Measuring Risk for Function of Dependent Risks

Paul Embrechts
Andrea Höing
Alessandro Juri

www.math.ethz.ch/~finance

INTRODUCTION

Suppose we measure risk through VaR and that we are concerned with the following problem:

- one-period risks X_1, X_2 are given
- marginal Value-at-Risks are known

At the integrated level the bank has to measure the risk of the joint position $X_1 + X_2$

The intuitive statement "The worst case VaR for a portfolio $X_1 + X_2$ occurs when the linear correlation function is maximal" is in general (non-elliptical portfolios) wrong

The techniques summarized enable risk managers to tackle the following problems:

- How can one bound the Value-at-Risk of a global, aggregated position, if one only has information on the marginal distributions (VaR's)?
- How do these bounds change when specific dependence information is assumed?

Generalized inverses and VaR

Definition 1 (Generalized inverses) The generalized left and right continuous inverses of an increasing function $\varphi : \mathbb{R} \to \mathbb{R}$ are:

$$\varphi^{-1}(y) := \inf\{x \in \mathbb{R} \mid \varphi(x) \ge y\}$$
$$\varphi^{\wedge}(y) := \sup\{x \in \mathbb{R} \mid \varphi(x) \le y\}$$

Definition 2 (VaR) For $0 \le \alpha \le 1$ the *Value-at-Risk at probability level* α of a r.v. X with d.f. F_X is its α -quantile

$$VaR_{\alpha}(X) := F_X^{-1}(\alpha)$$

Setup

- risks X_1, X_2 with d.f. F_1, F_2
- $\psi: \mathbb{R}^2 \to \mathbb{R}$ increasing and continuous

We are interested in bounding VaR of the joint position $\psi(X_1, X_2)$

Examples

a) portfolio position:

$$\psi(x_1, x_2) = a_1 x_1 + a_2 x_2$$

b) excess-of-loss reinsurance:

$$\psi(x_1, x_2) = (x_1 - k)^+ + (x_2 - k)^+, \ k \ge 0$$

c) stop-loss reinsurance:

$$\psi(x_1, x_2) = (x_1 + x_2 - k)^+, k \ge 0$$

d) basket options, credit derivatives

Remarks

- results extend to aribitrary dimensions
- ullet for notational reasons losses are in the right tails of the F_i 's
- more general risk measures can also be treated

CONTENT

- 1. Copulae
- 2. Distributional bounds
- 3. Comonotonicity and independence
- 4. Computational aspects
- 5. Examples

1 COPULAE

1.1 Definitions, properties and examples

Definition 3 A (2 -dimensional) copula C is a (2-dimensional) d.f. on $[0,1]^2$ with uniform-(0,1) marginals

Properties

- a) C is continuous and increasing in each argument
- b) C(1,u) = C(u,1) = u for any $0 \le u \le 1$

Examples

- a) Independence: $C_{\mathbf{I}}(u,v) = uv$
- b) Gumbel: $0 < \beta \le 1$

$$C_{\beta}^{\mathsf{Gu}}(u,v) = \exp\left[-\left\{(-\log u)^{1/\beta} + (-\log v)^{1/\beta}\right\}^{\beta}\right]$$

- c) Comonotonicity: $C_{U}(u, v) = \min\{u, v\}$
- d) Countermonotonicity:

$$C_{\mathsf{L}}(u,v) := (u+v-1)^{+}$$

Remark

•
$$C_1^{\mathsf{Gu}} = C_{\mathsf{I}}$$
 and $\lim_{\beta \downarrow 0} C_{\beta}^{\mathsf{Gu}} = C_{\mathsf{U}}$

1.2 Copulae as dependence structures

Consider a 2-dimensional d.f. F and one-dimensional d.f. F_1, F_2

Idea: separate the dependence structure in F from the marginal behaviour

Theorem 1 (Sklar)

F has marginals F_1, F_2 if and only if there is a copula C such that

$$F(x_1, x_2) = C(F_1(x_1), F_2(x_2))$$

Remarks

- if F_1, F_2 are continuous, then C is unique
- C couples the marginals F_1, F_2 to form the joint d.f. F and is therefore referred to as dependence structure

1.3 Fréchet bounds

Any copula C satisfies

$$C_{\mathsf{L}} \leq C \leq C_{\mathsf{U}}$$

and the expressions C_{L} and C_{U} are called lower- and upper-Fréchet bound

1.4 Comonotonicity and Quadrant dependence

Definition 4 X_1, X_2 with a C_U -dependence structure are called comonotonic

Comonotonicity is a strong dependence concept.

Lemma 1 Equivalent are:

- (i) X_1, X_2 are comonotonic
- (ii) there exist increasing f_1, f_2 and a r.v. Z so that $(X_1, X_2) \stackrel{d}{=} (f_1(Z), f_2(Z))$

Remark

- ullet Lemma 1 (ii) motivates the use of the concept of comonotonicity in financial applications, the r.v. Z can be seen as a common underlying factor
- for X_1 and X_2 comonotonic, correlation between X_1 and X_2 is maximal

Question:

- How to compare two or more dependence structures?
- Which copula leads to a strong or to a weak kind of dependence?

Possible approach: consider stochastic orders for probability distributions and define the degree of dependence through this partial order

For $\mathbf{X}=(X_1,X_2)$ with joint d.f. $F_{\mathbf{X}}$ consider the joint survival function $\overline{F}_{\mathbf{X}}(x_1,x_2)=P(X_1>x_1,X_2>x_2)$

Definition 5 (correlation order) For X and Y with pairwise equal marginals

$$\mathbf{X} \leq_{\mathsf{C}} \mathbf{Y} \Leftrightarrow F_{\mathbf{X}} \leq F_{\mathbf{Y}} \Leftrightarrow \overline{F}_{\mathbf{X}} \leq \overline{F}_{\mathbf{Y}}$$

Remarks

- $X \leq_{\mathsf{C}} Y$ means that Y_1, Y_2 are more likely to take simultaneously small (large) values compared to X_1, X_2
- $(X_1, X_2) \leq_{\mathsf{C}} (Y_1, Y_2)$ is equivalent with: $\mathsf{Cor}(f(X_1), g(X_2)) \leq \mathsf{Cor}(f(Y_1), g(Y_2)), \qquad \text{for all increasing } f, g$
- C_{U} is a maximal element w.r.t. \leq_{C} , hence, for this order, comonotonicity correspond to the strongest possible dependence

Let \tilde{X}_1, \tilde{X}_2 be independent copies of X_1, X_2

Definition 6 If $(\tilde{X}_1, \tilde{X}_2) \leq_{\mathsf{C}} (X_1, X_2)$, then X_1, X_2 are positive quadrant dependent (PQD)

Remarks

• for X_1, X_2 PQD the correlations between by increasing transformed X_1, X_2 are nonnegative

PQD assumption is quite natural when modelling positive dependence:

association \Rightarrow PQD cond. increas. in sequence (CIS) \Rightarrow PQD

2 DISTRIBUTIONAL BOUNDS

2.1 Notation

Let $\psi: \mathbb{R}^2 \to \mathbb{R}$ be increasing and continuous and C a two-dimensional copula

- $\psi_x(\cdot) = \psi(x,\cdot)$
- the dual copula of C is

$$C^{d}(u_{1}, u_{2}) = u_{1} + u_{2} - C(u_{1}, u_{2})$$

Remark

• for (X_1, X_2) with copula C and marginals F_1 , F_2 :

$$C^d(F_1(x_1), F_2(x_2)) = P(\{X_1 \le x_1\} \cup \{X_2 \le x_2\})$$

Define

$$\tau_{C,\psi}(F_1, F_2)(s) := \sup_{x \in \mathbb{R}} C(F_1(x), F_2(\psi_x^{\wedge}(s)))$$

$$\sigma_{C,\psi}(F_1, F_2)(s) := \int_{\{\psi \le s\}} dC(F_1(u), F_2(v))$$

$$\rho_{C,\psi}(F_1, F_2)(s) := \inf_{x \in \mathbb{R}} C^d(F_1(x), F_2(\psi_x^{\wedge}(s)))$$

Remark

• for (X_1, X_2) with copula C and marginals F_1 , F_2 :

$$\sigma_{C,\psi}(F_1, F_2) = F_{\psi(X_1, X_2)}$$

2.2 Existence

Theorem 2 Let (X_1, X_2) have marginal distribution functions F_1 , F_2 and let $\psi : \mathbb{R}^2 \to \mathbb{R}$ be increasing and continuous. If a copula C for (X_1, X_2) satisfies $C \geq C_0$ for some given copula C_0 , then

$$\tau_{C_0,\psi}(F_1,F_2) \le \sigma_{C,\psi}(F_1,F_2) \le \rho_{C_0,\psi}(F_1,F_2)$$

Remarks

- $\tau_{C_0,\psi}(F_1,F_2)$ and $\rho_{C_0,\psi}(F_1,F_2)$ are d.f.
- $\tau_{C_0,\psi}(F_1,F_2)$ and $\rho_{C_0,\psi}(F_1,F_2)$ are in general not d.f. of r.v. $\psi(Y_1,Y_2)$ and $\psi(Z_1,Z_2)$ with $Y_i,Z_i\sim F_i$
- ullet the bounds obtained when increasing C_0 become tighter

Scenarios the condition $C \geq C_0$ leads to different dependence scenarios:

Examples

(Sc1) $C \geq C_L$: no dependence restriction

(Sc2) $C \ge C_I$: PQD dependence

(Sc3) $C \ge C_{0.2}^{Gu}$: at least Gumbel dependence

2.3 Optimality

The distributional bounds $au_{C_0,\psi}(F_1,F_2)$ and $ho_{C_0,\psi}(F_1,F_2)$ are pointwise best-possible

Theorem 3 Let $s \in \mathbb{R}$ be fixed. For a copula C_0 , marginals F_1 , F_2 and $\psi : \mathbb{R}^2 \to \mathbb{R}$ increasing and continuous let

$$\alpha := \tau_{C_0, \psi}(F_1, F_2)(s)$$

$$\beta := \rho_{C_0,\psi}(F_1, F_2)(s)$$

There is a family of copulae $\{C^{\gamma}\}_{0 < \gamma < 1}$ such that

$$\sigma_{C^{\alpha},\psi}(F_1,F_2)(s) = \alpha$$

$$\sigma_{C^{\beta},\psi}(F_1,F_2)(s) = \beta$$

Notation: Under the assumptions of Theorem 2 we write:

$$F_{\min} := \tau_{C_0,\psi}(F_1, F_2)$$

 $F_{\max} := \rho_{C_0,\psi}(F_1, F_2)$

Theorems 2 and 3 rewritten in quantile versions:

- $F_{\text{max}}^{-1}(\alpha) \le \text{VaR}_{\alpha}(\psi(X_1, X_2)) \le F_{\text{min}}^{-1}(\alpha)$
- $F_{\text{max}}^{-1}(\cdot)$, $F_{\text{min}}^{-1}(\cdot)$ are best-possible

Remark

• Theorems 2 and 3 can be modified for functionals ψ which are decreasing in both arguments or increasing in one argument and decreasing in the other

3 COMONOTONICITY AND INDEPENDENCE

3.1 Comonotonicity

VaR calculations for comonotonic risks can be transported through ψ

Proposition 1 Let $\psi : \mathbb{R}^2 \to \mathbb{R}$ be increasing and left continuous in each argument. Then, for any $0 \le \alpha \le 1$ such that the VaR's are finite and comonotonic X_1, X_2 , we have that

$$VaR_{\alpha}(\psi(X_1,X_2)) = \psi(VaR_{\alpha}(X_1),VaR_{\alpha}(X_2))$$

3.2 Independence

For independent risks $F_{\psi(X_1,X_2)}$ can be explicitly calculated

Proposition 2 Let $\psi : \mathbb{R}^2 \to \mathbb{R}$ be increasing and left continuous in each argument. Then for independent X_1, X_2 with d.f. F_1, F_2 , we have

$$F_{\psi(X_1,X_2)}(s) = \int F_2(\psi_x^{\wedge}(s)) dF_1(x)$$

4 COMPUTATIONAL ASPECTS

In most cases, the bounds F_{min} and F_{max} do not allow for a closed form expression and one has to resort to numerical approximations. The numerical procedure is based on the following steps:

- ullet discretization of F_{min} and F_{max}
- ullet alternative representation of F_{min} and F_{max}
- duality principle

4.1 Discretization

Approximate an arbitrary d.f. F by step functions $\underline{F}_N, \overline{F}_N$, $N \in \mathbb{N}$

$$\underline{F}_{N}(s) := \frac{1}{N} \sum_{r=1}^{N} 1_{[q_{r},\infty)}(s)$$

$$\overline{F}_{N}(s) := \frac{1}{N} \sum_{r=0}^{N-1} 1_{[q_{r},\infty)}(s)$$

The jump points q_0, \ldots, q_N are

$$q_0 := \inf \operatorname{supp}(F)$$

 $q_r := F^{-1}(r/N)$ $r = 1, \dots, N-1$
 $q_N := \operatorname{supsupp}(F)$

Remarks

- $\underline{F}_N \le F \le \overline{F}_N$
- $\bullet \ \lim_{N \to \infty} \underline{F}_N = \lim_{N \to \infty} \overline{F}_N = F$

4.2 Alternative representations and duality

Recall:

$$F_{\min}(s) = \sup_{x \in \mathbb{R}} C_0(F_1(x), F_2(\psi_x^{\wedge}(s)))$$
$$F_{\max}(s) = \inf_{x \in \mathbb{R}} C_0^d(F_1(x), F_2(\psi_x^{\wedge}(s)))$$

- $\psi(t_1, t_2) = s \Leftrightarrow \psi_{t_1}^{\wedge}(s-) \le t_2 \le \psi_{t_1}^{\wedge}(s)$
- $C_0(F_1(t_1), F_2(t_2))$ is increasing in both t_1 and t_2

Alternative representation for F_{min} :

$$F_{\min}(s) = \sup_{\psi(t_1, t_2) = s} C_0(F_1(t_1), F_2(t_2)) \tag{1}$$

Similar arguments for F_{max} ? Consider

$$\inf_{\psi(t_1,t_2)=s} C_0^d(F_1(t_1), F_2(t_2)) \tag{2}$$

Remarks

There are examples where (2)

- ullet is at some points strictly smaller than F_{max}
- is not even an upper bound for $F_{\psi(X_1,X_2)}$

However, (2) is the left continuous version of F_{max} and hence it leads to the same quantiles

Conclusion: both (1) and (2) can be used to obtain the quantile functions F_{\min}^{-1} and F_{\max}^{-1}

Theorem 4 (Duality) For an increasing continuous function ψ , a copula C_0 and marginals F_1 , F_2 and any $0 \le \alpha < 1$ one obtains

$$F_{\min}^{-1}(\alpha) = \inf_{C_0(u,v) = \alpha} \psi(F_1^{-1}(u), F_2^{-1}(v))$$

$$F_{\max}^{-1}(\alpha) = \sup_{C_0^d(u,v) = \alpha} \psi(F_1^{-1}(u), F_2^{-1}(v))$$

In practice

- discretize [0,1] as $\{l/N | l \in \{0,...,N\}\}$
- ullet take lpha=r/N, $r\in\{1,\ldots,N-1\}$, and solve for $u_{r,l}$ and $u_{r,l}^*$ in

$$C_0(l/N, \nu_{r,l}) = r/N, \quad C_0^d(l/N, \nu_{r,l}^*) = r/N$$

• take the minimum over all $l \in \{0, \dots, N\}$

Formally

$$q_{\min}(r/N) := \min_{r \le l \le N} \psi(F_1^{-1}(l/N), F_2^{-1}(\nu_{r,l}))$$
$$q_{\max}(r/N) := \max_{0 \le l \le r} \psi(F_1^{-1}(l/N), F_2^{-1}(\nu_{r,l}^*))$$

and (we suppress N)

$$\frac{F_{\min}(s)}{F_{\max}(s)} = \frac{1}{N} \sum_{r=1}^{N} 1_{[q_{\min}(r/N),\infty)}(s)$$

$$\overline{F_{\max}}(s) = \frac{1}{N} \sum_{r=0}^{N-1} 1_{[q_{\max}(r/N),\infty)}(s)$$

5 EXAMPLES

Range for $VaR(\psi(X_1, X_2))$ under different dependence scenarios

(Sc1) $C \geq C_L$: no dependence restriction

(Sc2) $C \ge C_I$: PQD dependence

(Sc3) $C \ge C_{0,2}^{Gu}$: at least a Gumbel dependence

5.1 The plain vanilla case

- $X_i \sim N(0,1), i = 1,2$
- $\psi(x_1, x_2) = x_1 + x_2$

Note that:

- for X_1, X_2 comonotonic $VaR(X_1 + X_2) = VaR(X_1) + VaR(X_2)$
- there is a non-coherence gap, i.e. copulae for which $VaR(X_1 + X_2) > VaR(X_1) + VaR(X_2)$
- the worst case for $VaR(X_1+X_2)$ under $X_i\sim N(0,1)$ conditions is obtained (correlation is not maximal)

Figure 1: Range for $VaR(X_1 + X_2)$ with $X_i \sim N(0, 1)$

		$\alpha = 0.95$			$\alpha = 0.99$	
scenarios	exact	\min	max	exact	\min	max
(Sc1)		-0.13	3.92		-0.03	5.15
(Sc2)		1.52	3.91		2.56	5.15
(Sc3)		2.90	3.83		4.19	5.14
$C = C_I$	2.33			3.29		
$C = C_U$	3.29			4.65		

Table 1: Range for $VaR_{0.95}(X_1 + X_2)$ and $VaR_{0.99}(X_1 + X_2)$ for a standard normal portfolio

5.2 Further examples

Consider the functionals

1.
$$\psi(x_1, x_2) = x_1 + x_2$$

2.
$$\psi_1(x_1, x_2) = (\max(x_1, x_2) - \text{const})^+$$

3.
$$\psi_2(x_1, x_2) = x_1 \cdot I_{\{x_2 > F_2^{-1}(0.9)\}}$$

for a $\gamma(3,1)$ portfolio

Figure 2: $VaR(X_1 + X_2)$ for a $\gamma(3,1)$ portfolio

Lines (1), respectively (2) and (3) are the upper, and lower bounds under scenarios (Sc1), respectively (Sc2) and (Sc3). Lines (4) and (5) correspond to comonotonicity and independence for X_1 and X_2

Figure 3: $VaR(\psi_1(X_1, X_2))$ for a $\gamma(3, 1)$ portfolio

Figure 4: $VaR(\psi_2(X_1, X_2))$ for a $\gamma(3, 1)$ portfolio

Bibliography

For details and further references, see:

Embrechts, P., Höing, A. and Juri, A. (2001). Using Copulae to bound the Value-at-Risk for functions of dependent risks. Finance and Stochastics, to appear.