
1Logic Colloquium ’73, Bristol,
July 1973, (eds H. E. Rose et al.,)
c⃝North Holland, 1975, 231–251

On the Solvability of Algorithmic Problems

The classical construction problems of algebra and geometry have the following form:
Given are a relational structure A and a problem predicate ρ(x1, . . . , xn; y1, . . . , ym).
Does there exist an algorithm which uses a limited supply of basic capabilities and
which solves ρ, in the sense that it constructs, for any given elements a1, . . . , an ∈ A,
a set of elements b1, . . . , bm ∈ A with the property that ρ[a1, . . . , an; b1, . . . , bm] holds
in A? The methods of classical Galois theory allow to discuss the solvability of the
classical problems.

In this paper we develop the basic concepts of a generalized Galois theory in order to
make the paradigm of Galois available for the discussion of the solvability of algorith-
mic problems which have the general form of the construction problems mentioned
above. The first part of this paper presents this development as an abstract theory
in the framework of the theory of models of a modest extension of first-order logic.
In the second part we discuss some relations to computing. We conclude with some
historical remarks.

1 The amalgamation and permutation properties

Let A be a relational structure. Let Lω1ω(A) be the well-known infinitary language
associated to A (strictly speaking: to the type of A) and let L be any fragment of
Lω1ω(A) which has the following properties:

(i) L contains the atomic formulas and is closed under the finite Boolean connectives
∧,¬;

(ii) L has a complete (infinitary) proof system.

Lower case greek letters denote formulas; sets of formulas are denoted by capital greek
letters. By the notation ϕ(x, y, z), Γ(u, v), ∆(x, Y) we indicate formulas, respectively
sets of formulas, whose free variables are chosen from the sets {x, y, z}, {u, v}, {x}∪Y ,
respectively.

Let L0 be the set of basic (i.e., negated or unnegated atomic) formulas of Lω1ω(A).
(Thus L0 ⊆ L.) Let X be a (countable) set of additional free variables. By L(X) we
understand the language obtained by admitting these new variables; L0(X) is the set
of basic formulas of L(X). By a diagram ∆(X) we understand any set of formulas
of L0(X) such that for each α(x1, . . . , xn) with x1, . . . , xn ∈ X exactly one of the
formulas α(x1, . . . , xn),¬α(x1, . . . , xn) belongs to ∆(X).

2

If ϕ(x, y) ∈ L and a, b ∈ A, we indicate by A |= ϕ[a, b] that ϕ(x, y) holds in A for the
assignment ⟨a, b⟩. If ϕ is closed, A |= ϕ indicates that A satisfies ϕ. The provability
relation is indicated by ⊢: The expression Γ ⊢ ϕ states that ϕ is provable from Γ; by
Γ1 ⊢ Γ2 is expressed that Γ1 ⊢ γ for at least one γ ∈ Γ2. Γ(x1, . . .) ⊢ ϕ(x1, . . .) ex-
presses that ϕ(x1, . . .) is provable from Γ(x1, . . .) with free variables x1, x2, . . . treated
as parameters. Γ is L-complete if Γ ⊢ ϕ or Γ ⊢ ¬ϕ for all ϕ ∈ L. Γ(x1, . . .) is L-
complete if Γ(x1, . . .) ⊢ ϕ(x1, . . .) or Γ(x1, . . .) ⊢ ¬ϕ(x1, . . .) for all ϕ ∈ L (with free
variables among x1, . . .). Γ is consistent if it has a model. By a problem predicate, or
simply a problem, we understand a formula

ρ(x1, . . . , xn, y1, . . . , ym)

of L. For notational convenience only we restrict ourselves to the case m = n = 1.

Let Y = {y1, y2, . . .} be a countable (finite or denumerably infinite) set of free vari-
ables. Let S(Y) be the group of all permutations of Y . For any t ∈ S(Y) and
ϕ(x, y1, . . .) ∈ L define

ϕt(x, yi1, yi2, . . .) ≡def ϕ(x, t(yi1), t(yi2), . . .)

By extension, if Φ(x, Y) ⊆ L and t ∈ S(Y), we let

Φt(x, Y) = {ϕt(x, yi1 , . . .) : ϕ(x, yi1, . . .) ∈ Φ(x, Y)}

Let ∆(x) be a diagram.

Definition 1 A problem ρ(x, y) is well posed with respect to Γ and ∆(x) if there
exists Y and a diagram ∆(x, Y) satisfying the following conditions:

(a) Γ ∪ ∆(x, Y) is consistent; Γ ∪△(x, Y) ⊢ ρ(x, yi) for all yi ∈ Y,

(b) (yi ̸= yj) ∈ ∆(x, Y) for all yi, yj ∈ Y, i ̸= j,

(c) Γ ∪ ∆(x, Y) ∪ {ρ(x, y)} ∪ {ρ(x, yi) : yi ∈ Y } ⊢ {y = yi : yi ∈ Y }.

Definition 2 Γ has the permutation property with respect to ρ if for any ∆(x, Y), ∆′(x, Y)
which satisfy (a), (b) and (c) above and for which ∆(x, Y)∩L0(x) = ∆′(x, Y)∩L0(x),
there exists s ∈ S(Y) such that

∆s(x, Y) = ∆′(x, Y).

3

The permutation property will play an important role in the sequel. We therefore
formulate a more familiar concept from universal algebra which implies it.

Definition 3 Γ has the amalgamation property if for any models A,B1 and B2 of Γ
and any injections f1 : A → B1 and f2 : A → B2, there exists a model C of Γ and
injections g1 : B1 → C and g2 : B2 → C such that the following diagram commutes:

✲

✲

❄ ❄

A1

B2

B1

C

f2 g1

f1

g2

Theorem 4 If Γ is universal and has the amalgamation property, then it has the
permutation property with respect to all well-posed problems.

Proof. Let B1 be a model of Γ ∪ ∆(x, Y) and B2 a model of Γ ∪ ∆′(x, Y). Let Tx

be the set of terms of L(x) which have no other free variables except x. Let A1,A2

be the restrictions of B1,B2 to the elements denoted by terms in Tx. The structures
A1,A2 are models of Γ since Γ is universal. Furthermore A1

∼= A2 since

∆(x, Y) ∩ L0(x) = ∆(x) = ∆′(x, Y) ∩ L0(x)

Let therefore A = A1 = A2, and denote by fi the canonical injections fi : A →
Bi, i = 1, 2. By the amalgamation property there exists a model C of Γ ∪ ∆(x) and
injections gi : B1 → C such that the above diagram commutes. Let a′, b′1, b

′
2, . . . be

the denotations of x, y1, y2, . . . in B1, and a′′, b′′1, b
′′
2, the denotations of these variables

in B2; let a be the denotation of x in C and let c1, c2, . . . be an enumeration of all
solutions ρ[a, c] in C.

By the canonical injections: g1(a′) = g2(a′′) and, ρ(x, y) being well posed,

{c1, c2, . . .} = {g1(b
′
1), g1(b

′
2), . . .} = {g2(b

′′
1), g2(b

′′
2), . . .}

Let t be such that for all j

4

g1(b
′
t(j)) = g2(b

′′
j)

and define s ∈ S(Y) by

s(yj) = yt(j), j = 1, 2, . . .

Then

B1 |= αs[a′, b′i1 , . . . b
′
im] iff B2 |= α[a′′, b′′i1 , . . . , b

′′
im]

for all atomic α, as is easy to verify. Hence (by isomorphisms) for all terms τ ′i over
a′, b′i and corresponding terms τ ′′i over a′′, b′′i :

B1 |= αs[τ ′1, . . . , τ
′
k] iff B2 |= α[τ ′′1 , . . . , τ ′′k]

It follows that ∆′(x, Y) = ∆s(x, Y).

Definition 5 A problem ρ(x, y) is of degree n in Γ if

Γ ∪ {ρ(x, yi)}
n
i=0 ⊢ {yi = yj}0≤i<j≤n.

Since problems of finite degree are a fortiori well posed, we have:

Corollary 6 If Γ is universal, has the amalgamation property and ρ(x, y) is of finite
degree, then Γ has the permutation property with respect to ρ.

2 Galois theory

Let L ⊆ Lω1ω(A) and L′ ⊆ L satisfy the conditions of Section 1. Let Γ ⊆ L be
consistent, ρ(x, y) ∈ L a well-posed problem with respect to Γ and let ∆(x, Y) ⊆ L0

be a diagram satisfying condition (a), (b) and (c) of Definition 1.

Our first task is to define the group of ρ. The idea is to take all permutations of
solutions of ρ(x, y) which leave the truth-values of formulas of L′ unchanged. More
exactly:

5

Definition 7

G′ = {t ∈ S(Y) : Γ ∪ ∆(x, Y) ⊢ ϕ ≡ ϕt for all ϕ ∈ L′(x, Y)}

G = {t ∈ S(Y) : Γ ∪ ∆(x, Y) ⊢ ϕ ≡ ϕt for all ϕ ∈ L0(x, Y)}

The sets G, G′ turn out to be groups and depend only on ∆(x) = ∆(x, Y)∩L0(x), as
is shown by the following two lemmas.

Lemma 8 G, G′ are groups.

Proof. We show closure under composition and inverses. Suppose that

Γ ∪ ∆(x, Y) ⊢ ϕ1 ≡ ϕt1
1

Γ ∪ ∆(x, Y) ⊢ ϕ2 ≡ ϕt2
2 for all ϕ1,ϕ2 ∈ L′ (resp. L0)

From the second line, taking ϕ2 = ϕt1
1 , we get

Γ ∪ ∆(x, Y) ⊢ ϕt1
1 ≡ ϕt1t2

1

and, combining with the first line,

Γ ∪ ∆(x, Y) ⊢ ϕ1 ≡ ϕt1t2
1

For inverses, if we assume

Γ ∪ ∆(x, Y) ⊢ ϕ1 ≡ ϕt
1 for all ϕ1,∈ L (resp. L0)

we obtain, taking ϕ1 = ϕt−1

Γ ∪ ∆(x, Y) ⊢ ϕt−1

≡ ϕt−1t

hence Γ ∪ ∆(x, Y) ⊢ ϕ ≡ ϕt−1

.

Let ∆1 = ∆(x, Y), ∆2 = ∆′(x, Y) satisfy conditions (a), (b) and (c) of Definition
1. Let ∆(x) = ∆1 ∩ L0(x) = ∆2 ∩ L0(x), and let G1, G′

1, G2, G′
2 be the groups

obtained in Definition 5 using ∆1, respectively ∆2. Assume from now on that Γ has
the permutation property with respect to ρ.

6

Lemma 9 G1
∼= G2 and G′

1
∼= G′

2.

Proof. Suppose t ∈ G′
1, i.e. Γ ∪ ∆1 ⊢ ϕ ≡ ϕt for all ϕ ∈ L′. Let s ∈ S(Y). Then

Γ ∪ ∆s
1 ⊢ ϕs ≡ ϕts for all ϕ ∈ L′ and all t ∈ G′

1, in particular for ϕ′ = ϕs−1

. Thus
Γ ∪ ∆s

1 ⊢ ϕs−1s ≡ ϕs−1ts for all ϕ ∈ L′ and t ∈ G′
1. Hence Γ ∪ ∆s

1 ⊢ ϕ ≡ ϕt′ for all
ϕ ∈ L′ and t′ ∈ s−1G′

1s. Since Γ has the permutation property there is s ∈ S(Y) such
that ∆2 = ∆s

1. Hence Γ∪∆2 ⊢ ϕ ≡ ϕt′ for all t′ ∈ s−1G′
1s. Thus G′

1 ⊆ G′
2 by an inner

automorphism of S(Y); symmetrically, G′
2 ⊆ G′

1 by its inverse; hence G′
1
∼= G′

2. The
proof of G1

∼= G2 is the same.

Lemmas 1 and 2 justify talking of G, G′ as groups of the problem ρ. To indicate their
dependence on ∆(x) only, we introduce the notation

G∆(x)(ρ), G′
∆(x)(ρ)

for these groups. - The remainder of this section is devoted to the task of justifying our
claim that G∆(x)(ρ) are reasonable generalizations of the concept of a Galois group.

Let Γ ⊆ L, ∆(x, Y) be given, and let ρ(x, y) be well posed with respect to Γ, i.e.,
assume conditions (a), (b) and (c) of Definition 1 for these Γ, ∆(x, Y).

Theorem 10

(1) G∆(x)(ρ) = {s ∈ S(Y) : ∆(x, Y) = ∆s(x, Y)}.

(2) If Γ ∪ ∆(x, Y) is L′-complete, then G′
∆(x)(ρ) = G∆(x)(ρ).

Proof. It suffices to show that for L′-complete Γ ∪ ∆(x, Y)

G′
∆(x)(ρ) = {s ∈ S(Y) : ∆(x, Y) = ∆s(x, Y)}

because Γ ∪ ∆(x, Y) is clearly L0-complete, ∆(x, Y) being a diagram.

Suppose s ∈ S(Y) is such that ∆(x, Y) = ∆s(x, Y), and assume that for some ϕ ∈ L′

we have

Γ ∪ ∆(x, Y) ̸⊢ ϕ ≡ ϕs

Then, by completeness, either

7

Γ ∪ ∆(x, Y) ⊢ ϕ and Γ ∪ ∆(x, Y) ⊢ ¬ϕs

or
Γ ∪ ∆(x, Y) ⊢ ϕs and Γ ∪ ∆(x, Y) ⊢ ¬ϕ

In the first case, we would have Γ ∪ ∆s(x, Y) ⊢ ϕs, hence Γ ∪ ∆(x, Y) ⊢ ϕs, a
contradiction; similarly in the second case.

Conversely, suppose s ∈ G′
∆(x)(ρ). Since

Γ ∪ ∆(x, Y) ⊢ ϕ for all ϕ ∈ ∆(x, Y)

and
Γ ∪ ∆(x, Y) ⊢ ϕ ⊃ ϕs for all ϕ ∈ ∆(x, Y)

we have
Γ ∪ ∆(x, Y) ⊢ ϕs for all ϕ ∈ ∆(x, Y)

Since ∆(x, Y) is a diagram, we conclude ∆(x, Y) = ∆s(x, Y).

Part (1) of Theorem 2 allows us to connect our definition of the group of a problem
with a more familiar one. Namely, assume that Γ is a universal theory and let

A(x),A(x, Y)

be the minimal models of Γ ∪∆(x), Γ ∪∆(x, Y), respectively. A(x) is a substructure
of A(x, Y) and any automorphism of A(x, Y) leaving A(x) pointwise fixed induces
a permutation s ∈ S(Y) such that ∆s(x, Y) = ∆(x, Y). Conversely, every such
permutation induces an automorphism of A(x, Y) over A(x). Hence:

Corollary 11 If Γ is universal, i.e., consists only of universal sentences, then G∆(x)(ρ)
is the group of automorphisms of A(x, Y) over A(x).

For later applications it is important to know for which ϕ ∈ Lω1ω(A) the basic property
of G∆(x)(ρ) holds, i.e., for which ϕ we have

Γ ∪ ∆(x, Y) ⊢ ϕ ≡ ϕs for all s ∈ G∆(x)(ρ)

By Theorem 2, part (2) we know that this is true for all ϕ ∈ L′ whenever Γ∪∆(x, Y)
is L′-complete. The following theorem shows that for some, still rather expressive L′

this condition is not needed. These L′ include in particular the language that we shall
need for the expression of algorithmic properties in Section 3.

8

Let L1 be the closure of L0 under finite Boolean operations and denumerable disjunc-
tions, i.e., let L1 be the smallest subset of Lω1ω(A) such that

L0 ⊆ L1;
if ϕ,ψ ∈ L1, then ϕ ∧ ψ ∈ L1 and ¬ϕ ∈ L1;
if ϕi ∈ L1, i = 1, 2, . . . , then

∨∞
i=1 ϕi ∈ L1.

Theorem 12

GL1

∆(x)(ρ) = {s ∈ S(Y) : Γ ∪ ∆(x, Y) ⊢ ϕ ≡ ϕs, all ϕ ∈ L1} = G∆(x)(ρ)

Proof. We show Γ∪∆(x, Y) ⊢ ϕ ≡ ϕs for all ϕ ∈ L1 by induction on the structure of
ϕ. By symmetry, it is sufficient to show

Γ ∪ ∆(x, Y) ⊢ ϕ ⊃ ϕs for all ϕ ∈ L1

For ϕ = ϕ1 ∧ϕ2 we assume Γ∪∆(x, Y) ⊢ ϕ1 ⊃ ϕs
1 and Γ∪∆(x, Y) ⊢ ϕ2 ⊃ ϕs

2. Hence
Γ ∪ ∆(x, Y) ⊢ (ϕ1 ∧ ϕ2) ⊃ ϕs

1 and Γ ∪ ∆(x, Y) ⊢ (ϕ1 ∧ ϕ2) ⊃ ϕs
2; thus

Γ ∪ ∆(x, Y) ⊢ (ϕ1 ∧ ϕ2) ⊃ ϕs
1 ∧ ϕ

s
2

Γ ∪ ∆(x, Y) ⊢ (ϕ1 ∧ ϕ2) ⊃ (ϕ1 ∧ ϕ2)
s

For ϕ = ¬ϕ1 we assume Γ ∪ ∆(x, Y) ⊢ ϕ1 ⊃ ϕs
1. By contraposition, Γ ∪ ∆(x, Y) ⊢

¬ϕs−1

1 ⊃ ¬ϕ1, hence Γ ∪ ∆s(x, Y) ⊢ ¬ϕ1 ⊃ ¬ϕs
1, and because

∆(x, Y) = ∆s(x, Y), Γ ∪ ∆(x, Y) ⊢ ¬ϕ1 ⊃ (¬ϕ1)
s

For ϕ =
∨

i ϕi we assume Γ∪∆(x, Y) ⊢ ϕi ⊃ ϕs
i for all i. It follows that Γ∪∆(x, Y) ⊢

ϕi ⊃
∨

i ϕ
s
i for all i, and therefore Γ ∪ ∆(x, Y) ⊢

∨

i ϕi ⊃
∨

i ϕ
s
i , which is the same as

Γ ∪ ∆(x, Y) ⊢
∨

i ϕi ⊃ (
∨

i ϕi)s.

How should we go about actually determining the group G∆(x)(ρ)? For problems
ρ(x, y) of finite degree classical Galois theory suggests that one can find a single equa-
tion Θ(x, y1, . . . , yn) the so-called resolvent, and determine the set of permutations of
y1, . . . , yn which leave the value of Θ(x, y1, . . . , yn) unchanged, with the change that in-
stead of being a single equation, Θ(x, y1, . . . , yn) will in general be a finite conjunction
of basic formulas.

Theorem 13 Let Γ be a set of sentences, and let ρ(x, y) be a problem of degree n in
Γ. Then there exists a finite conjunction Θ(x, y1, . . . , yn) of basic formulas in L0 such
that

9

G∆(x)(ρ) = {s ∈ S(y1, . . . , yn) :

Γ ∪ ∆(x, y1, . . . , yn) ⊢ Θ(x, y1, . . . , yn) ≡ Θs(x, y1, . . . , yn)}

Proof. Let S(y1, . . . , yn) − G∆(x)(ρ) = {t1, t2, . . . , tm} and assume that a conjunction
Θ(x, y1, . . . , yn) of basic formulas has been determined such that

Γ ∪ ∆(x, y1, . . . , yn) ⊢ Θi

Γ ∪ ∆(x, y1, . . . , yn) ̸⊢ Θi ≡ Θ
tj
i for all j ≤ i

Consider ti+1. If Γ ∪ ∆(x, y1, . . . , yn) ̸⊢ Θi ≡ Θ
tj
i , we let Θi+1 = Θi. Otherwise let

ϕi+1(x, y1, . . . , yn) ∈ L0 be chosen such that Γ ∪ ∆(x, y1, . . . , yn) ̸⊢ ϕi+1 ≡ ϕti+1

i+1 , say
Γ∪∆(x, y1, . . . , yn) ⊢ ϕi+1 and Γ∪∆(x, y1, . . . , yn) ⊢ ¬ϕi+1. Then Γ∪∆(x, y1, . . . , yn)
⊢ Θi ∧ ϕi+1 but not Γ ∪ ∆(x, y1, . . . , yn) ⊢ Θti+1

i , that is, Γ ∪ ∆(x, y1, . . . , yn) ̸⊢
(Θi ∧ ϕi+1)ti+1 . Hence, Γ ∪ ∆(x, y1, . . . , yn) ̸⊢ (Θi ∧ ϕi+1) ≡ (Θi ∧ ϕi+1)ti+1 . We
may therefore take Θi+1 = Θi ∧ ϕi+1 in this case. Finally, we let Θ = Θm and
observe by construction Γ ∪ ∆(x, y1, . . . , yn) ̸⊢ Θ ≡ Θt for all t ̸∈ G∆(x)(ρ), but
Γ ∪ ∆(x, y1, . . . , yn) ⊢ Θ ≡ Θt for all t ∈ G∆(x)(ρ).

3 Algorithmic languages1

In the present section we sketch a logical framework in which those problems which
we shall call algorithmic can conveniently be treated in a formal fashion. We start by
enumerating a number of problem types which belong to this area and have received
a good deal of attention from computer scientists.

By a data structure we simply understand a relational structure A of finite type,
consisting of a non-empty underlying set A, some finitary relation Ri and operations
fj .

A = ⟨A; . . . , Ri, . . . ; . . . , fj, . . .⟩

Ri ⊆ Ani , fj : Amj → A

With respect to such a data structure we imagine a given set of elementary capabilities
which consist in admitting the executability of some atomic acts of decision and oper-
ations. Typically, a list of capabilities is given by enumerating types of instructions:

1The material of Sections 3 and 4 was presented at the 1. Fachtagung der Ges. f. Informatik,
Bonn, July 1973 and appears in their proceedings LN Computer Science, Springer, 1973, 2-15. It is
reprinted here with some slight changes with the permission of the publishers.

10

B = {. . . , xi := fj(xk1
, . . . , xknj

), . . . , Rj(xk1
, . . . , xkmj

), . . .}

where fj, Rj are the operations and relations of A, x1, x2, . . . are variables ranging over
A.

With the aid of these capabilities we construct programs in the manner of ALGOL
(flowchart programs use only go to and if then else; recursive programs use procedure
calls).

Let π be a program in the variables x1, . . . , xn with respect to some elementary ca-
pabilities B for some relational structure A. The termination problem for π is: ‘does
π(x1, . . . , xn) halt for all assignments of initial values a1, . . . , an ∈ A to x1, . . . , xn?’
We formulate this problem as

A |= ∀x Termπ(x) (1)

where Termπ(x) is short for Termπ(x1, . . . , xn) and denotes the termination predicate
(n-ary) which is true for ⟨a1, . . . , an⟩ iff π halts on input a1, . . . , an. (So far we have
not specified a language in which Termπ is a formula.)

The problem of partial correctness of a program π(x1, . . . , xn) is: “given that the values
assigned to the variables x1, . . . , xn at input time satisfy the predicate ϕ(x1, . . . , xn)
and assuming that π terminates on that input, do the values assigned to the vari-
ables x1, . . . , xn at output time satisfy the predicate ψ(x1, . . . , xn)?” Let Transπ(x, y)
be short for Transπ(x1, . . . , xn; y1, . . . yn) and denote the transduction predicate of π
which is true for ⟨a1, . . . , an; b1, . . . , bn⟩ exactly when π, with input a1, . . . , an termi-
nates with output b1, . . . , bn. The problem of partial correctness is formulated in these
terms by

A |= ∀x, y(ϕ(x) ∧ Transπ(x, y). ⊃ ψ(y)) (2)

The problem of equivalence of two programs π1(x1, . . . , xn) and π2(x1, . . . , xn) is for-
mulated as

A |= ∀x, y(Transπ1
(x, y) ≡ Transπ2

(x, y)) (3)

A further important algorithmic problem is the problem of algorithmic solvability:
“Given a problem predicate ρ(x1, . . . , xn; y1, . . . yn) does there exist a program π(x1, . . . , xn)
which solves ρ in the sense that whenever π halts on input a1, . . . , an with output
b1, . . . , bn then ⟨a1, . . . , an, b1, . . . , bn⟩ satisfies ρ?” The classical construction problems

11

of algebra and geometry clearly have this form. We formulate the problem of algo-
rithmic solvability by:

∃π?A |= ∀x, y(Transπ(x, y) ⊃ ρ(x, y)) (4)

Closely related to the problem of algorithmic solvability is that of conditioning: ’Given
a problem predicate ρ and a proposed algorithmic solution π, find a condition ϕ on
the input which guarantees that π is a solution for inputs satisfying ϕ!’ We may
formulate this by

∃ϕ?A |= ∀x, y(ϕ(x) ∧ (Transπ(x, y). ⊃ ρ(x, y)) (5)

With this example we close for now the enumeration of problems that we would call
algorithmic. It is apparent that the list contains patterns for problems that justify
considerable mathematical activity. For us, this activity takes on the form of estab-
lishing, and working within, an appropriate formalized framework; a logical framework
as it were. What are the primary requirements for such a frame? Clearly, it must
be able to talk about properties of structure A, at least to the extent of formulating
the predicates ϕ(x),ψ(y) in partial correctness (2), problem predicates ρ(x, y) in (4)
and (5), and it must hold out fair hope of finding the condition predicate ϕ(x) in
the conditioning problem (5). On the other hand, it must be able to connect these
predicates up with the assertions concerning the meaning of a program π; in partic-
ular, it should be able to express the predicates Termπ and Transπ. In addition to
these semantical requirements on the frame there is the goal of adding a theoretically
manageable, perhaps even a computer-implementable, deductive system to it.

REMARK 1. For practical purposes it may be advantageous to concentrate on one
type of algorithmic problem and create a formal system for that alone. This has been
done by Hoare [9] for the problem of partial correctness. No need arose to write Termπ

explicitly in the system, and it was judged (following the lead of Floyd [6]) that for
properties of the structure A it was convenient to choose the language of first-order
predicate logic. Hoare’s ‘logic’ has been used for various tasks, in particular as a basis
for automatic program verification and program generation (Luckham and Manna),
and for the axiomatic description of a programming language (Hoare and Wirth [10]).
(A noteworthy switch in emphasis is present in the last paper: Instead of attempting
a logically complete system for a fixed semantic, the system of rules and axioms is
deliberately left rudimentary in order to accommodate varying implementations.)

REMARK 2. Actually, the formal languages in which programs are formulated are
themselves good enough formalisms for which it is easy to formulate proof procedures.
Such a system (working with program statements exclusively) has been proposed by
Engeler [5]. Some questions of correctness can easily be formulated as the termination

12

property. Indeed, for programs in numerical analysis this approach has considerable
intuitive appeal, as suggested in Engeler [4].

REMARK 3. A third, very promising approach that goes all the way from a theo-
retical logical basis (Scott [22]) to implementation (Milner [14]) uses the concepts of
λ-calculus.

The task of choosing an appropriate language in which to formulate algorithmic prob-
lems is simplified by the observation that Transπ(x, y) can easily be expressed as
Termπ′(x, y) for a new program π′ (which arises from π by first storing away the val-
ues for y, then executing π and finally checking the actual outcome against the stored
y values). A second observation is of empirical nature: We have not encountered
’honest’ algorithmic problems in which the formulas ϕ,ψ, ρ in (1)-(5) were not finite
Boolean combinations of formulas of the form Termπ. These REMARKs have led to
the development of our theory which is based on a language whose expressive power
encompasses not much more than (universally quantified) finite Boolean combinations
of termination formulas. This attitude, first formulated in Engeler [3], has been at
the basis of the work of a group of Polish logicians under the direction of Professor
Rasiowa who modified and developed the present author’s approach (Salwicki [20, 21],
Mirkowska [15], Kreczmar [13], Grabowski [7]).

Let B = {. . . , xi := f r(xj , xk), . . . , Rs(xi, xj), . . .} be an enumeration of the elementary
capabilities with which we are concerned. To B we associate an alphabet

alph(B) = {. . . , if
r
jk, . . . , sR

+
jk, sR

−
ij , . . .}

Words over this alphabet are used to represent possible traces through a given program
over π; if an operation xi := f r(xj , xk) is encountered along a path through π this is
indicated by appending the symbol if r

jk to the trace; if a decision box Rs(xi, xj) is left
through the positive branch, we indicate this by appending sR

+
ij , etc. In this purely

syntactical fashion we associate to a program π a set of words over alph(B), which is
called the language of π, in short,

lang(π) = {w ∈ alph(B)∗ : w ∈ paths through π}

It is well known that lang(π) is a regular set if π is a flowchart program; if π is a
recursive program, then lang(π) is a context-free language. Accordingly, lang(π) can
be denoted by a regular expression σ(π) in the first case, by a Gruska [8] context-free
expression σ(π) in the second case; σ is called signature of π

lang(π) =| σ(π) |

13

Let π be any program, σ(π) a signature of π and w ∈| σ(π) |; assume that the variables
occurring in π are among x1, . . . , xn. We first construct a quantifier-free first-order
formula

ϕw(x1, . . . , xn)

which is true in A for an input a1, . . . , an exactly if π would follow the path w through
π on that input. Letting λ denote the empty word and · the concatenation of words
we define recursively

ϕλ(x1, . . . , xn) := (x1 = x1)

ϕif
r
jk · w(x1, . . . , xn) := Subxi

fr(xj ,xk)(ϕw(x1, . . . , xn))

ϕsR
+
ij · w(x1, . . . , xn) := Rs(xi, xj) ∧ ϕw(x1, . . . , xn)

ϕsR
−
ij · w(x1, . . . , xn) := ¬Rs(xi, xj) ∧ ϕw(x1, . . . , xn)

With this abbreviation we now have a formula for Termπ(x1, . . . , xn) in the language
Lω1ω, namely

Termπ(x1, . . . , xn) :=
∨

w∈|σ(π)|

ϕw(x1, . . . , xn)

Clearly, A |= Termπ[a1, . . . , an] in the sense of the semantics of Lω1ω iff π(x1, . . . , xn)
halts in A on input a1, . . . , an.

In view of our earlier discussion we therefore define our algorithmic language (in
distinction to the given programming language) as:

algL(B) = {set of all finite Boolean combinations of formulas

Termπ(x), π a flowchart program over B}.

Let us now consider a given relational structure A and ask what are the properties
of A relevant to various algorithmic problems. Looking back on their formulation, we
observe that all we need to know about A is its algorithmic theory:

algT(A;B) = {ϕ ∈ algL(B) : A |= ∀xϕ(x)}

Since Lω1ω has a complete (infinitary) proof system, we have one for algL(B). It is
therefore possible to ask for the axiomatizability of algT(A;B) for various A and B

14

which are of interest. For we can then ask algT(A;B) ⊢ ψ instead of A |= ψ. (Of
course, if in the definition of algL(B) we had chosen recursive programs instead of
flowcharts, we would in general get a different theory algT(A;B); for the example
below, however, the choice is immaterial.)

For any set Γ of algorithmic formulas, let Γ⊢ denote its deductive closure under the
rules of proof of Lω1ω in algL(B), i.e.,

Γ⊢ = {ψ ∈ algL(B) : ∀xψ can be proven from the set of universally

quantified formulas of Γ}

To axiomatize algL(A;B), therefore, means finding a recursive set Γ such that
Γ⊢ = algT(A;B). We now give a few examples.

4 The classical constructibility theories

We present, by way of illustration, some examples of axiomatizations of algT(A;B)
for structures A and elementary capabilities B familiar from classical constructibility
theories in mathematics. The purpose is to give a precise formulation to these theories,
which were largely unformalized and to a degree imprecisely conceived (by modern
standards). Earlier formulations, e.g. Tarski [24], Suppes-Moler [23] differ from ours
by not making formal the notion of a construction not of a construction problem and,
as it turns out, give only a parital axiomatization if these notions are made precise
by programs and algorithmic problems in our sense.

In all the cases considered below, the amalgamation property of algT(A;B) follows
by classical results. Therefore, the generalized Galois theory developed in Section
2 applies to these theories. (Of course, these are not the only theories of interest in
computing which have the amalgamation property. Another prime example is Boolean
algebra. The possibility of developing a Galois theory for Boolean algebras was first
noticed, to our knowledge, by Hotz [11], who used it to discuss switching circuits.)

The ordered field of reals

R≤ = ⟨R;≤, +, ·,−,−1 , 0, 1⟩

can be considered (hypothetically) as furnished with the elementary capabilities

B≤ = {xi = xj , xi ≤ xj ; xi := xj + xk, xi := xj · xk, xi := −xj ,

15

xi := x−1
j (xj ̸= 0), xi := 0, xi := 1, i, j, k = 1, 2, . . .},

abbreviated,

B≤ = {=,≤; +, ·,−,−1 , 0, 1}

Proposition 14 algT (R≤B≤) = { Archimedean ordered field }⊢.

Proof. Observe that the property of being an archimedean ordered field may be
formulated by a set of algorithmic formulas in algL(B≤). This is immediate for the
axioms of an ordered field. The commutative law of addition, for example, is the
termination formula of the following program:

start x3 := x1 + x2 x4 := x2 + x1 x3 = x4 stop✲ ✲ ✲ ✲
+❄

The Archimedean property

a > 0 ∧ b > 0· ⊃
∞
∨

n=1

a + a + · · · + a
︸ ︷︷ ︸

n

≥ b

may be formulated as the termination formula of the following program:

start

❄

x1 := 0

❄

x4 := x2

❄

x2 ≤ x1 x3 ≤ x1 x3 ≤ x2 x2 := x2 + x4
✲ ✲ ✲

❄– – –

❄ ❄ ❄

stop stop stop

+ + +

16

It remains to show that for every (universally quantified) algorithmic formula ϕ we
have

R |= ϕ iff {Archimedean ordered field} ⊢ ϕ

Clearly, if ϕ is provable in Lω1ω from the axioms of Archimedean ordered fields then
ϕ holds true in all such fields, in particular for the reals. Conversely, suppose that
R |= ϕ and that F is any Archimedean ordered field. Then, by algebra, F is a subfield
of R and, ϕ being a universal formula, F |= ϕ. Hence F |= ϕ for all Archimedean
ordered fields. By completeness of ⊢ for Lω1ω it follows that {Archimedean ordered
fields} ⊢ ϕ.

Slightly less trivial is the case of

R= = ⟨R; +, ·,−,−1 , 0, 1⟩,

B= = {=; +, ·,−,−1 , 0, 1}

arising from our first example by dropping the relation ≤ and the elementary capa-
bility corresponding to it.

Proposition 15 algT (R=;B=) = { formally real field }⊢.

Proof. The axioms of a field are algorithmic, as noted above. The additional condition
(that -1 not be a sum of squares) can just as obviously be formulated as a set of
algorithmic formulas of algL(B=). Since the reals are formally real, it remains to
prove that any algorithmic formula ϕ which is true for the reals is true for every
formally real field. Suppose otherwise, i.e., assume ϕ(x1, . . . , xn) ∈ algT(R=,B=),F
formally real, a1, . . . , an ∈ F and F |= ¬ϕ[a1, . . . , an]. Let F ′ be the real closure
of F ; we continue to have F ′ |= ¬ϕ[a1, . . . , an]. We have to show that there are
a′

1, . . . , a
′
n ∈ R such that R |= ¬ϕ[a′

1, . . . , a
′
n]. Note the form of ¬ϕ:

¬ϕ =
k
∨

i=1

Termπi
∧ ¬Termπ′

i

Hence

F ′ |= (Termπi
∧ ¬Termπ′

i
)[a1, . . . , an] for some i,

F ′ |=
(

∨

w∈|σ(πi)|

ϕw ∧
∧

w∈|σ(π′

i
)|

¬ϕw

)

[a1, . . . , an].

17

each ϕw being a finite set of polynomial equations and inequalities (with integral
coefficients). It follows that there is an infinite set P of such equalities and inequalities
satisfied by a1, . . . , an in F ′ (and which, if it is satisfied, implies ¬ϕ[a1, . . . , an]). Now,
by algebra, if a set P has a solution in any real closed field F ′, then it has one in R,
which was to be shown.

We now turn to the theory of geometrical constructions. Let

G = ⟨P,L, ; Inz, Zw,≡s,≡w, //, 0, X, Y, x, y⟩

be the two-dimensional geometry over the reals regarded as a relational structure with
two sorts (P: points, L: lines), the relations Inz (of incidence), Zw (betweenness),
≡s,≡w (segment and angle congruence as relations on points), // (parallelity), and a
fixed ‘coordinate system’ indicated by

Y

O X

x

y

The elementary capabilities with respect to G are formulated with the aid of variables
P, Q, R, . . . for points, l, g, h. . . . for lines. Baff , the affine constructions (‘ruler alone’)
are:

P := O, P := X, P := Y, l := x, l := y;

Q := P (g, h) point of intersection of g, h (if g ̸= h);

l := L(P, Q) connecting line of P, Q if P, Q distinct;

l := L(P, g) line parallel to g through P ;

P = Q?, g = h?, g//h?, Inz(P, g)?

BE the Eichmass constructions (of Hilbert’s Foundations of Geometry), comprise the
following additional capabilities:

Zw(P, Q, R) ? P := E(A, B, C, D), the Eichmass construction of finding P

such that Zw(C, D, P) ∧ AB ≡s DP if C ̸= D.

18

Both these construction theories suffer from the adhocness of the fixed coordinate
system. More in the spirit of classical constructions would be elementary capabilities
which allow arbitrary selections of points and lines. Consider therefore BS, selection
constructions, given by the capabilities:

Q := P (g, h), l := L(P, Q), P := E(A, B, C, D);

P = Q?, g = R?, g//h?, Inz(P, g)?, Zw(P, Q, R)?;

g := S0(h) selects an arbitrary line,

P := S1(g) selects an arbitrary point on g,

P := S2(g, A) selects an arbitrary point on g different from A,

P := S3(A, B) selects an arbitrary point between A and B,

P := S4(g) selects an arbitrary point outside g.

The task of axiomatizing algT(G,Baff) is greatly simplified by the availability of ana-
lytic geometry for G. These allow us to associate an algorithmic formula ϕ∗ of algL(B=)
to every ϕ ∈ algL(Baff) (its translation into terminology of analytic geometry) in a
straightforward (purely syntactical) way and such that G |= ϕ iff R= |= ϕ∗.

Proposition 16 algT (G,Baff) = Γ⊢ for every Γ ⊆ algT (G,Baff) for which (Γ∗)⊢ ⊇
{formally real fields}.

Proof. Γ⊢ ⊆ algT(G, Baff) since algT is closed under deduction. Conversely, suppose
ϕ ∈ algT(G,Baff), then ϕ∗ ∈ algT(R,B=) by construction of *, hence ϕ∗ ∈
{formally real fields} ⊢ and thus ϕ∗ ∈ (Γ∗)⊢. Since the syntactic translation * re-

spects proof, we have ϕ ∈ Γ⊢.

To obtain an actual list of axioms Γ, we would now pay close attention to one or
another of the standard coordinatization techniques for G and note down those prop-
erties of G which insure the right algebraic characterization of the field constituted
by, say, the points on the line x.

A similar argument allows us to handle the axiomatization of Eichmass construction
geometry. Let

Beucl = {=,≤; +, ·,−,−1 , 0, 1, +
√

(x2 + y2)}

be the list of capabilities which extend B≤ by the operation of extracting the positive
square root of the sum of two squares. We have again a syntactic translation * of

19

algL(BE) into algL(Beucl) with the above properties. Let us call a field Euclidean, if

it contains
√

(a2 + b2) for any a, b of the field; this property is clearly in algL(Beucl).

Proposition 17 algT (G,BE) = Γ⊢ for every Γ ⊆ algT (G,BE) for which (Γ∗)⊢ ⊇
{archimedean ordered euclidean fields}.

Proof. Same argument as for the previous proposition.

We now turn to geometries with the selection operations. In the presentation of G as
a two-sorted relational structure, we have (for BE and BS) added some features which
are not strictly ‘geometric’ in nature. For BE we added a coordinate system

O, X, Y, x, y

and (corresponding capabilities); for BS we added the selection operations

S0, S1, S2, S3, S4,

which also suffer from a certain degree of arbitrariness.

Lemma 18 If π is a program over BS and π is invariant under reinterpretation of
S0, S1, S2, S3, S4, then there exists π′ over BE such that π and π′ compute the same
partial function (in any fixed C).

Proof. Because of the invariance under the choice of S0 and S4 it is sufficient to
provide subroutines over BE for the elementary capabilities involving the Si. This is
easily done.

Lemma 19 If π is a program over BE and π is invariant under reinterpretation of
O, X, Y, x, y then there exists π′ over BS such that π and π′ compute the same partial
function (in any fixed C).

Proof. Again by providing subroutines.

The coordinate-free and selection-free algorithmic language of Eichmass constructions
is defined by

constrL = algL(BE) ∩ algL(BS)

20

The obvious task is to axiomatize the set of ϕ ∈ constrL which are true for G, call
this constrT.

Proposition 20 constrT = algT (C,BE) ∩ constrL.

Proof. It follows from the above lemmas that

constrL ∩
⋂

reinterpret.

algT(C,BE) = constrL ∩
⋂

reinterpret.

algT(C,Bs)

Since reinterpretations of O, X, Y, x, y simply introduce a similarity transformation,
we have

constrL ∩
⋂

reinterpret.

algT(C,BE) = constrL ∩ algT(C,BE)

It is clear that similar methods can be used to discuss various other construction
geometries that have been studied in great detail in the past. We hope that some
mathematicians may be tempted to do this and thereby give the theory of geometrical
constructions a long missing formal precision.

5 Some historical remarks

One of the most striking experiences that this author had in his involvement with
Galois theory concerns the extent to which the way the theory is presented has been
changed ever since Artin [1]. Indeed, we did in fact reinvent the definition of a
Galois group as the group of permutations of variable symbols that do not change
the provability of expressions and were very happy for this characterization (closer to
actual manipulative aspects and therefore more promising from a computing point of
view). It was then pointed out to us that even as late as O. Perron’s algebra [18], this
was at many universities the standard way to present Galois theory. Of course, ours
is still a true generalization and one in which the formal aspects are better profiled.

Not surprisingly, therefore, other attempts to generalize Galois theory in a universal
algebra setting started from the concept of an algebraic element. For this concept,
there have been a number of formulations, mainly by Robinson [19], Jónsson [12],
Morley [16] and also by Park [17]. These were recently very nicely brought into
relation by Bacsich [2]. The merit to have observed the central importance of the
amalgamation property in Galois theory clearly goes to Jónsson; the concept itself is
due to Fräıssé.

Bibliography

[1] E. Artin. Galois Theory, Notre Dame Mathematical Lectures 2 (1942).

[2] P. D. Bacsich. Defining algebraic elements, Journal of Symbolic Logic 38 (1973).

[3*] E. Engeler. Formal Languages: Automata and Structures. Markham, Chicago
(1968), 81 pp.

[4*] E. Engeler. Proof theory and the accuracy of computations. In: Symposium on
Automatic Demonstration (eds M. Laudet et al.), LN Math. 125, Springer (1970),
62-71.

[5*] E. Engeler. Structure and meaning of elementary programs. In: Symposium on
Semantics of algorithmic Languages (ed. E. Engeler), LN Math. 188, Springer
(1971), 89-101.

[6] R. W. Floyd. Assigning meaning to programs. In: Mathematical Aspects of Com-
puter Science (ed J. T. Schwarz) Proceedings of Symposia in Applied Mathemat-
ics 19 (Am. Math. Soc. Providence, R.I.) (1967), 19-32.

[7] M. Grabowski. The set of all tautologies of the zero-order algorithmic logic is
decidable, Bulletin de l’Academie Polonaise des Sciences. Serie des Sciences
Mathématiques Astronomiques et Physiques 20 (1972), 575-582.

[8] J. Gruska. A characterization of context-free languages, Journal of Computer and
Systems Sciences 5 (1971), 353-364.

[9] C. A. R. Hoare. An axiomatic basis for computer programming, Communications
of the Association for Computing Machinery 12 (1969), 576-583.

[10] C. A. R. Hoare and N. Wirth. An axiomatic definition of the programming lan-
guage Pascal, Acta Informatica 2 (1973), 335-355.

[11] G. Hotz. Zur Reduktionstheorie der Boole’schen algebra. In: Kolloquium über
Schaltkreis und Schaltwerktheorie (eds Unger and Peschel), Birkhäuser, Basel
(1962).

[12] B. Jónsson. Algebraic extensions of relational systems, Mathematica Scandinavica
11 (1962), 179-205.

21

22 BIBLIOGRAPHY

[13] A. Kreczmar. The set of all tautologies of algorithmic logic is hyperarithmetical,
Bulletin de l’Academie Polonaise des Sciences. Serie des Sciences Mathématiques
Astronomiques et Physiques 21 (1971), 781-783.

[14] R. Milner. Implementation and applications of Scott’s logic for computable func-
tions. In: Proceedings of the ACM Conference on Proving Assertions about Pro-
grams, New Mexico (1972), 1-6.

[15] G. Mirkowska. On formalized systems of algorithmic logic, Bulletin de l’Academie
Polonaise des Sciences. Serie des Sciences Mathématiques Astronomiques et
Physiques 21 (1971), 421-428.

[16] M. Morley. Categoricity in power, Transactions of the American Mathematical
Society 114 (1965), 514-538.

[17] D. Park. Set theoretic constructions in model theory, Ph.D. Thesis MIT (1964).

[18] O. Perron. Algebra, 2 Vols. Göschen Verlag, (1927).

[19] A. Robinson. On the Metamathematics of algebra, North-Holland, Amsterdam
(1951).

[20] A. Salwicki. Formalized algorithmic languages, Bulletin de l’Academie Polonaise
des Sciences. Serie des Sciences Mathematiques Astronomiques et Physiques 18
(1970), 227-232.

[21] A. Salwicki. On the equivalence of FS-expressions and programs, Bulletin
de l’Academie Polonaise des Sciences. Serie des Sciences Mathematiques As-
tronomiques et Physiques 18 (1970), 275-278.

[22] D. S. Scott and C. Strachey. Toward a mathematical semantics for computer
languages. In: Proceedings of the Symposium on Computers and Automata, New
York, Microwave Research Institute Series 21(1971), 19-46.

[23] P. Suppes and N. Moler. Quantifier-free axioms for constructive plane geometry,
Computer Mathematics 20 (1968), 143-152.

[24] A. Tarski. What is elementary geometry? In: The Axiomatic Method (eds L.
Henkin, P. Suppes and A. Tarski), North-Holland, Amsterdam (1959), 16-29.

