Copula Theory and Applications: Quo Vadis?

Paul Embrechts, Marius Hofert

Outline

1 Historical remarks

2 Copulas: An introduction

- 2.1 Definition
- 2.2 Sklar's Theorem
- 2.3 Praise and Criticism
- 2.4 Stress testing
- 2.5 Correlation misunderstandings

3 Classical copula models

- 3.1 Elliptical copulas
- 3.2 Archimedean copulas
- 3.3 Exotic animals in the zoo

4 Hierarchical models: From d = 2 to $d \gg 2$

- 4.1 Density-based approach: Pair-copula constructions
- 4.2 Copula-based approach: Nested Archimedean copulas

5 Application to Finance: CDO pricing

- 5.1 Towards CDOs: CDS
- 5.2 CDO: Main idea

6 Copulas and Statistics: Problems for $d \gg 2$

References

1 Historical remarks

- Hoeffding (1940): Research on standardized distribution functions $([-1/2, 1/2]^2)$; Féron (1956): on $[0, 1]^3$
- Sklar (1959): term copula = link (linguistics: term linking a subject with a predicate)
- Until 1981: virtually all results obtained in the context of probabilistic metric spaces
- Schweizer and Wolff (1981): Analyze dependence between two or more random variables; invariance principle
- Mid-90s, Embrechts et al. (2002): copulas meet financial and insurance mathematics
- A picture is worth a thousand words...

© 2012 Paul Embrechts, Marius Hofert | RiskLab, ETH Zurich

2 Copulas: An introduction

2.1 Definition

Definition

A copula C is a distribution function with U[0,1] margins.

Characterization:

- (1) C is grounded;
- (2) C has U[0,1] margins;
- (3) C is d-increasing,

$$\mathbb{P}(\boldsymbol{U}\in(\boldsymbol{a},\boldsymbol{b}])=\Delta_{(\boldsymbol{a},\boldsymbol{b}]}C\geq0.$$

Equivalently (if exists), $c(\boldsymbol{u}) \ge 0$.

 $\ensuremath{\mathbb{C}}$ 2012 Paul Embrechts, Marius Hofert | RiskLab, ETH Zurich

Why standardizing the margins?

Question: What do these data sets have in common? Difficult to determine: left: N(0,1) margins; right: Exp(1) margins.

Answer: The dependence structure between X_1 and X_2 !

Note: Not only equal in distribution, but even the same realizations! (from a Gumbel copula)

2.2 Sklar's Theorem

Theorem (Sklar (1959)) $H(x_1,...,x_d) = C(F_1(x_1),...,F_d(x_d)), x \in \mathbb{R}^d$

Interpretation in two directions:

- " \Rightarrow " Investigate dependencies (estimation, gof)
 - + Invariance principle: $(F_1(X_1), \ldots, F_d(X_d))^\top \sim C$
 - + Numerics: reduce parameter space
- "⇐" Construction of distributions (sampling)
 - + Theory: Unifying framework
 - + Financial and Insurance Mathematics: Realistic models

Sklar's Theorem (explained graphically)

Note: The ranks of the points remain the same by transforming the margins with increasing transformations!

Sklar's Theorem (explained graphically)

Note: We can adjust the margins as we like while keeping the dependence structure the same!

2.3 Praise and Criticism

Mikosch (2006):

- There is no particular advantage in using copulas just use any suited model that can be treated statistically;
- Separation of marginals and dependence structure leads to a biased view of stochastic dependence, e.g., when one fits a model to data;
- Various copula models are mostly chosen because of mathematical convenience;
- The class of copulas is too big to be useful;
- Copulas do not contribute to a better understanding of multivariate extremes;
- Copulas do not fit into the existing framework of stochastic processes and time series analysis; they are essentially static models.

Embrechts (2006):

- It is up to us mathematicians to also point at the limitations;
- Queries on two-stage models and on truly dynamic models are pertinent;
- Real finance: two stages add dependence to marginal models (Sklar); This can help to understand the model risk present;
- Often, there is no hope to obtain a global dynamic model; the data information available does not allow for risk measures (i.e., VaR) to be estimated precisely;
- There are three reasons why copulas are important: pedagogic, pedagogic, and stress testing;
- Stress testing: what range of possibilities exist for risk measures?
- I personally hope that mathematical finance and insurance will turn to truly (high-dimensional) multivariate modelling in QRM.

2.4 Stress testing

(1) "⇐" in Sklar's Theorem: H(x₁,...,x_d) = C(F₁(x₁),...,F_d(x_d))
(2) Given: X = (X₁,...,X_d)^T: risk factors Ψ(X): financial instrument R: risk (or pricing) measure
Task: Calculate R(Ψ(X)) under some assumptions on X, Ψ, R.

Typical solution:

 $R_L \le R(\Psi(\boldsymbol{X})) \le R_U$

Determine R_L and R_U and prove sharpness!

2.5 Correlation misunderstandings

Misunderstanding 1: F_1 , F_2 , and ρ determine H

Counter-example: $C(u_1, u_2) = u_1 u_2 (1 - 2\theta(u_1 - \frac{1}{2})(u_1 - 1)(u_2 - 1))$

Properties:

(1) $F_1, F_2: U[0,1]$

(extends to margins with $\mathbb{E}[X^2] < \infty$ and F_1 symmetric about 0)

2)
$$\rho = 0$$
 for all $\theta \in [-1, 1]$

(3) Clearly, $C \neq \Pi$

In particular, $\rho = 0 \Rightarrow$ independence!

Density for $\theta = 1$

Reasoning:

Hoeffding's identity

$$\rho = 12 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (C(F_1(u_1), F_2(u_2)) - F_1(u_1)F_2(u_2)) \, du_1 du_2$$

Now consider $\mathrm{U}[0,1]$ margins and

$$C(u_1, u_2) = u_1 u_2 + f_1(u_1) f_2(u_2)$$

with $f_j(0) = f_j(1) = 0$ and $f'_1(u_1) f'_2(u_2) \ge -1$. Then
$$\rho = 12 \int_0^1 f_1(u_1) \, du_1 \int_0^1 f_2(u_2) \, du_2$$

 \Rightarrow If f_1 is point symmetric about 1/2 (as above), then ho=0.

Hoeffding's identity and the Fréchet-Hoeffding bounds also imply:

$$ho_{\min} \leq
ho \leq
ho_{\max}$$
 attained for W and M

Misunderstanding 2: Given F_1 , F_2 , any $\rho \in [-1, 1]$ is attainable Let $X_j \sim \text{LN}(0, \sigma_i^2)$, $j \in \{1, 2\}$. Then the Hoeffding bounds on ρ are:

Example: For $\sigma_1^2 = 1$, $\sigma_2^2 = 16$: $\rho \in [-0.0003, 0.0137]!$

Further misunderstandings

- $\rho = \rho(X_1, X_2)$ exists for every pair (X_1, X_2) of random variables.
- ρ(X₁, X₂) is invariant under strictly increasing transformations on X₁
 or X₂.

Counter-example:
$$X_1, X_2 \stackrel{\text{iid}}{\sim} Par(3) \Rightarrow \rho(X_1, X_2) = 0$$

but $\rho(X_1^2, X_2)$ does not exist!

Note: Copula-based measures of concordance (e.g., Kendall's tau, Spearman's rho) still cannot solve Misunderstanding 1. In other words, one cannot summarize dependence in one number!

3 Classical copula models

3.1 Elliptical copulas

- constructed from Sklar: $X = \mu + RAU$
- radially symmetric $\Rightarrow \lambda_L = \lambda_U$
- typically, C not explicit
- density c available
- sampling often simple
- widely used in practice (pairwise thinking in terms of correlation)
- examples: Gaussian, t_{ν}

© 2012 Paul Embrechts, Marius Hofert | RiskLab, ETH Zurich

SMI daily log-returns from 2011-09-09 to 2012-03-28.

Pairwise Rosenblatt transformed pseudo-observations

to test $H_0: C$ is $t_{12.165}$

p-values: minimum: 0.076; global (Bonferroni/Holm): 1

3.2 Archimedean copulas

• constructed explicitly via $\psi(\psi^{-1}(u_1) + \dots + \psi^{-1}(u_d))$

(or with a stoch. representation)

- relevant quantities expressible in the one-dimensional function ψ
- $\lambda_L \neq \lambda_U$ possible
- symmetric
- sampling often simple (MO)
- used in practice
- examples: A, C, F, G, J, opC,...

Recent findings: Densities for A, C, F, G, J, opC, see Hofert et al. (2012)

3.3 Exotic animals in the zoo

Copulas can appear in totally different stochastic contexts, e.g.,...

... as dependencies of default times in complicated credit default models.

4 Hierarchical models: From d = 2 to $d \gg 2$

The popular term "hierarchical" is overloaded! Some use it for

- (1) density-based approaches;
- (2) copula-based approaches;
- (3) approaches based on stochastic representations;
- (4) simulated dependencies.

Such dependencies should rather be called...

Dependence structures that extend in a more (but not too) flexible way to higher dimensions than their corresponding low-dimensional special cases.

... but that's not very practical 😳

4.1 Density-based approach: Pair-copula constructions

- This approach typically works with non-uniform margins;
- It is based on a decomposition of a multivariate density f into conditional densities of lower dimension:

$$f(x_1, \dots, x_d) = f(x_1) \prod_{j=1}^{a} f(x_j \mid x_1, \dots, x_{j-1})$$

Further decompose the $f(x_j \mid x_1, \dots, x_{j-1})$'s via Sklar's Theorem: $f(x_j \mid \boldsymbol{x}_I) = \frac{f(x_j, x_k \mid \boldsymbol{x}_{I \setminus \{k\}})}{f(x_j \mid \boldsymbol{x}_{I \setminus \{k\}}) f(x_k \mid \boldsymbol{x}_{I \setminus \{k\}})} f(x_j \mid \boldsymbol{x}_{I \setminus \{k\}})$ $= c_{j,k|I \setminus \{k\}} (F(x_j \mid \boldsymbol{x}_{I \setminus \{k\}}), F(x_k \mid \boldsymbol{x}_{I \setminus \{k\}})) f(x_j \mid \boldsymbol{x}_{I \setminus \{k\}})$

 \Rightarrow One obtains a density decomposition into bivariate pieces

- Flexible model, likelihood tractable
- Not all bivariate margins (e.g.) are given explicitly (λ's etc.); error propagation when estimating the model step-wise

4.2 Copula-based approach: Nested Archimedean copulas

Idea: Plug Archimedean copulas into each other! $C(u) = C_0(u_1, C_1(u_2, u_3))$

 $=\psi_0\big(\psi_0^{-1}(u_1)+\psi_0^{-1}\big(\psi_1(\psi_1^{-1}(u_2)+\psi_1^{-1}(u_3))\big)\big)$

⇒ Asymmetries; not too many parameters; All lower-dimensional margins known

Question: When is it a copula? Under an assumption on the nodes, e.g.:

Theorem (Joe (1997), McNeil (2008)) $(\psi_0^{-1} \circ \psi_1)'$ completely monotone $\Rightarrow C$ is a copula

© 2012 Paul Embrechts, Marius Hofert | RiskLab, ETH Zurich

 C_0

 u_2

C

 u_3

Stochastic representation (and sampling)

 $\begin{pmatrix} \psi_0 \left(\frac{E_1}{V_0}\right), \psi_1 \left(\frac{E_2}{V_{01}}\right), \psi_1 \left(\frac{E_3}{V_{01}}\right), \psi_2 \left(\frac{E_4}{V_{02}}\right), \psi_3 \left(\frac{E_5}{V_{23}}\right), \psi_3 \left(\frac{E_6}{V_{23}}\right), \psi_3 \left(\frac{E_7}{V_{23}}\right) \end{pmatrix}^{\top}$ where $V_0 \sim \mathcal{LS}^{-1}[\psi_0] \qquad V_{01}|V_0 \sim \mathcal{LS}^{-1}[\psi_{01}(\cdot;V_0)]$ $V_{02}|V_0 \sim \mathcal{LS}^{-1}[\psi_{02}(\cdot;V_0)] \qquad V_{23}|V_{02} \sim \mathcal{LS}^{-1}[\psi_{23}(\cdot;V_{02})]$

 $\Rightarrow \mathsf{R}$ package copula

5 Application to Finance: CDO pricing

Goal: Pricing derivatives on large credit portfolios

Intensity-based default model:

$$p_i(t) = \exp\left(-\int_0^t \lambda_i(s) \, ds\right)$$

$$\tau_i = \inf\{t \ge 0 : p_i(t) \le U_i\}$$

$$u_i = \inf\{t \ge 0 : p_i(t) \le U_i\}$$

$$u_i = u_i(t) \le U_i$$

Note: $\lambda_{II} = 0 \Rightarrow$ No joint defaults within short time!

Copulas for the triggers U:

- (1) Li (2000): Gaussian ($\lambda_U = 0$)
- (2) Schönbucher and Schubert (2001): Archimedean ($\lambda_U > 0$ possible)
- (3) Hofert and Scherer (2011): nested Archimedean ($\lambda_U > 0$, hierarchies)

- 5.1 Towards CDOs: CDS
- CDS = Credit default swap
- Contract of the form:

Pricing problem: Determine the fair premium ("spread")

Now consider a portfolio of I such contracts.

Main idea of a CDO: Partition it into tranches of different seniorities. See also Donnelly and Embrechts (2010).

Again, a picture is worth a thousand words...

5.2 CDO: Main idea

5.2 CDO: Main idea

5.2 CDO: Main idea

Crucial observations

Untranched portfolio: The overall loss process is (R recovery rate)

$$L_t = \frac{1-R}{I} \sum_{i=1}^{I} \mathbb{1}_{\{\tau_i \le t\}}$$

- \Rightarrow Expected loss $= \mathbb{E}[L_t] = \frac{1-R}{I} \sum_{i=1}^{I} \mathbb{P}(p_i(t) \le U_i)$
- \Rightarrow Independent of C. Calibrate to CDS quotes, the "marginals" here.
- Tranched portfolio: The loss affecting tranche j is

$$L_{t,j} = \min\{\max\{0, L_t - l_j\}, u_j - l_j\}$$

- \Rightarrow A non-linear functional in the overall loss L_t
- \Rightarrow Dependence on C! Calibrate C to CDO quotes (e.g., iTraxx).

Requires fast MC; one spread available for each tranche per day; motivation for nested Archimedean copulas, see Hofert and Scherer (2011).

6 Copulas and Statistics: Problems for $d \gg 2$

Statistics is mainly investigated in d = 2. For larger d (besides the theoretical difficulties), there are serious numerical problems. In short: Copulas meet Numerics for d large!

Task: Evaluate the density of a Gumbel copula.

• General formula (5s): $C(u) = \psi(\psi^{-1}(u_1) + \dots + \psi^{-1}(u_d))$ implies

$$c(\boldsymbol{u}) = (-1)^d \psi^{(d)} \left(\sum_{j=1}^d \psi^{-1}(u_j) \right) \cdot \prod_{j=1}^d -(\psi^{-1})'(u_j).$$

 \Rightarrow log-density

• Finding $(-1)^d \psi^{(d)}$ for $\psi(t) = \exp(-t^{1/\theta})$ theoretically (some hours): $(-1)^d \psi^{(d)}(t) = \frac{\psi(t)}{t^d} P(t^{1/\theta})$

where P is a polynomial with coefficients $a_{dk}(\theta)$ (again polynomials!) © 2012 Paul Embrechts, Marius Hofert | RiskLab, ETH Zurich Num. Problem 1: log(−1)^dψ^(d)(t) = log ∑. Since the sum is typically not in a range representable in computer arithmetic, we can't first compute the sum and then take the log! Idea: intelligent log:

$$\log \sum_{i=1}^{n} x_i = \log \sum_{i=1}^{n} \exp(b_i), \quad b_i = \log x_i$$
$$= \log \left(\exp(b_{\max}) \sum_{i=1}^{n} \exp(b_i - b_{\max}) \right)$$
$$= b_{\max} + \log \sum_{i=1}^{n} \exp(b_i - b_{\max})$$

This can be adapted to our setup where $x_i \leq 0$ for some *i*.

- Careful implementation of 8 methods for evaluation, checks,... (several weeks/months).
- Num. Problem 2: Checks are particularly difficult since CASs fail!

Example: $\psi^{(50)}(15) = ?$ for $\theta = 5/4$ (correct answer: 1056.93...)

- Maple 14: 10628, -29800,... (chaotic!; sign wrong; slow)
- Mathematica 8: (aborted after 10 min)
- MATLAB 7.11.0: \checkmark (d = 100: aborted after several min)
- Sage 4.7.1: (aborted after 10 min)

Remark: Automatic differentation might provide a solution.

- Note: This is only one evaluation! It has to be done...
 - n(=100) times for computing the log-likelihood once
 - m(=10) times for computing MLEs
 - N(=1000) times within a bootstrap
 - M(=200) times to (num.) show bootstrap convergence
 - for various n, d, θ ...
 - \Rightarrow Parallel computing required; still (!) run time matters...
- $\ensuremath{\mathbb{C}}$ 2012 Paul Embrechts, Marius Hofert | RiskLab, ETH Zurich

Will anyone care about this in 20 years?

Likely answer: Yes

- Useful formulas can not always be obtained from CASs;
- Even if you get a formula, it might not be in a numerically stable form;
- Computations go wrong every day, people do not seem to care about them too much ⇒ operational risk!
- Careful checks have to be made (often not acknowledged);
- (Modern) mathematicians should be (more!) aware of these issues;
- There are many more of the above problems with serious consequences to statistics for copulas in large dimensions.

If you pay attention to the numerical issues...

-log-likelihood of a nested Gumbel copula
$$C(\boldsymbol{u}) = C_0(u_1, C_1(u_2, u_3))$$
:

References

- Donnelly, C. and Embrechts, P. (2010), The devil is in the tails: actuarial mathematics and the subprime mortgage crisis, *ASTIN Bulletin*, 40.1, 1–33.
- Embrechts, P., McNeil, A. J., and Straumann, D. (2002), Correlation and Dependency in Risk Management: Properties and Pitfalls, *Risk Management: Value at Risk and Beyond*, ed. by Dempster, M., Cambridge University Press, 176–223.
- Genest, C., Gendron, M., and Bourdeau-Brien, M. (2009), The Advent of Copulas in Finance, *The European Journal of Finance*, 15, 609–618.

Thank you for your attention

