
Algebra Universalis, 13 (1981) 389-392 0002-5240/81/003389-04501.50+0.20/0 
�9 1981 Birkhiiuser Verlag, Basel 

Algebras  and combinators  

ERWIN ENGELER 

1. Graph algebras and a general representation theorem 

Let  A be a non-empty  set and let h be a partial function f rom A to A. The 
graph H of the function h is the set of ordered pairs H = { ( a  ~ b):b = F ( a ) ,  
a ~ A}. We have written (a ~ b) instead of the ordered pair  to make  notation 
mnemonic.  Viewed as an operat ion on sets, the application of H to a singular 
argument  {a} can be understood as 

H * { a }  = {b :::Ix e {a}. (x --~ b) s H}. 

The  notion of a graph algebra arises as a generalization of the above set-operat ion 
on graphs of functions as follows. 

For  A7  ~ r n e N ,  let G,(A)  be defined recursively by Go(A)=A,  G,+I(A)= 
G , ( A )  U{(o~ ---* b):o~ ~_ Gn(A),  a finite, b e  G,(A)},  and let G ( A )  = U,~NG,(A).  
For  M, N ~  G(A)  let 

M * N = { b : 3 a ~ N .  (a---~b)~M}. 

D E F I N I T I O N .  A graph algebra over A is a collection of subsets of G(A) 
which is closed under the binary operat ion *. 

R E P R E S E N T A T I O N  T H E O R E M .  Every algebra A = (A, �9 ) with one binary 
operation �9 is isomorphic to a graph algebra over A. 

Proof. Construct the set G(A)  as above, starting with the carrier  set A of the 
given algebraic structure A. Then define a map f of A into the powerse t  of G(A) 
recursively by 

f (a)  = U f,(a), 
i 
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where 

fo(a) ={a}, 

fi+x(a)=fi(a)O{a'-~ y : 3 b ~ A ,  b~a=_fi(b)^ y~f i (a  . b ) ^ a  finite}. 

Note that f(a) Cl A = {a}. Hence 

(1) If f (a)=f(b)  then a=b,  because then { a } = f ( a ) N A = f ( b ) N A = { b } .  
Thus, it remains to prove 

(2) f(a . b)=f(a)  . f(b). 

For  this we compute as follows: 

f (a) .  f(b) ={y :~c~ =_f(b). a ---> y e f(a)} 

= {y : 3 a  =_f(b) 3 minimal i. a --* y e f~§ 

= { y : 3 c ~ _ f ( b )  3i 3u, y e A .  a u = v ^ u e a = _ f ~ ( u ) ^ y e f i ( v ) } .  

Because u~o~c_f(b)f7f~(u) and u ~ A ,  we have u = b  and v = a . b ,  using 
[ (a)  Cl A = {a} again. Hence 

f(a) . f(b) ={y : 3 a  =_f(b) 3i. b ~ ot =_f~(b)A y af~(a . b)} 

={y :3i.  y ~f~(a.  b)}= U f~(a. b ) = f ( a ,  b). 
i 

Thus (2) holds, and f is an isomorphic embedding as claimed. �9 

Remark. The concept of graph algebra can easily be generalized to more than 
one operation, to partial operations and to relations; corresponding representa-  
tion theorems hold. 

2. Application: combinatory algebras 

A combinatory algebra is an algebraic structure A = ( A , . )  which is "com- 
binatorially complete" ,  i.e.: 

For  every expression ~ ( X  1 . . . . .  X.n) built up from constants (denoting elements 
of A)  and variables Xl . . . . .  x~ by means of parentheses and the operat ion 
symbol " . "  there exists an element  f in A such that for all al  . . . . .  an ~ A 

( ' ' "  ((f" a l )"  a2) . . . . .  ah) = ~ ( a l  . . . . .  a , ) .  
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The existence of non-trivial combinatory algebras follows either f rom a Church-  

Rosser  theorem as an algebra of equivalence-classes of terms, or  by constructions 
such as Scott 's D| or Plotkin-Scot t ' s  P,, (see [1]). Our  representa t ion  theorem 
suggests that combinatory algebras be constructed as graph algebras;  indeed, all 
combinatory algebras are isomorphic to graph algebras. 

Le t  A ~ O  and let G ( A )  be constructed as in Section one. Then  the graph 
algebra of all subsets of G ( A )  already forms a combinatory algebra.  Following 
Sch/Snfinkel-Curry, combinatorial  completeness follows f rom two of its instances: 
it suffices to isolate two different subsets K and S of G ( A )  such that  for  all M, N, 

L c_ G ( A )  we have 

K M N  = M and 

S M N L  = M L  (NIL). 

The  following definitions accomplish this, where we write B for G ( A ) .  

D E F I N I T I O N .  

K : -- { 0- --, ( O ~ s ) : 0- , pc_B ,  s e 0- } 

S := {{T ~ ({rl . . . . .  r,} --~ s)} --~ ({o- 1 --~ r 1 . . . . .  0-n ~ r,} --~ (0- ~ s)) : 

n>=O, rl . . . .  , r, ~B,  ~'U U 0-i = o'~_ B}. 

T H E O R E M .  The  graph algebra of  all subsets o f  B = G ( A )  is a combinatory 

algebra. 

Proof. Clearly K 7 ~ S, since ({a} --~ ({a} ~ a)) s K, ({a} --~ ({a} ~ a)) r S. The  
combinatorial  laws follow by straightforward verification: 

K M N = { s  : 3 a  c_N313 ~_M. /3 ~ (a ~ s) ~ K} 

= { s : 3 f 3 c _ M .  s ~ [ 3 } = M .  

M L ( N L ) = { s : 3 p c _ N L .  p----~ s ~ M L }  

={s : 3 n  >- 03r1 . . . . .  r~ ~ B  307 . . . . .  0-~ _ L .  

{r I ..... r.}.--> s E ~L A o- 1 --> r I ..... 0-n "-~ r. E N} 

={s :::In >= 0::Jr1 . . . . .  r, ~ B  ::1o" 1 . . . . .  0-. ~ L  3~" ~ L. 

~ ' ~  ({r~ . . . . .  r , } ~  s ) e M A o ' ~  ~ r~ . . . . .  0-,, ~ r,, ~ N } .  
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SMN-L ={s :3o-c_ L 3rl c _N  3 e  c_M. (e ~ (rl ~ (o'--~ s ) ) )~  S} 

={s :3 t r_~L ::In >= 1 3rx . . . . .  r , , a B  31", tr~ . . . . .  ~ c_B. 

r---> ({rl . . . . .  r . } - ->s )~MAcrx - '>  rl . . . . .  o ' . - - ->r .~N  AO'= ' r  U U o'i} 

={s:::In>=O3rl . . . . .  r ~ B  3T, 0"1 . . . .  ,0". __qL. 

~"--> ({rl . . . . .  r.}--> s )~  M A o'l--~ rl . . . . .  tr. ---> r. ~ N }  

= ML(NL). - 

Remark .  T h e  graph algebra of all subsets of G ( A )  is obviously not exten- 

sional; for example there are various K which satisfy K M N  = M for all M and N. 

But this algebra does have extensional combinatory algebras as well as all lambda 

calculus models (of restricted size) as subalgebras. The problem of associating a 

subset of G ( A )  to a closed )t-term can be solved in various effective ways. 

Structures similar to graph algebras have been considered by Plotkin, Scott in 

connection with models of lambda calculus and in recursion theory in connection 

with functionals, see [2]. 
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