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A general approach to B̈urgi’s artificium

E.Engeler

Abstract

Bürgi’s method for the computation of the sine function is based mathematically on the

fact that this function satisfies a differential equation. The solution is approximated by

a sequence of functions computed simutaneously at discretevalues. This observation

motivates a generalisation by which we obtain a massively parallel algorithm for second-

order differential equations in general. We also show the psychology of invention may

have originally lead to these approximations. Since the limit of the sequence is close to,

but does not coincide with the solution, Bürgi’sartificium consists of ”normalizing” the

approximation by a constant factor, whereby he obtains the exact values as discussed in

[2]. This, however does not generalize.

1. APPROACHINGEULER (WITH A FILE )

Bürgi was a Swiss watchmaker, astronomer and mathematician. He was a perfect artisan

who created ingenious, beautifully finished pieces of mathematical and astronomical in-

struments1, and also very original mathematical algorithms2.

Imagine him as an instrument-maker, how he worked on a piece of metal, roughly of the

shape desired, and file it down going over the the workpiece time and time again. Each

time he would inspect theshapeof the piece at each place, that is its present slope there,

and there file away by an amount that depends on how far from thedesired slope it is at

this place, until he is satisfied. This, I imagine might be themindset behind his computing

1On display at the Swiss National Museum in Zurich, and as illustrations in the beautifully produced

book [1] by F. Staudacher.
2Logarithms and, here to be discussed, trigonometric functions.
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the shape of the sine curve.

A legitimate mathematical interpretation of this work-plan for the givenshapeis to view

it as a curvey = g(x) given by a differential equation. We start by considering afirst-

order differential equationy′ = f(x, y) and assume thatf satisfies a Lipschitz condition

in a domainD, e.g. |f(x, y1) − f(x, y2)| < c|y2 − y1| for some constantc and for all

(x, y1), (x, y2) ∈ D . As is well known, the equation then has a unique solution forany

given initial value(x0, y(x0)) in D.

Let us now choose an arbitrary functiong0, with initial valueg0(a) = y(a), lying within

the domainD as a proposed approximate solution for the given equation. Letx0, x1, . . . , xN

be a discretisation of the interval for which we seek the solution, and letdn = xn+1 − xn

denote the sizes of the respective intervals. With the values g0(x0), g0(x1), . . . we now

start a sequence of functionsg0(x), g1(x), g2(x), . . . with which we intend to approach

the solutiony(x):

gt+1(xn+1) = gt(xn) + dnf(xn, gt(xn)), n = 0, 1, . . . , N − 1, t = 0, 1, . . . , N − 1.

This is meant to correspond to the filing away at the workpiecewith a straight file, ex-

cept that the successive modifications might involve addingmaterial at places where

f(xn, gt(xn)) is positive. So perhaps we should better imagine a sculptor working on

wet clay with a flat spatula. Then the process is immune to taking away too much and

ruining the workpiece.

What is the shape obtained by this process ? Consider the Euler solution of the given

differential equation, given the above discretisation andcondition. It would proceed as

follows:

e0(x0) = y(a), e0(xn+1) = e0(xn) + dnf(xn, e0(xn)), n = 0, 1, . . . , N − 1.

Instead of starting the Euler approximation atx0 with initial valuey(x0), we could also

start it simultaneously at all points(xn, g0(xn)) on the proposed first approximation curve

g0, that is we look at the functionsen(xm) defined by

en(xn) = g0(xn), en(xm+1) = en(xm) + dmf(xm, en(xm)), m = n, n+ 1, . . . , N − 1.

Now notice that

gt(xn) = en−̇t(xn) for n, t = 0, 1, . . . , N,
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Figure 1: Approaching Euler

wheren−̇t is 0 for t > n, n− t else. Fort = N we therefore havegN(xn) = e0(xn).

The algorithm converges to the Euler solution fory(x) with the given initial value.

2. GENERALIZATION

The artisan knows thatshapealso meanscurvature; he goes over the piece timet and

time t+ 1 again and remembers at each place the present curvature, compares it with the

desired one and modifies the piece accordingly. Mathematically this means that one needs

to determine the influence of the second derivative at each point.

We consider therefore asecond-order differential equationy′′ = f(x, y, y′) to be solved

for an interval(a, b) with some boundary conditions and modify the above approachas

needed. This equation may be considered as a system of two first-order equationsy′1 =

y2, y
′

2 = f(x, y1, y2), or in vector notation

y = (y1, y2), f(x,y) = (y2, f(x, y1, y2),y
′ = f(x,y).

The recursive Euler approximation used above now concerns avector functionkt(xn) and
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has the form

kt+1(xn+1) = kt(xn) + dn · f(xn,kt(xn)),

taking the same discretizationx0 = a, x1, . . . , xN = b of (a, b) anddn = xn+1 − xn as

above.

The vector functionskt(xn) have two component functionskt(xn) = (gt(xn), ht(xn))

whose individual recursions are

gt+1(xn+1) = gt(xn) + dn · ht(xn),

ht+1(xn+1) = ht(xn) + dn · f(xn, gt(xn), ht(xn)).

To start the recursion we need to knowg0(xn) andh0(xn) for n = 0, 1, . . . , N as well

asgt(x0) andht(x0) for all t. The latter are simply the initial conditions for the solution

of the original equation;g0 is assumed given as the original shape of the workpiece as

before, andh0(xn) can be computed recursively usingg0 andf :

h0(xn+1) = h0(xn) + dn · f(xn, g0(xn), h0(xn)).

3. BÜRGI’ S REFINEMENT

There are two refinements which Bürgi impressively invented for his approximations.

One is the use of the now well-known mid-point modification ofthe Euler algorithm. The

second is to use his experience that one would do well to startworking at both ends of

the piece, which means to use boundary conditions instead ofinitial conditions: gt(x0)

as before, but nowht(xN ). The above recursions are easily adapted to these refinement;

we discuss them in the following section as they apply to Bürgi’s computation of the sine

function.

Bürgi of course didn’t know about differential equations and Euler was not born during

his lifetime. But he had a lot of experience with the trigonometric functions. So, if one

explained to him the notion of the derivative, he would at once have noticed its relation to

differences, he would also not be astonished to hear thatsin′(x) is cos(x) andcos′(x) =

− sin(x). The differential equation underlying Bürgi’s tabulation is thereforey′′ = −y,

the interval is(0, π/2) and the boundary conditions arey(0) = sin(0) = 0 andy′(π/2) =

cos(π/2) = 1.
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Figure 2: Example of an artificium table

The mid-point modification of Euler’s algorithm asks for pointsx̄n in the interval(xn, xn+1)

at which to take the derivatives for the next step. Assuminght(x̄n) known, the mid-point

approximation forgt+1 would begt+1(xn+1) = gt(xn)+dn·ht(x̄n+1). In fact, convergence

can be improved by using already computed values ofgt+1, and Bürgi takes

gt+1(xn+1) = gt+1(xn) + dn · ht(x̄n+1).

The values ofht(x̄n) are obtained as follows for eacht:

Sinceht(xN) is known as the boundary valuecos(π/2) = 1, we may takēxN = xN −d/2

and set

ht(x̄N) = ht(xN )− d/2 · f(xN , gt(xN ), ht(xN )) = ht(xN) + d/2 · gt(xN ).,

usingf(x, y, z) = −y as in the differential equation.

Continuing withht(x̄n−1) = ht(x̄n) + d · gt(xn−1) we obtain all the values necessary for

the recursiongt+1.
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4. BÜRGI’ S ARTIFICE

As the example above shows, the computed values ofgt(xN) are in general different from

the desired valuesin(π/2) = 1. Here is the place to use an artifice: The artisan Bürgi

”polishes” the result proportionally and proposes the normalised values

gpt (xn) =
gt(xn)

gt(xN )
, t = 0, 1, . . . , k

These values are added in the above example fort = 0, 1, . . . , tk = 3. and show an aston-

ishing convergence to the true values. Actually, Bürgi ”polishes” only his last computed

valuesgptk for entering into his sine table.

Caveat: Of course, this elegant uniform correction does not generalise to arbitrary dif-

ferential equations,as simple examples show. Bürgi, in the case of the Sine function, is

fortunate or inspired, and his normalization is correct, asshown in [2].

Following a tradition since Ptolemy, Bürgi computes his tables with natural numbers. He

presents the progression of approximations as columns fromright to left as in the above

example. He choosesN and setsXN = N and the interval(0, N). The interval points are

now calledXn andd = 1. The functionsgt, ht are correspondingly renamedGt, Ht and

the intermediate points̄Xn. LetG0(Xn) denote the values in the initial column and adapt

the values ofG0(Xn) loosely toN · sin( nπ

2N
).

The recursion which creates the next columns now takes the form

Ht(X̄N) = Ht(XN) +Gt(XN)/2, Ht(X̄n−1) = Ht(X̄n) +Gt(Xn−1),

Gt(X0) = G0(X0), Gt(Xn+1) = Gt+1(Xn) +Ht(X̄n).

These modifications of course result in a telescoping increase of the following columns.

By computing with natural numbers for values and interval size, one also obviates the ac-

cumulation of rounding errors. The corresponding computation is shown for our example

in [2].

To recover the intended approximationsint of the sine function, we need again to nor-

malise to

sint(
nπ

2N
) =

Gt(Xn)

Gt(XN )

which Bürgi, as mentioned above, performs only for his lastcolumn to get the desired

values for his table.

A discussion and proof of the resulting convergence is in [2].
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5. CODA

In Bürgi’s time, the development of mechanical tools for computations lay dormant since

antiquity. While he would have been the right person to create a mechanical calculator,

there is no record of this having happened. Instead, his artifice is eminently practical for

hand computation. It is hopeless as an algorithm for digitalcomputers.

One could consider the generalized algorithm as an example of massively parallel com-

putations : One would simply provideN processors, assign each to one of the pointsxn,

connect them according to the recursion equations, and compute the various functions

locally. Such processors usually have the required multiple input- and output-channels.

Neural netsare a special case: Individual neurons are very simple processors with limited

functionality. They typically have multiple input channels (synapses) but only one output

channel (the axon). It is an interesting challenge to overcome these limitations, e.g. by

deeper networks of neurons and to apply it to modelling learning and operating regimes

of neural nets. But this is another chapter.
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