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How does the brain compute ?

Here is the answer that Steve Pinker gave in a TV interview when challenged to answer

in a short sentence:By neurons firing in patterns.

The operative word ispatterns of firings. Indeed, it is the key word in our aim to findthe

right mathematics for representing brain activities.

Obviously, the net of interconnected neurons in the brain constitutes a system with a great

number of parallel processes. Mathematics has dealt with such systems before:

The traditional and enormously successful approach is by systems of differential equa-

tions. It all starts with the insight, that the basic laws operate on the infinitesimal scale.

Local infinitesimal changes propagate from the given boundary values. Calculus turns in-

finitesimal laws typically into ordinary or partial differential equations, thus mathematiz-

ing the whole of the system: vibrating strings, heat equation, reaction-diffusion equation,

Maxwell equations, . . .

The fact is, that this approach succeeds precisely because at all points in the domain of the

system it is always the same local dependence that obtains. But the dynamical systems

approach, while retaining its paradigmatic power (vz. attractors, etc.), meets its limits

as soon as this uniformity requirement is violated. And thisis what happens in the case

of the neural system of the brain: While the basic building principles of neurons remain

the same, there are enormeous differences in the size and extent otf their connections and

therefore of their mutual dependencies.

1



Figure 1: Simple Track.

Artificial neural nets

The mathematical models of the ”brain” on which we base the development of Neural Al-

gebra are so-called artificial neural nets. Of these there are many variants, abstracted from

increasingly detailed knowledge of biological neural netsand their function. We choose a

very simple kind of model; but it turns out, that adaptationscould be made to encompass

much richer neurological details on the one hand, or to consider nets based on functional

connectivity based on correlated activities of segmentations of the brain. Indeed, it seems

possible to apply the model to nets of interactive processesfar removed from neurology.

An artificial neural netA is a directed graph whose edges are weighted by rational num-

bersw ∈ Q. The nodes correspond to ”neurons”, the edges to ”synapses”whose weights

represent the strength of their contribution to the activity: if neuronsa1, . . . , an to node

a0 have edges of weightswi,0 then the firing ofa0 is induced if the sum of these weights

exceeds a threshold which we generally put at1. All firings take place at discrete time

instancest, t ∈ Z , the set of integers.

Our formal model is based on representing the local laws thatgovern neural nets (fig.1)

by track expressionsas follows:

Simple track expression

x0 = {a1, a2}
t
−→
a0

a3

The track expressionx0 is read as: neuronsa1, a2 fire at timet − 1. The sum of weights
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Figure 2: A Cascade.

w1, w2 exceed the threshold,a0 fires at timet ; w3 also exceeds the threshold, anda3 fires

at timet+ 1.

a0 is called thekey neuronof this expression.

Track expressions: Cascades if firings

By connectivity, the firing of neurons progresses through a neural net and produces cas-

cades of firings. Such cascades (fig.2) are formally represented by iterating the formation

of track expressions, starting with simple track expressions. For example, the track ex-

pressionx1 below arises by substitution of track expressions for individual neurons in

the track expressionx0 such that the substituted expressions have these neurons astheir

key neurons. These substitutions are legal, if the relativesums of weights exceed the

threshold.

Iterated track expressions

x0 = {a1, a2}
t
−→
a0

a3

x1 =
{

{b1,1, b1,2}
t−1
−−→
a1

b1,3, {b2,1, b2,2}
t−1
−−→
a2

b2,3

}

t
−→
a0

{

{c1, c2}
t+1
−−→
a3

c3

}

.

Neurona0 remains the key neuron ofx1.

Firing patterns
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The firing of a neurona at timet is denoted by the value1 of the firing functionf with

f(a, t) = 1, a ∈ A, t ∈ Z. We say that a set of firings, determined byf is consistent

with the neural netA , if, whenevera1 . . . an are edges inA leading tob with weights

w1 . . . wn, Σiwi exceeds a given threshold and allf(ai, t− 1) = 1 thenf(b, t+ 1) = 1-

A firing historyF (A) for A is any consistent set of firings.

The set of all legal track expression corresponding to the firing historyF (A) is denoted

by S(A).

A Firing pattern) is any subset ofS(A) .

Convention:In what follows, we tacitly assume that all firings occurringin definitions,

proofs and examples belong to a fixed firing set, a possible history of firings in a brain.

Firing patters are the basic objects of our theory. They embody mental functions. Func-

tions in analysis and firing patterns are both quite complex infinite sets, a fact to which we

have become quite oblivious in the case of analysis. We can add, multiply, differentiate

and integrate functions. Our goal is to develop a corresponding operability with firing

patters.

Interaction of firing patterns

Firing patterns are related by acting on each other as determined by the structure of the

net. We untangle these interactions by basing them on the concept ofapplyingfiring a

pattern to another. Observe that in each individual track expression the expression to the

left of the main arrow represents the cascade that prompts the key neuron to fire. The

cascade denoted by the expression on the right is what new firings this firing causes. The

same is true for sets of track expressions. In this view, a track expression corresponds to

an element of the graph of a function (considered as a set of ordered pairs, and a firing

pattern is, as we suggested, a mental function.

This observation motivates the following definition of composition of such sets.

Composition

A setM composed with a setN applies the causation, represented byM , onN as follows:
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M ·N = { x : there is an element{x1, . . . , xk}
t
−→
a

x in M

such that{x1, . . . , xk} ⊆ N} .

Composition of firing patterns give rise to an algebraic structure, the neural algebraNA .

To summarize:

A neural AlgebraNA consists of a weighted directed graphA

”the neural net of the brain”

a firing historyF (A) ,

”the activity of the brain”

the setS(A) of track expressions determined byF (A) ,

”cascades of firing neurons”

a set of subsets ofS(A) ,

”firing patterns”

closed under the binary operation of composition.

”neural algebra”

Challenges

What is the relation between the structures in a neural net and their function ? But: How

do we decide on the definition and selection of such functionsor concepts ?

Thebiological approachis exemplified by brain imaging. There is always the statistical

approach: various techniques of brain imaging can be used toshow that experiments

on (sometimes large samples of) animal or human subjects exhibit a clear correlation

between parts of the brain structure and a particular concept or function. In this way one
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is able to isolate what is worthwhile. This is enormously successful scientifically, it also

produces beautiful pictures and serves many derived disciplines of neuroscience.

Theneural algebra approachto the structure/function problem profits from the fact that

the objects, firing patterns, serve at the same time functionally - by composition of mental

functions - and structurally - by reading parts of the neuralnet off the track expressions

representing such functions.

But then there are uncountably many possible elements of theneural algebraNA , and we

are faced with the problem of identifying the truly relevantones among them.

Predication

ElementsR of the neural algebraNA are always operations, as left factors. Some of them

may be considered as predicates in the sense ofpredication operations:

R ·X computes the extent to which the ”predicate”R applies toX.

If a predication is to be conceptually relevant, the main requirement is that it should

be general, abstract, enough not to depend on accidental, extraneous, conditions around

it. This corresponds to the traditional notion of a concept.Since Aristoteles, concepts or

universals are arrived at by abstraction: by taking a thought and eliminating all extraneous

elements, theaccidentia, the accidential or irrelevant aspects.

Concepts

We identify concepts inNA with the corresponding abstraction operation. IfR is a con-

ceptual abstracting operation, applied to a thoughtX which belongs to the conceptual

field of the concept, thenR ·X removes fromX all aspects that are irrelevant with respect

to the predicationR.

If applyingR again returns the same result, this is the pure abstract, theconceptual con-

tent ofX. Accordingly, we define:

R is aconcept if it satisfies the equationR · (R ·X) = R ·X for all X.

Familiar concepts are typically based on a firing pattern that has anepisodic character.

Familiar examples are notions such as skripts and memories.

Scriptsact situationally and are templates for procedures, projects, processes ...
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Figure 3: Fleeing on a Threat.

Memoriesare invoked by triggers and store auditory and visual perceptions, thoughts,

emotions ...

Example

Fleeing upon being threatenedmay serve here as a simple example of a script:

s = {{u, v}
t−1
−−→
a

w, {x}
t−1
−−→
b

y}
t
−→
c
z

u : it’s big, v : it moves fast towards me,a : it’s dangerous,w : watch carefully.

x : no cover,b : I’m exposed,y: I’m in danger.

c : decide to flee,z : flee !

The imeditate question is how to characterize firing patterns that correspond to concepts;

what is the structure of the neural correlates of concepts ?

Firing pattern of a basic concept

Let s be any track expressions (e.g. the one above), and choose some neuronr. Define

S = {{s}
t
−→
r

s : t ∈ Z},
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Figure 4: Conceptual Net.

then clearlyS · (S ·X) = S ·X for all X, since

S ·X = ∅, if s /∈ X ;

S ·X = {s}, if s ∈ X.

Note that the cycle atr serves as a sort if pacemaker, and observe thatS is the identity

operator restricted tos, in a sense it ”identifies” it.

Neural net of a basic concept

The figure (fig.4) illustrates a neural net which realizes thefiring patternS.

It may be argued that in reality the brain does not work on the time scale from minus to

plus infinity, that is inZ, but during a finite time intervalI. If in the definition of a script

S, we replaceZ by I, the defining equation for concepts is only approximately satisfied:

mental concepts tend to be a bit fuzzy around the edges.

Scripts can be enchained, memories can be associative, and both can be combined to

create more complex concepts; in a bigger context, the role of a pacemaker is taken over

by scripts being embedded in larger cycles, as illustrated in fig.5.

Creation of concepts

Consider the track expressions as an input at timet0, (e.g. the teaching of a movement
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Figure 5: Key Chain and Key Ring.

or the presentation of a picture.)Perceivingthe inputs should produce a concept, the

perceptionP of s, with P · (P ·X) = P ·X for all X.

Perception isrealizedin a neural net by recruiting a neuronp and setting

P = {{s}
t
−→
p

s : t > t0}. Then for allX

P ·X = {s(t) : t > t1}, if s(t1) ∈ Xfor somet1 ≥ t0, ∅ otherwise.

P · (P ·X) = {s(t) : t > t1 + 1}, if s(t1) ∈ Xfor somet1 ≥ t0, ∅ otherwise.

Clearly, the conceptualization of a perception is again only approximately obtained.

Instead of mobilizing single neurons to conceptualize scripts or memories, perception

may consist more generally in attaching them to an existing key ring.

Consciousness

Let us understand neural consciousness as

the ability of a neural netB (“the brain”) to consciously observe itself as being conscious

and as consciously planning and acting.
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These abilities are embodied as activities in sub-populations of the “brain”, represented

by firing patterns; their interrelation is expressed by their composition: IfC is the firing

pattern corresponding to “consciousness”, andM1, M2, etc. are the firing patterns corre-

sponding to the context of observing, acting, planning, moving, etc. thenM1 ·C, M2 ·C,

etc. are the results of observing, acting, etc. as dependenton consciousness. To the sum

of these results, together withC itself,C is again applied.

Translated into neural algebra, our definition of consciousness transforms into an equation

of the form

C · (C ∪
⋃

i

Mi · C) = C .

This equation formulates the self-referential character of consciousness, an aspect that has

been formulated and investigated throughout the history ofthe concept, witness ”cogito

ergo sum” to ”I am a strange loop”. Algebraically, we have here a fixpoint equation, such

as encountered quite frequently in key places in various parts of mathematics:

Let ϕ(X) be any algebraic composition ofX with elements of the neural algebraNA,

then

ϕ(X) = X

is a fixpoint equation.

Fixpoint Theorem

In NA all fixpoint equationshave a solution; the solutions form a lattice by inclusion. If

ϕ(X0) ⊇ X0 then there is a solution which includesX0 .

Proof

If N1 ⊇ N2 thenM · N1 ⊇ M ·N2 by the definition of composition; equallyM1 · N ⊇

M2 ·N for M1 ⊇ M2. Hence, ifϕ(X) is any algebraic composition ofX with elements

of F (A) thenX ′ ⊇ X impliesϕ(X ′) ⊇ ϕ(X). More generally, ifD is a directed set of

elements ofNA then

ϕ(
⋃

D) =
⋃

X∈D

ϕ(X).
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From this follows, that the fixpoint equationϕ(X) = X has a least solution
⋃

n

ϕn(∅),

whereϕ0(X) = X andϕn+1(X) = ϕ(ϕn(X)). In the same way, ifϕ(X0) ⊇ X0, then
⋃

n

ϕn(X0)

is the least fixpoint includingX0.

The solutions of the fixpoint equation for consciousness constitute the set of persistent

activity patterns in a net of neurons that may be understood as ”states of consciousness”.

(The apparent circularity of our non-formal definition thusresolves itself as multiple entry

of the unknown in a single equation.)

Again, the question arises how to characterize firing patterns and their neural correlates

of solutions to the consciousness equation.

Structure Theorem of Consciousness

(1) Consciousness has a base in one or more cycles of the directed graph.

(2) Consciousness can be expanded along any outgoing edge.

(3) Consciousness never expands backwards into cycle free “stimulus and response” sub-

graphs.

To illustrate the proof of part 1 of this theorem, consider a cycle of neuronsa0, . . . , an−1,

connected with weights1 , and firing at timest, f(ai, t) = 1 iff t ≡ 1 mod(n).

Let each setCi consist ofai and all terms

xi = {xi−1}
t
−→
ai

xi+1,

with xi−1 ∈ Ci−1, xi+1 ∈ Ci+1 andt ∈ Z, t ≡ i mod(n)

and let us restrict the ”mind”M provisionally to this cycle.

Observe thatC2 · C1 = C3, etc. TakingC, and here alsoM as the union of theCi, we

obtainC · C = C and therefore

C · (C ∪M · C) = C · (C ∪ C · C) = C.
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Figure 6: Input-Output to Consciousness.

Remark:Just as in the case of concepts, if firing times are restrictedto an interval, say

−105 < t < 105 , the equation still holds with the exception of a few terms ”around the

edges”. Consciousness is always temporary, and somewhat fuzzy ant the start and the

end...

Proof of part 2: It suffices to consider cycles consisting of just one node as in the figure

6. For the example on the left the firing pattern restricted toan intervalI of Z is defined

recursively as

AI = {a
t
−→
a

a, b
1
−→
a

a : t ∈ I},

∪{{x1, . . . , xk}
t
−→
a

y} : x1, . . . , xk, y ∈ AI}

∪{b
1
−→
a

y : y ∈ AI}

Note that forI = Z we haveAZ · AZ 6= AZ.

The proof of part 3 for the figure on the right is similar:

BI = {a
t
−→
a

a, a
t
−→
a

b : t ∈ I},

∪{{x1, . . . , xk}
t
−→
a

b} : x1, . . . , xk ∈ BI}

But nowBZ · BZ = BZ.

Consciousness and concepts

Concepts are by their connectional structure candidates for inclusion in solutions to the

consciousness equation, as illustrated in fig.7. The concept ”fleeing upon danger” could
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Figure 7: A Ring of Consciousness.

be one of the entries.

The lattice structure of the set of solutions reflects the phases of consciousness and their

contextual movement depends on the inclusion/exclusion ofthe various concepts avail-

able from present states. In other words: consciousness expands/contracts by attach-

ing/releasing key rings according to the firing history.

Of course, most of the the conceptual key rings in a brain would represent subconscious

scripts and memories, indeed what are called instincts, some of them inherited, some

acquired.

Animal, Social and Artificial Consciousness

The consciousness of animalsis a much debated concept. A technical approach may

conceivably start with the knowledge, obtained laboriously, of the actual neural net of

some species. The famous nematodecaenorhabditis eleganshad its complete neural net-

work mapped with all their synapses, and much additional information has been obtained,

approximating total neural modelling. In principle, we could eventually ask for the con-

sciousness of that animal. In other words: ”How does it feel to be a worm ?” This remains
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to be done, and not only for worms ...

Social consciousness, in a technical sense, would consist of understanding individuals as

nodes in a (social) net, their interactions as edges in the net and the strength of these in-

teractions as the weights of these edges.

Artificial consciousnessmay be an utopian goal, although it has been studied in the con-

text of artificial intelligence, not least in the hope of modeling the perceived advantage of

conscious beings over ”mechanistic” ones.

John McCarthy, one of the pioneers in designing reasoning and consciousness for robots,

distinguishes between an AI approach and the neuroscience approach. According to him,

the AI approach considers consciousness composed of stratified levels of self-awareness.

Awareness is represented by set of sentences (in a formal or better in a natural language)

available to the robot’s reasoning system. He does not claima theory of human conscious-

ness, in particular he does ”not claim that the human brain uses sentences as its primary

way of representing information”.

I beg to differ. It seems both possible, and indeed very promising, to translate track expres-

sions into McCarthy’s LISP and vice versa, and thus to represent AI models, formulated

in LISP, directly in neural algebra, and to take advantage ofits non-stratified character

and the obvious formal similarities between LISP grammar and track exprtessions, (and

also with PROLOG statements.)

Outlook

It appears that the neural algebra approach could generallycontribute to computer science

in providing templates for the realization of memory structures and interacting highly par-

allel processes. One may speculate about correspondingfuture architecturesfor interlaced

memories and distributed programs.

As algebraic structures, neural algebrasNA are closely related to models of combina-

tory logic. Indeed, for rich graphsA and firing historiesF (A) they are such models.

Logic deals with laws of thought, combinatory logic with thelaws of applying thoughts

to thoughts. If we now identify thoughts with concepts in ourtechnical sense, then neural

algebra may be regarded as a model ofneural logic, relating algebras of the mind with

algebras of the brain.
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To develop this theme, consider:

1. What do we learn aboutcomposite concepts?

2. Equations in neural algebras containing one or more unknowns correspond toconcep-

tual mental problems. What is the relation between algorithms for solving equations and

processes in corresponding neural structures ?

3. The question of concepts raises a basic epistemological problem: There is the danger

to be trapped by cultural preconceptions in the widest sense, by notions that are supported

by diverse scientific, linguistic and other (partially unreflected) traditions.

4. Conversely, concepts that have established themselves by convention may well be

structurally representable. This is particularly attractive in the more general context of

applying neural algebra models, e.g. in sociology, or when one speaks of the market or of

nature as of (consciously) acting entities.

Coda (September 2011)

Understanding consciousness has been termed ”the most challenging task confronting

science”, and what has been a philosophical mainstay has turned into a legitimate ques-

tion of ”hard science”: it has been called ”the ultimate intellectual challenge in the new

millenium”. Not surprisingly, there has been an enormous production of papers on brain

and consciousness in neuroscience alone: about six papers per day, ( 2101 titles in 2010

according to a citation search.) There have been some notable attempts at theoretical

synthesis, under different viewpoints, proposing mathematical approaches (ranging from

dynamical systems to quantum theory), and relating them to neurological facts and psy-

chological experiments.

The present author, also fascinated by the challenge, remains within his field of compe-

tence and scientific background, (E.Engeler et al., The Combinatory Programme, Birkhäuser,

1995), and, using this experience, developed the present mathematical model of mental

functions and their neural embodiment, (E.Engeler, NeuralAlgebras and Consciousness, a

Theory of Structural Functionality in Neural Nets, in: Algebraic Biology, Springer LNCS

5147, 2008, p. 96-109.)

Consciousness seems consistently evasive to strict characterization and exact localization.

All that that mathematical models such as ours can provide isexplanation and prediction

of selected aspects, increasing their plausibility but remaining short of definitive valida-
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tion.

Taking the risk to throw glances over the fence, I find some reassurance for the present

model, hoping that others would perhaps share it. They may wish to consider the follow-

ing instances:

The single neuron identified as the key to recognize a face ( cf. the key neuron of that

concept).

Mirror neurons (cf. the key neuron to identify with a relatedconcept).

Perception and learning as investigated in bird songs, reading and early development of

the brain (cf. recruiting neurons to create concepts and abilities).

Recurrent or reentrant connectivity in the brain, e.g. in the visual cortex (cf. key rings of

consciousness) and corresponding EEG measurements.

The explanatory power of our model is surely helpful, in particular if it is combined with

the mathematical techniques, developed for the formulation and solution of equations, to

formally express hypotheses on the interrelations betweenbrain functions as represented

by objects in the neural algebra of a brain.

We hope to be able one day to finalize this paper, which now retains the aspects of the

original oral presentation (being short on references and acknowledgments), and to ex-

pand the necessary mathematical background from the original lecture notes publication

cited above. We also should develop the algebra of concepts into a neural logic, ( as pro-

posed in: E.Engeler, Algebras of the Mind and Algebras of theBrain, 14th Congress of

Logic, Methodology and Philosophy of Science 2011. Abstracts, p.204, extended abstract

http://www.lmps2011.org/en/editorial.html last viewedSept.2011.)
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