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An Algorithmic Model of Strict Finitism'

Strict finitism does not yet exist as a clearly delineated mathematical theory, all we
have to go on are various formulations of its basic tenets,' which are summarized in
section 1 below. In a fashion similar to that of Finitism and Intuitionism it has its
roots in an attitude towards the problem of securing the foundations of mathematics.
One of the tasks of the logician is to capture such conceptually presented foundational
approaches into a formal logico-mathematical system — as nearly true to the original
conceptions as is possible.

The goal of the present paper is to present, motivate, and discuss a technical Ansatz
for a system of strict finitism. We do this with the purpose of exhibiting some of the
difficulties in sustaining the original basic attitudes against the criticism that arises
once these attitudes are made precise.?

We do not wish to discuss here in any detail the recent papers,® which arose from a
similar questioning of the role of the arbitrarily large finite in the foundations and in
proof theory. As far as we are able to determine, the present approach is the most
radically restrictive among these.

In any case, the outcome of our present work is that strict finitism can do no more than
produce a mathematical system which may (or may not) be interesting in itself. It
is not, in our opinion, a reasonably tenable position in foundation. See the arguments
in the last section.

1 The standpoint

In strict finitism we envision a radicalization of the constructionist viewpoint. This
radicalization is motivated by the observation that many of the “constructions” al-
lowed by the constructionists are constructions only in the sense of being potentially
executable - indeed, executable only in an idealized world of infinitely patient and

'The manuscript of this paper, written in 1971, was lost until recently. We were encouraged to
publish it now, because a number of papers with related positions and results have been put forward,
and our paper may contribute to this discussion.

! For example in Bernays [1, pp. 280-281], Wang [9, pp. 473-476].

*The author is indebted to Bernays, Kreisel, G.H. Mueller and others for discussion of the basic
issues involved.

3We mention in particular the work of Yessenin-Volpin [11], [12], Geiser[3], Goguen [4], Parikh
[7], and Williamsen [10]; see also footnotes 7 and 8.

4For example, it may be useful for providing a foundation for a Strict Finitist theory of
computation.
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gigantic machines. How convincing is such a world for a firm foundation of mathe-
matics? Would it not be more realistic to base this foundation on a realm of actually
feasible processes? Strict finitism, then, is conceived as treating of the ideas that
variously restricted finite beings develop about the concrete mathematical structure
which they consider. It thus takes the form of a metatheory, in a classical framework,
whose object-theory (or theories) are the sets of ideas of restricted beings referred to
above.

Let us therefore consider beings, mathematicians as it were, who try to gain knowledge
about a basic mathematical structure, say set theory. The way to gain such knowledge
is to perform thought experiments. And, indispensable with scientific experiments,
these should be reproducible, hence governed by fixed and communicable programs.
Strictly finitist mathematicians operate under restrictions which we could formulate
conceptually as follows.

(a) The sets that are considered, i.e. that enter the experiment, are in reality always
finite and so are their elements and elements of elements, etc.

(b) Each individual mathematician thinks only during a restricted period of time,
and has only restricted imagination.

Our goal now is to construct a series of increasingly intelligent and patient (models
of) mathematicians, to investigate what each one’s ideas would be about set theory,
and on what properties of sets these mathematicians are able to come to a consensus.
This consensus is what we call strict finitist truth. Our hope is that the model is
realistic enough so that this consensus has a large overlap with classical set theory.
For example, our model should explain why, and in what fashion, finite minds can
perceive infinite totalities.

2 A technical realization of the standpoint

Let F' be the set of hereditarily finite sets, l.e. let F' = (J;, R(¢) where R(0) = 0,
R(i + 1) = P(R(i)) = power set of R(z).

We envision experiments within the relational structure F — (F, €), conducted accord-
ing to programs that are written in a fixed programming language similar to ALGOL.
The exact details of the structure of this language are unimportant here; we shall
mostly present programs in the form of flow-diagrams (which are self-explanatory).

By a complezity measure on programs we understand a function x : IT — IV from the
set II of all programs to the set IV of natural numbers with the property that each
set C; = {m € I1 : p(r) < 1} is finite.
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A program 7(z), containing the variable z as indicated, is called a generaling pro-
gram (at z) if there exists a sequence o, @1, 4y, ... of sets such that ap = 0, F =
{ao,a1,4a,,...} and such that z = @iy1 is the output of the program for the input
T =a; ; and @ = ay is the output for input z = 0.

For each positive integer i and program = let ' denote the modified program which
arises when each loop in 7 is allowed to be run through at most i times. The program
7' has one additional exit which is taken if any one of the loops is about to be entered
an i + 1’st time.

The bounding of loops is one of the two main devices by which we implement the
inherent restriction of finite minds in our model. Let, for example, the formula (z) of
first-order predicate calculus express some properties of sets. The i-th mathematician
will accept p(z) as true for an assignment z := a if the thought-experiment which he
associates with ¢ is successful for input z := a. When will he accept (Vz)p(z)?

Assume for the moment that we already know how to associate to the formula ¢ and
any positive integer 7 such a thought experiment. That is, assume we are given a

program —'- with two exits, and assume that this program takes exit @ on
input z := a exactly if ¢[a] holds, (otherwise it terminates in exit ).

Consider now the program

sl

Since y(z) is a generator at z this program does not terminate exactly when all
sets are such that the ¢-th mathematician would accept @la] as true once he had
tested a. However, the i-th mathematician does not have this patience and is will-
ing to accept (Vz)p(z) already after a limited amount of experimentation. We
realize this restriction by letting him accept (Vz)p(z) iff the i-bounded program

¥
[start] T = ]! ¥(z) [I T, g

takes exit @.

A second device is needed if we wish to implement the restrictions that adhere to
strictly finitist statements of existence. Assume as above that we have associated T
to ¢(z). When will the i-th mathematician accept (3z)e¢(z)? Obviously only if he
can think of a program which constructs a set a satisfying . Now, the imagination
of the i-th mathematician is bounded: he can think up only programs of complex-
ity < 1. For each such construction program o(z) consider the composite program
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[start] Iu::f(:x:)"l T, eEB

This program terminates in @ exactly if the program o(z) indeed constructs an ele-
ment such that the i-th mathematician accepts that it satisfies ¢. There are only
finitely many programs o of complexity < ¢. By combining the above compos-
ite programs for each such o, it is, therefore, easy to construct a single program

i et ! R Bl
T3z4(z) <O such that the i-th mathematician accepts (3z)¢(z) as true if this pro-
gram terminates in .

We still owe the description of the passage between arbitrary first-order formulas
@(z,y,...)of set theory and programs m, ._e,f This procedure is defined recursively
as follows:

(1) To the formula z € y we associate the program

T e EX ] ma

consisting of one conditional instruction

1:ifx € y then go to 2 else go to 3.

(2) Suppose that there are i-bounded programs Eﬁ,ﬂ:g already asso-
ciated to the formulas ¢, and assume that these programs have the following
property: If ¢ has free variables 21, ..., 2, then the values of zy,...,2, at termi-
nation of n':, are the same as at the start. The programs for oAz, ~p, Ve, — T
are found as follows:

glinagy o o™ o
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(3) For the formulas (Vz)y and (3z)¢ we have already described the passage to the
corresponding programs.

The set of strict finitistically true sentences can now be defined as the set of all
sentences ¢ such that for all sufficiently large ¢ the i-th mathematician accepts .
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Clearly, this set does not depend on a particular complexity measure that we may
have chosen.

Let us now investigate whether some of the familiar statements of set theory are
strictly finitistically true. First we consider a typical existential axiom, the axiom of
pairsets:

Va¥bIeVy(y €z = (y = aVy = b))

Let  be the quantifier-free part of the above axiom and let ?r:;, be the corresponding

verification program of the i-th mathematician. Then
e s

is the program with which the i-th mathematician verifies the pair-set axiom whenever
the complexity measure of the program z := {a, b} is < i.

In the case of the pairset aziom, and similarly for the powerset and union axioms,
the strict finitistical-truth of the statement hinges essentially on the fact that corre-
sponding operations belong to the basic capabilities (i.e. basic instructions) of the
programming language. Since we have not yet made a list of these, it is time to do
507

Operative capabilities:

z={yz}, 2:=Py), 2:=Jy, 2:=0, z:=y

Conditional capabilities:

Tey, T=y

For the axiom of infinity:

2@ ez AVy(y € 2 - y U {y} € 2)),
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we need a program that would do something like z := w (which is, of course, not
included in the basic capabilities). Consider then the following program “(z := w)'":

Gtz = 0w {onw & [z = 2V W il

where On(y)' % is the obvious program whereby the z-th mathematician
checks whether y is an ordinal or not. Let us abbreviate the quantifier-free part
of the axiom by x(z) and let 7} be the verifying program for x(z) then

(=) E &

will clearly always terminate in exit @ thereby verifying the axiom in question for all
mathematicians z for whom 7 > complexity of (z := w).

The verification of the remaining axioms of Zermelo-Fraenkel proceeds along the same
lines. But before we investigate what this result means, let us discuss quite generally
the properties of the set T' of sentences which are strictly finitistically true.

A first, obvious observation is that this set T' does not contain ¢ and —¢ simultane-
ously for any sentence ¢. But T is neither consistent nor complete in the classical
sense. Namely, the formula

(z)(Dez A (Vy)(y€x — {y}ex)) A (Vy)-(B€z A (Vy) A (yez—{y}€x))

is in T', but is - classically - of the form ¢ A ~¢ , a contradiction. Incompleteness can
be illustrated by the fact that neither the statement that w is even nor its negation
isin T.°

In order to facilitate the following discussion, let us assume that our programming
language also admits variables that range over natural numbers, together with some
simple capabilities with respect to computations on natural numbers (which we shall
introduce as the need arises). Let there be given a Godel-numbering of sentences, ¢,
denoting the sentence with G6del number p. We have not found a truth-definition of
T'in T in the sense of Tarski. This would be a formula o(z) such that (o(p) = @,) € T
for all p. However, there is a quasi truth-definition, i.e. there exists a formula 7(z)
such that 7(p) € T iff p, € T'.

This can be seen as follows. For each natural number j let U(j) = {a: a =57...(0)
for some ¢ < j}, and assume that the operation i, := U(j) belongs to the basic
capabilities of the programming language.

5This was pointed out to the author by the audience when the present paper was read before the
colloquium at Heidelberg (1971). Other examples are easily found.



An Algorithmic Model of Strict Finitism 93

Furthermore, for each natural numbers p, k,m let S(p, k,m) = {(a1,...,an) € U(k)™ :
:g terminates in @ on input (a;,...,a,)}.

Assume again that the operation y := S(p, k,m) is’among the basic capabilities of
the programming language. Now, let 7.(z)" be the program

(z:=w) Y= Olpsz; I)H z:=U(z)

Let p be the Godel-number of a sentence ¢,. Then 7(p) € T

iff (34,)(Vé > 4,)(7-(p)’ terminates in exit @),
iff (3i,)(Vi > io)(w;p terminates in exit @),

iff €T.

Hence 7(z) is a quasi truth-definition as stated.

If we try - in analogy to the proof of Tarski’s theorem - to formulate the Liar’s paradox,
we again obtain an example of a sentence that is not in 7' and neither is its negation.
Namely, let d(n) be the Gdel-number of the result of substituting the constant symbol
for n into the formula @, with Gédel-number n (assuming this formula has exactly
the free variable z; for other formulas let d(n) = 0). Assume that z := d(y) belongs
to the basic operational capabilities of our programming language. Let ¢(z) be the
formula —7(d(z)) whose Gddel-number is m, say. Then neither p(m) nor —p(m) are
in T, as easily verified.

3 Conclusion

The fact that T contains both formulas (3z)¢(z) and —(Vz)-p(z) for some ¢ is
surprising. A priori one would expect the axioms and rules of intuitionistic logic
(at least) to hold for strict finitistical truth: in particular the intuitionistic theorem
(3z)p(z) — —(Vz)—p(z) should be acceptable. Thus, with modus ponens, 7' would
be contradictory - which it is not. Since modus ponens can hardly be disputed by a
strict finitist,® the question arises of how plausible the quoted intuitionistic theorem
is for him. For the strict finitist it seems reasonable to interpret the above theorem
thus: “If there is a construction of an element which all sufficiently large finite minds
can perform and such that almost all finite minds are convinced that it has property
», then it is absurd that almost all finite minds can at the same time be convinced
that all elements do not have this property ¢”. There is no obvious conceptual reason
for a strict finitist not to accept the above statement as true. Indeed, the above

8See, however, Goguen [4].
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process of interpreting a formula could serve as a way to motivate a formal system of
strict finitism (a process that is similar to that which is sometimes used to motivate
formal systems of intuitionism). But the point is that the concepts that enter this
“interpretation” are too vague. Our more precise interpretation, making sharper use
of the restrictions of finite minds expressed in Section 1, does thus in fact diverge from
it.

Perhaps it is good at this point to review some arguments against the plausibility of
strict finitism. We have encountered two examples that illustrated the incompleteness
of T. The fact that the statement of liar is neither (strictly finitistically) true nor
false may please those who seek the way out of the liars paradox by relegating that
statement to the realm of pronouncements which - while grammatical - are of indefinite
truth value. More puzzling is the fact that there should be no agreement among finite
minds on the parity of w. Mathematicians who, after all, have finite minds, have
no trouble in agreeing that w is even. How can one explain this? It is obvious
that mathematicians minds do not function as naively as our above model makes it
out. For example, there seems to exist a sort of interplay between findings based
on intuition (or “thought-experiments”) and logical deductions from them. We might
speculate about a process of educating the intuition which then becomes more acute on
questions about actual infinite.” It is not surprising that our naive model of the mind
gives only a poor approximation. It would be beautiful, of course, if an exact theory
of mathematicians minds were available, and perhaps worthwhile to work towards
one. But it is not realistic, in our opinion, to rely upon such an endeavor to “secure
the foundations of mathematics”. It would be more realistic to leave the theory - or
a more appropriate variant of it - where it arose: in computer science, as a theory of
feasible processes on a computer.®

7(Added 1979) This idea was made precise by my former colleague Jeroslow [6] and by Hajek (5]
as a so-called “experimental logic”.

8(Added 1979) For notions of “feasible numbers” and “feasible proofs” in computer science cf.
the papers by Simon [8] and Cook [2].
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