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1 Historical remarks
Hoeffding (1940): Research on standardized distribution functions
([−1/2, 1/2]2); Féron (1956): on [0, 1]3

Sklar (1959): term copula = link (linguistics: term linking a subject
with a predicate)

Until 1981: virtually all results obtained in the context of probabilistic
metric spaces

Schweizer and Wolff (1981): Analyze dependence between two or more
random variables; invariance principle

Mid-90s, Embrechts et al. (2002): copulas meet financial and insurance
mathematics

A picture is worth a thousand words. . .
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Genest et al. (2009):
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Quo vadis?

© 2012 Paul Embrechts, Marius Hofert | RiskLab, ETH Zurich 5



2 Copulas: An introduction
2.1 Definition

Definition
A copula C is a distribution function with U[0, 1] margins.

Characterization:

(1) C is grounded;

(2) C has U[0, 1] margins;

(3) C is d-increasing,

P(U ∈ (a, b]) = ∆(a,b]C ≥ 0.

Equivalently (if exists), c(u) ≥ 0.
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Why standardizing the margins?
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Difficult to determine: left: N(0, 1) margins; right: Exp(1) margins.
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Answer: The dependence structure between X1 and X2!
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Note: Not only equal in distribution, but even the same realizations!
(from a Gumbel copula)
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2.2 Sklar’s Theorem

Theorem (Sklar (1959))
H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), x ∈ Rd

Interpretation in two directions:

“⇒” Investigate dependencies (estimation, gof)
+ Invariance principle: (F1(X1), . . . , Fd(Xd))> ∼ C
+ Numerics: reduce parameter space

“⇐” Construction of distributions (sampling)
+ Theory: Unifying framework
+ Financial and Insurance Mathematics: Realistic models

© 2012 Paul Embrechts, Marius Hofert | RiskLab, ETH Zurich 9



Sklar’s Theorem (explained graphically)
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Note: The ranks of the points remain the same by transforming the
margins with increasing transformations!
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Sklar’s Theorem (explained graphically)
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Note: We can adjust the margins as we like while keeping the dependence
structure the same!
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2.3 Praise and Criticism

Mikosch (2006):

There is no particular advantage in using copulas – just use any suited
model that can be treated statistically;
Separation of marginals and dependence structure leads to a biased
view of stochastic dependence, e.g., when one fits a model to data;
Various copula models are mostly chosen because of mathematical
convenience;
The class of copulas is too big to be useful;
Copulas do not contribute to a better understanding of multivariate
extremes;
Copulas do not fit into the existing framework of stochastic processes
and time series analysis; they are essentially static models.
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Embrechts (2006):
It is up to us mathematicians to also point at the limitations;
Queries on two-stage models and on truly dynamic models are pertinent;
Real finance: two stages – add dependence to marginal models (Sklar);
This can help to understand the model risk present;
Often, there is no hope to obtain a global dynamic model; the data
information available does not allow for risk measures (i.e., VaR) to be
estimated precisely;
There are three reasons why copulas are important: pedagogic, peda-
gogic, and stress testing;
Stress testing: what range of possibilities exist for risk measures?
I personally hope that mathematical finance and insurance will turn to
truly (high-dimensional) multivariate modelling in QRM.
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2.4 Stress testing

(1) “⇐” in Sklar’s Theorem:

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))

(2) Given: X = (X1, . . . , Xd)>: risk factors

Ψ(X): financial instrument

R: risk (or pricing) measure

Task: Calculate R(Ψ(X)) under some assumptions on X, Ψ, R.

Typical solution:
RL ≤ R(Ψ(X)) ≤ RU

Determine RL and RU and prove sharpness!
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2.5 Correlation misunderstandings

Misunderstanding 1: F1, F2, and ρ determine H

Counter-example: C(u1, u2) = u1u2(1 − 2θ(u1 − 1
2)(u1 − 1)(u2 − 1))
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Properties:
(1) F1, F2: U [0, 1]

(extends to margins with
E[X2] < ∞ and F1 symmetric
about 0)

(2) ρ = 0 for all θ ∈ [−1, 1]
(3) Clearly, C 6= Π
In particular, ρ = 0 ; independence!

Density for θ = 1
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Reasoning:

Hoeffding’s identity

ρ = 12
∫ ∞
−∞

∫ ∞
−∞

(C(F1(u1), F2(u2))− F1(u1)F2(u2)) du1du2

Now consider U[0, 1] margins and

C(u1, u2) = u1u2 + f1(u1)f2(u2)

with fj(0) = fj(1) = 0 and f ′1(u1)f ′2(u2) ≥ −1. Then

ρ = 12
∫ 1

0
f1(u1) du1

∫ 1

0
f2(u2) du2

⇒ If f1 is point symmetric about 1/2 (as above), then ρ = 0.

Hoeffding’s identity and the Fréchet-Hoeffding bounds also imply:

ρmin ≤ ρ ≤ ρmax attained for W and M
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Misunderstanding 2: Given F1, F2, any ρ ∈ [−1, 1] is attainable

Let Xj ∼ LN(0, σ2
j ), j ∈ {1, 2}. Then the Hoeffding bounds on ρ are:
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Example: For σ2
1 = 1, σ2

2 = 16: ρ ∈ [−0.0003, 0.0137]!
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Further misunderstandings

ρ = ρ(X1, X2) exists for every pair (X1, X2) of random variables.

ρ(X1, X2) is invariant under strictly increasing transformations on X1
or X2.

Counter-example: X1, X2
iid∼ Par(3) ⇒ ρ(X1, X2) = 0

but ρ(X2
1 , X2) does not exist!

Note: Copula-based measures of concordance (e.g., Kendall’s tau, Spear-
man’s rho) still cannot solve Misunderstanding 1. In other words,
one cannot summarize dependence in one number!
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3 Classical copula models

3.1 Elliptical copulas
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SMI daily log-returns from 2011-09-09 to 2012-03-28.
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p−values:   minimum: 0.076;   global (Bonferroni/Holm): 1
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3.2 Archimedean copulas
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3.3 Exotic animals in the zoo

Copulas can appear in totally different stochastic contexts, e.g.,. . .
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. . . as dependencies of default times in complicated credit default models.
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4 Hierarchical models: From d = 2 to d� 2
The popular term “hierarchical” is overloaded! Some use it for

(1) density-based approaches;

(2) copula-based approaches;

(3) approaches based on stochastic representations;

(4) simulated dependencies.

Such dependencies should rather be called. . .

Dependence structures that extend in a more (but not too)
flexible way to higher dimensions than their corresponding
low-dimensional special cases.

. . . but that’s not very practical ©
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4.1 Density-based approach: Pair-copula constructions

This approach typically works with non-uniform margins;
It is based on a decomposition of a multivariate density f into conditional
densities of lower dimension:

f(x1, . . . , xd) = f(x1)
d∏
j=1

f(xj |x1, . . . , xj−1)

Further decompose the f(xj |x1, . . . , xj−1)’s via Sklar’s Theorem:

f(xj |xI) =
f(xj , xk |xI\{k})

f(xj |xI\{k})f(xk |xI\{k})
f(xj |xI\{k})

= cj,k|I\{k}(F (xj |xI\{k}), F (xk |xI\{k}))f(xj |xI\{k})

⇒ One obtains a density decomposition into bivariate pieces
Flexible model, likelihood tractable
Not all bivariate margins (e.g.) are given explicitly (λ’s etc.);
error propagation when estimating the model step-wise
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4.2 Copula-based approach: Nested Archimedean copulas

Idea: Plug Archimedean copulas into each other!
C(u) = C0(u1, C1(u2, u3))

= ψ0
(
ψ−1

0 (u1) + ψ−1
0
(
ψ1(ψ−1

1 (u2) + ψ−1
1 (u3))

))
⇒ Asymmetries; not too many parameters;

All lower-dimensional margins known

C0

u1 C1

u2 u3

Question: When is it a copula? Under an assumption on the nodes, e.g.:

Theorem (Joe (1997), McNeil (2008))
(ψ−1

0 ◦ ψ1)′ completely monotone ⇒ C is a copula
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Stochastic representation (and sampling)

Hofert (2011): C0

u1 C1

u2 u3

C2

u4 C3

u5 u6 u7(
ψ0
(E1
V0

)
, ψ1

( E2
V01

)
, ψ1

( E3
V01

)
, ψ2

( E4
V02

)
, ψ3

( E5
V23

)
, ψ3

( E6
V23

)
, ψ3

( E7
V23

))>
where V0 ∼ LS−1[ψ0] V01|V0 ∼ LS−1[ψ01(· ;V0)]

V02|V0 ∼ LS−1[ψ02(· ;V0)] V23|V02 ∼ LS−1[ψ23(· ;V02)]

⇒ R package copula
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5 Application to Finance: CDO pricing
Goal: Pricing derivatives on large credit portfolios

Intensity-based default model:

pi(t) = exp
(
−
∫ t

0
λi(s) ds

)
τi = inf{t ≥ 0 : pi(t) ≤ Ui}

T0

1 survival probability pi(t)

τi

Ui

Note: λU = 0 ⇒ No joint defaults within short time!

Copulas for the triggers U :

(1) Li (2000): Gaussian (λU = 0)

(2) Schönbucher and Schubert (2001): Archimedean (λU > 0 possible)

(3) Hofert and Scherer (2011): nested Archimedean (λU > 0, hierarchies)
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5.1 Towards CDOs: CDS

CDS = Credit default swap

Contract of the form:

Protection buyer

exposed to credit risk
of reference entity

Protection seller

Investor
Reference entity

Default leg

Premium leg

Pricing problem: Determine the fair premium (“spread”)

Now consider a portfolio of I such contracts.
Main idea of a CDO: Partition it into tranches of different seniorities.
See also Donnelly and Embrechts (2010).
Again, a picture is worth a thousand words. . .
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5.2 CDO: Main idea

I individual CDSs

CDS 1
CDS 2
CDS 3

...

CDS I

CDO with J tranches

Tranche J

...

Tranche 1

Partition

t0 = 0 t1 t2 t3t

. . .

. . .
tn−3 tn−2 tn−1tn = T

Premium leg

Default leg
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5.2 CDO: Main idea

I − 1 individual CDSs

CDS 1
CDS 2
CDS 3

...

CDS I

CDO with J tranches

Tranche J

...

Tranche 1

Default 1

t0 = 0 t1 t2 t3

τ2 . . .
. . .

tn−3 tn−2t tn−1tn = T

Premium leg

Default leg
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5.2 CDO: Main idea

I − 2 individual CDSs

CDS 1
CDS 2
CDS 3

...

CDS I

CDO with J tranches

Tranche J

...

Tranche 1Tranche 1

Default 1
Default 2

t0 = 0 t1 t2 t3

τ2 . . .
. . .

τI

tn−3 tn−2 t tn−1tn = T

Premium leg

Default leg
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Crucial observations

Untranched portfolio: The overall loss process is (R recovery rate)

Lt = 1−R
I

I∑
i=1

1{τi≤t}

⇒ Expected loss = E[Lt] = 1−R
I

∑I
i=1 P(pi(t) ≤ Ui)

⇒ Independent of C. Calibrate to CDS quotes, the “marginals” here.

Tranched portfolio: The loss affecting tranche j is

Lt,j = min{max{0, Lt − lj}, uj − lj}

⇒ A non-linear functional in the overall loss Lt
⇒ Dependence on C! Calibrate C to CDO quotes (e.g., iTraxx).

Requires fast MC; one spread available for each tranche per day; moti-
vation for nested Archimedean copulas, see Hofert and Scherer (2011).
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6 Copulas and Statistics: Problems for d� 2
Statistics is mainly investigated in d = 2. For larger d (besides the
theoretical difficulties), there are serious numerical problems.
In short: Copulas meet Numerics for d large!

Task: Evaluate the density of a Gumbel copula.

General formula (5s): C(u) = ψ(ψ−1(u1) + · · ·+ ψ−1(ud)) implies

c(u) = (−1)dψ(d)
( d∑
j=1

ψ−1(uj)
)
·
d∏
j=1
−(ψ−1)′(uj).

⇒ log-density

Finding (−1)dψ(d) for ψ(t) = exp(−t1/θ) theoretically (some hours):

(−1)dψ(d)(t) = ψ(t)
td

P (t1/θ)

where P is a polynomial with coefficients adk(θ) (again polynomials!)
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Num. Problem 1: log(−1)dψ(d)(t) = log
∑
. Since the sum is typically

not in a range representable in computer arithmetic, we can’t first
compute the sum and then take the log! Idea: intelligent log:

log
n∑
i=1

xi = log
n∑
i=1

exp(bi), bi = log xi

= log
(

exp(bmax)
n∑
i=1

exp(bi − bmax)
)

= bmax + log
n∑
i=1

exp(bi − bmax)

This can be adapted to our setup where xi ≤ 0 for some i.

Careful implementation of 8 methods for evaluation, checks,... (several
weeks/months).

Num. Problem 2: Checks are particularly difficult since CASs fail!
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Example: ψ(50)(15) = ? for θ = 5/4 (correct answer: 1056.93...)
Maple 14: 10 628, -29 800,... (chaotic!; sign wrong; slow)
Mathematica 8: – (aborted after 10min)
MATLAB 7.11.0: X (d = 100: aborted after several min)
Sage 4.7.1: – (aborted after 10min)

Remark: Automatic differentation might provide a solution.

Note: This is only one evaluation! It has to be done...
n(= 100) times for computing the log-likelihood once
m(= 10) times for computing MLEs
N(= 1000) times within a bootstrap
M(= 200) times to (num.) show bootstrap convergence
for various n, d, θ...

⇒ Parallel computing required; still (!) run time matters...
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Will anyone care about this in 20 years?

Likely answer: Yes

Useful formulas can not always be obtained from CASs;
Even if you get a formula, it might not be in a numerically stable form;
Computations go wrong every day, people do not seem to care about
them too much ⇒ operational risk!
Careful checks have to be made (often not acknowledged);
(Modern) mathematicians should be (more!) aware of these issues;
There are many more of the above problems with serious consequences
to statistics for copulas in large dimensions.
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If you pay attention to the numerical issues. . .
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-log-likelihood of a nested Gumbel copula C(u) = C0(u1, C1(u2, u3)):

−log−likelihood of a nested Gumbel copula

C(u ) = C0(u1, C1(u2, u3))      n = 100      τ(θ0) = 0.25      τ(θ1) = 0.5
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Thank you for your attention
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