : the class of all bounded open star-shaped sets D ⊂ R
d for which

✤ the cone D∞ =
⋃

n>0 nD is convex

✤ the gauge function nD is continuous on D∞

• A positive density g on R
d belongs to the class A(D) if

✤ D ∈ Dd

✤ there exist sequences cn > 0 and rn → ∞ with cn+1/cn → 0 and
rn+1 ∼ rn such that for any ǫ > 0 eventually

e−ǫrnD ⊂ {g > cn} ⊂ eǫrnD (⋆)

✤ Write {g > cn}/rn → D

• A continuous positive function g̃ is shape equivalent to g if its level
sets satisfy (⋆)
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The class A(D): Shape-equivalent densities

• How large is the class A(D)?

Proposition:

Suppose f∗ = e−ϕ, where ϕ is continuous, strictly increasing and varies
regularly at ∞ with exponent θ > 0

Then g = e−γ ∈ A(D) is shape equivalent to f = f∗(nD) if and only if
γ(xn) ∼ ϕ(nD(xn)) whenever ‖xn‖ → ∞
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The class A(D): Shape-equivalent densities (cont’d)

• The behaviour of the quotient of two shape equivalent functions may
be quite erratic

Examples: f̃ = qf is shape equivalent to standard normal density f on R
2

for the following choices of q:

q = 1 + |x | q = exp(x − |y |3/2) q = exp{sin(πex
2
) sin(πey

2
)}
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Criteria for asymptotic independence - I

Definition

The set D ∈ D2 is blunt if the coordinatewise supremum of the points
in D does not lie in the closure of D
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Criteria for asymptotic independence - I

Definition

The set D ∈ D2 is blunt if the coordinatewise supremum of the points
in D does not lie in the closure of D

Theorem 1

• Suppose X = (X1, . . . ,Xd) has density f ∈ A(D)

If the bivariate projection D12 of the set D on x1, x2-plane is blunt, then X1

and X2 are asymptotically independent
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Criteria for asymptotic independence - II

Theorem 2

• X1,X2, . . . i.i.d. observations from a continuous df F on R
2

• Suppose there exist scaling constants sn such that the sample clouds
Nn = {X1/sn, . . .Xn/sn} converge onto the closure of D ∈ D2

If D is blunt then the two coordinates of the vector X1 are asymptotically
independent
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Proof of Theorem 2 - outline

• Let b = (b1, b2) := supD

D blunt ⇒ ∃δ > 0: (e−δb,∞)∩ eδD = ∅

• Let nπn denote the mean measure of Nn

nπn(e
−δb,∞) ≤ nπn(e

δD)c → 0

nπn(D ∩ {u > e−δb1}) → ∞

nπn(D ∩ {v > e−δb2}) → ∞

since Nn converges onto D

(eδD)c

b1

b2 r

D

(e−δb,∞)

-u

6
v

• Let Wn = (Un,Vn) denote the componentwise maximum of Nn

P{Wn ∈ Nn} ≤ P{Nn((e
−δb,∞)) > 0}

+ P{Nn({u > e−δb1}) = 0}+ P{Nn({v > e−δb2}) = 0}→ 0

[criterion due to Gnedin (1994)]
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Example

• A d-dimensional skew-normal distribution with positive-definite scale
matrix Ω ∈ R

d×d and shape parameter α ∈ R
d has a density of the

form
g(x) = 2φd (x; 0,Ω)Φ(α

Tx) x ∈ R
d

where φd( · ;µ,Σ) and Φ(·) denote the d-dimensional normal density with
mean µ and covariance matrix Σ, and the univariate standard normal df, resp.

• It can be shown that g ∈ A(D) with D = {u ∈ R
d | nD(u) < 1}, where

nD(u) =

{

uTΩ−1u, α
Tu ≥ 0,

uTΩ−1u+ (αTu)2, α
Tu < 0

• D has blunt bivariate projections (in fact, convex with C 1 boundary) and
hence the skew-normal distribution is asymptotically independent

✤ cf. [Lysenko, Roy, Waeber (2009)]
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Future work:

• A more delicate question is the relation between the shape and
asymptotic independence when the bivariate projections are not blunt

• Criteria for asymptotic dependence for light-tailed densities
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Additional references

Balkema, G., and Embrechts, P. (2007). High Risk Scenarios and Extremes. A
geometric approach. European Mathematical Society.

Gnedin, A.V. (1994). On the best choice problem with dependent criteria. J.
Appl. Probab. 31:221-234.

Sibuya, M. (1960). Bivariate extreme statistics. Ann. Inst. Stat. Math.

11:195-210.
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Thank you!
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