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Neural Algebra

A MODEL OF INTERACTING BRAIN FUNCTIONS

E.Engeler

Abstract

The mathematical model introduced in this paper attempts to explain how complex scripts

of behavior and conceptual contents can reside in, combine and interact on large networks

of interconnected basic actors.

The approach derives from modeling the neural structure and dynamics of the connectome

of a brain. The neurological hypothesis attributes functions of the brain to sets of firing

neurons, dynamically as sets of cascades of such firings, typically visualized by imaging

technologies. Such sets are represented as the elements of what we call a neural algebra,

and their interaction as its basic operation. In particular we analyze the representation

of perception and of control in its various forms, distributed, hierarchical, recursive and

especially reflexive control, the latter modeling the concept of self-reflecting control.

The main thrust of this paper develops from the fact that characteristic properties of these

suggestive notions can be cast in the form of equations of the neural algebra. Analyzing

the solutions leads to a complete description of the necessary structure of their neural

correlates.
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0 Apologia

Retired people, emeriti, love to travel to new places. I do. The friendly na-

tives take pleasure to show the impressive sights and amusing curiosities of

the country and listen with tolerance to the strange, mathematical, accents

of their visitor when he describes his perception of what they show him. In

telling this story as a piece of mathematics, I could have more soberly, and

perhaps more wisely, have chosen a more neutral terminology: ”reactive

nets” for ”brain”, ”net-functions” for ”thoughts”, ”retractive functions” for

”concepts” and ”auto-reflecting” functions for ”consciousness”. But an au-

thor does have the liberty of naming dramatis personas. Anyway, I really

did think about brains.

1 Brain Functions

Neuroscience has demonstrated that individual mental objects, concepts

such as perceptions, memories and planning are locatable in the brain as

activities of specific assemblies of neurons (and their connections). En-

coded in living matter, they are not static, but participate in interacting

processes as part of thinking and acting. So, even if we know to identify

some selected individual objects as structures in the brain, the challenge is

to understand them dynamically as brain functions and their interaction.

We approach this problem by proposing an algebraic system, Neural Al-

gebra. The algebraic framework then allows to distinguish types of brain

functions by their algebraic properties, equations as it were. Since the al-

gebraic elements are interdefinable with corresponding neural structures,

the model supports investigations of specific hypotheses about the interre-
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lation between brain-function and brain-structure.

THE BRAIN MODEL A

The conceptually simplest model of a brain represents its connectivity, the

connectome A, as a directed graph whose nodes, called neurons, fire at

discrete time instances t ∈ Z. The global activity of the brain, the firing

history of these neurons, is represented by the firing function f(a, t) which

takes the value 1 if the neuron a fires at time t and 0 otherwise. Modelling

a brain is accomplished by imposing restrictions on the functions f by a

specific firing law inherited from abstracting neurological findings. A fir-

ing law specifies the condition under which the firing of neurons a1, . . . , ak

at times t1, . . . , tk causes the firing of a neuron ak+1 at some later time tk+1

, assuming the former are connected to it by directed edges.

For example: In artificial neural nets a rudimentary firing law is based on

assigning weights to the individual directed edges of the graph A: If sum

of weights the incoming edges (synapses) exceeds a given threshold, then

the firing of the corresponding source neurons at time t causes the firing of

the target neuron at time t + 1. Positive weights correspond to excitatory,

negative weights to inhibitory synapses.

Remark: To view living neurons as purely reacting entities is too restrictive

in my opinion. As the result of a very long line of descent from unicellular

ancestors, it seems reasonable to suspect that they retain some mechanisms

of memory, optimization, goal functions, etc. This is of course disregarded

in our model as well as the more advanced insights of neurology.– How-

ever, the firing law of the model may include distinctions on the type of

messages from neuron to neuron such as the strength of the signal, spiking

rates etc.; it may also incorporate aspects of learning, e.g. by coding the
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firing histories of some or all of the connections.

Definition 1 (Brain Model) A directed graphA together with a firing law

and a firing function f conforming to it constitute a brain model A.

Observing the activation history, we may be able to distinguish episodes

of firings of subpopulations of the neurons in the brain: firing patterns that

specify the firing of some set of neurons a inA during some time interval in

Z. Taking a causal point of view of the sequences of individual firings, we

are able to distinguish cascades of firings: Starting with some arbitrarily

selected firings at some time instances, a cascade is a finite branched se-

quence of firings of neurons which causally follow from these original ac-

tivations as determined by the firing law. Any firing pattern can be viewed

as a set of such cascades.

FIRING TRACKS AND BRAIN FUNCTIONS

The overall goal of modeling is to ascribe interpretations to firing patters

such as recognizing a shape or initiating an activity, in other words, to view

them as brain functions. In analogy to the usual set-theoretic definition

of functions as sets of pairs, each individual cascade is to be understood

as a pair of input-cascade/output-cascade. This is accomplished by freely

choosing the firing of a specific neuron in the cascade as the key point of

causality: in essence the parts of the cascade that are its causal antecedents

are understood as inputs; a cascade that follows it is understood as output.

Note: By choosing key neurons in a set of cascades a firing pattern obtains

a causal interpretation.

This analysis of cascades is formalized below by representing cascades as
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track expressions. Note that the input- and output-cascades should reason-

ably also be represented by track expressions, thus structuring the whole

cascade. This leads to the following recursive definition of track expres-

sions, given a brain model A.

The basic track expression 〈a, t〉 denotes the activation of a single neuron

a at an integer time instance t.

Composite track expressions denote the activation of the neurons of a cas-

cade in A. Each track expression has the form xc(t) for some neuron c, the

key neuron of xc(t), and time instance t. In particular, the key neuron of

〈a, t〉 is a.

Consider antecedent neurons a1, . . . , an connected to neuron b along paths

of one or more directed edges in A, which in turn connects by such a path

to neuron an+1. By defining

xb(t) = {xa1(t1), . . . , xan(tn)}
t
−→
b
xan+1

(tn+1),

where

t, t1, . . . , tn+1 ∈ Z, t1, . . . tn < t < tn+1,

we recursively compose the track expressions xa1, . . . xan+1
to form xb(t).

The neuron b is called the key neuron of xb(t), and a1, . . . , an+1 are the key

neurons of the track expressions xa1, . . . , xan+1
. Each such track expres-

sion, by the timing of the key neurons, describes a firing of the neurons

occurring in it, thus defining a cascade of firings. This leads to:

Definition 2 (Causal Track Expressions) A track expression 〈a, t〉 is causal,

if f(a, t) = 1.
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A composite track expression

xb(t) = {xa1(t1), . . . xan(tn)}
t
−→
b
xan+1

(tn+1)

is causal, if f(ai, ti) = 1, i = 1, . . . n + 1 and f(b, t) = 1, and the firing

of a1, . . . an suffice according to the firing law for the activation of b as

well as of all neurons on the paths and at the times denoted by the track

expression.

Remember that any cascade may be interpreted by different causal track

expressions, depending on what successive choices are made of key neu-

rons in the coding. Also note that the same neuron may occur repeatedly

in a track expression, reflecting the fact that activations may be cyclic.

As special cases we admit initial and terminal track expressions with empty

antecedents, ∅
t
−→
b
xan+1

(t′), respectively empty consequents

{{xa1(t1)}, . . .{xan(tn)}}
t
−→
b

⊥ , where ”⊥” stands for the missing con-

sequent.

Each composite causal track expression is divided by its key neuron into

argument track expressions and a value track expression, representing the

causality.

Definition 3 (Brain Functions) Any set of track expressions which are causal

with respect to the firing law is called a brain function.

Brain functions are the basic objects of our theory. Brain functions, fir-

ing patterns, are quite complex sets, a fact to which we have become quite

oblivious in the case of functions in analysis when functions are defined

set-theoretically. The development of analysis has singled out its realm by
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adding additional structure: We can add, multiply, differentiate and inte-

grate functions. With this in mind, our goal is to develop a corresponding

operability with brain functions.

2 The Neural Algebra NA

Brain functions are related by acting on each other as determined by the

structure of the net and the firing function. We untangle these interactions

by basing them on the concept of applying a brain function to another.

Recall that in each causal track expression the part to the left of the main

arrow represents the cascades that prompt the key neuron to fire. The cas-

cade denoted by the expression on the right denotes what new firings this

firing produces. The same is true for sets of causal track expressions, such

sets thus constitute functions, brain functions.

This observation motivates the following definition of composition of such

sets:

A brain function M composed with a brain function N applies the causa-

tion, represented by causal track expressions in M , on N as follows:

M ·N = { xn+1(tn+1) : there exists {x1(t1), . . . , xn(tn)}
t
−→
b
x(tn+1)

in M such that {x1(t1), . . . , xn(tn)} ⊆ N} .

Definition 4 (Neural Algebras) Given A = (A, f), a firing law and the

operation of composition, and a set B of subsets of the set of causal firing

tracks, closed under this operation and union, defines an algebraic struc-

ture, the neural algebra NA = 〈B, ·,∪〉.
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Brain functions are patterns of firing neurons. Such patterns typically in-

volve a great number of neurons, linked over considerable distances and

active for considerable time relative to the time scale of the individual neu-

ron. Indeed, any mental activity is episodic in character, in particular in

the way in which it is activated and used.

It may be argued that in reality the brain does not work on a time scale

from minus to plus infinity, that is Z, but during a finite lifetime. A set

R of track expressions xa(t) makes only sense as a brain activity if the

firing of its neurons covers an appreciable time interval [t0, t1], given by

the smallest and largest time indices t occurring in expressions xa(t) in

R, for example if t1 − t0 > ν for some arbitrarily fixed number ν, say

105. Given a time interval [t0, t1] and track expressions xa1(t), . . . xan(t)

we denote by R = {xa1(t), . . . xan(t)}
t1
t0

the firing pattern of which the set

of firing times t of the key neurons of R cover the given time interval, the

sustaining interval of R. The composition of sustained firing patterns may

not be sustained.

Notation: If xa(t) is a track expression, then xa(t
′) is the result of sub-

stituting t′ for t everywhere in xa(t), including of course all instances of

the dependent firing times, modified according to their place in the track

expression.

Two sustained firing patterns X and Y are approximate if their sustaining

intervals overlap for an appreciable subinterval and they are equal there.

We write X ≈ Y in this case.

There are two ways by which we are able to realize sustention of a firing

pattern in our brain brain model: We may assume an external source of sig-
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nals at one or more neurons which continue to activate the input neurons of

R during a given time interval, thinking of biochemical messaging. Or we

may have an autonomous sustention in form of one or more causal cycles

in the connectome. Such a cycle could be the base of a cyclically repeated

firing track as in some of the connectomes that we introduce later. In fact,

external sustention may be mimicked by cycling a source track expression

upon itself.

The concept of learning would merit more than the following few remarks.

Our model tacitly subsumes learning in the firing history of A: First, the

neural net A of the brain model comprises the totality of all neurons that

are ever considered. Second, the firing function f permits periods where

different subsets of A are involved or dismissed from activity. Our model

may include Hebbian learning familiar from artificial neural nets, effected

by changes in the weights of synapses over time, thereby affecting the def-

inition of legality for firing functions. One possible solution is to make the

weights of synapses dependent on some of the previous firing history.

2 Combinatory Algebra, Neural Algebra, Logic and Language: His-

torical Note

Neural Algebra has two historical roots, combinatory logic and computabil-

ity theory.

Combinatory Logic was invented by Haskell B.Curry in his 1929 Göttingen

thesis (1), directed by Paul Bernays (who is also the Doktorvater of the

present author as well as Sauders MacLane and Gerhard Gentzen) in the

context of foundations of mathematics. In the following we present com-
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binatory logic by relating it to models of computation.

Computability theory was established by Alan Turing in his famous 1936

paper (2).Since then, i.e. since Universal Turing Machines and the von

Neumann Machines, inputs and programs of computers are of the same

nature and we may simply call them ”data”. They are perhaps marks on

the Turing tape or bits in the computer hardware. The basic operation on

data is application: Programs may be applied to data and of course result

in data, which may again be programs. Programs may also be applied to

programs, resulting in data, etc. Indeed, we may admit all combinations of

applications on data, resulting always in data (e.g. error messages).

Example: Combining data and programs

x, y are programs

z is data

y yields data

x yields a program

(x · z) · (y · z) applies the new program to the new data

This combination of x, y, z is regarded as a new program S with

S · x · y · z = (x · z) · (y · z). Observe that we used the convention of

parenthesizing expressions to the left.

Objects defined in this manner are called combinators and the general prin-

ciple for their introduction is formulated as an

Definition- Scheme: For every combination φ(x1, . . . xn) of data there is a

data tφ such that tφx1 . . . xn = φ(x1, . . . xn))
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All such tφ are called “combinators”. They arose in the context of simpli-

fying the technical apparatus of symbolic logic in the 1920s. There is one

basic result:

Theorem (Schönfinkel (3)):

Two combinators suffice for expressing all combinators, namely the above

S, characterized by its equation S · x · y · z = (x · z) · (y · z),

together with K, characterized by Kxy = x.

Combinatory Logic is the formal theory of equations with one binary op-

eration and the axioms S · x · y · z = (x · z) · (y · z), Kxy = x and K 6= S.

The status of this theory was questionable at the beginning; a version of

it had been shown formally inconsistent. A formal consistency proof in

the spirit of the Hilbert Program was established by Alonzo Church and

Barkeley Rosser (4) using the same finitistic proof-theoretic tools which

had failed for number theory. We are therefore enabled to talk consis-

tently about Combinatory Algebras as models for the axioms of combina-

tory logic.

A combinatory algebra D = 〈D, ·,K,S〉 consist of a set D with a binary

application operation · and two distinguished elements of D satisfying the

axioms of combinatory logic.

But for forty years the only model was the model consisting of equivalence

classes of combinatory expressions (in K and S) which exists on the basis

of formal consistency. Then, in the 1970’s, Gordon Plotkin (5) and Dana

Scott (6), looking for models of the closely related Lambda Calculus, in-

vented the set theoretic model Pω and Dω (vide 7), the latter constructed

to be isomorphic to its function space. Thereafter this author introduced
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the Graph Model for combinatory logic (8) whose transparent and explicit

structure lends itself to appications in mathematics and modelling (9), in

particular in biology (10). Graph models have this pleasing representation

theorem:

Theorem: Any binary algebraic structure can be isomorphically embedded

in a graph model of combinatory logic.

Using this suggestion, Neural Algebras, as presented above, are constructed

as a much enriched type of graph models.

Combinatory logic rarely forms a core subject of courses in mathemati-

cal logic; an early example is the 1950 book of my former colleague Paul

C.Rosenbloom (11) and my own (12). Better represented in the literature

is the formal system of the Lambda Calculus; most work done on these

connected subjects is done in the context of lambda calculus and its de-

scendants.

Looking for some orientation, let us now turn to language and thinking

because it is obviously that which seems to happen in the brain and about

which we believe to have common insights (and a sufficiency of linguistic

and philosophical literature). Thoughts, then, may be understood as brain

functions and thinking means applying thoughts to thought: If the thought

M is applied to the thought N , then the result M ·N is again a thought. A

theory of thinking inherently has this algebraic aspect. But the tradition of

Logic reduces the operational aspect to linguistic categories, namely to op-

erations on propositions such as ”and”, ”or”, etc, or to modularities such as

”necessarily” applied to propositions. While this leads, since Aristotle, to

very rich and fruitful logical theories it also impoverishes logic as a basis
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for a theory of the mind. In contrast, we hold that an algebra of thoughts

should be based directly on an analysis of what it means to apply a thought

to a thought as modelled algebraically.

Such a project has venerable historical roots: there was the ars magna of

Ramon Llull ( 1232 - 1316 ) in which individual concepts are represented

formally as entries in a graphical representation (13). Such objects could

be considered as subjects or predicates (in the grammatical sense) or as

logical intermediaries. Their combinations (by manipulating the graphical

representation) result in judgements, questions, etc.. Umberto Eco (1932

-2016)) relates Lullus’ art to other universalist proposals (14), for exam-

ple that of Gottfried W. Leibniz (1646 - 1716) who, four centuries later,

attempted another project, his Characteristica Universalis. This was to

be an artificial symbolic language, universal in the sense that all human

languages can be represented, even derived from it, and that it offers a

technique of formal manipulations, ”calculemus”. Remarks: One such at-

tempt was to map predicates onto natural numbers, the inclusion operation

into divisibility and the combination of predicates into multiplication. But

predicates are neither commutative nor associative under application; as

our model demonstrates. Another attempt goes in the direction of finding

universality in existing languages. Here, this author, visiting the Hanover

and the Wolfenbüttel libraries, was impressed by Leibniz’s appreciation of

Chinese culture and in particular by his suggestion that Chinese characters,

considered as ideographs, and their textual combinations are close to the

idea of a characteristica universalis. Louis Couturat (1868 -1914) is one

who attempted to relate Leibniz to modern logic (16).
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3 Predicates, Concepts and their Structure in Neural Algebras

Neural Algebra is this author’s attempt at relating brain functions to thought

and language in a simple model of the brain. This algebraic framework

allows to distinguish types of thoughts by their algebraic properties, equa-

tions as it were. For example, conceptual thoughts, concepts, will be char-

acterized as retraction operations. More generally, perceiving, acting on

thoughts, thinking about other peoples thoughts are captured by sets of

equations allowing to discuss various hypotheses on the functioning of the

brain and its connectional structure. Problem solving, that major aspect of

nature generally, is thus reduced to solving equations for unknown brain

mechanisms.

Our first aim is to capture the notion of concept. To arrive at its formal

definition we look at brain functions that correspond to the mental action

of predication and go from there to look for the kind of patterns that may

be identified as concepts and thus have chance to be relevant for a theory

of thoughts in the brain.

PREDICATION

Predicating about the snow that it is white means to apply the thought

[whiteness] of being white to the thought of the snow. In NA this is rep-

resented as [whiteness] · [snow]. Generally, the composed thought R ·X

denotes the extent to which the predication R applies to the thought X;

here: to what extent does [whiteness] apply to [snow].

Language also aims to describe composition of thoughts, such as pred-

icating about a predication or about the result of a predication, e.g. by

qualifying it. There may be confusion: To say that D is a philosopher king
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can be understood as expressing quite different thoughts. Is D a king who

is also a philosopher, a philosopher who is also a king, or, remembering

Plato, is he an example of the best way to govern the state ? By specifying

the mode of applications of thoughts to thoughts this translates into: Is it

[philosopher] · ([king] · D), or [king] · ([philosopher] · D), or ([philoso-

pher] · [king]) · D, or ([king] · [philosopher]) · D ?

Indeed, many of the conundrums of communication, in fact many of the

traditional sophisms, are based on language lacking (or not using, or abus-

ing) precision in expressing the exact structure of the application of thoughts

to thoughts. It is tempting to investigate ancient texts on sophisms, for ex-

ample the famous Johannes Buridan (17) and modern treatises on Rhetorics

such as (18) in the light of our approach; but this is another chapter.

CONCEPTS

If a predication is to be conceptually relevant (and a stable component of

the activities of the brain), the main requirement is that it should be general,

or abstract, enough not to depend on accidental, extraneous, conditions on

the objects to which it is to be applied. This corresponds to the traditional

notion of a concept. Since Aristotle, concepts are arrived at by abstraction:

by taking a thought and eliminating all extraneous elements, the acciden-

tia, its accidental or irrelevant aspects.

We base abstract concepts in NA on corresponding predications, consid-

ered as abstraction operations: If the predication R acts as a concept, ap-

plied to a thoughtX which belongs to the conceptual field ofR, thenR ·X

removes from X all aspects that are irrelevant with respect to the predica-

tion R. Thus, if applying R again returns the same result, this is the pure

abstract, the R -conceptual content of X.
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Accordingly, we define:

Definition 5 ( Concepts) A predication R is a concept if all sustained in-

puts X for which both R · X and R · (R · X) are sustained and satisfy

R · (R ·X) ≈ R ·X.

A given brain model NA may or may not admit firing patterns that are con-

ceptual. The immediate question is therefore: What are the connectome

structures corresponding to concepts ?

An important aspect of the usual notion of ”concept” is the fact that it can

be called by a name. This aspect is realized in our model by choosing a set

R̂ of characteristic neurons r for a given predication R which we wish to

identify as a concept. This R̂ names the concept.

To simplify notation, let lower case greek letters denote finite sets of causal

track expressions, the involved time instances for its members are tacitly

understood.

Theorem 1 (Connectomes of Concepts) Every concept R, named by R̂,

can be presented in the form

{αi
t
−→
r
xai(ti) : xai(ti) ∈ αi ⊆ {xaj(tj) : j ∈ I}, i ∈ I, r ∈ R̂}t1t0,

and realized by a connectome centered at the common neurons r ∈ R̂ with

all paths returning to it.

Proof: Let R = {αi
t
−→
r
xai(ti) : i ∈ I, r ∈ R̂}t1t0 be a concept. From the

defining equation R · (R ·X) ≈ R ·X it follows at once that R maps R ·X

onto itself for any sustainedX. ThereforeM = R ·X ⊆ {xai(t) : i ∈ I}t1t0.

Note that αi ⊆ R · X for all sustained X: Assume αi = {xa(t), yb(t)}
t1
t0

,
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Figure 1: Connectome of a Concept.

with xa(t) ∈ M and yb(t) /∈M . Then R · {xa(t), yb(t)}
t1
t0
= {xa(t)}

t′1
t′0

and

R · (R · {xa(t), yb(t)}
t1
t0
= ∅. Hence αi must be a subset of M .

Conversely, if S is of the above form, then it satisfies the equation by con-

struction and is therefore a concept.

Fig.1 shows the schematic view of the very rudimentary concept R; the

constituting tracks are highlighted:

R = {{xa(t
′), yb(t

′′)}
t
−→
r
xa(t

′′′), {yb(t
′)}

t
−→
r
yb(t

′′)}t1t0.

Higher-Order Concepts: It is straightforward to construct concepts that act

on given concepts (that is second order and higher order concepts), such as

other peoples concepts; planning reaction patterns and the like. A simple

example of a second order concept is the concept R of the causal concate-

nation of two concepts S1 and S2 : ”upon S1 follows S2 ”, e.g. one script

follows another. The concatenation of these concepts is established by a

set of neurons which links the reference neurons of these two concepts.

Generally, the set of concepts is not closed under application.

PERCEPTION AND APPERCEPTION
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The question arises how NA could serve to model familiar brain functions

and to represent their properties by equations. A central such notion is that

of apperception. First, think of perception P as the operation of activating

a set of neurons following some input V , e.g. visual input, through some

connected layers of neurons. The brain function of apperception means

additionally that P applied to V results in a specific activation – think of

recognizing a shape. LetR = P ·V denote a brain function to be identified

with an apperception. As such, it needs to be a conceptual entity. Hence:

Definition 6 (Apperception) The brain function P is apperceptive if P ·V

is a concept for all V , that is it satisfies the equation

(P · V ) · ((P · V ) ·X)) ≈ (P · V ) ·X for all V,X.

Fleeing upon being threatened may serve here as a simple example of an

apperception; it models the embodiment of a familiar instinctive reaction

pattern. The modeling is based on hypothesizing conceptual objects S0

of threat, D0 of danger, L0 of the lack of cover, and F0 of realizing the

necessity of flight, all of them eventually depending on some visual input

V : S0 is the result of the perception S of the visual input V as a threat,

S0 = S · V . Correspondingly D0 = D · V , L0 = L · V . For example, (cf.

fig.2),

S0 = {{a2(t
′), a3(t

′′)}
t
−→
s
a2(t

′′′)}t2t1,

and S consists of all {v}
t
−→
a1

u and {v}
t
−→
a2

u with v ∈ V, u ∈ S0.

With F0 = {{f}
t
−→
c
f}t2t1, the concept of being forced to flee, the equation

F0 ≈ F · ((S ∪D ∪ L) · V )
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Figure 2: Fleeing upon a Threat.

represent a possible hypothesis for the brain function in question. Figure 1

shows a corresponding connectome.

The above example illustrates the discipline of modeling by neural algebra,

progressing from equations to solutions to connectome. It is rudimentary

on several aspects:

It is not plausible that a real brain has individual neurons such as s, r, l, c

above that completely and exclusively correspond to familiar classifica-

tions of conceptual objects, there would simply have to be too many neu-

rons in a realistic brain to embody all the concepts necessary for its func-

tioning in the world. Second, the activation of concepts may depend on

more complex networks than the feed-forward network depicted. Indeed,

one should envision extensive, recurrent and deeply stacked collaborating

networks, some perhaps corresponding to logical connectives.

19



4 Control

Controling is another important aspect of the functionality of the brain.

This was recognized early by Norbert Wiener in his ”Cybernetics”, a math-

ematical theory of control, which he applied to the brain (19).

In Neural Algebras control is a form of interaction between brain functions

and is therefore expressible by equations. We illustrate this by a small

number of examples.

Generally, a law of interaction between brain functions A,C,B1, . . . , Bn

is an equation A ≈ φ(C,B1, . . . , Bn) where φ is some expression built up

using the operations · and ∪ admitted in the model. If φ is of the form

C · ψ(B1, . . . , Bn) we say that C controls this interaction:

A ≈ C · ψ(B1, . . . , Bn).

Control is effected by applying C to the inputs Bi, typically concepts, re-

sulting in the controlled output A.

Simple Control. The controlling object C controls an output B by the

operation C · B with the goal to stabilize the output by the recursion

B ≈ C · B,

starting from an initial state B0. If this state satisfies the initial condition

C ·B0 ⊇ B0 there is indeed a solution, obtained as follows: Let

Bi+1 = Bi ∪ C · Bi, i = 0, 1, . . . .
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Note Bi+1 ⊇ Bi for all i since application is monotonic in both arguments.

If NA is complete, i.e. closed under unions of directed sets, then B =
⋃

iBi is a solution. The completeness of NA follows from the fact that the

time indices in A are bounded by the finiteness of the model, cf. section 2

above.

Coupled control is a simple control which arises if two controlling objects

C1 and C2 act in a coupled manner, e.g.

A ≈ C1 ·B, B ≈ C2 · A;

a situation encountered in neurology (e.g. hand-eye movement) just as in

mechanics (e.g. coupled pendulum). The solutions A and B are again ob-

tained by iteration.

Joint control is a special case of coupled control, described by the equa-

tions

C1 ·A ≈ B ≈ C2 · A.

The above forms of control are represented by first-order equations.

Higher-order equations represent hierarchical control: the controlling ob-

ject C is itself controlled by a separate controlling object D. For example

A ≈ C · A, C ≈ D · C.

Adaptive control is another second-order control:

A ≈ C · A, C ≈ D · (A ∪ C).

By augmenting these control equations by another object, external control
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Figure 3: Control diagrams: (a) simple control, (b) coupled control, (c) ad adapive control,

(d) externally adaptive control

E, we obtain controls that seems to be omnipresent in biology:

A ≈ C · (A ∪ E ·A), C ≈ D · (A ∪ C).

Functional Diagrams of control are a useful visual aid to understand the

various regimes of control. They depict the structure of an applicatory

expression involving objects A,B, C, . . . by blobs. The convention is that

an arrow originating at A passing through C and terminating at B stands

for the equation B ≈ C ·A. Fig. 3 illustrates some of the above notions of

control by corresponding functional diagrams.

To illustrate the relation between functional diagrams and corresponding

connectomes consider the simplest case, the application B ≈ C · A for
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Figure 4: Connectome of application of concepts

concepts A,B, C . By Theorem 1 the key neurons Â, B̂, Ĉ are connected

by recurrent circuits; in Fig.4 these are indicated by green cycles. The

individual firing tracts constituting the three concepts are in red.

The mathematical challenge is to pass from specific control equations to

connectomes representing their solutions. We illustrate this by the inter-

esting equation of reflexive control.

Reflexive Control is the kind of control which reflects on the controlling

process itself. The equation of reflexive control is obtained by analyzing

this concept: Let us understand reflexive control as the ability of the brain

to observe itself as it is planning, acting and reacting. This definition, at

first sight, appears circular. Interpreted in NA it is simply self-referential:

The model NA comprises firing patters corresponding to perceiving, act-

ing, planning, moving, etc. Let C be the prospective firing pattern of re-

flexive control. Let B be some set of causal firing tracks, what might be
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called ”the active brain” in the model. Then B · C is the result of observ-

ing, acting, etc. as dependent on the content of C , and C · B represents

the reaction to the control to such activities. To these objects, including C

itself, C is again applied; as in ”observing itself” above, i.e. reflexively.

This characterization of reflexive control transforms into an equational def-

inition as follows:

Definition 7 (Reflexive Control) A sustained setC of track expressions in

the brain B represents reflexive control if it satisfies the equation

C · C ∪ C · (B · C) ∪ C · (C · B) ≈ C.

The question arises how to characterize firing patterns and their connec-

tional correlates corresponding to solutions of the above equation. For

this we need the notion of a causal cycle. This is a causal sequence

{yc0(t0), yc1(t1), yc2(t2), . . .} of causal track expressions of the form αi
ti−→
ci

xci+1
with xci−1

∈ αi for i = 0, 1, . . . , which is cyclic in the indices i

modulo some period n.

Theorem 2 (Connectomes of Reflexive Control) A neural algebra admits

nontrivial reflexive control if and only if it contains at least one sustained

causal cycle.

Proof:

Assume that the reflection equation has a nonempty sustained solution C

of sufficient length (see below) and consider a track expression xc(t) =

α
t
−→
c
y(t′) in C . By the equation, C being a left factor, y(t′) is an el-

ement of C and is therefore also of this form. For x = α
t
−→
c
y define

the input structure σ(x) as the tuple consisting of the key neuron of x and
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the key neurons of the elements of α. The solution C contains a sequence

xc0(t0), xc1(t1), . . . of causal track expressions of the form αi
ti−→
ci
xci+1

with

xci−1
∈ αi for i = 0, 1, . . . . If C is sustained and of sufficient length, the

corresponding sequence of input structures is eventually cyclic, (the model

being finite). By disregarding a non-cyclic initial segment of this sequence,

we assume that it repeats after σ(xcn−1
(tn−1)) and therefore C contains a

sustained causal cycle.

Conversely, assume thatC0 = {{xc0(t0), xc1(t1), . . . xcn−1
(tn−1)}t

′′

t′ is a sus-

tained causal cycle of length n. By recursion construct

Cj+1 = Cj ∪ {αi
ti−→
ci
xci+1

(ti+1), i = 0, 1, . . . i− 1 mod n,

xci−1
∈ αi, xci−1

, xci, xci+1
∈ Cj},

resulting in

C =
⋃

j

Cj.

From the structure of C we conclude

C · C ≈ C,B · C ⊆ B,C ·B ⊆ C,C · (B · C) ⊆ C,

and therefore C is a nontrivial solution of the reflection equation

C · C ∪ C · (B · C) ∪ C · (C · B) ≈ C,

based on C0. Generally, any set of causal cycles generates such a solution;

they form a lattice by set-inclusion.

Fig. 5 shows a very rudimentary scheme of reflexive control; activation,

triggered by some of the links shown, may migrate from one of the possible

cycles, e.g. concepts, to another. Again, one should envision connectomes

larger by several orders of magnitude.
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Figure 5: Connectome for Reflexive Control.

Remark: The theorem indicates that there is a condition on available brain

functions to support reflexive control; it is required by the ”sufficiently

large sustention” condition used in the proof. The lattice structure of the

set of solutions corresponds to phases or states of control, and their con-

textual movement depends on the inclusion/exclusion of the various in-

puts available from present states. In other words: reflexive control ex-

pands/contracts by attaching/releasing connections to perceptions, memo-

ries etc. according to the firing history.

5 Discussion: Neurology, Consciousness and Thinking

Taking the risk to throw glances over the fence, I find some reassurance for

the present model, hoping that others would perhaps share it. They may

wish to consider the following instances:

For NA the notions of thought, concept and consciousness are modelled

on neural nets whose level of abstraction from the psychophysical brain

is relatively modest; it starts with the individual neurons and bases overall

organization on these. Much of present neuroscience is in fact concerned
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with such higher levels of organization (20, 21): One considers neurons,

and more generally brain areas, that have been identified as being involved

in specific functions, and investigates their connectivities and functional

dependencies (22, 23). This is exactly what Neural Algebra attempts to

provide a mathematical model for.

Sets of Key Neurons may remind us of the following:

Single neurons have been identified as the key to recognize a face, (24).

Such ”grandmother cells” appear to act as codes for concepts. This is

reflected in our characterization of ”concept” in Theorem 1 by introduc-

ing corresponding key neurons. Similarly for mirror neurons, called upon

when a concept, e.g. a feeling, needs to be associated to a concept perti-

nent to it, (25). Sets of key neurons constitute the basis for neural repre-

sentations of concepts. Some concepts have been found to correspond to

specific locations in the human cortex. Connections between them and to

what we called higher-order concepts such as planning at other locations

have also be distinguished. This is a main subject of neuroscience.

The above analysis of control results in equations and circuits that may

have their image in the wiring of the cortex. Indeed our adaptive second-

order control seems to correspond to findings in the cat brain (26), and

more generally to a structure that is omnipresent in the neocortex. This has

been called the canonical circuit of dominant interactions; they go down

cortical layers and across cortical sheets (23) as predicted in the model by

their second-order nature. It has been conjectured (27) that cortical lami-

nation is providing a general scaffold and that the canonical circuits may

allow neurons to connect with each other with a minimum of wires.
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Recruiting new neurons and synapses to create new abilities has been iden-

tified, and shown to be involved in the learning of bird songs (28) and

speech (29), and in reading. Again, like in the formation of concepts, in

our model this corresponds to the introduction and recruiting of key neu-

rons in the firing history.

Understanding Consciousness has been termed ”the most challenging task

confronting science”, and what has been a philosophical mainstay has be-

come a legitimate question of ”hard science” (30, 31), now turning into

”big science”. Motivated by its depth and range, some rich, beautiful and

touchingly personal books came to be written by some of the pioneers (32)

– (37). And, not surprisingly, we observe an enormous production of pa-

pers on brain and consciousness in neuroscience alone: about six papers

per day according to a citation search. There have also been some interest-

ing attempts at theoretical synthesis under different viewpoints: proposing

mathematical approaches, ranging from dynamical systems (38) to quan-

tum mechanics (39), information theory (40) and statistics (41), and relat-

ing them to neurological facts and psychological experiments.

Some scientists have denied the have denied the possibility of any overar-

ching mathematical ”theory of the mind”. For some, this may be on the-

ological grounds, reminiscent of Georg Cantor’s spiritual conflict with the

actual infinite, a central aspect of the God of Christianity. Others, notably

Misha Gromov (42), have doubted it because the envisioned goal seemed

to transcend the power of mathematical imagination. – What we have at-

tempted here is of course considerably more modest, for which we beg the

reader’s indulgence.

28



Human consciousness. To embody a solution of the ”consciousness equa-

tion” (Definition 7) in NA we arrived at set of causal cycles (Theorem

2). This characterization of ”consciousness” as based on linked cycles

of partial consciousness and concepts, also has some parallels: Recur-

rent or reentrant connectivities in the brain have been recognized to be

involved in conscious activities, e.g. in the visual cortex, and more gen-

erally in linked circuits (43) and so-called convergence–divergence–zones

and regions, (44) and (35, chapt.6). The consciousness equation formu-

lates the self-referential character of consciousness, an aspect that has been

formulated and investigated throughout the history of the concept, from

Descartes’ ”cogito ergo sum” to Hofstadter’s ”I am a Strange Loop” (45).

If we wish to visualize the activity of conscious thinking we may distin-

guish parts of this network to correspond to specific concepts, others to

perceptual operation, partly linked to the outside, and other operations that

lead from concepts to concepts such as abstraction- and generalization-

operations whose connectional correlates should be reasonably clear.

The consciousness of animals is a much debated concept. A technical ap-

proach may conceivably start with the knowledge, obtained laboriously, of

the actual neural net of some species. The famous nematode caenorhabdi-

tis elegans had its complete neural network mapped with all its synapses;

much additional information has been obtained, approximating total neural

modeling (46). In principle, we could eventually ask for the consciousness

of that animal. In other words: ”How does it feel to be a worm ?” This

remains to be done, and not only for worms. But, judging from a possible

lower bound on the number of neurons required for consciousness to be

initiated and sustained, c. elegans may not qualify.
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Social consciousness, in a technical sense, would consist of understanding

individuals (people or ants etc.) as nodes in a (social) net, their interactions

as edges in the net and the strength of these interactions as the weights of

these edges.

Artificial consciousness may be an utopian goal (47, 48), although it has

been studied in the context of artificial intelligence, not least in the hope

of modeling the perceived advantage of ”conscious” over ”mechanistic”

robots (49), including swarms of robots (49). Even plants may have a sort

of consciousness (50).

Much remains to be done, and this author, fascinated by the challenge and

the enormous literature is greatly intimidated.
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