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A Forgotten Theory of Proofs ?

E.Engeler, ETH Zurich

The Hilbert Program in Göttingen was winding down in the early 1930s. By then it was

mostly in the hands of Paul Bernays who was writing the first volume ofGrundlagen der

Mathematik. Hermann Weyl had succeeded David Hilbert. There were threeoutstanding

doctoral students in logic: Haskell B.Curry, Saunders MacLane and Gerhard Gentzen.1

These three students are at the beginning of three threads inmathematical logic: Combi-

natory Logic (Curry), Proof Theory (Gentzen) and Algebra ofProofs (MacLane), the last

one essentially forgotten, except perhaps for some technical results useful in computer

algebra (cf. Newman’s Lemma).

The present author, also a student of Bernays, when looking up this mathematical an-

cestry, was fascinated by the contrast between MacLane’s enthusiasm about the ideas in

his thesis as expressed in 1934 diary quotations, and the almost complete absence of any

mathematical follow-up. Is it possible that mathematical development has passed some-

thing by, just because MacLane did not find resonance for thiswork and, back in the

U.S., was soon successful, as the strong mathematician he was, in other fields. His work

on the conceptual structure of mathematics, category theory and its pervading influence

throughout mathematics, is well known.2

In this essay we only attempt to revive the idea of an algebra of proofs and place MacLane’s

1As Bernays was only Dozent (and was soon to be dismissed as foreign, Swiss and of jewish ancestry),

Weyl was official thesis advisors, who of course took personal interest until he also left (for Princeton,

Bernays for ETH.)
2C.McLarty, The Last Mathematician from Hilbert’s Göttingen: Saunders MacLane as a Philosopher of

Mathematics, Brit.J.Phil.Sci., 58 (2007), 77–112.
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thesis work and its vision in a new framework.

1. PROLEGOMENA TO AN ALGEBRA OF MATHEMATICAL THOUGHTS

Let us first talk about thinking. Thinking means to apply thoughts to thoughts, thoughts

being things like concepts, impressions, memories, activities, projects – anything that you

can think about, including mathematics. And, of course, theresults of applying a thought

to a thought. Thinking is free, all combinations of thoughtsare admitted into the universe

of thoughts. As a mathematician I perceive here the structure of an algebra: Thoughts are

the elements of the algebra and applying a thoughtX to a thoughtY is a binary operation

which results in the elementX · Y , again a thought.

Mathematical thoughts are about sets ofdefinitions, problems, theorems, proofs and proof-

strategies. In the present context, to do mathematics means to make a selection of such

sets, states of knowledge and proof procedures as it were, and apply these sets to each

other. To mathematize this idea, we need to represent statesof mathematical knowledge

and the pursuit of its development in a form that permits an application operation between

them. Let us first experiment with formalized mathematics and its states of knowledge.

Mathematical logic aims to represent mathematics by a system based on a formal lan-

guage. Formal mathematical thoughts thereby consist of sets of statements (axioms, the-

orems) and proof-trees. Take propositional logic. LetA be a the set of propositional

formulasa, b, c, . . . composed from some atomic propositions by some connectivessuch

as∧,∨,⊃,¬. A formal proof has the form of a tree such as

a b
c d

g
e f

h
k

In an obvious notation, this tree would be rendered as

{{{a, b} → c, d} → g, {e, f} → h} → i.

Such a proof can beparseddifferently in order to reflect the conceptual structure of the

proof – which in fact originally may have progressed throughthe development or employ-

ment of various auxiliary theorems and general lemmas. For example,g may be a lemma

and the proof ofi starts with this lemma ande andf :
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{{{a, b} → c, d} → g} → ({{e, f} → h} → i).

Another parsing would be:

{{{a, b} → c} → ({d} → g)} → ({{e, f} → h} → i).

Neither denote trees. They are what will be calledproof-expressionsand denoted by

lower-case letters such asx, y, z from the latter part of the alphabet. The setP of proof-

expressions is built up recursively fromA:

P0 = A, Pn+1 = Pn ∪ {α → x : x ∈ Pn, α ⊆ Pnfinite}, P =
⋃

n

Pn.

Of course, these ”proof-expressions” represent formal proofs only in the case that the ar-

rows correspond to legal steps in a formal proof (here of propositional logic); of this later.

The result of the proof denoted by a proof expressionx is x itself if it is a propositional

formula, an element ofA; otherwise, ifx is compositeα → y, it is y. We denote the

result of a proofx by x⊢, it is a propositional formula.

Sets of proof-expressions are denoted by capital lettersX, Y , . . . or by special symbols

introduced as cases arise. Such sets represent ”mathematical thoughts” in the sense of

the introduction to this section, here restricted to the realm of formal propositions.– To

complete the picture there, it remains to specify the operation of application,X · Y as

follows:

X · Y = {x : ∃α ⊆ Y, α → x ∈ X}.

This definition is best understood ifX is considered as a sort of graph of a (partial and

many-valued) function, each of its elementsα → x associating an argument(-set)α to a

valuex. By this operation the set of subsets ofP , i.e. the set of mathematical thoughts,

becomes an algebraic structure, the algebraP of propositional thoughts.

Modus Ponensis the thought which applied to the set of formulas{a ⊃ b, a} produces

b. Correspondingly,[modusponens] as an element of the algebraP contains at least the

one element{a ⊃ b, a} → b; we posit that it consist of all elements of that form. Thus,

if X is a set of propositional formulas,[modusponens] ·X is the set of all propositional
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formulas provable from the set of propositional statementsin X in one step. Compare

this with the usual notation

a ⊃ b b

b
[modusponens],

specifying the proof-rule on the right.

More to the point, Modus Ponens can also function as aproof-constructor. The corre-

sponding element ofP is

[MP ] = {{x, y} → b : ∃a∃b ∈ A such that x⊢ = a ⊃ b, y⊢ = a}.

[MP ] ·X combinesproofsof formulasa ⊃ b anda to a proof ofb. Thus, the iteration of

[MP ] produces the propositional theory ofX restricted to the one proof-rule.

And so on, to develop propositional logic as the algebraic theory ofP, see below.

Instead, we take another elementary example, finitely presented groups:

Let A be the set of termsu, v, . . . built up from variables and constants (”generators”)

denoting some elements of a groupG by the operations of multiplication, inverse and the

unit element. Finite sets of constant terms, called relations, constitute a group-presentation.

Based onA we construct acalculus of reductionsR starting from the setR of reduction-

expressionsx, y, . . . analogously toP above, (most of which of course would not denote

valid reductions). Valid reductions are based on laws such as associativity and on the

relations given by the presentation:

The associative law, when applied to a reduction-expressionx, replaces a sub-term of the

final termx⊢, assuming it has the formu(vw), by (uv)w, or (uv)w by u(vw). Let [ASS]

denote this element ofR, hence[ASS] is the set of all{x} → t, wheret results from

x⊢ by substituting some sub-termu(vw) or (uv)w of x⊢ by 1. Similarly for inverse law:

[INV ] replaces sub-termsuu−1 or u−1u of x⊢ by 1. The identity law is realized as an

operation[ID] on reductions, using replacements ofu1 or 1u by u.

Relationsr1, . . . rn of the presentation give rise to reduction laws and therefore to reduction-

constructors[ri[. For example, ifr1 = g1g
−1

2 g1 with generatorsg1, g2, then[r1] is the set

of all {x} → t, wheret results fromx⊢ by substituting some sub-termg1g
−1

2 g1 by 1 .

Example: To construct a reduction (by ”normalization”) of the term(st−1)t = 1 we start
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with the setX, consisting of this term, and use the three operators in succession, resulting

in a linear reduction-treex with x⊢ equal to1:

[ID] · ([INV ] · ([ASS] · {(st−1)t}))⊢ = 1.

Taking the closure of[ASS]∪ [INV ]∪ [ID]∪ [r− 1] · · · ∪ [rn] under iteration as above,

we obtain an object[ALG] of R which, applied toX gives its normalization,[ALG] ·X

in this finitely generated group.

2. MACLANE’ S THESIS AND ITS V ISION, REVISITED

The above example is from MacLane’s thesis”Abgekürzte Beweise im Logikkalkul”.3 It

is ”abgekürzt”, shortened – but more importantly it is a proof-template, a formal object in

a proof-manipulating system for elementary group theory, a”Reduktionsbeweis”. In the

original, it reads:4

Anfang Th, Sub (4), Sub (2), Ende (3).

Admittedly, this result of the formalization of deduction processes does not look very im-

pressive. Today; but to actually complete the project, there were tedious and occasionally

delicate technical details of substitution, replacement etc. to be handled. In fact, what

MacLane did was at the start of a mathematics of symbol manipulations systems which

later became computer algebra and computational logic, (cf. normal forms, confluence,

etc.). Later in life, MacLane was aware of this5

The Logikkalkul of MacLane takes its examples is from the formal logic of Principia

Mathematica. 6

The main technical development in the thesis shows how MacLane convinces himself that

3Göttingen, Huber & Co.1934. Reprinted in I.Kaplansky (ed.), Saunders MacLane Selected Papers,

New York, Springer-Verlag 1979, pp.1 – 62.
4in the order of applications, reversed from the operationalnotation above; ”Th” denotes the equation

to be derived, ”Sub (4)” denotes the application of associativity [ASS], etc.
5S.MacLane, A Late Return to a Thesis in Logic, in: I.Kaplansky (ed.), l.c. pp.63 – 66.
6A.N.Whitehead and B.Russell, Cambridge University Press 1913. cf. reprinted edition (to *56), ibid.

1962).
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his approach how proof theory suffices to treat all of mathematical logic, whose main cor-

pus at that time wasPrincipia.7 But the aim of the development was broader, it was to

study all formal and informal proof activities as a mathematical subject. Some of these

are mentioned in the thesis, in particular the beautiful lectures of Weyl for transparent

non-formal proofs, a book by E.H.Moore, and intuitionism.

The basic insight is that proofs are built up from individualproof operations by composi-

tion. In the above example this is Sub (4), Sub (2), Ende (3).These are in a way algebraic

expressions in proof-steps; in the notation of section 1 above, this is[ID]·([INV ]·[ASS]).

Correspondingly, short descriptions of logic-proofs use operators corresponding to the

introduction or elimination of logical connectives familiar from contemporary proof the-

ory.8

By introducing names for proofs of auxiliary theorems MacLane enriches the totality of

proof-operators by names for proof-plans. It is clear that he develops the rudiments of a

calculus of such expressions for proof-operators.

But now I’m puzzled.

1. Puzzle: Relation to Curry.

Proofs, including proof plans, as algebraic objects with anoperation of composition form

an algebraic structure which is in fact acombinatory algebra, a model of Curry’s combi-

natory logic. Moreover, the formation of arbitrary proofs by combination of proofs cor-

responds to the basic axiom scheme of combinatory logic. Curry was a ”Kommilitone” (

roughly: a fellow-student) of MacLane, whom he remembered in his autobiography as ”a

good friend of mine from Göttingen”. He is not mentioned in the thesis. Had MacLane

presented his ”Logikkalkul” in the form proposed above, he would have found a model,

and therefore a consistency proof, of combinatory logic just by looking at the structureP,

the elementary algebraic proof system of section 1. Whetherhe would have constructed

the combinatorsS andK as explicit objects inP is questionable. This had to wait al-

most fifty years to this authors construction,9 which bases the Plotkin-Scott model of the

Lambda Calculus on arbitrary set (useful for applications to non-numeric modeling inter-

7as it was for Gödel three years before, (he strangely is not mentioned in the thesis).
8H.Schwichtenberg and S.S.Wainer, Proofs and computations, Cambridge U.P. 2012.
9E.Engeler, Algebras and Combinators, Algebra Universalis,13 (1981), 389 – 392
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active systems, logic programming,10 and more recently to neural science.11
K andS

are examples of a general algorithm that compiles expressionsφ(X1, . . .Xn) to yield a

”combinator”[phi] with ((. . . ([phi] ·X1) ·X2) · · · ·Xn) = φ(X1, . . .Xn):

K = {{y} → (∅ → y) : y ∈ P},

S = {{τ → ({r1, . . . , rn} → s)} → (σ1 → r1, σn → rn} → (σ → s)) :

n ≥ 0, r1, . . . rn ∈ P, τ ∪i σi = σ ⊆ P, σ finite}.

2. Puzzle: Relation to Gentzen.

Gerhard Gentzen was more than just MacLane’s contemporary at Göttingen; indeed he

translated MacLane’s thesis from his English into the required German, at least in part.12

And he worked on his own famous thesis at just this time, in which he does also treat of

normalization and operations on proofs. What did MacLane know or foresee and commu-

nicate on all this with Gentzen, (who is not mentioned in the thesis)? Why did he not work

out the algebraic and (computational) aspect of this in something likeP which would give

a perhaps convenient framework for such proof-manipulations, e.g. cut-elimination?

3. Puzzle: Gödel ?

Of course, this author is simply hiding a proposed research project on algebraic proof

they behind this puzzling. Another obvious topic in sight isthe relation of proofs to

computations (e.g. the Curry-Howard correspondence) because combinatory algebras (of

proofs, for example) are excellent models of computation. We mention Gödel here to

signal that the limits of computation (and therefore of proofs) are in view.

10E.Engeler, Cumulative Logic and Modeling, Logic Colloquium ’86, North-Holland 1988, 83 – 93
11E.Engeler, Neural Algebra and Consciousness, Algebraic Biology, Lecture Notes in Computer Science,

5147, Springer 2008, 96 –109
12letter of MacLane to Menzler, Febr.1988, printed in: E.Menzler-Trott, Logic’s Lost Genius, the Life of

Gerhard Gentzen, Amer.Math.Soc. 2007, p.27.
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