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A general approach to Birgi's artificium

E.Engeler

Abstract

Burgi’'s method for the computation of the sine function &sed mathematically on the
fact that this function satisfies a differential equatiorneTsolution is approximated by
a sequence of functions computed simutaneously at discatties. This observation
motivates a generalisation by which we obtain a massivalglighalgorithm for second-
order differential equations in general. We also show thelpslogy of invention may
have originally lead to these approximations. Since thd liithe sequence is close to,
but does not coincide with the solution, Burgastificium consists of "normalizing” the
approximation by a constant factor, whereby he obtains xhetesalues as discussed in

[2]. This, however does not generalize.

1. APPROACHINGEULER (WITH A FILE)

Burgi was a Swiss watchmaker, astronomer and mathenmatieia was a perfect artisan
who created ingenious, beautifully finished pieces of nrattecal and astronomical in-
struments, and also very original mathematical algorithfns

Imagine him as an instrument-maker, how he worked on a piecetal, roughly of the
shape desired, and file it down going over the the workpiene and time again. Each
time he would inspect thehapeof the piece at each place, that is its present slope there,
and there file away by an amount that depends on how far frordehieed slope it is at

this place, until he is satisfied. This, | imagine might berttiedset behind his computing

1On display at the Swiss National Museum in Zurich, and astilations in the beautifully produced

book [1] by F. Staudacher.
2Logarithms and, here to be discussed, trigonometric fansti
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the shape of the sine curve.

A legitimate mathematical interpretation of this workipl@r the givernshapeis to view
it as a curvey = g(z) given by a differential equation. We start by consideriniiyst-
order differential equation/ = f(x,y) and assume thgt satisfies a Lipschitz condition
in a domainD, e.g. |f(z,y1) — f(x,y2)] < c|ly2 — y1| for some constant and for all
(x,11), (z,y2) € D . As is well known, the equation then has a unique solutiorafor
given initial value(zo, y(zo)) in D.

Let us now choose an arbitrary functigg with initial value go(a) = y(a), lying within
the domainD as a proposed approximate solution for the given equatietic)L z, ..., zy
be a discretisation of the interval for which we seek thetsmhyand letd,, = x,,,1 — x,
denote the sizes of the respective intervals. With the gajyier), go(z1), ... we now
start a sequence of functions(z), g1(x), g2(x), . .. with which we intend to approach
the solutiony(z):

91(Tni1) = g(zn) + dn f(2n, g1(xy)),n=0,1,...,N = 1,t=0,1,...,N — 1.

This is meant to correspond to the filing away at the workpigith a straight file, ex-
cept that the successive modifications might involve addiraderial at places where
f(zn, g:(x,)) is positive. So perhaps we should better imagine a sculptoking on
wet clay with a flat spatula. Then the process is immune tatpkivay too much and
ruining the workpiece.

What is the shape obtained by this process ? Consider the &allgion of the given
differential equation, given the above discretisation aaddition. It would proceed as

follows:

6(](1’0) = y(a’)v eO(anrl) = 60(%) + dnf<xn7 €o($n)), n = 07 17 ] N -1

Instead of starting the Euler approximationzatwith initial value y(z,), we could also
start it simultaneously at all points,, go(z,,)) on the proposed first approximation curve

go, that is we look at the functions,(z,,) defined by

en(Tn) = go(xn), €n(Tmi1) = en(Tm) + dinf(Tm, en(m)),m=n,n+1,... ., N — 1.

Now notice that
gi(x,) = e,4(x,) for n,t=0,1,...,N,



Figure 1: Approaching Euler

wheren—t is 0 fort > n, n —t else. For = N we therefore havey(z,,) = eo(z,).

The algorithm converges to the Euler solution#ox) with the given initial value.

2. GENERALIZATION

The artisan knows thathapealso meangurvature he goes over the piece tinteand
timet + 1 again and remembers at each place the present curvatungacesnt with the
desired one and modifies the piece accordingly. Mathentigttbégs means that one needs
to determine the influence of the second derivative at eattt.po

We consider therefore second-order differential equatiaff = f(z,y,y’) to be solved
for an interval(a, b) with some boundary conditions and modify the above appraach
needed. This equation may be considered as a system of tivorfiler equationg; =

Ya, v = f(x,y1,12), OF in vector notation

y = (yl,yg),f(x,y) = (y27 f(xvylayQ)vy/ = f(l‘,y)

The recursive Euler approximation used above now concerestar functiork;(x,,) and



has the form
kt+1 (xn—i—l) - kt(xn) + dn : f([L‘n, kt(xn))a

taking the same discretizationy = a, z1,...,xy = b of (a,b) andd,, = x,.1 — z, as
above.
The vector functionk,(z,) have two component functiorlg(x,,) = (g:(zn), he(xy))

whose individual recursions are
gt+1(xn+1> = gt(xn) + dn : ht(xn)a

Psq (anrl) = ht(xn) +dp - f(xm gt(xn>v ht(xn»-

To start the recursion we need to kngy(x, ) andhy(z,) for n = 0,1,..., N as well
asg,(zo) andh,(z,) for all t. The latter are simply the initial conditions for the sotuti
of the original equationy, is assumed given as the original shape of the workpiece as

before, andi(z, ) can be computed recursively usipgand f:

ho(#ni1) = ho(wn) + dy - f (2, go(xn), ho(n))-

3. BURGI'S REFINEMENT

There are two refinements which Burgi impressively invdri@ his approximations.
One is the use of the now well-known mid-point modificationhe Euler algorithm. The
second is to use his experience that one would do well to wtaking at both ends of

the piece, which means to use boundary conditions insteadtiafl conditions: g;(x)

as before, but now,(xy). The above recursions are easily adapted to these refinement
we discuss them in the following section as they apply tagBsicomputation of the sine

function.

Burgi of course didn’t know about differential equationsdaEuler was not born during
his lifetime. But he had a lot of experience with the trigoratrnt functions. So, if one
explained to him the notion of the derivative, he would ateohave noticed its relation to
differences, he would also not be astonished to heasth@t) is cos(x) andcos’(z) =
—sin(x). The differential equation underlying Burgi's tabulatics thereforey” = —y,
the interval is(0, 7/2) and the boundary conditions ayé)) = sin(0) = 0 andy’(7/2) =
cos(m/2) = 1.



X sinx g3 h2 g2 hi1 gl ho g0 X

0 0 0 0 0 0 0
1.0281334 1.0048331 0.9817477
30° 0.5 0.5383294 0.5261294 0.5140419 0.5 30°
0.5 0.5 0.5035636
0.7526527 0.7356814 0.7199483
60°| 0.8660254) 0.9324174 0.9113313 0.891006 0.875 60°
0.8660287 0.8660715 0.8728183
0.2754807 0.2691517 0.2617994
1
90° 1.0766588 1.0522588 1.0280838 190°
1 1 1

Figure 2: Example of an artificium table

The mid-point modification of Euler’s algorithm asks for ptsiz,, in the interval(x,,, z,, 1 1)
at which to take the derivatives for the next step. Assumirig,,) known, the mid-point
approximation fow;,; would beg, 1 (x,+1) = g:(x,)+d,-h(Z,41). Infact, convergence

can be improved by using already computed valueg af, and Burgi takes

G1(Tng1) = Gea1(Tn) + di - hi(Tpir).

The values oh;(z,,) are obtained as follows for eac¢h
Sinceh,(zy) is known as the boundary values(7/2) = 1, we may takery = xy —d/2

and set

h(Zn) = hi(ony) —d/2- f(on, gi(on), he(zn)) = he(zn) +d/2 - ge(an).,

usingf(z,y, z) = —y as in the differential equation.
Continuing withh(z,,_1) = h(z,) + d - g:(x,,—1) we obtain all the values necessary for

the recursiony, ;.



4. BURGI'S ARTIFICE

As the example above shows, the computed valueg of;) are in general different from
the desired valuein(7/2) = 1. Here is the place to use an artifice: The artisan Burgi
"polishes” the result proportionally and proposes the radised values

D gt(xn)
Tn) = t=0,1,....k
() ge(zn)

These values are added in the above example#$o0), 1, ..., ¢, = 3. and show an aston-

ishing convergence to the true values. Actually, Burgiliguwes” only his last computed
valuesg; for entering into his sine table.

Caveat: Of course, this elegant uniform correction does not geiserab arbitrary dif-
ferential equations,as simple examples show. Burgi, énctise of the Sine function, is

fortunate or inspired, and his normalization is correcsla®wn in [2].

Following a tradition since Ptolemy, Burgi computes hislés with natural numbers. He
presents the progression of approximations as columnsigimhto left as in the above
example. He choose€ and setsXy = N and the interval0, N). The interval points are
now calledX,, andd = 1. The functionsy,, h; are correspondingly renamé&¢, H, and
the intermediate point¥,,. Let Gy(X,,) denote the values in the initial column and adapt
the values of((X,,) loosely toN - sin(55:).

The recursion which creates the next columns now takes the fo

Hi(Xn) = Hi(XN) + G(Xn) /2, H(Xn-1) = H(X,) + Gi(Xn1),

Gi(Xo) = Go(Xo), Gi(Xnt1) = Gry1(Xn) + Hi(X).

These modifications of course result in a telescoping irsered the following columns.
By computing with natural numbers for values and interva¢ sone also obviates the ac-
cumulation of rounding errors. The corresponding companias shown for our example
in[2].

To recover the intended approximatisim; of the sine function, we need again to nor-

malise to
_onm . Gi(X,)
S5 = Goxn)

which Birgi, as mentioned above, performs only for his tadtumn to get the desired

values for his table.

A discussion and proof of the resulting convergence is in [2]
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5. CopA

In Burgi’s time, the development of mechanical tools fomgutations lay dormant since
antiquity. While he would have been the right person to er@amechanical calculator,
there is no record of this having happened. Instead, higcarts eminently practical for
hand computation. It is hopeless as an algorithm for digahputers.

One could consider the generalized algorithm as an exanfipiessively parallel com-
putations : One would simply provid& processors, assign each to one of the paipts
connect them according to the recursion equations, and at@ripe various functions
locally. Such processors usually have the required meligbut- and output-channels.
Neural netsare a special case: Individual neurons are very simple psocs with limited
functionality. They typically have multiple input chanagbynapses) but only one output
channel (the axon). It is an interesting challenge to overcthese limitations, e.g. by
deeper networks of neurons and to apply it to modelling iegrand operating regimes

of neural nets. But this is another chapter.
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