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i. The reduction of algorithmic problems to combinatorial 

equations 

The algorithmic problems we have in mind are not 

decision problems such as: does x have property F ? 

Rather, we think of problems of the form: Find x such 

that F(x). The latter is one of the archetypes of 

mathematical activities and, to obtain a realistic analysis, 

it is perhaps best to orient ourselves on classical examples 

of problems and solutions to visualize the spectrum of 

notions involved. 

To fix ideas, consider the similarity type of relational 

structures A = <A,R,f,c> with relation R , operation f , 

constant c , and let r be an axiom system specifying the 

actual class of models we have in mind. 

Algebraic problem s in r would be posed by equations 

of the form tl(x) = t2(x) , tl(x) = x , tl(x) = c , where 

tl,t 2 are terms in the language of F To solve the pro- 

blem in A means to exhibit an element a 6 A which satisfies 

the equation in A , to solve it explicitly means to describe 

a as a constant term in the language of F . Note that this 

term may be considered as a straight-line program using only 

assignments of the form x i := f(xj,x k) Some algebraic 
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problems are only solved in extensions of the original 
2 

structurer e.g. x = 2 is not solvable in ~ but only 

in @(/~) In this case, to solve the problem means to 

generate information about ~/2 , e.g. 1 < /2 < 2 , but 

also to be able to manipulate /2 , at the least be able 

to perform the field operations involving /2 Thus, 

the solution /~. in a sense consists of a set X of 

formulas, and to manipulate /2 would mean to manipulate 

X Before we make this any more definite, consider another 

type of problems. 

Basic problems in F would be posed by basic, i.e. 

quantifier-free first-order, formulas F(x) of the 

language of F . Classical examples are provided by 

elementary geometry. Take a geometry with two sorts, 

lines and points~ and ask for the foci of a conic section 

given by five points. The theory of geometrical constructions 

with ruler and compass illustrate the notion of an al~orithmic 

solution: it consists of exhibiting a program which con- 

structs (using instructions corresponding to the construction 

tools) the required points. This can in the present case be 

done by a loop-free program, i.e. we are close to the case 

of explicit solution. But let us imagine a geometry of 

points and circles as sorts and ask for the angular bisector 

of two given lines. It can be shown, that all solution pro- 

grams must contain a loop. Thus, if we identify "solution" 

with "solution program", the concept of algorithmic solution 

should incorporate a sufficiently large class of programs. 

As in the case of -/~ , there are classical examples of 

basic problems in geometry which have no solution in some 

given model (trisection of angles). Again, the solution 

would be a set X (of properties of the solution line), 

and would be algorithmic, if the solution program generated 

X and if it allowed to manipulate X in some manner 

associated to the relations and operations of the theory. 
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Al@orithmic problems arise also in elementary geometry, 

the most celebrated one is the quadrature of the circle: 

We ask for a line Segment, whose length is equal to the 

circumference of a given circle. This is not a basic 

problem (nor is it elementary, i.eo posed by a first-order 

formula of elementary geometry). But it can very easily 

be posed by a program (ruler and compass), which tests, 

whether the proposed line segment is indeed a solution: 

it does not terminate iff the line segment is a solution. 

Again, there is no explicit, but only an algorithmic 

solution to the problem. 

The first purpose is now to create a framework, in 

which the common denominator of the above examples can be 

precisely formulated. The main new idea is that algorithms 

and algorithmic properties of structures should be included 

in the consideration of problems and solutions. We propose 

to do this by suitably enlarging the set of objects of the 

theory, concretely: to show that graph models of combinatory 

logic can serve as the basic structure in which the 

envisioned class of problems can be reformulated as equations. 

Let A be any non-empty set. Consider the set G(A) 

defined recursively by 

G 0 (A) = A 

Gn+ I(A) = G n(A) U {(~ ~b) : ~ c= G n(A), ~ finite, b 6G n(A)} 

S (A) = U n G n (A) 

Graph al@ebras over A are constructed as sets of subsets 

of G(A) closed under the following binary operation 
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We now illustrate how graph algebras arise as formal 

counterparts to relational structures by associating to 

the field ~ its state field ~s For this purpose, 

let A be the set of all quantifier-free formulas of 
-i 

the first-order language of the field ~ = <~,+,-,-, ,0,i,~> 

(a) The state objects of ~s are exactly the subsets M of 

A for which there is an assignment of rational numbers 

to the variables occurring in M which satisfies all 

formulas in M 

(b) The state transformation objects of ~s are 

defined as follows Ix i := xj +Xk] consists of all (~ ~b) , 

where ~ c A ~ b E A with the following properties: ~ is 

consistent with the theory F of ~ ; if i # j,k and 

Xry,Z do not occur in ~ or b and b' results from 

• and z for x k substituting x for x i q y for x 3 

then b ~ is a consequence of F , ~ and the equations 

= = ~ z = x k ; if i = j , say, then x xj + x k ~ y x3 , 

the equation y = x. is to be suppressed, similarly for 
3 

i = k and i = j = k 

The state transformers corresponding to the other instructions, 

[X i := xj.xk] ~ [x i := -xj] , [x i := xj l] are defined in 

like manner. 

The truth value objects are defined using the important 

auxil!iary constructs 

{ } K = {~} ~ (# ~a) : a 6G(A) , 

c ] 

true : K 

false = K.I 

Then [x i < xj ] 

~ cA ~ x. < x. 
= i : 3 

consists first of all (~ ~b) where 

is a consequence of F and a and 
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b 6K = true and second of all (~ ~c) where x. > x 
3 i 

a consequence of ~ and F and c 6K.I = false. 

is 

(c) Finally ~s is the graph algebra generated by 

the objects introduced in (a) and (b) above. 

We observe that all the objects of ~s are recursively 

enumerable subsets of G(A) Indeed the generators are, 

and if M and N are recursively enumerable then so is 

M-N Thus ~s forms what we would like to call a 

computable ~raph algebra. 

A first extension of ~s is suggested by algebraic 

problems. It consists in the adjunction of the composition 

object B whose defining property is BMNL = M(NL) for all 

M,N,L ~ G(A) Such an object can easily be constructed 

for graph algebras, e.g. 

B = {(~(B~ (y~a))) : a 6~(~¥),~,8,~ c__ G(A), finite} 

Indeed, as shown in [ 4 ], every object F given by a 

defining relation F • x I • ... • x n = t(xl,...,Xn) where t 

is any combination of the x. by means of • can be realized 
i 

by a (recursively enumerable) set of elements of G(A) 

Observe now, that any algebraic problem p(x) = 0 over 

can be reformulated as an equation 

P.X = true , 

where P is composed of state transformers and B . In 

general, solutions X are not among the state objects of 

~s since as state objects they should include the equation 
2 

x = 0 which is impossible in ~ . However, algorithms 

such as Newton's method generate a set of nested intervals. 
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This generating process can be reformulated as one that 

generates the set~ lq i <x < Pi : qi'Pi the endpoints of the 

Newton intervals~ which is a solution. Now, the algorithm 

underlying Newton's method employs program connectives other 

than composition, essentially a while loop. To mirror this 

construction algorithm by an object in a graph algebra we 

need to have an object [while] c G(A) with the appropriate 

properties. Newton's method then is realized in the graph 

algebra by a composite object [newton] with the property 

P-" ([newton] • {x 2 = 2}) " = true and [newton] • {x 2 = 2} 
% 

contains a set of convergent nested intervals (as formulas 

Pi < x < qi)~ 

Observe, that we have created a sequence of adjunctions 

to _~s , viz. ~s _c ~S(B) =c _~SIB ~ {x2=2} , [while] 1 which 
% 

not only let us encompass new solutions but also new pro- 

blems, in fact algorithmic problems of the kind envisioned 

above. 

There are a number of obvious questions that arise here. 

First, clearly, the state field approach to computing is one 

that has the promise of actual realization on the computer. 

This has in part been accomplished by Fehlmann [5], [6] 

who has written a system CONCAT which takes a large sub- 

language of PASCAL, translates its programs into graph- 

algebra objects and performs the PASCAL computations with 

such objects. The effect of this method is to obtain 

(from PASCAL algorithms that are correct only for infinitely 

exact reals) a corresponding graph-algebra computation which 

is correct to any desired accuracy. 

Second, our approach gives a new point of view in the 

logic of programs° Indeed, it is of considerable interest 

to investigate the definitional power of program connectives. 
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This translates here into the algebraic question of comparing 

extensions of ~s by B , [while] and other objects 

corresponding to program connectives) e.g. whether 

[recursion] would give a proper extension of 

~S(B , [while]) , and whether such answers depend, and how, 

on the original state structure, (here ~s). Some such 

effects are well known. 

Third, there now arise quite general questions of the 

following nature: Let B be any graph algebra and let 

tl(x) = t2(x) be an equation. Can this equation be 

solved (in some extension of) B and if so, by what 

means can the graph-algebra object x be obtained? 

The remainder of this paper addresses itself to some 

aspects of this question in a more abstract setting. 

2. Algebraic extensions of graph algebras 

It is well-known (see e.g. [4]) that the graph algebra 

consisting of all subsets of G(A) constitutes a c0mbinatory 

algebra, i.e. there are subsets S,K ~ G(A) such that 

Kxy = x , Sxyz = xy(xz) for all x,y,z ~ G(A) Indeed, 

one can also find L ~ G(A) such that (L.x).y = x.y 

and Vz(x.z = y-z). D L.x = L.y , which makes it a 

combinat0ry model, (even a stable one, by managing L.L = L ) . 

As we have seen in the first section of this paper, some 

mathematically and computationally interesting structures 

can be realized as subalgebras of such combinatory models. 

Indeed, as has also been shown in [4], every algebraic 

structure can be isomorphically embedded in an appropriate 

combinatory model. 
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Taking into account this embeddability, we now consider 

the question of solving algebraic equations in the richer 

context of combinatory algebras, specifically the above 

so-called graph models. Let therefore Xl,...,X m be 

variables, AI,...~A k be constants denoting elements of 

G(A) , i.e. subsets of G(A) The problem to be solved 

is presented by one or more equations in the "unknowns" 

X. and "parameters" A. ~ written in the form 
1 1 

tJ (XI'''''Xm) = t[(Xl'''''Xm)3 ' where the t ,t~3 3 are 

composed by the binary operation of our structure G(A) o 

A is assumed countable. 

For convenience~ and without loss of generality, we 

consider instead of G(A) the following set L of "lists". 

The set L is obtained as a set of syntactical terms con- 

structed by means of a binary syntactical operation c 

and unary operations fl,..°,fn as follows: The empty 

list O is a list. If u and v are lists, then 

c(u,v) and f!(u), .... fn(U) are lists. 

If M is any set of lists and u is a list, we 

define u < M recursively by: 

(a) 0 < M 

(b) c(u~v) < M iff u 6M and v<M . 

With this notation we introduce the application of the 

combinatory algebra L (which consists of subsets of L) by: 

M N = {u cluv  MAV N} 
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We are now ready to state the main result of this paper. 

Let AI,...,A k be recursively enumerable subsets of L 

let E be a set of equations with parameters A. and 
1 

unknowns X l , . . . , X  m , w h e r e  l e n g t h ( E )  ~ n , t h e  n u m b e r  

of unary syntactical operations f. A solution of E 
1 

consists of sets A~,...,A: , X~,...,X' with AID A. 
l K l m i = 1 

such that E is satisfied. 

THEOREM. If E is solvable, then E has a 

recursively enumerable solution. 

The proof of the above theorem is an application of 

logic prograntming, (see e.g. [2],[3],[7]). This framework 

allows us to state the recursive enumeration of the para- 

meter sets A. and the solution conditions of E con- 
l 

veniently as a set of (universal) first-order formulas. 

Our use of logic programming may be formulated as the 

following lemma. 

LEMMA. Let W ~ L be recursively enumerable. Then 

there exist predicate symbols PI,...,Pm , W , and a. 
1 

quantifier-free conjunction of positive Horn formulas, 

~w ' such that for all w 6 L : Vx ~w(X) ^ -TW(w) is 

inconsistent iff w 6W . o 

(Recall that for atomic formulas ~i,B we call -~ 

a negative, and ~i ^ "'" ^ ~ D ~ and ~i positive 

Horn formulas). By Herbrand's theorem, we have: 

COROLLARY. w6W iff there exists n and Ul,...,u n 

in L such that i=iA n ~w(Ui)~ ^ -TW(W) is inconsistent, 

i.e. iff w(w) is provable from ~w(Ul),...,~w(Un) 

in propositional logic. 
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Logic programming consists in essence of a systematic way 

of generating terms (here "lists") and substituting them 

in sets of copies of the set of clauses ~W that con- 

stitutes the "logic program" for W This is usually 

done by some refined methods of unification and resolution 

on which rest the practicability of the approach. We 

refer the reader to the literature cited above. We now 

sketch the proof of the theorem using the equation 

A.X = B o (X.C) 

Let ArB,C be recursively enumerable sets of lists and let 

the corresponding formulas ("logic programs") be given as 

%A' %B and ~C To the conjunction of these formulas we 

add the following formulas, corresponding roughly to 

D = A-X , E = X.C , F = B-E : 

A(C(X,y)) A X(y). m D(X) , 

X(C(X,y)). - X(X) ^ X(y) , 

D(x) m. X(fl(x)) AA(C(X,fI(X)) ) , 

[(0) 

w 

B(C(x,y)) ^ E(y). D F(x) , 

E(C(x,y)). - E(X) a E(y) , 

F(x). DE(f2(x) ) ^B(C(x,f2(x))) , 

E(O) 

f X(C(X,y)) ^ C(y). m E(x) , 

15(c(x,y)). - c(x) ^ :(y) , 

E(x) D. C(f3(x)) AX(c(x,f3(x))) , 

c(o) 

The equation itself induces us to add conjunctively 

D(x) - F(x) 

Let ~(x,y) be the resulting formula. 
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The initial step of the algorithm that produces 

X c L consists of refuting 

Vz Vxy(9(x,y) ^ -~X(z)) 

by a counterexample X(w I) (which is possible because we 

assume of course that the equation has a nontrivial solution). 

In the k-th iteration step we first make sure that all 

of A,B,C are eventually taken in consideration. This is 

done by adding to ~ formulas A(ul) , B(u l) , C(ui'" ) 

for the first k elements of A,B,C resepectively. 

We also add X(w I) .... ,X(Wk_l) for the w i obtained 

at earlier steps. The resulting formula 

Vz VxyI~(x,y) ^ Z~Wl ^ ... ^ Z#Wk_l A -nX(z)> 

is again provided with a counterexample (if one exists) 

otherwise, i.e. if the search for a counterexample does not 

succeed, we have already finished constructing our solution 

set X , because the set X of lists w. for which the a 

formula X(wi) is ever added to ~ solves the equation. 

Namely: let A',B',... be the sets of v EL for which 

A(v), B(v), .o. can be proved from ~ at some stage of 

the algorithm. Then, by construction, A' • X = D' , etc., 

hence A' • X = B' • (X' • C') as claimed. 

Remarks 

1. For some parameter values A. it is possible to 
1 

restrict A~ to equal A. , e.g. for the combinators K , 
1 1 

L and S . At the time of this writing we are not yet 

able to determine a general criterion for this behaviour. 
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2. In L it is possible to reduce finite sets of 

equations to a normal form as follows: 

LEMMA. Let E be a finite set of equations of the form 

Ylo--Yn ° ti(A 1 ..... Ak,X 1 ..... Xm,Y I, .... Yn ) = t~(A 1 ..... Yn ) 

with parameters A c L ~ recursively enumerable, unknowns 
i = 

X i and variables Yi Then there are recursively enumerable 

sets A,B ~ L such that solving E is equivalent to solving 

the single equation A-Z = B.Z for Z o 

3~ The present approach to models of combinatory logic 

owes much to the pioneering work of Plotkin [10], Scott 

(e.g. [i!])~ Meyer [9], Longo [8] and Barendregt (e.g. [i]) 

and to conversations with these authors. 
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