
EQUATIONS IN COMBINATORY ALGEBRAS

Erwin Engeler

ETH Zurich

i. The reduction of algorithmic problems to combinatorial

equations

The algorithmic problems we have in mind are not

decision problems such as: does x have property F ?

Rather, we think of problems of the form: Find x such

that F(x). The latter is one of the archetypes of

mathematical activities and, to obtain a realistic analysis,

it is perhaps best to orient ourselves on classical examples

of problems and solutions to visualize the spectrum of

notions involved.

To fix ideas, consider the similarity type of relational

structures A = <A,R,f,c> with relation R , operation f ,

constant c , and let r be an axiom system specifying the

actual class of models we have in mind.

Algebraic problem s in r would be posed by equations

of the form tl(x) = t2(x) , tl(x) = x , tl(x) = c , where

tl,t 2 are terms in the language of F To solve the pro-

blem in A means to exhibit an element a 6 A which satisfies

the equation in A , to solve it explicitly means to describe

a as a constant term in the language of F . Note that this

term may be considered as a straight-line program using only

assignments of the form x i := f(xj,x k) Some algebraic

194

problems are only solved in extensions of the original
2

structurer e.g. x = 2 is not solvable in ~ but only

in @(/~) In this case, to solve the problem means to

generate information about ~/2 , e.g. 1 < /2 < 2 , but

also to be able to manipulate /2 , at the least be able

to perform the field operations involving /2 Thus,

the solution /~. in a sense consists of a set X of

formulas, and to manipulate /2 would mean to manipulate

X Before we make this any more definite, consider another

type of problems.

Basic problems in F would be posed by basic, i.e.

quantifier-free first-order, formulas F(x) of the

language of F . Classical examples are provided by

elementary geometry. Take a geometry with two sorts,

lines and points~ and ask for the foci of a conic section

given by five points. The theory of geometrical constructions

with ruler and compass illustrate the notion of an al~orithmic

solution: it consists of exhibiting a program which con-

structs (using instructions corresponding to the construction

tools) the required points. This can in the present case be

done by a loop-free program, i.e. we are close to the case

of explicit solution. But let us imagine a geometry of

points and circles as sorts and ask for the angular bisector

of two given lines. It can be shown, that all solution pro-

grams must contain a loop. Thus, if we identify "solution"

with "solution program", the concept of algorithmic solution

should incorporate a sufficiently large class of programs.

As in the case of -/~ , there are classical examples of

basic problems in geometry which have no solution in some

given model (trisection of angles). Again, the solution

would be a set X (of properties of the solution line),

and would be algorithmic, if the solution program generated

X and if it allowed to manipulate X in some manner

associated to the relations and operations of the theory.

195

Al@orithmic problems arise also in elementary geometry,

the most celebrated one is the quadrature of the circle:

We ask for a line Segment, whose length is equal to the

circumference of a given circle. This is not a basic

problem (nor is it elementary, i.eo posed by a first-order

formula of elementary geometry). But it can very easily

be posed by a program (ruler and compass), which tests,

whether the proposed line segment is indeed a solution:

it does not terminate iff the line segment is a solution.

Again, there is no explicit, but only an algorithmic

solution to the problem.

The first purpose is now to create a framework, in

which the common denominator of the above examples can be

precisely formulated. The main new idea is that algorithms

and algorithmic properties of structures should be included

in the consideration of problems and solutions. We propose

to do this by suitably enlarging the set of objects of the

theory, concretely: to show that graph models of combinatory

logic can serve as the basic structure in which the

envisioned class of problems can be reformulated as equations.

Let A be any non-empty set. Consider the set G(A)

defined recursively by

G 0 (A) = A

Gn+ I(A) = G n(A) U {(~ ~b) : ~ c= G n(A), ~ finite, b 6G n(A)}

S (A) = U n G n (A)

Graph al@ebras over A are constructed as sets of subsets

of G(A) closed under the following binary operation

'~96

We now illustrate how graph algebras arise as formal

counterparts to relational structures by associating to

the field ~ its state field ~s For this purpose,

let A be the set of all quantifier-free formulas of
-i

the first-order language of the field ~ = <~,+,-,-, ,0,i,~>

(a) The state objects of ~s are exactly the subsets M of

A for which there is an assignment of rational numbers

to the variables occurring in M which satisfies all

formulas in M

(b) The state transformation objects of ~s are

defined as follows Ix i := xj +Xk] consists of all (~ ~b) ,

where ~ c A ~ b E A with the following properties: ~ is

consistent with the theory F of ~ ; if i # j,k and

Xry,Z do not occur in ~ or b and b' results from

• and z for x k substituting x for x i q y for x 3

then b ~ is a consequence of F , ~ and the equations

= = ~ z = x k ; if i = j , say, then x xj + x k ~ y x3 ,

the equation y = x. is to be suppressed, similarly for
3

i = k and i = j = k

The state transformers corresponding to the other instructions,

[X i := xj.xk] ~ [x i := -xj] , [x i := xj l] are defined in

like manner.

The truth value objects are defined using the important

auxil!iary constructs

{ } K = {~} ~ (# ~a) : a 6G(A) ,

c]

true : K

false = K.I

Then [x i < xj]

~ cA ~ x. < x.
= i : 3

consists first of all (~ ~b) where

is a consequence of F and a and

197

b 6K = true and second of all (~ ~c) where x. > x
3 i

a consequence of ~ and F and c 6K.I = false.

is

(c) Finally ~s is the graph algebra generated by

the objects introduced in (a) and (b) above.

We observe that all the objects of ~s are recursively

enumerable subsets of G(A) Indeed the generators are,

and if M and N are recursively enumerable then so is

M-N Thus ~s forms what we would like to call a

computable ~raph algebra.

A first extension of ~s is suggested by algebraic

problems. It consists in the adjunction of the composition

object B whose defining property is BMNL = M(NL) for all

M,N,L ~ G(A) Such an object can easily be constructed

for graph algebras, e.g.

B = {(~(B~ (y~a))) : a 6~(~¥),~,8,~ c__ G(A), finite}

Indeed, as shown in [4], every object F given by a

defining relation F • x I • ... • x n = t(xl,...,Xn) where t

is any combination of the x. by means of • can be realized
i

by a (recursively enumerable) set of elements of G(A)

Observe now, that any algebraic problem p(x) = 0 over

can be reformulated as an equation

P.X = true ,

where P is composed of state transformers and B . In

general, solutions X are not among the state objects of

~s since as state objects they should include the equation
2

x = 0 which is impossible in ~ . However, algorithms

such as Newton's method generate a set of nested intervals.

198

This generating process can be reformulated as one that

generates the set~ lq i <x < Pi : qi'Pi the endpoints of the

Newton intervals~ which is a solution. Now, the algorithm

underlying Newton's method employs program connectives other

than composition, essentially a while loop. To mirror this

construction algorithm by an object in a graph algebra we

need to have an object [while] c G(A) with the appropriate

properties. Newton's method then is realized in the graph

algebra by a composite object [newton] with the property

P-" ([newton] • {x 2 = 2}) " = true and [newton] • {x 2 = 2}
%

contains a set of convergent nested intervals (as formulas

Pi < x < qi)~

Observe, that we have created a sequence of adjunctions

to _~s , viz. ~s _c ~S(B) =c _~SIB ~ {x2=2} , [while] 1 which
%

not only let us encompass new solutions but also new pro-

blems, in fact algorithmic problems of the kind envisioned

above.

There are a number of obvious questions that arise here.

First, clearly, the state field approach to computing is one

that has the promise of actual realization on the computer.

This has in part been accomplished by Fehlmann [5], [6]

who has written a system CONCAT which takes a large sub-

language of PASCAL, translates its programs into graph-

algebra objects and performs the PASCAL computations with

such objects. The effect of this method is to obtain

(from PASCAL algorithms that are correct only for infinitely

exact reals) a corresponding graph-algebra computation which

is correct to any desired accuracy.

Second, our approach gives a new point of view in the

logic of programs° Indeed, it is of considerable interest

to investigate the definitional power of program connectives.

t99

This translates here into the algebraic question of comparing

extensions of ~s by B , [while] and other objects

corresponding to program connectives) e.g. whether

[recursion] would give a proper extension of

~S(B , [while]) , and whether such answers depend, and how,

on the original state structure, (here ~s). Some such

effects are well known.

Third, there now arise quite general questions of the

following nature: Let B be any graph algebra and let

tl(x) = t2(x) be an equation. Can this equation be

solved (in some extension of) B and if so, by what

means can the graph-algebra object x be obtained?

The remainder of this paper addresses itself to some

aspects of this question in a more abstract setting.

2. Algebraic extensions of graph algebras

It is well-known (see e.g. [4]) that the graph algebra

consisting of all subsets of G(A) constitutes a c0mbinatory

algebra, i.e. there are subsets S,K ~ G(A) such that

Kxy = x , Sxyz = xy(xz) for all x,y,z ~ G(A) Indeed,

one can also find L ~ G(A) such that (L.x).y = x.y

and Vz(x.z = y-z). D L.x = L.y , which makes it a

combinat0ry model, (even a stable one, by managing L.L = L) .

As we have seen in the first section of this paper, some

mathematically and computationally interesting structures

can be realized as subalgebras of such combinatory models.

Indeed, as has also been shown in [4], every algebraic

structure can be isomorphically embedded in an appropriate

combinatory model.

200

Taking into account this embeddability, we now consider

the question of solving algebraic equations in the richer

context of combinatory algebras, specifically the above

so-called graph models. Let therefore Xl,...,X m be

variables, AI,...~A k be constants denoting elements of

G(A) , i.e. subsets of G(A) The problem to be solved

is presented by one or more equations in the "unknowns"

X. and "parameters" A. ~ written in the form
1 1

tJ (XI'''''Xm) = t[(Xl'''''Xm)3 ' where the t ,t~3 3 are

composed by the binary operation of our structure G(A) o

A is assumed countable.

For convenience~ and without loss of generality, we

consider instead of G(A) the following set L of "lists".

The set L is obtained as a set of syntactical terms con-

structed by means of a binary syntactical operation c

and unary operations fl,..°,fn as follows: The empty

list O is a list. If u and v are lists, then

c(u,v) and f!(u), fn(U) are lists.

If M is any set of lists and u is a list, we

define u < M recursively by:

(a) 0 < M

(b) c(u~v) < M iff u 6M and v<M .

With this notation we introduce the application of the

combinatory algebra L (which consists of subsets of L) by:

M N = {u cluv MAV N}

201

We are now ready to state the main result of this paper.

Let AI,...,A k be recursively enumerable subsets of L

let E be a set of equations with parameters A. and
1

unknowns X l , . . . , X m , w h e r e l e n g t h (E) ~ n , t h e n u m b e r

of unary syntactical operations f. A solution of E
1

consists of sets A~,...,A: , X~,...,X' with AID A.
l K l m i = 1

such that E is satisfied.

THEOREM. If E is solvable, then E has a

recursively enumerable solution.

The proof of the above theorem is an application of

logic prograntming, (see e.g. [2],[3],[7]). This framework

allows us to state the recursive enumeration of the para-

meter sets A. and the solution conditions of E con-
l

veniently as a set of (universal) first-order formulas.

Our use of logic programming may be formulated as the

following lemma.

LEMMA. Let W ~ L be recursively enumerable. Then

there exist predicate symbols PI,...,Pm , W , and a.
1

quantifier-free conjunction of positive Horn formulas,

~w ' such that for all w 6 L : Vx ~w(X) ^ -TW(w) is

inconsistent iff w 6W . o

(Recall that for atomic formulas ~i,B we call -~

a negative, and ~i ^ "'" ^ ~ D ~ and ~i positive

Horn formulas). By Herbrand's theorem, we have:

COROLLARY. w6W iff there exists n and Ul,...,u n

in L such that i=iA n ~w(Ui)~ ^ -TW(W) is inconsistent,

i.e. iff w(w) is provable from ~w(Ul),...,~w(Un)

in propositional logic.

202

Logic programming consists in essence of a systematic way

of generating terms (here "lists") and substituting them

in sets of copies of the set of clauses ~W that con-

stitutes the "logic program" for W This is usually

done by some refined methods of unification and resolution

on which rest the practicability of the approach. We

refer the reader to the literature cited above. We now

sketch the proof of the theorem using the equation

A.X = B o (X.C)

Let ArB,C be recursively enumerable sets of lists and let

the corresponding formulas ("logic programs") be given as

%A' %B and ~C To the conjunction of these formulas we

add the following formulas, corresponding roughly to

D = A-X , E = X.C , F = B-E :

A(C(X,y)) A X(y). m D(X) ,

X(C(X,y)). - X(X) ^ X(y) ,

D(x) m. X(fl(x)) AA(C(X,fI(X))) ,

[(0)

w

B(C(x,y)) ^ E(y). D F(x) ,

E(C(x,y)). - E(X) a E(y) ,

F(x). DE(f2(x)) ^B(C(x,f2(x))) ,

E(O)

f X(C(X,y)) ^ C(y). m E(x) ,

15(c(x,y)). - c(x) ^ :(y) ,

E(x) D. C(f3(x)) AX(c(x,f3(x))) ,

c(o)

The equation itself induces us to add conjunctively

D(x) - F(x)

Let ~(x,y) be the resulting formula.

203

The initial step of the algorithm that produces

X c L consists of refuting

Vz Vxy(9(x,y) ^ -~X(z))

by a counterexample X(w I) (which is possible because we

assume of course that the equation has a nontrivial solution).

In the k-th iteration step we first make sure that all

of A,B,C are eventually taken in consideration. This is

done by adding to ~ formulas A(ul) , B(u l) , C(ui'")

for the first k elements of A,B,C resepectively.

We also add X(w I) ,X(Wk_l) for the w i obtained

at earlier steps. The resulting formula

Vz VxyI~(x,y) ^ Z~Wl ^ ... ^ Z#Wk_l A -nX(z)>

is again provided with a counterexample (if one exists)

otherwise, i.e. if the search for a counterexample does not

succeed, we have already finished constructing our solution

set X , because the set X of lists w. for which the a

formula X(wi) is ever added to ~ solves the equation.

Namely: let A',B',... be the sets of v EL for which

A(v), B(v), .o. can be proved from ~ at some stage of

the algorithm. Then, by construction, A' • X = D' , etc.,

hence A' • X = B' • (X' • C') as claimed.

Remarks

1. For some parameter values A. it is possible to
1

restrict A~ to equal A. , e.g. for the combinators K ,
1 1

L and S . At the time of this writing we are not yet

able to determine a general criterion for this behaviour.

204

2. In L it is possible to reduce finite sets of

equations to a normal form as follows:

LEMMA. Let E be a finite set of equations of the form

Ylo--Yn ° ti(A 1 Ak,X 1 Xm,Y I, Yn) = t~(A 1 Yn)

with parameters A c L ~ recursively enumerable, unknowns
i =

X i and variables Yi Then there are recursively enumerable

sets A,B ~ L such that solving E is equivalent to solving

the single equation A-Z = B.Z for Z o

3~ The present approach to models of combinatory logic

owes much to the pioneering work of Plotkin [10], Scott

(e.g. [i!])~ Meyer [9], Longo [8] and Barendregt (e.g. [i])

and to conversations with these authors.

205

References

[io]

[ii]

[i] Barendregt, H., Lambda Calculus and its Models. To

appear in the proceedings of the Logic Colloquium'82,

Florence, Italy.

[2] Clark, K.L. and T~rnlund, S.-A. (editors), Logic

Programming. Academic Press, 1982.

[3] Clocksin, W.F. and Mellish, C.S., Programming in

Prolog. Springer-Verlag, 1981.

[4] Engeler, E., Algebras and Combinators° Algebra

Universalis 13 (1981), 389-392.

[5] Fehlmann, T., Theorie und Anwendung des Graphmodells

der kombinatorischen Logik. Berichte des Instituts

for Informatik, ETH ZOrich, Nr. 41, 1981.

[6] Fehlmann, T., Concat Reference Manual and Implementation

Notes. ETH ZHrich, 1981, 48 pp.

[7] Kowalski, R.A., Logic for Problem Solving.

North-Holland Publ. Co., 1979.

[8] Longo, G., Set-theoretical Models for the l-calculus:

Theories, Expansions, Isomorphisms° To appear in the

Annals of Mathematical Logic.

[9] Meyer, A.R., What is a Model of the Lambda Calculus?

Preprint MIT/LCS/TM-201, 1981.

Plotkin, G.D., A Set-theoretical Definition of

Application. Memorandum MIP-R-95, University of

Edinburgh, 1972.

Scott, D.S., Relating Theories of the l-calculus.

In: Essays on Combinatory Logic, Lambda Calculus and

Formalism (to H.B. Curry), Seldin & Hindley, eds.

Academic Press, New York, 1980, pp. 403-450.

