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In today’s talk I would like to address a topic that lies close to the
heart of most logicians, namely the foundations of set theory. In a
sense, this topic stood at the origin of the technical development
of mathematical logic in the hands of Frege, Peano and its other
founding fathers. In fact, without it, mathematical logic may not
have been around as a developed discipline when it became neces-
sary — we love to believe — as an integral part for the foundations
of computer science.

Logic in computer science is a many-faceted ongoing enterprise, as
is apparent from the proceedings of the yearly conferences which
occur under this heading. The logics (plural) that are more or less
gainfully employed within this enterprise are very diverse: from
modal logics — where Professor Tang’s contributions are attached
— to infinitary logics — originally my own domain.

Among the many data structures with which present program-
ming languages operate, we also find the concept “set”. It is
generally relegated to a very minor role, quite contrary to that re-
ductionist philosophy of mathematics which would like to see all
of mathematics reduced to sets (in my opinion a most unattrac-
tive prospect, although doubtlessly do-able). T do not propose



here to transform that role into a central one, although logicians
have often been responsible for contributions to the design of pro-
gramming languages. Rather this talk concentrates on the reverse
question: What can set theory learn from the foundations of com-
puter science? In particular, what can we say about the existence
and nature of non-sets?

The “classes” of von Neumann-Bernays-Gddel set theory (v N-G—
B) were introduced as a refuge for those collections of sets which
could not properly be called sets because of their antinomial be-
haviour: the ordinal numbers, the collection of all sets, etc. In
his seminal paper [12] von Neumann laid the blame squarely on
their size and made any logically defined collection a proper class
(“ein II-Ding”) if it turned out to be “too big”. He was quite
aware of the provisional, and not too convincing, character of this
distinction, but he lacked any hint towards deeper insight into the
problematics of the antinomies. Quine’s “New Foundations” [10]
proposed a syntactic way of avoiding non-sets, but it lacked even
more the quality of mathematical intuitiveness, and moreover led
to rather unexpected consequences (e.g. Specker [11]). This is not
the place to review the manifold developments of this question,
suffice it to say that, in my opinion, it left us far from any uni-
versally accepted solution to the problem of sundering sets from
non-sets.

There is one aspect in von Neumann’s finite axiomatization of set
theory, which he himself discounted as a minor technicality, and
which was removed in the subsequent modifications by Bernays
[1] and Godel [6]: the basic entities are not “really” sets but are
intuitively thought of as “functions”, and so named before they
are formally separated into I-things and II-things (“I-Dinge” and
“II-Dinge”). Thus, von Neumann’s axiomatization is in a sense
also an axiomatization of the notion of function and application
of function to arguments.



I have repeatedly held (e.g. in [2], chapter 3) that the proper
axiomatization of the general notion of function and application
is Combinatory Logic. The purpose of this talk is to develop the
first few steps of the study of this programmatic point of view in
the context of set theory. Since combinatory logic is one of the
possible foundations of computer science (especially if enriched
with types it serves very well, e.g. as typed lambda calculus), this
point of view corresponds clearly to the intention formulated in
the introduction.

The models of combinatory logic are called combinatory algebras;
they consist of a nontrivial (at least two elements) set D and a
binary operation “.” called application. The axioms can either be
given by a scheme (“combinatory completeness”):

For every term t(z1, ..., x,) built up from variables among x, . .., x,
and using application, there exists an element T in D, for which
T-x;--x, equals t(z1,...,x,), {application parenthesizes to the
left}.

Or, equivalently, by singling out two elements S and K in D with
the two axioms

K-z-y=u=x,
S-z-y-z=x-2-(y-2).
If A is a non-empty set, we can construct a combinatory algebra

from it by using sets of lists (of lists, ...), defined recursively as
follows:

Go(4) = A4,
Gii1(A) = GiA)U{a—a:a€Gi(A),a CGi(A) finite},

where o — a denotes the list with head a and tail . Then, taking



D4 as the set of subsets of J; G;(A) we define the binary operation
of application on D4 by

M-N={a:3a CN. a > a€ M}.

With this operation, as is turns out, D, constitutes a combina-
tory algebra Dy. It is very rich because we have taken all subsets
of U; Gi(A) indiscriminately, (while we could have restricted our-
selves e.g. to the recursively enumerable sets). More on this later.

Already in my first paper on this topic [3], I observed that the
richness mentioned above allows the isomorphic embedding of any
algebraic structure (of limited cardinality) into D 4. We also men-
tioned the possibility of doing the same with relational structures,
without giving a statement or proof. Since this remark was never
taken up in subsequent developments (for an overview of this re-
search programme see [4]), we now state it as a theorem.

Representation theorem (for relational structures). Let
A = (A, R) be a relational structure, R being a binary relation
over the nonempty set A. Then there exist an injection f : A —
D 4 with the property that for any a,b € A we have {(a,b) € R iff
f(a)- f(b) = f(b).

The proof is straightforward: Let f, be defined recursively by
fo(a) = {a},

fot1(a) = fula) U{0} = 2 -z € fu(b), (a,b) € R}.

Then f(a) = U, fn(a). This f is injective, because f(a)NA = {a}
for all @ € A. The relation R is indeed represented by virtue of
the proposed correspondence. Namely, take any (a,b) € R. Then

z € f(a)- f(b) iff Ja C £(b).



a—x € f(a), iff In. z € f,(b), iff z € f(b).

Conversely, assume f(a) - f(b) = f(b). Since b € f(b), we have
be fla)- f(b)

and therefore
da C f(b). « = b € f(a),

which implies
In.{b} — b€ fu.(a) A{a,b) € R
by definition of f.

Let us now take a model of ZFC (Zermelo-Fraenkel set theory
including the axiom of choice), say M = (M, €) and take the
above representation, using {a,b) € R for b € a. Thus, b € a is
interpreted by the equation f(a) - f(b) = f(b) inside Dj;. The
following remarks serve to point out the strikingly transparent
correspondence between the structure of the membership relation
on a set in M (and its elements) and the set of objects in Dy,
onto which is mapped by f(a). Taking a closer look at f(a), we
observe

fla) = {a}
u{{b} - b:bea}
U{{b} = c({c} =) :cebea}
U{{t} = {c} = ({{d} = d)):decebed}
U...

Thus, parenthesizing arrows to the right and dropping the braces
around the singletons, f(a) consists of a and all arrow-chains
ap — ay — a3 — ... — a, — a, for the chains of element-
hood a,, € a,—1 € ... € ay € a; € a. Since M satisfies the axiom

of foundation, no “a;” occurs twice in the €-chain, and all chains
are finite.



Of course, considering sets as trees of elements-of-elements is far
from the original; this point of view has been taken and used
already by Fraenkel in the 1920s in connection with his treatment
of the axiom of choice (without foundation). What is new here
is the fact that the collection of sets has now been embedded in
combinatory algebra and what becomes interesting is to watch the
action of combinators on the embedded objects.

For example, the identity combinator I, having the property I
-r = x for all elements x in the combinatory algebra, and which
in D;; has the form

I={{z} > z:2€GA)},

can serve as an object corresponding to the “set of all sets”, since
obviously I - f(a) = f(a) for all sets a. Clearly, it is not the only
such object. But there is no such object which is (the f-image of)
a set. It simply does not have the right shape!

The classical proof of the consistency of set theory with classes
relative to ZF, [9] operates with collections of (model-) sets as
classes, defined by their properties. It makes use of the fact, used
also for finite axiomatizability of (v N-G—B), that these properties
compose from a short list of binary predicates on sets; these gave
rise to Godel’s constructors F; — Fg. It seems a straightforward
matter to identify the elements of the combinatory algebra Dy,
that correspond to these classes, resp. operations, and it is to be
hoped that further insight into the shapes of non-sets arise in this
manner.

By embedding any structure in a combinatory algebra, we auto-
matically provide it with a notion of programs executable in this
structure. This was of course first noticed with natural numbers
and partial recursive functions (in lambda calculus; for a historical
survey see Kleene [7]), but the fact is quite general and thus also
applies to (embedded) set theory. Already without any special



concern about computability, just by using the functional char-
acter of elements of Dy, (viewed as left-multipliers) we gain an
additional viewpoint. In particular, it would be interesting to de-
lineate the possibilities of the replacement axiom if this principle
is reinterpreted not by (functional) classes of pairs but by some
— probably restricted — set of elements f in Dj;. These f would
have to satisty

VadbVz. a-z=2 < b-(f-2)=f-=2.

Of course, not only the class-constructions (used for the axioms of
separation and replacement) are to be investigated as combinatory
objects, but also the proper constructions on sets, such as pairing,
sum- and powerset-constructions. Indeed, it is to be expected that
by putting them into this framework, an algebraic version of set
theory inside combinatory algebra will emerge.

The emerging “algebraic from set theory” could also profit from
some newer developments that in some sense start form a similar
idea: While we took a prefabricated framework, combinatory al-
gebras, for an abstract notion of computability on sets, Moss [§]
develops such a theory ab initio as a theory of power set recursive
functions.

I have well-founded hopes that at least a part of the research
programme sketched above will be realized in the near future:
luckily one of my PhD students, Mr. Darms, has taken an interest
in the subject and is expected to carry it to term.
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