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1 Introduction

This paper grew out of various discussions with academics and practitioners around

the theme of the interplay between insurance and �nance. Some issues were:

{ Deregulation and the increasing collaboration between insurance markets and

capital markets.

{ The emergence of �nance related insurance products, as there are catastrophe

futures and options, PCS options, index linked policies, catastrophe bonds : : :.

{ The emergence of integrated risk management practices for �nancial institu-

tions, see Doherty (2000).

{ Asset{liability and risk{capital based modelling (think of DFA (Dynamic Fi-

nancial Analysis), DST (Dynamic Solvency Testing) and EV (Embedded Value))

subsuming simple liability modelling as the industry standard.

{ The emergence of �nancial engineering as a widely accepted discipline, and its

interface with actuarial science.

Besides these more general issues, speci�c questions were recently discussed in pa-

pers like Gerber and Shiu (1994), Embrechts and Meister (1997) and the refer-

ences therein. An interesting approach on the �nancial pricing of insurance to-

gether with material for further reading is to be found in Phillips and Cummins

(1995). An excellent, historical discussion on the evolution of actuarial versus �-

nancial pricing and hedging is Hans B�uhlmann's lecture \Mathematical paradigms

in insurance and �nance." A web{version of this lecture is to be found under

http://www.afshapiro.com/Buhlmann/index�Buhlmann.htm.

In this article, rather than aiming at giving a complete overview of the issues

at hand, I will concentrate on some recent (and some not so recent) developments

which from a methodological point of view o�er new insight into the comparison of

pricing mechanisms between insurance and �nance.

2 The basics of insurance pricing

Any standard textbook on the mathematics of insurance contains the de�nition of

a fair insurance premium and goes on to explain the various ways in which premium

principles can be derived, including the necessary loading. See for instance Bowers

et al. (1986), B�uhlmann (1970) and Gerber (1979). The former gives a most readable

introduction to the key issues of insurance premium calculation in a utility{based
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framework. In Bowers et al. (1989). p. 1, the following broad de�nition of insurance

is to be found.

An insurance system is a mechanism for reducing the adverse �nancial

impact of random events that prevent the ful�llment of reasonable expec-

tations.

Utility theory enters as a natural (though perhaps somewhat academic) tool to

provide insight into decision making in the face of uncertainty. In determining the

value of an economic outcome, represented as a random variable on some probability

space (
;F ; P ), the expected value principle leads at the fair or so{called actuarial

value EX where E stands for the expectation with respect to the (physical!) mea-

sure P . Clearly inadequate as a premium principle (one should be prepared to pay

more than EX), a utility function u enters in the premium{de�ning equation

u(w � �) = E(u(w �X))

where w stands for current wealth, � for the premium charged to cover the loss X

when u is our utility. That means, u is an increasing twice di�erentiable function

on R satisfying u0 > 0 (more is better) and u00 < 0 (decreasing marginal utility).

Through Jensen's inequality, the concavity of u immediately leads to

� � EX

for our risk averse decision maker. Note that the fair premium EX is obtained for

a linear utility. Similar considerations apply to the insurer who has utility v say,

initial capital k and collected premium � covering the random loss X, then

v(k) = E(v(k +��X)) :

Again one easily concludes that

� � EX :

An insurance contract is now called feasible whenever

� � � � EX :

Bowers et al. (1989), p. 10 summarise:

A utility function is based on the decision maker's preferences for various

distributions of outcomes. An insurer need not be an individual. It may

be a partnership, corporation or government agency. In this situation

the determination of v, the insurer's utility function, may be a rather
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complicated matter. For example, if the insurer is a corporation, one of

the management's responsibilities is the formulation of a coherent set of

preferences for various risky insurance ventures. These preferences may

involve compromises between conicting attitudes toward risk among the

groups of stockholders.

By speci�c choices of v (and/or u), various well{known premium principles can

be derived. See for instance Goovaerts, de Vylder and Haezendonck (1984) for

a detailed discussion, where also other approaches towards premium calculation

principles are given.

a) The net{premium principle and its re�nements are based on the equivalence

principle yielding � = EX. Resulting principles are:

{ the expectation principle

� = EX + ÆEX ;

{ the variance principle

� = EX + ÆVar(X) ;

{ the standard deviation principle

� = EX + Æ(Var(X))1=2 ;

{ the semi{variance principle

� = EX + ÆE
�
(X � EX)+

�2
:

The above principles can also be linked to ruin{bounds over a given time

period and indeed, often the loading factor is determined by setting suÆciently

protective solvency margins which may be derived from ruin estimates of the

underlying risk process over a given (�nite) period of time.

b) Premium principles implicitly de�ned via utility theory. Besides the net{

premium principle (linear utility) the following example is crucial:

{ the exponential principle

� =
1

Æ
logE

�
eÆX

�
for an appropriate Æ > 0. The utility function used in this case has the

form

u(x) = �e�Æx

referred to as the exponential utility function describing a model with

constant risk aversion Æ or constant risk tolerance unit Æ�1.
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c) A further interesting class of examples, akin to Value{at{Risk measures in

�nance, are the so{called quantile principles. Suppose our loss variable X has

distribution function F . De�ne the (generalised) inverse of F by

F (y) = inffx 2 R : F (x) � yg ; 0 < y < 1 :

Then the (1� "){quantile principle corresponds to

� = F (1� ") :

For " # 0 we obtain the probable maximal loss (supposing that F has �nite

support). Though this risk measure is crucial in most Value{at{Risk (VaR)

based risk management systems in �nance (see for instance Basle Committee

(1996)), Artzner et al. (1999) show that as a risk measure, � = F (1 � ")

fails to possess in general the crucial sub{additivity property defended in the

latter paper as a key property for a viable risk measure. In Embrechts, McNeil

and Straumann (1999), this failure of VaR is taken one step further and put

into the context of the so{called Fundamental Theorems of Integrated Risk

Management. The latter results summarise for which �nancial and insurance

markets the VaR approach is unproblematic. At the same time, problems are

highlighted where VaR is de�nitely the wrong measure to use.

d) A principle gaining increasingly in importance from a methodological point of

view is the time{honoured Esscher principle

� =
E
�
XeÆX

�
E (eÆX)

for an appropriate Æ > 0. The latter can be obtained in various ways, for

instance using a minimisation argument on a speci�c loss function (see for

instance Heilmann (1987)). An economic foundation for the Esscher principle,

using risk exchange, equilibrium pricing and Borch's theorem (Borch (1960))

has been given by B�uhlmann (1980). An interesting generalisation of the latter

paper is B�uhlmann (1983). We shall come back to the Esscher principle later.

Besides the above justi�cation of the various premium principles, an alternative ap-

proach would be to view � as a real function on a space of random variables (or

even on a space of probability distributions) and then specify properties of � which

we want a premium principle to posess. Typically some form of homogeneity and

additivity is called for, further properties relate to convexity, iteration, order preser-

vation and robustness. Without entering into details, see for instance Heilmann

(1987), p. 136{137, mainly the exponential, standard deviation and variance prin-

ciples get strong support across numerous publications. Hans B�uhlmann proposes
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as pragmatic solution, to use the standard deviation principle on the total portfolio

and redistribute the resulting premium to the individual risks by using either the

exponential or variance principle, see B�uhlmann (1984). The paper by Artzner

et al. (1999) referred to above proposes a similar axiomatic approach towards �-

nancial Value{at{Risk. More recently, actuaries have been proposing so{called tail{

distortion measures (see for instance Wang (1996), Wang, Young and Panjer (1997))

based on the economic work of Yaari (1987).

So far it seems that we are far away from the pricing mechanisms now standardly

used in �nance. It pays however to read the following remark in Bowers et al. (1989),

p. 16 (indeed their Section 1.4 is well worth looking at in detail):

In a competitive economy, market forces will encourage insurers to price

short{term policies so that deviations of experience from expected value

will behave as independent random variables. Deviations should exhibit

no pattern that might be exploited by the insured or insurer to produce

consistent gains. Such consistent deviations would indicate ineÆciencies

in the insurance market.

To someone working in �nance, this sounds familiar! Before embarking on this

familiar theme let me stress that the premium calculation discussion from an insur-

ance point of view would now have to address credibility theory as a means towards

di�erentiating premiums within a non{homogeneous portfolio. We shall not pursue

this route here; see for instance Goovaerts et al. (1990) and the references therein

for a �rst presentation.

3 Pricing in �nance

Stepping now from the insurance textbooks to the (mathematical) �nance ones, one

is immediately struck by the methodological change from an underlying probability

space

(
;F ; P )

to a so{called �ltered probability space

�

;F ; (Ft)t�0 ; P

�

where (Ft) is an increasing family of F{sub{�{algebras representing the history

of (or information contained in) the past and present of some underlying �nance

process. The point I want to make is not the abstract mathematics present in the

above, much more I would like to stress the word
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Information!

Especially when it comes to di�erences between pricing in �nance and insurance,

it is exactly the description of the information available in the underlying market

which becomes crucial. Before we look at some examples, �rst consider the typical

Ansatz of no{arbitrage pricing. Our risk X in the previous paragraph typically

becomes a contingent claim which, in the �nite horizon case [0; T ], T beingmaturity,

corresponds to X is FT{measurable. Hence X is determined by the underlying

process for time values up{to and including, but not beyond, T . If we denote the

underlying process by (St)0�t�T and consider as an example the European call with

strike K and maturity T , then

X = (ST �K)+ :

This random variable is akin to an excess{of{loss reinsurance treaty with priorityK.

Another example, especially relevant in the interplay between insurance and �nance

is the Asian option with strike K, i.e.

X =

�
1

T

Z T

0

Su du�K

�+

;

this time similar to the familiar stop{loss treaty in reinsurance. As in the insurance

case, we could start pricing these claims using the actuarial premium principle EX,

i.e. the expectation under the physical measure P . In the insurance case, one could

use ruin arguments to justify a loading factor as briey explained in the previous

section. In the �nance context, the whole argument against using EX as a premium

is based on the notion of

no{arbitrage!

By now so much has been written on the subject that it is hardly possible even to

begin a discussion having a reader in mind who wants to learn new things! Look at

Cox and Rubinstein (1985) if you start from zero, move on to Hull (1993) to become

more of an expert. If the lack of mathematics bothers you, look at Lamberton and

Lapeyre (1996) or DuÆe (1992). Other, useful texts are Baxter and Rennie (1996),

Karatzas and Shreve (1997) and Musiela and Rutkowski (1997). An excellent text,

stressing more the economic aspects of �nance, but at the same time keeping a high

mathematical standard is Bj�ork (1998). This list is of course very incomplete. The

above texts contain a lot of references for further reading. Finally if your hunger

for mathematical precision concerning sentences like \certain statements about the

(non{) existence of free lunches are basically equivalent to : : :" is not yet stilled

you must look again at your favourite textbook on functional analysis and read the
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fundamental paper by Delbaen and Schachermayer (1994). After all of this we know

how to correctly price the above contingent claims in a no{arbitrage framework,

namely the correct value at time t of X with risk{free interest rate r is

vt = EQ
�
e�r(T�t)X j Ft

�
and the premium (to be charged at time t = 0) becomes

v0 = EQ
�
e�rTX

�
: (1)

For notational convenience we have used a constant risk free rate r. We could have

used a more general (stochastic) model for r resulting in a value at time t

EQ

�
exp

�
�

Z T

t

r(s) ds

�
X j Ft

�
:

The main point is not the r, which is also there in the actuarial case though I did

not make it explicit. The main point is the Q: we calculate the fair (no{arbitrage)

premium also as an expectation but with respect to a new probability measure Q!

This point should of course not disappear in a cloud of mathematical notation

and sophistication. Indeed, this \change of measure" idea becomes very easy in

a standard binomial tree model. The risk neutral probability measure Q changes

the original measure P in order to give more weight to unfavourable events in a risk

averse environment. In �nancal economics this leads to the concept of price of risk

and in insurance mathematics it should explain the safety loading. The theory now

tells us that in nice cases Q is the unique P{equivalent probability measure which

turns (St) into a martingale. That martingales enter is not surprising, I could also

have brought them to bear in the previous paragraph. What is surprising however

is that they appear in a canonical way intimately linked to the economic notion of

no{arbitrage. The latter is by now folklore and does not need further discussion

here: besides all the references above you may �nd Varian (1987) entertaining.

In order to work out the price quoted under (1), we need to get hold of Q. At

this point we have to look more carefully at the meaning of nice cases. Two such

cases are the binomial tree model and geometric Brownian motion, in �nance often

referred to as the Cox{Ross{Rubinstein, respectively Black{Scholes model. The

thing that makes them nice is that they are complete models. The latter means that

any contingent claim X can be attained through a self{�nancing trading strategy,

mathematicians would say that X has to satisfy an Itô representation with respect

to (St). A very readable account on this is Jensen and Nielsen (1995). From the

introduction to the latter paper I have borrowed the comment below.

Theories and models dealing with price formation in �nancal markets are

divided into (at least) two markedly di�erent types. One type of models
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is attempting to explain levels of asset prices, risk premium etc. in an

absolute manner in terms of the so{called fundamentals. A crucial model

of this type includes the well known rational expectation model equating

stock prices to the discounted value of expected future dividends. Another

type of models has a more modest scope, namely to explain in a relative

manner some asset prices in terms of other, given and observable prices.

It should be clear from the discussion so far that the present section adheres more to

the latter approach, whereas the former leans more closely to the actuarial approach

of the previous section, though the di�erence between both is not so sharp as I make

it sound. Let us now return to the needed notion of nice cases. In summary, the

theory of no{arbitrage leads to linear pricing functionals. If our market is such that

a) we have suÆciently many basic building blocks in the market so that new

assets can be represented as linear combinations of these building blocks, and

b) these building blocks have a unique price,

then the market is termed complete. If not, the market is incomplete. In the former

cases (completeness) prices are unique (Q is unique) whereas in the second case

(typical in insurance) without further information on investor speci�c preferences,

only bounds on prices can be given (Q is not unique). This brings us to the main

observation:

Within the no{arbitrage framework

nice cases = complete markets!

See Jensen and Nielsen (1995) for some elementary examples of a complete market

and no arbitrage, a complete market and an arbitrage opportunity and �nally an

incomplete market with no arbitrage opportunity. Besides the Cox{Ross{Rubinstein

(binomial) and Black{Scholes (geometric Brownian motion) models, further nice

cases (complete models) for instance include

{ multi{dimensional Brownian motion and some special types of di�usions,

{ (Nt � �t)t�0 with (Nt) a homogeneous Poisson process with intensity �, and

{ square integrable point process martingales
�
Nt �

R t
0
�s ds

�
t�0

.

For remarks on this and further references, see Embrechts and Meister (1997). The

not so nice (incomplete) cases typically occur as

{ stochastic volatility models,
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{ processes with jumps of random size (e.g. stable processes, compound Poisson

processes, jump di�usions, non{Brownian L�evy processes),

{ so{called models with friction, i.e. including transaction costs and investment

constraints.

For the latter models, in general no unique martingale price exists and holding

an option is a genuinely risky business. If pricing is for instance embedded in

a utility maximisation framework, then a unique measure emerges in a very natural

way. See for instance Davis and Robeau (1994), Embrechts and Meister (1997) and

references therein. By now a must for all interested in incomplete markets is the

so{called F�ollmer{Schweizer{Sondermann approach based on the minimisation of

expected squared hedge error. See F�ollmer and Sondermann (1986), F�ollmer and

Schweizer (1989) and the interesting discussion by Dybvig (1992). This pioneering

work has by now been expanded to include superhedging (i.e. pricing so that portfolio

reaches at least the terminal value) or quantile hedging (as before, but now only with

a suÆciently high probability). Various other risk measures for the hedge{shortfall

are currently looked at in the literature. See for instance F�ollmer and Leukert (2000)

and Cvitanic and Karatzas (1999).

4 Back to insurance

At the Bowles Symposium on Securitization of Risk, Georgia State University, At-

lanta (1995), John Finn and Morton Lane (see Finn and Lane (1997)) brought the

methodologists back with their feet on the ground by saying:

There is no right price of insurance; there is simply the transacted market

price which is high enough to bring forth sellers, and low enough to induce

buyers.

This market price is not necessarily an equilibrium price. Uniqueness and no{

arbitrage are not guaranteed. Nevertheless, from a methodological point of view,

the following problem is of interest:

Find a martingale approach to premium calculation principles in an arbitrage{free

market!

This is exactly the title of a paper by Delbaen and Haezendonck (1983) which both

�nance experts and actuaries (of the third kind, dixit B�uhlmann (1987)) are strongly

advised to read. Further important papers in this context are the classic Borch

(1962), Doherty and Schlesinger (1983), Sondermann (1991) and Venter (1991).
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The Delbaen{Haezendonck paper starts from the basic underlying risk process (over

the �nite horizon [0; T ])

X (Nt) =
NtX
k=1

Xk ; 0 � t � T ;

where (Xk) are iid claims with common distribution function F , (Nt) a homogeneous

Poisson process with intensity � > 0 so that

Nt = sup fn 2 N : T1 + � � �+ Tn � tg

where the (Tk) are iid with Exp(�) distribution. The random variable Tk denotes

the (random) occurrence time of the kth claim Xk. We neglect for the moment all

IBNR e�ects. The processes (Xk) and (Tk) are assumed to be independent.

With the above de�nition X (Nt) becomes a compound Poisson process with dis-

tribution

P (X (Nt) � x) =
1X
k=0

e��t
(�t)k

k!
F k�(x) ; x � 0 ;

where F k� denotes the kth convolution of F , i.e.

F k�(x) = P (X1 + � � �+Xk � x) :

Suppose now that at each time t the company can sell the remaining risk of the period

]t; T ] for a given (predictable) premium pt, hence the underlying price process (St)

has the form

St = �t +X (Nt) ; 0 � t � T :

Hence the company's liabilities St at time t consist of two parts: �rst the part

X (Nt) of claims up to the time t, and second the premium �t for the remaining risk

X (NT )�X (Nt) (unknown at time t). Delbaen and Haezendonck (1989) at this

point conclude:

The possibility of buying and selling at time t represents the possibility

of \take{over" of this policy. This liquidity of the market should imply

that there are no arbitrage opportunities and hence by the Harrison{

Kreps theory (Harrison and Kreps (1979)) there should be a risk neutral

probability distribution Q such that fSt : 0 � t � Tg is a Q{martingale.

If one further imposes that

�t = �(T � t) ; 0 � t � T ;

where � is a premium density, then one can show that in suÆciently many reinsur-

ance markets, the linearity of the premiums implies that under Q the risk process
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fX (Nt) : 0 � t � Tg remains a compound Poisson process. The basic solution then

reduces exactly to those equivalent measures Q which preserve the compound Pois-

son property of fX (Nt) : 0 � t � Tg. Within this no{arbitrage{insurance context,

a viable premium density then takes on the form

�Q = EQ (X (N1)) = EQ (N1) E
Q (X1) ; (2)

resulting both in a change of claim{size as well as claim{intensity of the underlying

risk process. Under certain measurability conditions, those Q{measures which give

rise to such viable premium principles take on the following form (formulated in

terms of distribution functions)

F
(�)
Q (x) =

1

E (exp f� (X1)g)

Z x

0

e�(y)dF (y) ; x � 0 ;

where � : R+ ! R is increasing so that

E (exp f� (X1)g) <1 and E (X1 exp f� (X1)g) <1 :

The resulting premium density �Q(�) then satis�es

�p = E (N1) E (X1) < �Q(�) <1 ;

hence taking satefy loading into account.

Special choices of � now lead to special premium principles, all consistent within

the no{arbitrage set{up. Examples are (see (2) for the notation used):

a) � � � > 0, then

EQ(�) (N1) = e�E (N1) = e�� ;

EQ(�) (X1) = E (X1) (expected value principle) ;

b) �(x) = log(a+ bx), b > 0 and a = 1� bE (X1) > 0, then

EQ(�) (N1) = � ;

EQ(�) (X1) = E (X1) + bVar (X1) (variance principle) ;

c) �(x) = �x� logE
�
e�X1

�
, � > 0, then

EQ(�) (N1) = � ;

EQ(�) (X1) =
E (X1 exp f�X1g)

E (exp f�X1g)
(Esscher principle) :
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For further details on the above approach see Delbaen and Hazendonck (1989); Meis-

ter (1995) completes the proof of the main result in the latter paper, generalises the

approach to mixed Poisson and doubly stochastic Poisson processes and applies the

results obtained to the pricing of CAT{futures. A summary on the latter is to be

found in Embrechts and Meister (1997). See again Venter (1991) for a critical discus-

sion on no{arbitrage pricing in reinsurance. The basics of mathematical modelling

in insurance can for instance be found in Rolski et al. (1998).

5 Final discussion

As we have seen above, in a suÆciently liquid (re{)insurance market, classical

insurance{premium principles can be reinterpreted in a standard no{arbitrage pric-

ing set{up. The variety of premium principles used is explained through the inherent

incompleteness of the underlying risk process in so far that a whole family of equiv-

alent martingale measures exist. First of all, the necessary liquidity assumptions

imposed may at present be rather unrealistic, de�nitely so in the case where single

catastrophe risks for instance are to be priced. The introduction of CAT{futures by

the Chicago Board of Trade in 1992, together with its new generation of PCS{options

aims at o�ering such liquidity. Though being just a �rst step, I am convinced that

the resulting securitisation attempts for insurance risk will eventually yield mar-

kets where the methods briey discussed above will become applicable. Various

important issues I have not addressed, as there are the secondary market problem,

the resulting issue of risk{adjusted capital, the overall problem of securitisation of

insurance risk, the emergence of all{�nance products etc. No doubt many more

papers will competently discuss some of the above problems. Especially the paper

by Phillips and Cummins (1995) and the references therein should be consulted for

a lot of interesting ideas. I would like to end with a brief summary of some further

ongoing research which I deem to be relevant.

First, a key question concerns the choice between working under the physical

measure P or under the (in the incomplete case, an) equivalent martingale measure.

When it comes down to pricing simple risks or products in clearly iliquid insurance

markets, the physical measure P gives us an objective description of underlying

randomness. This quickly gives rise to interesting methodological questions. As an

example, take the pricing of CBOT CAT{futures. Suppose X(N(t)) now represents

a homeowners pool's losses over a period [0; t]. A key component in the pricing of

a CAT{future amounts to estimating distributional properties of quantities like

Lt =

�
X(N(t))

cE(X(N(t)))
�K

�+

(3)
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for some strike (loss{ratio)K and loading factor c. Various approaches exist, includ-

ing no{arbitrage pricing using a mixture of a geometric Brownian motion and a ho-

mogeneous Poisson model (Cummins and Geman (1995)), equilibrium pricing based

on a counting process model (Aase (1994)), utility and risk minimisation pricing

based on the general class of doubly{stochastic Poisson processes (Meister (1995)),

pricing using so{called implied loss distributions (Finn and Lane (1997)) and �-

nally actuarial pricing using moment bounds on the underlying loss ratios (Brockett,

Cox and Smith (1997)). In non{life insurance, the risk process (X(N(t))) typically

exhibits heavy{tailed behaviour for the claim{size distribution F (see Embrechts,

Kl�uppelberg and Mikosch (1997) for a comprehensive discussion on this), moreover,

the pool construction makes the claim intensity large so that in order to price Lt in

(3) under P , one needs estimates for

E (Lt) =
1

cE (X (Nt))

Z 1
E(X(Nt))

P (X (Nt)� E (X (Nt)) > x) dx : (4)

Here  = Kc� 1 > 0. Letting t!1 in (4) one is eventually faced with estimates

of the type

P
�
Z1 + � � �+ Zn(t) > x(t)

�
for t!1 where the Zis are heavy{tailed iid random variables and both n(t)!1,

x(t)!1. This is precisely the set{up encountered in large deviation theory but

under the non{standard assumption of heavy{tailedness (e.g. Pareto or lognormal

distributions). For further details, see Embrechts, Kl�uppelberg and Mikosch (1997).

A further, always recurring theme in the realm of actuarial versus �nancial pricing

of insurance is the Esscher pricing principle. Originally brought into insurance in

order to approximate the total claim{size distribution

P (X(N(t)) � x) ; x > 0 ; (5)

especially for large values of x, the so{called Esscher transform (also referred to as

exponential tilting) now plays a fundamental role as an actuarial pricing mechanism

in �nance. Whereas in the estimation of formulas like in (5) only an exponential

transformation of the underlying distribution function F of the claim{sizes is needed

(see for instance the excellent Jensen (1995)), when it comes down to the pricing

of derivatives in insurance and �nance, the Esscher transform has to be de�ned on

stochastic processes. A very readable account is Gerber and Shiu (1994) where the

Esscher transform is de�ned for exponentials of L�evy processes (i.e. processes with

stationary and independent increments). Under the Esscher transformed probability

measure, discounted price processes are martingales, hence no{arbitrage prices can

be calculated. Various discussants to the above paper stress that, in the incomplete
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case, the Esscher price is just one of many viable prices. A key question for further

research is then: what makes the Esscher price special when it comes to pricing under

in�nitely many equivalent martingale measures? New results concerning partial

answers to this question are appearing. Some examples are:

a) In Meister (1995), it is shown that both in an exponential utility maximisation

framework as well as in a general market equilibrium set{up, the Esscher

price occurs as the unique solution, i.e. the unique no{arbitrage price, in the

incomplete market of a compound Poisson risk process however constrained

by utility or equilibrium considerations.

b) In Delbaen, B�uhlmann, Embrechts and Shiryaev (1996), the notion of Esscher

transform is generalised to conditional Esscher transformswhich allow to apply

the exponential tilting technique to a general class of semimartingales. A for

insurance relevant version of the above in discrete time is Delbaen, B�uhlmann,

Embrechts and Shiryaev (1998).

c) We already discussed that in the incomplete case, uniqueness of a pricing

martingale measure can only be achieved through imposing certain optimality

conditions. This leads to possible candidates like the minimal martingale

measure of F�ollmer and Schweizer (1989) and the variance{optimal measure

of for instance Schweizer (1995). An obvious question is now: how does the

Esscher pricing relate to the above constrained pricing mechanisms? A partial

(mathematical) answer to this question is given in Grandits (1999). The main

point of the latter paper can be summarised as follows. First, the L2 theory

traditionally used in order to construct risk minimising measures is generalised

to Lp for 1 < p <1 leading to a so{called p{optimal measure. If the latter

converges to a martingale measure for the underlying process as p! 1, then

the limit point must be the Esscher measure!

The above points clearly show that concerning the Esscher transform there is more

available than �rst meets the eye! Further results are to be expected.

In the introduction I promised that the paper would very much be on work in

progress and not a complete overview. As a consequence, I have left out many

relevant references and approaches; this should not be interpreted as an ordering of

importance. As a matter of fact, I most strongly believe that �nancial as well as

actuarial pricing of insurance products will increasingly involve more sophisticated

statistical methodology. Much more than at present is encountered within the realm

of �nance. A discussion of some of these methods, essentially related to extremal

events are for instance to be found in Embrechts, Kl�uppelberg and Mikosch (1997)
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and references therein. A lot of updated work including free software, additional

examples, related research are to be found on http://www.math.ethz.ch/�nance.

It has been common belief that actuaries have to learn from �nance specialists

when it comes to pricing and modelling the asset side of their books. Whereas this

undoubtedly is true, at the same time I would strongly advice �nance specialists to

have a closer look at some of the recent developments within the actuarial world.

As always, a bridge can be walked in two directions. I very much hope that, besides

the existence of a �nancial bridge to actuarial pricing my summary will also have

indicated that there is something like an actuarial bridge to �nancial pricing. As

always, the truth will lie somewhere in the middle, the developments taking place

right now make me believe that we are converging steadily to this unifying theory.
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