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A Forgotten Theory of Proofs?

E.Engeler, ETH Zurich

The Hilbert Program in Gottingen was winding down in thelyed®30s. By then it was
mostly in the hands of Paul Bernays who was writing the firdéoivee of Grundlagen der
Mathematik Hermann Weyl had succeeded David Hilbert. There were thuéstanding
doctoral students in logic: Haskell B.Curry, Saunders Maw and Gerhard Gentzén.
These three students are at the beginning of three threaxathrematical logic: Combi-
natory Logic (Curry), Proof Theory (Gentzen) and Algebr&aodofs (MacLane), the last
one essentially forgotten, except perhaps for some teahresults useful in computer
algebra (cf. Newman’s Lemma).

The present author, also a student of Bernays, when lookpntinis mathematical an-
cestry, was fascinated by the contrast between MacLan#sigiasm about the ideas in
his thesis as expressed in 1934 diary quotations, and thesatromplete absence of any
mathematical follow-up. Is it possible that mathematia@lelopment has passed some-
thing by, just because MacLane did not find resonance forviboik and, back in the
U.S., was soon successful, as the strong mathematiciansiemather fields. His work
on the conceptual structure of mathematics, category yhesad its pervading influence

throughout mathematics, is well known.

In this essay we only attempt to revive the idea of an algelyyeomfs and place MacLane’s

1As Bernays was only Dozent (and was soon to be dismissedeigfipSwiss and of jewish ancestry),
Weyl was official thesis advisors, who of course took persortarest until he also left (for Princeton,

Bernays for ETH.)
2C.MclLarty, The Last Mathematician from Hilbert’s Gotteng Saunders MacLane as a Philosopher of

Mathematics, Brit.J.Phil.Sci., 58 (2007), 77-112.



thesis work and its vision in a new framework.

1. PROLEGOMENA TO AN ALGEBRA OF MATHEMATICAL THOUGHTS

Let us first talk about thinking. Thinking means to apply tgbts to thoughts, thoughts
being things like concepts, impressions, memories, aiets/iprojects — anything that you
can think about, including mathematics. And, of courseyéseilts of applying a thought
to a thought. Thinking is free, all combinations of thouggnts admitted into the universe
of thoughts. As a mathematician | perceive here the stractian algebra: Thoughts are
the elements of the algebra and applying a thougi a thought” is a binary operation
which results in the elemer - Y, again a thought.

Mathematical thoughts are about setdefinitions, problems, theorems, proofs and proof-
strategies In the present context, to do mathematics means to makeetisel of such
sets, states of knowledge and proof procedures as it wedeaply these sets to each
other. To mathematize this idea, we need to represent sthiteathematical knowledge
and the pursuit of its development in a form that permits giiegation operation between

them. Let us first experiment with formalized mathematias it states of knowledge.

Mathematical logic aims to represent mathematics by a sysi@sed on a formal lan-
guage. Formal mathematical thoughts thereby consist siodesttatements (axioms, the-
orems) and proof-trees. Take propositional logic. Kebe a the set of propositional
formulasa, b, ¢, ... composed from some atomic propositions by some connedivwes

asA, V, D, . Aformal proof has the form of a tree such as

In an obvious notation, this tree would be rendered as

{{{a,b}—)c,d}—)g,{e’f}—)h}_)Z'_

Such a proof can bparseddifferently in order to reflect the conceptual structurelod t
proof —which in fact originally may have progressed throtlghdevelopment or employ-
ment of various auxiliary theorems and general lemmas. ¥amele,g may be a lemma

and the proof of starts with this lemma andand f:
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{{{a,0} = ¢, d} = g} = ({{e, f} = b} —=0).

Another parsing would be:

{{{a,0} = ¢} = ({d} = 9)} = ({{e, [} = h} = 1),

Neither denote trees. They are what will be calfgdof-expressionsind denoted by
lower-case letters such asy, z from the latter part of the alphabet. The $&bf proof-

expressions is built up recursively from

Po:A,Pnﬂ:Pnu{a%x:xEPn,agPnfim'te},P:UPn_

Of course, these "proof-expressions” represent formadfgronly in the case that the ar-
rows correspond to legal steps in a formal proof (here of psdjmnal logic); of this later.
The result of the proof denoted by a proof expressios x itself if it is a propositional
formula, an element ofi; otherwise, ifz is compositenn — v, it is y. We denote the
result of a proof: by «", it is a propositional formula.

Sets of proof-expressions are denoted by capital leter¥’, ... or by special symbols
introduced as cases arise. Such sets represent "mathahthtiaghts” in the sense of
the introduction to this section, here restricted to thémeaf formal propositions.— To
complete the picture there, it remains to specify the opmraif application,X - Y as

follows:

X-Y={z:3aCY,a—zxec X}

This definition is best understood X is considered as a sort of graph of a (partial and
many-valued) function, each of its elements— z associating an argument(-set}o a
valuezx. By this operation the set of subsetsifi.e. the set of mathematical thoughts,
becomes an algebraic structure, the algébi propositional thoughts.

Modus Ponenss the thought which applied to the set of formufas > b, a} produces

b. Correspondinglyimodusponens| as an element of the algebPacontains at least the
one elemen{a D b,a} — b; we posit that it consist of all elements of that form. Thus,

if X is a set of propositional formulag8nodusponens] - X is the set of all propositional



formulas provable from the set of propositional statemént¥ in one step. Compare

this with the usual notation

a>Db b
b

specifying the proof-rule on the right.

[modusponens],

More to the point, Modus Ponens can also function @soaf-constructor The corre-

sponding element o is

[MP] = {{z,y} = b:3a3dbc A such that 2" =a>D0b, y =a}.

[M P] - X combinegroofsof formulasae D b anda to a proof ofb. Thus, the iteration of
[M P] produces the propositional theory &frestricted to the one proof-rule.

And so on, to develop propositional logic as the algebrasoii of P, see below.

Instead, we take another elementary example, finitely ptedegroups:

Let A be the set of terms, v, ... built up from variables and constants ("generators”)
denoting some elements of a grotiby the operations of multiplication, inverse and the
unit element. Finite sets of constant terms, called ratatioonstitute a group-presentation.
Based on4 we construct a&alculus of reduction® starting from the seR of reduction-
expressions, y, ... analogously taP above, (most of which of course would not denote
valid reductions). Valid reductions are based on laws s@chssociativity and on the
relations given by the presentation:

The associative law, when applied to a reduction-exprassiceplaces a sub-term of the
final termz", assuming it has the form(vw), by (uv)w, or (uv)w by u(vw). Let[ASS]
denote this element d®, hence[ASS] is the set of al{xz} — ¢, wheret results from
2" by substituting some sub-terafvw) or (uv)w of 2~ by 1. Similarly for inverse law:
[INV] replaces sub-termsu~! or u'u of 2" by 1. The identity law is realized as an
operation[I D] on reductions, using replacementsuafor 1u by w.

Relations, . .. r, of the presentation give rise to reduction laws and theedforeduction-
constructorsr;[. For example, if-, = g9, ' g1 with generatorg,, g», then[r,] is the set
of all {z} — t, wheret results fromz" by substituting some sub-tergg, *g; by 1 .

Example: To construct a reduction (by "normalization”) bétterm(st—1)¢t = 1 we start



with the setX, consisting of this term, and use the three operators inesgaan, resulting
in a linear reduction-tree with 2" equal tol:

(D] - (INV]- ([ASS) - {(st )t}) = L.

Taking the closure ofASS|U[INV]|U[ID]U [r—1]---U[rn] under iteration as above,
we obtain an objedtd LG] of R which, applied taX gives its normalization ALG| - X
in this finitely generated group.

2. MACLANE’S THESIS AND ITSVISION, REVISITED

The above example is from MacLane’s the#bgekiirzte Beweise im LogikkalkuP’ It
is "abgekirzt”, shortened — but more importantly it is agdfrtemplate, a formal object in
a proof-manipulating system for elementary group theofgReduktionsbeweis”. In the

original, it readst

Anfang Th, Sub (4), Sub (2), Ende (3).

Admittedly, this result of the formalization of deductioropesses does not look very im-
pressive. Today; but to actually complete the project ghegre tedious and occasionally
delicate technical details of substitution, replacemeat & be handled. In fact, what
MacLane did was at the start of a mathematics of symbol méatipus systems which
later became computer algebra and computational logic,n@fmal forms, confluence,

etc.). Later in life, MacLane was aware of this

The Logikkalkul of MacLane takes its examples is from thenfal logic of Principia
Mathematica®

The main technical development in the thesis shows how Magekanvinces himself that

3Gottingen, Huber & C0.1934. Reprinted in |.Kaplansky Je&aunders MacLane Selected Papers,

New York, Springer-Verlag 1979, pp.1 - 62.
4in the order of applications, reversed from the operatiodtion above; "Th” denotes the equation

to be derived, "Sub (4)” denotes the application of assaifaf{ASS], etc.
5S.MacLane, A Late Return to a Thesis in Logic, in: .Kaplangd.), |.c. pp.63 — 66.
6A.N.Whitehead and B.Russell, Cambridge University Pré&xs31 cf. reprinted edition (to *56), ibid.

1962).



his approach how proof theory suffices to treat all of mathteadogic, whose main cor-
pus at that time waPBrincipia.” But the aim of the development was broader, it was to
study all formal and informal proof activities as a matheoatsubject. Some of these
are mentioned in the thesis, in particular the beautifululexs of Weyl for transparent
non-formal proofs, a book by E.H.Moore, and intuitionism.

The basic insight is that proofs are built up from individpedof operations by composi-
tion. In the above example this is Sub (4), Sub (2), Ende (®s€ are in a way algebraic
expressions in proof-steps; in the notation of section Yefhis is[/ D]-([INV]-[ASS]).
Correspondingly, short descriptions of logic-proofs uperators corresponding to the
introduction or elimination of logical connectives famailifrom contemporary proof the-
ory®

By introducing names for proofs of auxiliary theorems Maeka&nriches the totality of
proof-operators by names for proof-plans. It is clear tleatibvelops the rudiments of a

calculus of such expressions for proof-operators.
But now I'm puzzled.

1. Puzzle: Relation to Curry.

Proofs, including proof plans, as algebraic objects witlopération of composition form
an algebraic structure which is in factambinatory algebraa model of Curry’s combi-
natory logic. Moreover, the formation of arbitrary proofg dbombination of proofs cor-
responds to the basic axiom scheme of combinatory logictyGQuais a "Kommilitone” (
roughly: a fellow-student) of MacLane, whom he remembeneuis autobiography as "a
good friend of mine from Gottingen”. He is not mentioned e thesis. Had MacLane
presented his "Logikkalkul” in the form proposed above, feild have found a model,
and therefore a consistency proof, of combinatory logitlydooking at the structur@,
the elementary algebraic proof system of section 1. Whdtaavould have constructed
the combinatorsS and K as explicit objects irP is questionable. This had to wait al-
most fifty years to this authors constructibwhich bases the Plotkin-Scott model of the

Lambda Calculus on arbitrary set (useful for applicatiansdn-numeric modeling inter-

"as it was for Godel three years before, (he strangely is maitioned in the thesis).
8H.Schwichtenberg and S.S.Wainer, Proofs and computatZarsbridge U.P. 2012.
9E.Engeler, Algebras and Combinators, Algebra Univerdai§1981), 389 — 392



active systems, logic programmintj,and more recently to neural scienéeK and S
are examples of a general algorithm that compiles expmessioX, ... X,,) to yield a
"combinator” [phi] with ((... ([phi] - X1) - Xa) -+ X)) = ¢( Xy, ... X,):

K={{y} >0 —vy):yc P},
S={{r—{r,....,tn} = 9)} = (01 = ri,0, > 1} = (0 — 5)):
n>0,r,...tn € P,TU;0;, =0 C Pio finite}.

2. Puzzle: Relation to Gentzen.

Gerhard Gentzen was more than just MacLane’s contempota@ptiingen; indeed he
translated MacLane’s thesis from his English into the refiGerman, at least in pd#.
And he worked on his own famous thesis at just this time, inciiie does also treat of
normalization and operations on proofs. What did MacLarakar foresee and commu-
nicate on all this with Gentzen, (who is not mentioned in thests)? Why did he not work
out the algebraic and (computational) aspect of this in sbimg like P which would give

a perhaps convenient framework for such proof-manipuiatie.g. cut-elimination?

3. Puzzle: Godel ?

Of course, this author is simply hiding a proposed researofegt on algebraic proof

they behind this puzzling. Another obvious topic in sighthe relation of proofs to

computations (e.g. the Curry-Howard correspondence)useceombinatory algebras (of
proofs, for example) are excellent models of computatiore Méntion Godel here to

signal that the limits of computation (and therefore of gspare in view.

10 Engeler, Cumulative Logic and Modeling, Logic Colloguit86, North-Holland 1988, 83 — 93
11E Engeler, Neural Algebra and Consciousness, AlgebraioBy, Lecture Notes in Computer Science,

5147, Springer 2008, 96 —109
2letter of MacLane to Menzler, Febr.1988, printed in: E.MenZrott, Logic's Lost Genius, the Life of

Gerhard Gentzen, Amer.Math.Soc. 2007, p.27.



