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INTRODUCTION

Suppose we measure risk through VaR and that we are concerned with the
following problem:

e one-period risks X1, Xo are given

e Mmarginal Value-at-Risks are known

At the integrated level the bank has to measure the risk of the joint position
X1+ Xo

The intuitive statement " T he worst case VaR for a portfolio X1+ X> occurs
when the linear correlation function is maximal” is in general (non-elliptical
portfolios) wrong
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The techniques summarized enable risk managers to tackle the following
problems:

e How can one bound the Value-at-Risk of a global, aggregated position,
if one only has information on the marginal distributions (VaR's)?

e How do these bounds change when specific dependence information is
assumed?
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Generalized inverses and VaR

Definition 1 (Generalized inverses) The generalized left and right con-
tinuous inverses of an increasing function ¢ : R — IR are:

w1 (y)
" (y) :

inf{zx € R|p(x) > y}
sup{z € R|¢(z) <y}

Definition 2 (VaR) For 0 < a < 1 the Value-at-Risk at probability level
a of a r.v. X with d.f. Fx is its a-quantile

VaRa(X) := Fyt(a)
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Setup

e risks X1, Xo with d.f. Fy, F5

e ¥ : R? = R increasing and continuous

We are interested in bounding VaR of the joint position ¥ (X1, X»)
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Examples

a) portfolio position:
Y(x1, ) = ay1ry + axxo

b) excess-of-loss reinsurance:
(1, 22) = (w1 — k)T + (22— k)T, k>0

C) stop-loss reinsurance:
Y(z1,20) = (21 + 22— k)T, k>0

d) basket options, credit derivatives
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Remarks

e results extend to aribitrary dimensions

e for notational reasons losses are in the right tails of the F;'s

e More general risk measures can also be treated
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1 COPULAE

1.1 Definitions, properties and examples

Definition 3 A (2 -dimensional) copula C is a (2-dimensional) d.f. on
[0, 1]2 with uniform-(0,1) marginals

Properties
a) C is continuous and increasing in each argument

b) C(1,u) =C(u,1) =u forany 0<u <1
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Examples
a) Independence: Ci(u,v) = uv

b) Gumbel: 0 < 3<1

C’ﬁGU(u,v) = exp [— {(_ log u)l/ﬁ + (= log v)l/ﬁ}ﬁ]

c) Comonotonicity: Cy(u,v) = min{u,v}

d) Countermonotonicity:

CL(u,v) i=(u4+v—1)T

Remark
o CPY = Crand limg) o CGY = Cy

©2003 (P. Embrechts, A. Hoing, A. Juri ETH-Zirich)



1.2 Copulae as dependence structures
Consider a 2-dimensional d.f. F' and one-dimensional d.f. Fy, F>

Idea: separate the dependence structure in F' from the marginal behaviour

Theorem 1 (Sklar)
F' has marginals Fq, F> if and only if there is a copula C' such that

F(x1,z2) = C(F1(21), Fo(x2))

Remarks
e if Fq, F> are continuous, then C' is unique

e ( couples the marginals F4y, F» to form the joint d.f. F' and is therefore
referred to as dependence structure
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1.3 Fréchet bounds

Any copula C satisfies

C. <C <0y

and the expressions C| and C|, are called lower- and upper-Fréchet bound
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1.4 Comonotonicity and Quadrant dependence

Definition 4 X4, Xo with a C-dependence structure are called comono-
tonic

Comonotonicity is a strong dependence concept.
Lemma 1 Equivalent are:

(i) X1,X> are comonotonic
(ii) there exist increasing f1, fo and a r.v. Z so that (X1, X5) d (f1(2), fo(Z2))

Remark

e Lemma 1 (ii) motivates the use of the concept of comonotonicity in
financial applications, the r.v. Z can beseen as a common underlying

factor

e for X7 and X, comonotonic, correlation between X1 and X5 is maximal
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Question:

e How to compare two or more dependence structures?

e \Which copula leads to a strong or to a weak kind of dependence?

Possible approach: consider stochastic orders for probability distributions
and define the degree of dependence through this partial order
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For X = (X1, X») with joint d.f. Fx consider the joint survival function

Fx(z1,zp) = P(X1 > 21, X2 > 22)

Definition 5 (correlation order) For X and Y with pairwise equal marginals

Remarks

e X <cY means that Y7,Y> are more likely to take simultaneously small
(large) values compared to Xq1, X»

o (X1,X5) <c(Y1,Y5) is equivalent with:
Cor(f(X1),9(X2)) < Cor(f(Y1),9(Y2)),  for all increasing f,g

e (' is a maximal element w.r.t. <c, hence, for this order, comonotoni-
City correspond to the strongest possible dependence

©2003 (P. Embrechts, A. Hoing, A. Juri ETH-Zirich) 14



Let X1, X5 be independent copies of X1, X5

Definition 6 If (X1,X5) <c (X71,X5), then X, X, are positive quadrant
dependent (PQD)

Remarks

e for X1,Xo PQD the correlations between by increasing transformed
X1, Xo are nonnegative

e PQD assumption is quite natural when modelling positive dependence:
association = PQD

cond. increas. in sequence (CIS) = PQD
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2 DISTRIBUTIONAL BOUNDS
2.1 Notation

Let o : R?2 — R be increasing and continuous and C a two-dimensional
copula

o Yu() =¢(x,-)

e the dual copula of C is

CUut,up) = uy + uo — C(uq,us)

Remark

e for (X1, X5) with copula C and marginals Fy, F»:
CUFy (1), Fa(22)) = P({X1 < 21} U {Xs < 25})
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Define

To.0(F1, F2)(s) 1= sup C(Fi(z), F2(¢}(s)))
z€IR

Jryesy AL, o))

inf CU(Fy(2), Fa(9 (5)))

ocy(F1, F2)(s) :

pCp(F1, F2)(s)

Remark

e for (X1, X5) with copula C and marginals Fy, F»:

ocw(F1, F2) = Fyx, x,)
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2.2 Existence

Theorem 2 Let (Xq,X5) have marginal distribution functions Fy, F> and
let ¢ : R? — R be increasing and continuous. If a copula C for (X1, X5)
satisfies C > Cqy for some given copula Cqy, then

T, (F1, F2) < ocy(F1, F2) < poy o (F1, F2)

Remarks

® 70,4 (F1, F2) and pg, 4 (F1, F2) are d.f.

® 70,4 (F1, F2) and pc, (F1, F2) are in general not d.f. of r.v. ¥(Y7,Y2)
and @D(Zl,ZQ) with Y;, Z;, ~ F;

e the bounds obtained when increasing Cy become tighter
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Scenarios the condition C > C leads to different dependence scenarios:

Examples

(Scl) C > Cy: no dependence restriction
(Sc2) C > Cr: PQD dependence

(Sc3) C > C§Y: at least Gumbel dependence
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2.3 Optimality

The distributional bounds 7¢, (F1, F2) and pg, (F1, F») are pointwise
best-possible

Theorem 3 Let s € R be fixed. For a copula Cy, marginals Fy, F> and
Y : R? = R increasing and continuous let

a = 7o, 4 (F1, F2)(s)
B = pcy,y(F1, F2)(s)

There is a family of copulae {C7}o<,<1 Such that

ocaqy(F1, F2)(s) = «
008, (F1, F2)(s) =
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Notation: Under the assumptions of Theorem 2 we write:

Fin = 7oy, (F1, F2)
Fmax 1= pcy,p(F1, F2)

Theorems 2 and 3 rewritten in quantile versions:

o Frax(a) < VaRa(¥(X1,X2)) < Fol ()

o Fr;%x(o), Fr;iln(-) are best-possible

Remark

e [ heorems 2 and 3 can be modified for functionals ¥ which are decreas-
ing in both arguments or increasing in one argument and decreasing in
the other
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3 COMONOTONICITY AND INDEPENDENCE

3.1 Comonotonicity

VaR calculations for comonotonic risks can be transported through

Proposition 1 Let ¢ : R?2 — R be increasing and left continuous in each

argument. Then, for any 0 < o« < 1 such that the VVaR'’s are finite and
comonotonic X1, X>, we have that

VaRa (¥ (X1, X2)) =¥ (VaRa(X1), VaRa(X2))
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3.2 Independence

For independent risks Fw(XLXz) can be explicitly calculated

Proposition 2 Let ¢ : R?2 — R be increasing and left continuous in each
argument. Then for independent X1, X> with d.f. Fy, F>, we have

Fu(xy.x2)(8) = [ Fa(w()) dFy ()
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4 COMPUTATIONAL ASPECTS

In most cases, the bounds Fihin and Fmax do not allow for a closed form ex-
pression and one has to resort to numerical approximations. The numerical
procedure is based on the following steps:

e discretization of F,jn and Fmax

e alternative representation of F,jn and Fmax

e duality principle
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4.1 Discretization

Approximate an arbitrary d.f. I’ by step functions Fyn, Fn, N €N

1 N
Fn(s) = > 11 00)(3)
r=1

1 N-1

Fn(s) = N z_:o 1[Qr,oo)(5)

The jump points qq,...,qN are
go := infsupp(F)
gr = F1(r/N) r=1,...,N—1
gy = supsupp(F)

Remarks
e FN<F<Fy

[ |imN_>OOEN — |imN_>OOFN = F
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4.2 Alternative representations and duality

Recall:

Fmin(s) = sup Co(F1(x), F2(¢5(s)))
relR

Fmax(s) = ;L!Q]]f? Cg(Fl (), F2(¢£(3))>

o Y(t1,t2) = s Yy (s—) <ta <oy (s)

o Co(Fy(t1),F>(tp)) is increasing in both t; and t5

Alternative representation for Fin:

Frmin(s) =  sup  Co(Fi(t1), Fo(t2))
P(t1,tp)=s
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Similar arguments for Fmax? Consider

inf  Ce(Fy(t1), Fo(t 2
AN o(F1(t1), Fa(t2)) (2)

Remarks
There are examples where (2)

e iS at some points strictly smaller than Fmax
e iS not even an upper bound for Fw(Xl,Xz)

However, (2) is the left continuous version of Fmax and hence it leads to
the same quantiles

Conclusion: both (1) and (2) can be used to obtain the quantile functions
Fl and Fpiy
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Theorem 4 (Duality) For an increasing continuous function 1, a copula

Co and marginals Fy, F> and any 0 < a < 1 one obtains

Fol(e) = inf @(Fy (w), F3 1)
Co(u,v)=a

Fax(@) = sup  o(Fy H(w), Fy ()
C’g(u,v)za

In practice
e discretize [0,1] as {I/N |l € {0,...,N}}
e take a=r/N, re{1,...,N — 1}, and solve for v,; and v}, in

Co(l/N,vr)) =r/N, CG(U/N, v} ) =r/N
e take the minimum over all [ € {0,..., N}
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Formally

dmin(r/N) 1= TLT;L”N?P(Fl 1(Z/N) Fy 1(Vrl))

gmax(r/N) 1= O@la<x Y(F 1(Z/N) Fs5 1( l>)

and (we suppress N)

Fmin(s) = L gmin (r/N),00) (5)

1

M?EMZ

1
N
- 1
Fmax(s) = N

L gmax(r/N),00) (5)
0]
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5 EXAMPLES
Range for VaR(v¥ (X1, X>)) under different dependence scenarios

(Scl) C > Cy: no dependence restriction
(Sc2) C > Cr: PQD dependence

(Sc3) C > C(%: at least a Gumbel dependence

©2003 (P. Embrechts, A. Hoing, A. Juri ETH-Zirich)

30



5.1 The plain vanilla case

e X;~N(0,1),i=1,2

o Y(xy1,x0) =21 + X2

Note that:

e for X1, X> comonotonic VaR(X1 4+ Xo) = VaR(X1) + VaR(X5)

e there is a non-coherence gap, i.e. copulae for which
VaR(X1 4 X5) > VaR(X1) + VaR(X>5)

e the worst case for VaR(X1 + X5) under X; ~ N(0,1) conditions is
obtained (correlation is not maximal)
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Figure 1: Range for VaR(X71 + X5) with X; ~ N(0,1)
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a = 0.95 a = 0.99
scenarios | exact min max | exact min max
(Scl) -0.13 3.92 -0.03 5.15
(Sc2) 1.52 3.91 2.56 5.15
(Sc3) 2.90 3.83 4.19 5.14
C=Cy 2.33 3.29
C=Cy 3.29 4.65

Table 1: Range for VaRg95(X1 + X2) and VaRgg9(X; + X3) for a standard
normal portfolio

©2003 (P. Embrechts, A. Hoing, A. Juri ETH-Zirich)



5.2 Further examples

Consider the functionals

1. Y(x1,20) = 21 + 22

2. 1(z1,22) = (Max(z1,2p) — const)™
3. Yo(@y,22) =21 Iy 10,0y

for a v(3,1) portfolio
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Figure 2: VaR(Xq1+ X5) for a v(3,1) portfolio
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Lines (1), respectively (2) and (3) are the upper, and lower bounds
under scenarios (Scl), respectively (Sc2) and (Sc3). Lines (4) and
(5) correspond to comonotonicity and independence for X; and X»
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Figure 3: VaR(y1(X1,X5)) for a v(3,1) portfolio

MG

®)
(©)

MEE)

0.9 0.92 0.94 0.95 0.96 0.98 alpha

©2003 (P. Embrechts, A. Hoing, A. Juri ETH-Zirich)

37



Figure 4: VaR(y>(X1,X>)) for a v(3,1) portfolio
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