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Abstract. Thoughts are spatio-temporal patterns of coalitions of fir-
ing neurons and their interconnections. Neural algebras represent these
patterns as formal algebraic objects, and a suitable composition opera-
tion reflects their interaction. Thus, a neural algebra is associated with
any neural net. The present paper presents this formalization and devel-
ops the basic algebraic tools for formulating and solving the problem of
finding the neural correlates of concepts such as reflection, association,
coordination, etc. The main application is to the notion of consciousness,
whose structural and functional basis is made explicit as the emergence
of a set of solutions to a fixpoint equation.
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1 Introduction

Thoughts are patterns of firing neurons. And so are sensory perceptions, memo-
ries, feelings, motor activations, etc. As a population of neurons fires in a pattern
it causes the firing of neurons in another pattern, by its neural connections. Thus
goes a broadly accepted view of the ongoing activity of the brain. The challenge
met by this paper is to find a mathematical framework in which firing patterns
M , N , etc. are the basic elements and their composition M · N = R describes
how a pattern N which fires in a context M results in a pattern R. Indispensable
for such an approach is that the mathematical objects M , etc. have a transpar-
ent relation to the basic neurological facts behind a spatio-temporal pattern of
firing neurons.

Roughly speaking, each firing pattern is considered as being spread out into
parallel tracks of successively firing individual neurons. Each of these tracks is
understood as being divided into an initial part and a final part: if the track is
part of the spread-out context M and its initial part belongs to N , then its final
part belongs to R = M · N .
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The goal of this paper is to cast this rough sketch into a mathematical model
and to create the rudiments of a mathematical discipline for it. The proposed
neural algebras provide the needed mathematical framework. It will serve for
treating the problem of relating the functionality of a neural net to its commu-
nication structure in a coherent algebraic fashion.

The examples presented in this paper, in particular our excursion into a theory
of consciousness, are necessarily simplistic, but they should show the spirit of
such applications: the basic mathematical properties of neural algebras are used
to formulate functional-structural problems as equations, and then to solve them
algebraically. In particular we can locate neural correlates to some concepts that
arise as descriptions of brain functions belonging to a higher level of descriptive
language.

2 Neural Algebra

Neural algebras represent sets of neuronal activities – patterns, sequential and
spatial, of firing brain cells. These correspond to neural activities as they would
show up, for example, in sequences of functional MRI images. The formalization
is then used to mirror the composition of such sets – one pattern causing other
patterns – as a formal operation on the corresponding elements of the neural
algebra.

The fascinating development of neurology, (as impressively told by Eric Kan-
del, “In Search of Memory” [11]), has allowed mathematical scientists to try
approximating the anatomical, physiological and biochemical findings by more
or less realistic models, so called artificial neural nets. The early story of these
approaches and their relation to artificial intelligence (“connectionism”) is col-
lected in Anderson and Rosenfeld [1] reaching up to about 1987. There are other
attempts to discuss activities of neural populations mathematically; the most
promising so far is probably the dynamical systems approach; others, based on
quantum mechanics are somewhat less convincing (see, e.g., the discussion in
Koch and Hepp [12]).

Our approach is based on the representation of the activities of neural sub-
populations as formal mathematical objects. Deciding on the level of detail about
the functioning of neurons and their interconnection determines the interpreta-
tion of these expressions. Primarily, a neural net is the directed graph of its
synaptic connections. The weakest description level approximates the function-
ality by providing weights to the synapses and introduces a discrete time behav-
ior of neurons as known from artificial neural nets, familiar for their intuitive
appeal, computational richness and developed theory. Our present exposition
remains at this level; higher levels of detail might include specific biochemical,
and perhaps other mechanisms of communication and distinguish various types
of neurons, and might include stochastic elements.

To fix notation, an artificial neural net is a weighted directed graph, i.e.
a triple (A, L, w), where the set A = {a1, a2, . . . }, which gives the name to
the whole net, is a set of elements called neurons, connected by directed edges
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L : L ⊆ A×A to which rational weights are attached by the function w : L → Q,
abbreviated wi,j = w(〈 ai, aj〉). In an active neural net each neuron ai has at
any time instant t an excitation value f(ai, t) ∈ {0, 1}, t ∈ I, a subinterval of
discrete time I ⊆ Z. These values are interrelated by the structure of the neural
net as follows: If 〈a1, aq〉, . . . , 〈an, aq〉 ∈ L, then

f(aq, t + 1) = H(Σiwi,qf(ai, t)) ,

where H is a 0 − 1 valued function: H(v) = 1 if v ≥ 1, 0 otherwise.
Thus, neurons interact by sending information about their excitation states

at time t along “axons” via “synapses” to other neurons. The synapses weigh
these inputs and the receiving neuron derives from these inputs its excitation
state at time t+1 according to the function H . At any given moment the weights
wi,j attached to the synapse from neuron ai to neuron aj are given constants;
“learning” may change these values, but this is outside the concern of this paper,
although obviously important.

Models somewhat closer to physiological facts than this rather rudimentary
one employ real-valued excitation functions and sigmoid functions H , see, e.g.,
Dehaene et al. [6]. Such models can be incorporated in our approach.

The basic building blocks of our theory are called track expressions, denoted
by lower case symbols x, y, etc. These formal expressions denote the activation
of specific neural connections at specific time instants as follows. For a single
neuron a the expression consists of the symbol a alone. If neurons a1 to ak have
directed edges to neuron a0 and there is a further edge from a0 to ak+1 and t is
any time instant t ∈ Z then

x := {a1, . . . , ak} t−→
a0

ak+1 .

is a track expression if the sum of weights of the incoming edges is at least 1.
The set on the left side may be empty, e.g. in the case that a0 is an “input”

neuron with no incoming edges. The neuron a0 in a sense encodes the activation
of this particular connection, it is therefore called the key neuron of this expres-
sion; formally a0 = ν(x). The upper index t of the arrow indicates the time at
which the key neuron is activated; formally t = τ(x). Any one of the ai, say a1,
may itself be the key neuron of another connection, say

y := {b1, . . . , bs} t−1−−→
a1

bs+1 .

Then {
{b1, . . . , bs} t−1−−→

a1
bs+1, . . . , ak

}
t−→

a0
ak+1

is also a track expression, still with a0 as its key neuron. More track expressions
are obtained by continuing the method of substitution as in the formal definition
below.
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Let A be any weighted directed graph. We formally define the set of track
expressions x together with their key neurons ν(x) and firing time τ(x) as a set
S(A) of formal elements as follows:

S0(A) = A, ν(x) = x, τ(x) = t for x ∈ A, t ∈ Z
Sn+1(A) = Sn(A) ∪ { {x1, . . . , xk} t−→

a0
xk+1 : if there is an element

a0 ∈ Awith edges from a1, . . . , ap and to aq , such that
τ(x1), . . . , τ(xk) = t − 1, τ(xk+1) = t + 1 ,

Σiw(ν(xi), a0) ≥ 1 ,

{ν(x1), . . . , ν(xk)} ⊆ {a1, . . . , ap} and
ν(xk+1) = aq, xi ∈ Sn(A), i = 1, . . . , k + 1 } ,

ν({x1, . . . , xk} t−→
a0

xk+1) = a0 ,

τ({x1, . . . , xk} t−→
a0

xk+1) = t .

Then S(A), the set of track expressions, is the union of the Sn(A):

S(A) =
∞⋃

n=0

Sn(A) .

Iterated bracketing of track expressions serves to denote neural activities on
increasingly higher levels of dependency. As theoretical constructs they are in-
troduced to capture the compositionality of firing patterns and to thus facilitate
the construction of an algebraic superstructure on a given neural net, the neural
algebras.

We now come to the formal definition of firing patterns. Let A be a neural
net, considered as a directed graph (equipped with further data in case of higher
level detail as above), and let S(A) be the set of all track expressions. A set M of
track expressions constitutes a firing pattern, if, loosely speaking, it corresponds
to a temporal pattern of firing neurons in A. Formally this means that there
is an assignment of an excitation function f(ai, t) to the set of neurons ai and
firing times t occurring in the track expressions in M such that f(ν(x), τ(x)) = 1
for all track expressions x in M , and such that this assignment conforms to the
firing laws.

Firing patterns are designed to be identified with (mental) functions as their
neural correlates. This rests on the fact that certain subnets can be understood
as having specific functionalities based on them. This singling out of subnets
and firing patterns based on them is a virtual, theoretical, superstructure on
the neural net and is typically guided by hypotheses on their function such as
receiving sensory input or analysing activities based on some other subnet, etc.
Research in neurology has resulted in an enormous and growing knowledge base
of such facts for humans and for some animals.

Our mathematical framework identifies neural correlates as firing patterns;
this makes it possible to capture the compositionality of such neural correlates
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quite generally, as follows: Let the neural firing pattern M be based on a sub-
graph AM of A, the support of M . Then M may take account of activities N
supported by subgraph AN and produce activities R, supported by AR.

The activation of N allows the activation of key neurons in M , which in
turn results, due to the structure of M , in the activation of the firing pattern
designated by R. Mathematically this situation corresponds to a composition
operation M · N = R. Formally, we have the following definition:

M · N = {x : there is an element {x1, . . . , xk} t−→
a

x in M

such that {x1, . . . , xk} ⊆ N} .

Note that whenever M and N are firing patterns, then so is M ·N . This definition
captures the rôles that the neurons in AM and AN play: Indeed, the neuron a
has an activation history that depends on the histories of ν(x1), . . . , ν(xk) and
influences that of ν(x).

It is in the nature of the things, that R itself may again be an “initiation”
or an “action”, etc. Indeed, each firing pattern can be used as a left multiplier,
representing a law of interaction, or as a right multiplier, representing the input
to the interaction. In this way, the set of firing patterns associated to a neural
net A constitute an algebraic structure, the Neural Algebra NA.

3 Some Mathematical Background

Let A be a neural net. Let F (A) be the set of firing patterns of A; this set is
provided with the composition operation defined in the previous section, thus
constituting an algebraic structure NA = 〈F (A), ·〉. It is in these algebras that
we are to solve the equations describing interactions between neural processes
formulated as firing patterns. Each one of these may of course contain neu-
ral populations that are not used in the composition operation and may, if we
imagine them in nature, be physically far removed except for the overlapping
necessary for the composition.

There are three useful theorems about neural algebras:

Theorem 1 (Fixpoint Theorem). In NA all fixpoint equations have a solution;
the solutions form a lattice by inclusion.

Theorem 2 (Embedding Theorem). NA is a subalgebra of a combinatory alge-
bra, indeed, it is a combinatory algebra for certain nets A.

Theorem 3 (Representation Theorem). If A is a sufficiently rich directed graph
and Φ is a binary relation over B, a subset of A, then Φ is representable in NA

using an embedding f defined by: a and b are in the relation Φ if and only if
f(a) · f(b) = f(b), where f maps B into S(A).

To prove Theorem 1, first note the monotonicity of the algebraic operation M ·N :
If N1 ⊇ N2 then M · N1 ⊇ M · N2 by the definition of the operation; equally

M1 · N ⊇ M2 · N for M1 ⊇ M2. Hence, if ϕ(X) is any algebraic composition of
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X with elements of F (A) then X ′ ⊇ X implies ϕ(X ′) ⊇ ϕ(X). More generally,
if D is a directed set of elements of NA then ϕ(

⋃
D) =

⋃
X∈D ϕ(X). From this

follows, that the fixpoint equation ϕ(X) = X has a least solution
⋃

n ϕn(∅),
where ϕ0(X) = X and ϕn+1(X) = ϕ(ϕn(X)).

Namely: ∅ ⊆ ϕ(∅) ⊆ ϕ(ϕ(∅)) ⊆ . . . is a directed set, hence ϕ(
⋃

n ϕn(∅)) =⋃
n ϕn+1(∅) =

⋃
n ϕn(∅); thus

⋃
n ϕn(∅) is a fixpoint of ϕ(X). In fact, it is the

smallest fixpoint.
The above solution method for fixpoint equations can be expanded to simul-

taneous equations, e.g. in the case of the coordination problem (finding inputs
that coordinate two activities M and N):

M · P = Q , N · Q = P .

Given M and N as known, the simultaneous fixpoint equations can be solved in
NA by a generalization of the method for one fixpoint: Let P1 = N · ∅ , Q1 =
M · ∅ , Pn+1 = N ·Qn , Qn+1 = M ·Pn. Then P =

⋃
i Pi , Q =

⋃
i Qi are (least)

solutions.
To simplify exposition, we occasionally drop the firing-time superscripts. We

also may use the same track variables at different ocurrencies in an expression,
the superscripts are thought of being supplied conforming to the actual positions.

To prove Theorem 2, let A be a complete directed graph: each node is con-
nected to all nodes and all edges are weighted 1. Then the neural algebra NA is
a combinatory algebra, which means that it has the property that for any alge-
braic expression ϕ(X1, . . . , Xk) in variables X1, . . . , Xk there exists an element
T in NA for which ( . . . ((TM1)M2) . . . Mk) = ϕ(M1, . . . , Mk) for all values
M1, . . . , Mk of X1, . . . , Xk. The object T is defined by

T := {(α1 →a1 (α2 →a2 . . . (αk →ak
x))) : x ∈ ϕ(α1, . . . , αk) ,

α1, . . . , αk ⊆ S(A) , finite} .

It is traditionally called the combinator associated to the algebraic expression
ϕ. To verify the case k = 2, consider (TX1)X2 = ϕ(X1, X2) :

(TM1)M2 = {x : ∃α ⊆ M1 , ∃β ⊆ M2 , (α →a (β →b x)) ∈ T }
= {x : ∃α ⊆ M1 , ∃β ⊆ M2 , x ∈ ϕ(α, β)} .

The last equation follows from

ϕ(M1, M2) =
⋃

{ϕ(α, β) : α ⊆ M1 , β ⊆ M2 , α, β finite} .

proving Theorem 2.
The proof of Theorem 3 consists of verifying the following set-recursive defi-

nition of the mapping f , for all a and b in the relation Φ:

f(a) = {a} ∪ {{b} −→a x : b ∈ B, x ∈ f(a)} .

Neural algebras, as we have defined them, are related to combinatory algebras,
as shown above. The latter have evolved from beginnings in mathematical logic,
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namely Lambda Calculus and the related Combinatory Logic [2,4]. While these
subjects were created in the 1930’s with the foundations of mathematics as their
aim, they have had considerable influence in theoretical computer science, espe-
cially after Scott and Plotkin constructed their well-known models of the Lambda
Calculus. (For a concise introduction see Engeler [10], Chapter 3.) The basis of
the present work is a richer type of models, the subject of a prolonged effort of the
author and his students at the ETH: “The Combinatory Programme”, [9]. This
research program deals with a large variety of mathematical subjects, including
universal algebra and computer algebra, and later set theory and category theory.

Neural algebras as they arise from natural examples do not have complete
graphs, although they have very large numbers of synaptic connections indeed.
In applications, therefore, the neurons needed for realizing firing patterns like
the T above in the proof of Theorem 2 may have to be obtained by enlarging the
underlying graph A to B; “recruiting new neurons and synapses” as we may say.
Mathematically speaking, this corresponds to an algebraic extension NB of the
original NA which then contains the new element. This is a construction familiar
in algebra, where to solve equations it may be necessary to expand the algebraic
structure, e.g. from rational to algebraic numbers. In natural neural nets, such
expansions may conceivably consist in mobilizing already present but partially
dormant neurons and connections.

The case of concordance of activities is an example: if U and V are two
firing patterns, their intersection U ∩ V describes their functional and temporal
concordance, the extent to which U and V concur. U ∩ V is in fact the result of
applying the operator ∧ on them:

∧UV = (∧ · U) · V = U ∩ V ,

with
∧ = {{x} −→r {{x} −→s x} : x ∈ S(B)} ,

where r and s are two newly recruited neurons. The union of two firing patterns
can be obtained in a similar manner.

The solution of equations other than fixpoint equations is a challenging math-
ematical problem. Indeed, it can be shown that all degrees of computational com-
plexity and of unsolvability can occur. Some solution methods based on algebraic
extensions of a combinatory algebra have been described in Chapter III of [9],
but much work needs to be done and experience gathered from applications.

4 In Search of Consciousness

One possible application of our theory is in the search for neural correlates of
mental functions. Let us turn to the entirely speculative case of “consciousness”,
with the goal of analyzing the well-known thesis that consciousness is the power
of self-reflection. The definition of consciousness as self-reflection is just one of
a long and involved history of attempts to define this concept. In this, we are
well aware of the caveat of Francis Crick: “Until the problem [of consciousness]
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is understood much better, any attempt at a formal definition is likely to be
either misleading or overly restrictive, or both,” [3]. For one thing, the sheer size
and complexity of that network precludes any complete analysis. More funda-
mentally: There can be no effective method to decide whether a neural net, once
initiated, will develop a given response. (This can easily be shown by simulating
Turing Machines in neural nets).

However, it is quite possible to work out attributions of content and function
to types of neural structures; in the case of consciousness this results in the
Structure Theorem below.

Let us then understand neural consciousness as the ability of a neural netB (“the
brain”) to consciously observe itself as being conscious and as consciously planning
and acting. These abilities are embodied as activities in sub-populations of the
“brain”, to be represented here by firing patterns; their interrelation is expressed
by their composition: If C is the firing pattern corresponding to “consciousness”,
and M1, M2, etc. are the firing patterns corresponding to the context of observing,
acting, planning, moving, etc. then M1 ·C, M2 ·C, etc. are the results of observing,
acting, etc. as dependent on consciousness. To the sum of these results, together
with C itself, C is again applied. Translated into neural algebra, our definition of
consciousness transforms into an equation of the form

C ·
(

C ∪
⋃
i

Mi · C
)

= C .

The solutions of this fixpoint equation constitute the set of persistent activity
patterns in a net of neurons that may be understood as states of “consciousness”.
(The apparent circularity of our non-formal definition thus resolves itself as
multiple entry of the unknown in a single equation).

Obviously, the quality of consciousness in this formal sense depends crucially
on the size and structure of the underlying “brain” and on the degree of involve-
ment of other brain functions, such as memory, language, intentionality. This
is reflected in the fact that different such activity patterns are (lattice-)ordered
by inclusion and correspond to to different forms or to emerging stages of con-
sciousness. Thus, forms of consciousness may already be found in neural nets of
primitive animals, and indeed even in neural simulations of computers.

Basically, our results say that consciousness is always based on one or more
recurrent loops of active neurons and feeds forward from these to other activated
regions of the brain; patterns that are solely based on stimulus-and-response
cannot support consciousness. The various forms of consciousness depend in this
way on the richness and the activity of the mind as embodied in the neural net
constituting the brain.

4.1 The Structural Basis of Consciousness

To obtain the structural basis of consciousness, we solve the fixpoint equation
structurally, which means that we “disregard time”. Formally, this means that

{x −→
a1

y : x ∈ A3, y ∈ A2}
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is to be read as
{x t−→

a1
y : x ∈ A3, y ∈ A2, t ∈ Z} .

Computing consciousness fixpoints shows up the structural facts that are relevant
in all models of the brain. We observe the following facts:

Theorem 4 (Structure Theorem of Consciousness)
(a) Consciousness always has a base in one or more cycles of the directed graph.
(b) Consciousness can be expanded along any outgoing edge.
(c) Consciousness never expands backwards into cycle free “stimulus and re-

sponse” subgraphs.

To prove (a) consider the simple case of a cycle of neurons a1, a2, a3, cyclically
connected with weights 1. Assume this cycle embedded in a graph with an edge
of weight 1 leading from a neuron b to a1, and one from a3 to a neuron c, again
with weight 1.

Let
A1 = {a1} ∪ {x −→

a1
y : x ∈ A3, y ∈ A2} ,

A2 = {a2} ∪ {x −→
a2

y : x ∈ A1, y ∈ A3} ,

A3 = {a3} ∪ {x −→
a3

y : x ∈ A2, y ∈ A1} ,

C = A1 ∪ A2 ∪ A3 ,
B = C ∪ {b −→

a1
y : y ∈ A2} ∪ {x −→

a3
c : x ∈ A2} .

Then
C · C = A1 · C ∪ A2 · C ∪ A3 · C = C ,

and
B · C = C · C ∪ ∅ ∪ {c} .

Hence
C · (C ∪ B · C) = C · (C ∪ {c}) = C · C = C .

Items (b) and (c) can be as easily proved: (b) is exemplified by extending C to
C′ = C ∪ {x −→

a3
c : x ∈ A2}; (c) by observing that C = C ∪ {b −→

a1
y : y ∈ A2}

is not a fixpoint.

4.2 The Emergence of Consciousness

Consciousness “simply happens” in any sufficiently rich neural net. It is a typical
example of an emerging phenomenon. Mathematically, emergence consists in the
approximation of a fixpoint: Assume that we already have a fixpoint C (the
empty set ∅ is always available), and let E extend C and N extend M . Using E
and N we can gradually progress to a new fixpoint C′ as follows:

Define ϕY (X) = X · (X ∪ Y · X) and observe
ϕM (C) = C ⊆ E ⊆ ϕN (E) ⊆ ϕN (ϕN (E)) ⊆ . . . is a directed set, hence

ϕN (
⋃

n ϕn
N (E)) =

⋃
n ϕn+1

N (E) =
⋃

n ϕn
N (E); thus C′ =

⋃
n ϕn

N (E) is a fixpoint
of ϕN (X).
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Fig. 1. A cycle of consciousness

For a somewhat plausible example, imagine a chess player whose sensory system
provides him with the positions in the game, upon which his planning faculty
decides on a plan, e.g. a particular endgame. The action coordination deter-
mines the first move, which the motorics of the player transforms into moving
a particular piece. There follow updates of the planner about that move and to
remember to wait for the challenge for his next move.

Using this context as a guide, consider a microbrain NB, the neural algebra
over the directed graph B, representing the neural substrate which supports
firing patterns which we name, to fix ideas, I for sensory input, V for vision, P
for perception and planning, A for activation of actions, M for motor activity, L
for language, S for speech, H for body perception. In our microbrain, these firing
patterns have as key neurons just one neuron each, namely i, v, p, a, m, l, s, h,
connected and weighted according to the diagram in Figure 2. The structural
laws for the firing patterns of NB can be read off the diagram in Figure 2 as
follows in the form of simultaneous recurrence equations:

H = {h} ∪ {x −→h y, x −→h z : x, y ∈ H, z ∈ A}
A = {a} ∪ {x −→a y, x −→a z, u −→a z, {x, u} −→a z1, {x, u} −→a z2

: u ∈ H, x, y ∈ P, z1 ∈ M, z2 ∈ L}
M = {m} ∪ {x −→m y : x ∈ A, y ∈ V }

V = {v} ∪ {x −→v y, z −→v y, {x, z} −→v y : x ∈ M, y ∈ P, z ∈ I}
P = {p} ∪ {x −→p y, z −→p y, z −→p u, x −→p u : x, y ∈ A, z ∈ V, u ∈ L}

L = {l} ∪ {x −→l z, y −→l z, {x, y} −→l z : x ∈ P, y ∈ A, z ∈ S}
I = {i}, S = {s}
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Fig. 2. The microbrain NB and its scores

The consciousness equation will admit at least one but conceivably many solu-
tions in NB. Expanding them, as suggested by emergence, may add further ones.

The minimal solution is, of course, the empty set ∅, since ∅ · X is the empty
set for all X .

A first nontrivial solution is C0 := H0 “the brain may only be conscious of
the beating heart”. Let, again recursively,

H0 = {h} ∪ {h : x −→h y : x, y ∈ H0} .

To verify that H0 supported by the cyclic subgraph on the neuron h is indeed a
fixpoint follows at once from (a). Other fixpoints follow as consequences of (b)
and (c).

As observed above, consciousness-fixpoints in NB form a lattice under the
inclusion relation and are as a rule not all ordered in one sequence. They are
best described by the supporting subgraphs of these patterns, e.g.

C1 = A1 ∪ P1 ∪ H1 ,

based on key neurons h, a and p, where

A1 = {a} ∪ {{x, y} −→a z : y, z ∈ P1, x ∈ H1} ,

P1 = {p} ∪ {x −→p y : x, y ∈ A1} ,

H1 = {h} ∪ {x −→h y, x −→h z : x, y ∈ H, z ∈ A1} .
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Remaining with microbrains, we may also incorporate other ideas about the
functioning of the brain. For example, we may interpolate a neuron w between
p and v, which makes the system “watch out” for particular input. Or we may
establish an edge between v and m for immediate reactive movements, etc.

Even in rudimentary neural algebras such as NB , there develops a rich variety
of conscious behavior. The activation history of such a net may be looked at as
a sort of musical score for the “theme” that the brain plays, see Figure 2 for an
example. The activation of neurons on which consciousness is based is shown at
the top of the score, the bottom would be something like (relative) subconscious.

Visualization of consciousness as “a sort of orchestral piece played in the
brain” points out a connection with the findings of the school of Wolf Singer
(e.g. [8]), which shows the central importance of synchronicity. It also shows
the importance of the persistence of activation patterns for the constitution of
a sustained consciousness, the “self” in a “sin-phonic” view, possibly with a
recognizable personal “style”.

5 Discussion

To belabor the obvious: as a model of the human brain, the microbrain NB is
unrealistic by about twelve orders of magnitude; the neuron v for example stands
for something like the visual cortex, and m may be a cascade of interrelated
neural nets, etc.

However, our findings about the existence of the lattice of consciousness ac-
tivity complexes scale up to “brains” of all levels of complexity, and we may
speculate, whether “core consciousness” and levels of “extended consciousness”,
as described in the literature (e.g. by [5]), correspond to such fixpoints. Also,
we may speculate about the history of activations of these different forms of
consciousness and whether this might involve moving up from body-awareness
such as C1 based on lower fixpoints to higher fixpoints. Experiences by intro-
spection might just be based on such migrations, which, by the way, may have
to move through higher or lower points in the lattice to reach from one to the
other. Other such experiences (e.g. so-called “earworms” of popular melodies),
as well as observations on periodicities of brain activities in observed conscious
behaviors, seem to match the musical-score paradigm of brain activity.

In neural algebra, thoughts, emotions, communication, etc., are just elements
to be computed with, this is all there is, formally. Remaining with the musical
score paradigm, the notes of a Mozart piece would analogously be all there is!
But, far from formality being an impoverishment of these concepts, the mathe-
matical approach presents an unending challenge, of which we now sketch only
a few immediate aspects.

5.1 On Laws of Thought

When Boole created an algebraic discipline for computing with truth values of
statements, “thoughts” were understood as being expressed in language, and
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parts of the grammar of language provided the patterns of the algebraic oper-
ations. Should we not now take firing patterns as “thoughts” and their compo-
sition as the algebraic operations? This results, abstracting from the unknown
complexities of human neural algebras, in a position which we could call neural
logic, regarding neural algebra as the true algebra of thoughts.

If we aim to understand mental activities as compositions of firing patterns,
there are several basic concepts that need neural correlates. Further research
would have to show, whether, for example, the following proposals have a chance:

(a) To classify a firing pattern X as conforming to a template F , as in recog-
nizing a face, we could simply compose the two and consider the result as
indicating in what, and how far, the classification holds true. Or, taking
the basic idea from the Representation Theorem 3, we might identify true
classification with F · X = X .

(b) In Theorem 2 it is shown that complex composition patterns of objects can
be considered as objects in a combinatory algebra. In the present context,
we might consider the notion of analogy as a particular firing pattern, say
L. Then L expresses the fact that the notion X is to the leading example
U as it is to the analogon V , thus:

LXUV = ∧ · (X · U) · (X · V ) ,

using the intersection operator from Section 3.
(c) Combinatory algebra has objects that correspond to natural numbers and

to computing with them; our model of the brain inherits this. Although
this shows that a rich enough NB can handle all computable functions, and
indeed simulate any Turing machine, it is implausible that the published
versions of arithmetic in combinatory algebra (as in [10]) are the ones re-
alized in the human brain, (cf., for example, Dehaene [7] on numerosity).
More generally, “intelligence” may be closely related to the easy availability
of combinatory objects, templates, which represent basic forms of related-
ness, such as analogy, causality, duality, etc.

5.2 Extended and Collective Consciousness

In Section 4 we have taken the simplest case of composition of “consciousness”
with the structure of the mind, namely

C ·
(

C ∪
⋃
i

Mi · C
)

= C .

The “mind” M =
⋃

i Mi may allow artificial extensions M ′ ⊃ M , which may
conceivably induce an extension of consciousness. The use of tools “till they
become a part of ourselves” is a striking example. In designing tools, e.g. software
tools, it may therefore be of interest to keep in mind the neural connections that
we have identified with the structural functioning of consciousness.
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There is no reason to restrict the present approach to neural nets that are
“brains”. Equally well we could consider populations of agents, for example a
colony of ants, that operate under certain constraints and with certain well-
defined schemes of communication. Thus would emerge concepts of collective
consciousness for such populations; and it would be attractive to try and develop
this idea in a variety of contexts. In a similar vain, the human brain itself is in
fact a population of such individual agents, neurons, whose collaboration may
have evolved by a learning process, including the recruitment of new members
and new connections.
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