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COMBIN ATORY DIFFERENTIAL FIELDS

E. ENGELER

Eidgenossische Technische Hochschule-Zentrum, 8092 Zi'rich, Switzerland

Abstract. Combinatory differential fields arise if differential fields are augmented by operations
which allow functions that are programmable in the usual recursive sense to be denoted. The
present paper definies this concept. It is shown that every differential field whose field of constants
is ordered can be extended to a combinatory field. We generalize the basic notions of the
Liouville-Ritt-Risch theory of closed-form solvability to combinatory field extensions and present
some explorative examples of problems and solutions.

1. The solvability problem for algebraic, functional and differential equations

Since it is the purpose of this paper to introduce and justify some additions tc
ihe algebraic toolkit for the treatment of equations, we start by giving a brief survey
of the algebraic viewpoint in problem solving. The problems considered here always
have the form “find a function (on R or C) which has this or that property”. The
algebraic point of view enters in two ways: first in the specification of what an
admissible problem-formulation is, and second in specifying the search-space for
the solutioii. Admissible problem-formulations take the form of equations (for the
unknown function), using an adequate supply of operations to write out these
equations, e.g. differential operators. The search space for the solution or solutions
is chosen as an algebraic structure, typically as an extension of the structure in
which the p:rameters that enter the (problem-)equation are elements.

The most straightforward examples are the classical algebraic functions. Let Q(x)
be the field of rational functions over Q (with the indeterminate “‘x” playing the
role of an independent variable), and consider a polyiiomial equation P(x, y)=0,
e.g. y°—x=0. This is the problem equation; the solution space is an extension of
Q(x) to the field Q(x,vx) in which there are the only solutions, vx and —vx,
algebraic functions as it were. Ordinary differential equations can also be considered
as algebraic equations, now of course with an additional algebraic operation’,
differentiation with respect to x, which makes the field Q(x) into a differential field:
for each element f of Q(x) there is an element f'€ Q(x) such that the well-known
differentiation rules of calculus apply: (f+g)' =f"+g',(fg)' =fg+fg. x'=1,9'=0
for g € Q. The differential equation y' = y, having no solution in Q(x), has of course
one in the extension Q(x,e"). Finally as an example of a functional equation, we
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use the composition operation of unary functions (fcg is the function with
(f° g)(x) =f(g(x)), to formulate the familiar functional equation y°(fg)=yef+
yog If f,geQ(x). we can find a solution in another extension of Q(x). e.g.
Q(x, log x), an extension, which by the way. can be encountered aiso as the search
space for a differential equation, y'=1/x.

The basic mathematical question in this area concerns the subtle and fruitful
relationsnips starting with Galois theory between (a) methods of ex:icnding algebraic
structures by adjoining solutions to particular problems, and (b) the types of
equations formulated in the original algebraic structure which can be solved in such
extensions. Clearly, the more liberal the extension methods are, the broader will be
the set of solvable equations. The graduations in this typology are what autracted
us to this study, especially because we had at our disposal some additional cperations
to augment the variety of possible equations. Before we enter into this, we briefly
review one such relationship which has received considerable interest in recent
years, not least, because of its usefulness for computer algebra, specially the closed-
form integrability of elementary functions and differential equations.

Let ™ be the field of meromorphic functions in a specific region in C. We
consider differential subfields & of ¥ and their extensions within 5. The field
of constants of & is always {f € &: " =0, the constant function zero}, it may increase
during an extension. An extension &' of & is called algebraic, if ' = F(f) # & and
f satisfies, in &', a polynomia! cquauoca p{(f) =0, pe F[f]. It is called logarithmic,
if there is an element g < & such that =g’/ g; and it is called exponential, if for
some g€ ¥ the element fe F(f) satisfies f'=g'f. A field which is obtained from %
by a finite succession of algebraic, logarithmic or exponential extensions is called
an elementary extension. The “*method’” mentioned above, is here therefore that of
elementary extensions. What are the corresponding problems? Classically it is the
integration problem of elementary functions. Let & be an elementary extension of
Q(x) and let f€ . Does there exist an elementary extension %’ of ¥ such that &’
contains an element g, the integral of f as it were, such that g satisfies the (differential)
equation g’ = f? The results on this question (starting with work by Liouville in the
1830s, with important contributions by Kolchin, Ostrowski, Ritt and Risch [4]), are
by now well known and in fact at least pastiaily integrated in computer algebra
packages such as MACSYMA, REDUCE, MAPLE and MATHEMATICA (see
e.g. [1]).

Of course, the problem of integration in finite terms does not stop here: others
than exponential and logarithmic extensions may be added to the “methods”, e.g.
the error function or the logarithmic integrai given by differential equations. But
we may also be more radically innovative in choosing “methods™: "vhy not, for
example, allow functions given expliciily as computer programs? To subsume this
topical idea vnder the present algebraic approach presupposes however, that pro-
grammed functions themselves become available algebraically, i.e. as solutions to

corresponding equaticns: the combinatory equations to be considered in the next
section.
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2. Basic definitions

Combinatory differential fields consist of elements, which the reader may
profitably first visualize as rational functions, i.e. as elements of Q(x); later, being
forced to abandon this intuitive model, a valuable intuition is supported by fields
of functions defined on subsets of R with values in R. But actually, the author
prefers to visualize these ciements as sets of properties, formulated in some formal
language, which such functions might have. But, of course, visualization is nothing
but a pons asinorum, and the mathematical content of what follows resides wholly
in the definitions and consistency results expressed below.

The axioms for combinatory differential fields are formulated within a first-order
predicate logic with equality. Individual constants 0, 1 and ¢ and variables x, v, z, . ..
(with indices and primes if necessary) are atomic terms. Using o, 7, ... as metavari-
ables for terms, the set of terms of the language are built up by means of the binary
operations +, -, o for which we use an infix notation, the unary operations ~, ',
", the ternary operation cond (in parenthesis-free notation) and, for each n, the
operations g "™, i=1,...,n, each of them 2n-ary. The operations p """, i=
1,...,n, are in fact variable-binding, and we need to introduce the notion of free
variables for terms; FV(7) denotes that set for 7:

FV(0)=FV(1)=FV(.)=0, FV(r)={r}, if 7is a variable;
FV{7,+ )= FV(1, 7.) = FV(7,°o 1) = FV(7)) U FV(7));
FV(-1)= FV(s )= FV(7)= FV(7);

FV(cond r, 7- 7y) = FV(7,)u FV(7-)u FV(13);

FV o (e o, 0 = U (FV(7) U FV(0)) = {x), ..., X, };
i=1

with the variable-condition x; ¢ FV(¢g,), i=1,...,n
There is one unary predicate const(x), one binary predicate 7, < 7, and equality.
The axioms are divided into groups according to the basic operations.

2.1. The ficld axioms

A combinatoiy differential field 7 is a field of characieristic 0 with neutral element
0 for addition and 1 for multiplication. The set of elements x with consi(x) true
are called the constant elements of # and form an ordered subfield of #, comprising
the elements 0 and 1:

const (0), const(1), const(o) A const(7) - const(o + 7) A const(oT),

const(7) - const(—71), const(7) n T # 0~ const(r"').
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2.2. Axioms of composition

These axioms express the facts which follow from interpreting the operation ° as
composition of unary functions with ¢ the identity function:

me(mnem)=(nemn)om,
TOL=LOT=T,
(r+7)oo=1°c0+710°0,
(nm)eo=(r°0)(1°0),
(-7)eo=—(700),

(7 Neo=(r00)",
const(og)>o°oT=o0.

71 < 1, =Vx(const(r,° x) A const(m.°X)> 1,0 x <750 X).

2.3. Axioms of branching

These axioms describe propertics ¢f the branching operation cond, whose intuitive
interpretation is this. If f, g, h are (partial) functions, then cond f g h is defined
where all three are defined and the value is g(x) where f(x)>0 and h(x) where

fix)=o0.
CO"SI(O')/\O'>O -> COHdO"TI =T,
const(c)no<0 - condor, 7,="1,,

(cond T, 15 3)ea=condr,°01,°0T3° 0.

2.4. Axioms of recursion

With the axioms below we formulate that the w3, i=1,..., n, intended to
define a solution to a simultaneous set of fixpoint equations; these axioms are
incomplete, the intuitive interpretation being that we obtain the least fixpoints
“above” the approximations o, ..., o,. For each formula ¢ of the language, the
foilowing is an axiom:

(Do), ..., o)A, X (D(X),. .., Xn)
_){L\(‘z"(xh'--,xn)a'”ofn(xl,'--sxn))))
- d’(ﬂ(:',""'x"(’ru 99 Tn)(r,,...,u,, 9y M:,’ ‘‘‘‘‘ i “(Tl 9y Tn) T »,”«,)’

with x,,..., x, not free in o,,..., 0,.
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2.5. Axioms of differentiation

These axioms provide the laws for formally taking derivatives of all terms that
can be formed in the language. If we restrict attention to the field operations we
obtain, of course, the notion of a differential field. The novel axioms arc ihic ones
that concern the “‘combinatory” operations °, cond and p.

(o+7)=0"+17",
(o) =0'r+or,

const(t)->1'=0,

(oe7)=7"(0"°7),
(cond o 7, 7,)' = cond o 7} 75.

For variable x, the axiom for differentiation is x' = x’ where (by abuse of notation),
the second “'” is a prime, i.e. pari of the term, and not the differentiation operator.
Finally, the derivative of a recursively defined function is given by

(i"l‘;,l‘m‘x"(fl 2 Tn):r, ,,,,, l)'")’

pu— "l

’
L N o ’

X ’ )
(Trseees Ty Tio-vos Tnloy,.ope) .ol

3. The combinatory interpretation of combinatory differential fields

The technical interpretation of combinatory differential fields presented here is
based on the sketch presented in [2] and elaborated abstractly in [3]. The basic
iaea is this. Given any algebraic (indeed, relational) structure, it is possible to embed
this structure inside a much richer structure, one which provides for elements that
correspond to exactly those operations on the original structure that are program-
mable (using the basic operations and relations of the original structure as building
blocks for recursive procedures). In this sense, the richer structure is the correct
algorithmic environment of the originally given structure. In fact, parenthetically,
such an embedding can be obtained uniformly for axiomatically described classes
of structures (e.g. for varieties, [3], but with little effort also for much larger types
of classes; a study of the axiomatic questions raised in this context is contained in
[5D).

The structures which we called “rich” above, are in fact combinatery models,
that is, algebraic structures

D=(D,")
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which contain elements K. S, L with the following properties:
KXY =X,
SXYZ =XY(XZ),
(LXY=XY and VZ(XZ=YZ))-LX =LY.

We are using capital X, Y, Z etc. for variables ranging over D and suppress the
(application-)symbol **-*°, associating multiple applications to the left. In D we
have particular elements with corresponding properties as follows:

BXYZ =X(YZ) {(composition);
YX = X(YX) (fixpoint);

X(Y'X,,....X)=Y'X,,....X,, i=1,...,n
(simultaneous fixpoints).

Let now ¥ be an arbitrary differential field of characterisic 0, whose set of
constants form an ordered field & in a suitable combinatory model. Let ‘@ be a new
individual constant (of the language of terms) and consider the set T of terms
formed from @, 0, 1, « and all fe by use of the field operations +, -, -, 7', ".
Let A be the set of atomic forinuias ¢ < 7, & = 7 and their negations, with o, 7 T,

and construct D, as in [2]. Thus, let
Go(A)=A,
G, (A)=G,(A)u{a—a: a finite, a < G,(A), ac G,(A)},

G(A) = U G.(A),

n=0
D, =set of all subsets of G(A), and D, =(D,, -), with
M- N={a:3ac N,a»ae M},

forall M, N G\A). Then K, S, L, B, Y, Y can all be explicitly given (as subsets
of G(A)) and satisfy the laws above. Indeed, Y yields the least fixpoint, that is
X-Z =2 implies YZ < Z; similarly for the Y.

To embed ¥ in D, we start by associating a subset of A to each element of
Denoting subsiitution of o for 7 in ¢ by ¢|7, this is:

fef={o(N)l7: 6(f)€ A and ¢(f) holds in F}" u{@ =11},

where M is the deductive closure of M < A under the axioms of differential fields
together with the atomic formulas holding in % Because we want to characterize
the image of & in D, by means appropriate to that structure, we first extend Z by
two elements, T and L, whose behaviour under the basic operations of the differential
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field is defined by extending such an op to ap:
op(x,y) if x,ye
6p(.\:,y)=1“i ifx=Lory=4,
{T otherwise.

The enlarged structure % is then mapped into D, by augmenting the above embed-
ding as follows:

-1 L0, T—=>G(A).

It is now easy to construct an element F e D, which characterizes the image of %
in D,. Consider

F={{@=f¢}>d:fcF ¢cA}
vi{ul->v:u,ve G(A), ug A}
Vb, - it b by, i i, by, Breg € A}
v{{0=1}->u; uc G(A)}.

Then F is a retraction, i.e. F(FX)=FX for all X, and XeD, is an image of an
element of ¥ iff FX = X.

Having defined 2 “‘combinatory” embedding of # in D, for the elements, we
now extend it to the operations. For images of elements of % this is quite straight-
forward:

frg={o(2)|: fI%, gl d(x+y)}

where the turnstile symbol “+—"" stands for provability (in the first order theory of
differential ficlds). The operations f- g, —f, (f)~' and (f)’ are defined similarly, e.g.
for the last cne:

FY={o(2)|7: fIL - b(x')}}.

If the operitions involve the elements 8, G(A), the definition is extended (for
example in the case of addition), to

f+g ifX=fY=g fige?
X+Y={¢ if X=0or Y=0,

L G(A) otherwise

This definition allows such nperations to be represented combinatorially, by left
muitiplication with an appropriate element of D,, whose construction is quite
straightforward. Thus for addition, there is Sum e D, with

Sum XY=Z iff X+Y=2Z

for all X, Y, Z in the image, i.e. with FX =X, FY =Y, FZ = Z We then have the
following lemma.
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Lemma 3.1. Every differential field can be combinatorially embedded in some combina-
tory model.

The proof rests on straightforward verifications which we do not give here.

Through this isomorphic embedding, differential fields are now provided with an
algebraic environment in which recursive programs are represented by combinators
(in the manner known since early denotational semantics), and we could rest the
case here. However, our goal is to provide a model for an extension of the differential
field ¥ to a combinatory differential field #*. Thus in addition to what we have
done so far, we need to locate elements and operators that correspond to the
additional entities and operations postulated by the axioms. And, if for nothing else
but “Purity of methods™”, we would wish to construct these combinatorially.

Let TC be as T above, but with the additional operations cond, ° and 3" ™.
Let A€ be the set of boolean combinations of the corresponding atomic formulas.
Let D¢ be constructed as before. Then the same embedding as before maps &
isomorphically into D 4c, and indeed the image of  is again characterized by a
retraction F€:

F={@=f¢}>d:fcF decA}
v{{r}> v u,0c G(AY), ug A}
Vl{dr, s B} B B i F Brrrs Dry e, B €A}
v{{0=1}>u: ue G(AY)}.

The elements X of the retract are ), G(A®) and consistent subsets X of A¢ which
contain exactly one element of the form @ =f, fe ¥ and are deductively closed
under ~, which here means provability from the axioms of combinatory differential
fields together with the formulas (of A“) defined and holding in %. We denote by
S¢ the element corresponding to f< F in this manner.

Let $* denote the combinatory differential field (augmented by T and L) which
we are about to construct. Its set of elements are characterized again by a retraction,
denoted F*, which is a liberalization of the retraction F¢ and defincd by

Fr={{@=r16¢}>d:7e T pc A}
Uf{u}»v:u,ve G(AY), ueg A}
Ui{ldr,. s O} > b brse s i EC D, by e, i € AT}
u{{0=1}>u: ue G(AY)}.

Now, if F*X = X then X is either 9, G(A“), denoted by L and T, respectively, or
a consistent, deductively closed subset of A cortaining at least one clement of the

form € =7, 7e T, Clearly, $* extends (the isomorphic image of) %, because
FX = X implies F*X = X.
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On %* we explain the basic relations and operations of combinatory differential
fields as follows for X, Y,...e *:

{$(2)]7: XI5, Y)ud(x+p)} if X, Y=L1,T,
X+Y={1 ifX=lLorY=1,
T otherwise.
Similarly for the other operations of differential fields. The composition operator
is also defined in this way:
[{¢(z)|’;i": X, Yia-o(xeop)} if X, Y#1,7,
XoY=¢1 if X=LorY=14,
1T otherwise.

while the cond operator has to take care of constants:

Y if@>0cX,

Z if@<sfelX,
ifX=LorY=LlLorZ=1,

T otherwise.

cond XYZ =

Each onc of these operators can be represented by a combinator which accomplishes
the same effect by left application to elements X, Y of F* (see [3] for analogous
details).

There remain the fixpoint operations " ™. In the simplest case, u(7(x)).., we
let the value be U5, - X,,, where X is the largest consistent subset of o for which

{@=“:}QXOQT(X0) and Xm+I=T(Xm)9 m=09 15"' .

To represent u;(7(x)), combinatorially, given a representation 7 for 7, that is
TZ = 7(Z"’, means to construct combinators C and Yy, with

T( YXQT) = YXOT;—) CTO' = Xg.

The details of this constiuction are not difficult to extend from the known construc-
tion of the least-fixpoint operator Y in D 4. Thus, the assumption on the representabil-
ity of 7 is always fulfilled and u} is taken care of. This approach extends easily.
mutatis mutandis, to all p3'*, and we may state the following.

Theorem 3.2. Every differential field of characteristic O and with ordered field of
constants can be extended to a combinatory differential field.

Remark. We cannot reasonably hope for uniqueness of this extension. This is a
consequence of the fact, that there cannot be a complete recursive axiomatization
of the quantifier-frze theory of combinatory fields. Such a theory would then be
decidable. The impossibility of this follows, if we can construct a quantifier-free
interpretation of the natural numbers (with addition and multiplication) within such
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a theory. But it is easy to write ¢ formula ¢(x) characterizing N in any sufficiently
strong theory of combinatory differential fields:

d(x):=const(xjAx=0A0=px(condx—yy+1y),.

The above expression uses a simultaneous recursion for a function which yields 0
if xe N and is undefined otherwise. If the theory is strong enough, it would prove
this fact (in all fields considered here).

4. Equations, exteusions and solutions

Let now #* be a combinatory differential field extending %, witah (partial)
operations +, -, —, ~', ', cond, °, and px e, predicates const, <, equality, and
individual constants 0, 1, and .. For concreteness, assume that F*=%*—{1 T}.
The elements of #* are sets of quantifier-free formulae of the above language,
augmented by the additional individual constant @. The field operations are defined

The discussion of the relation between solutions of equations and field extensions
takes place in the lattice of fields between % and F*. If such a field is closed under
"itis a differential field, if it is closed under o, cond and the u " it is a combinatory
field, and if it is closed under all of them, it is a combinatory differential field. Of
course, closing a field under such an operation may result in an enormous extension
which overrides much of the fine-structure of field extensions which are so useful
in solvability discussion. For example, the closure of Q(x,e*) under o admits e*
which is transcendental over the original field. To retain the fine-structure, we
therefore proceed in the classical manner, extending a field &, to &, by adjoining
solutions of some equation, formulated in terms of available operations. Mostly,
we restrict our attention to the sublattice of Jdifferential fields.

Let %, be given and let o(y)=7(y) be an equation between terms formed by
using parameters from %,, the combinatory differential field operations and the
variable y. An element X of %, is called a formal soluation of this equation if
X ={o(@)=7(@)} €. It is called a clo-ed-form solution, if there is a closed term p
(without @), such that the equation @ = p belongs to X. We then say that p denotes
X in #,. Finally, we define the notion of an approximate solution. Let A be the
set of formulas that describe upper and lower bounds of elements of F* as follows.
A coasists of all boolean combinations of formulas of the form

condp @0<condpk,1 and condpx,0<condp @ 1

where p, «;, and «, are closed terms without @. Then X € %, is an approximate
solution of o(y)=1(y) if

o(X)nA=7{X)n A.

Our interest may be to obtain approximate solutions X that are denoted by a suitable
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term, say & We shall then write o (£) = 7(£) and say that £ is a closed-forri approximate
solution.

Let us now turn to some simple illustrations.

Example 4.1. Algebraic extensions for algebraic equations: While y* — «. = 0 has the
obvious closed-form solutions ¢« and —¢, the equation y*—¢ =0 defines in general
an algebraic extension (by the square-root function). In the spirit of algebra, we
iminediately have of coursc the formal solution {@2>=.}"". This latter set (of
properties of the square-root function) reasonably only consists of the consequences
of its definition. Closed-form approximate solutions also exist.

Example 4.2. Raticonal recursion extension for algebraic differential equations and
closed-form solutions: One of the simplest algebraic differential equations is y’ = yf'.
It defines in general an exiension of the differential field to which f belongs, a
so-called exponential extension. Together with logarithmic extensions (using fy’ = f”)
and algebraic extensions, these constitute the elementary extensions which are
studied in the Liouville-Risch theory of closed-form integrability. There, the goal
of the algorithmic approach is to find effective procedures for deciding (under
additional assumptions, e.g. about constants in the field extensions) whether a
logarithmic or exponential extension is algebraic or transcendental, to lift integration
algorithms from a field to its extension and discuss closed-form solvability of
differential equations, in such extensions. While this set of goals clearly belongs to
the future aims of our approach, we use the example here only to illustrate another
type of extension, that by simultaneous rational recursion, and show that it provides
a solution.
Consider the set of simultaneous equations

Yi+1= Y + Uy, U1 = Ut/ ny, M =n+ 1

with starting values 1, ¢, 1 respectively for yo, 4y, no. Of course, this recursion is
but a “disguise” of the usual power-series expansion of the exponential function.
The point here is that it translates into a term, namely

£ =y,i:""(y+ u, uc/n, n+1)1,‘,..

In fact ¢ is a closed-form solution to y’ =y, that is, we can show &'=¢ from the
theory of combinatory differential fields. By the rules of differentiation, we have

= " (yru w/n a1,y o, (et w) - wn')/ 0%, 001000

If X,, and X', represent the mth approximation (of the least-fixpoint computation)
to the values of &, respectively €, then we see that X, = X1, by inspection of
the power-series expansioins which the terms ¢ and &’ describe. Therefore UX., =
U X!, and therefore, as claimed, ¢ =¢".
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Example 4.2 (continued) Closed-form: approximate solutions: It is obvious that ¢ is
also a closed-form approximate soluiion. A direct proof consists of translating the
usual calculus proof of the convergence of the power-series expansion of €. Let
v(m, «) denote the mth remainder term of that series. Because the series converges
everywhere, the following inequalities belong to the set denoted by ¢

condp @0<condpo,1 and condpr,0<condp @1

for all p. The terms o, 7, represent the upper and lower bounds of &, obtained
after taking m terms in the power series

yun

Op=pu)"(condm—n(y+u)y,

condm—nuj/nu/n+v{im, ),
condm—-nn+1m),,
T = like o,,, with v(m, ) replaced by —v(m, ¢).

Assuming that the theoiy of combinatory differential fields is strong enough to prove
the above inequalities, and that all other relevant inequalities that ai¢ true for ¢
and ¢’ follow equally, we indeed would conclude £=¢’. Thus this theory would
have to include a feir amount of elementary calculus (including theorems about
remainder terms in power series), which we are not about to list here explicitly.

Example 4.3. Combinatory equations and closed-form approximation: We again
take a simple example, namely the functional equation for the inverse function.
Thus, lei 7€ %, a differential field, and pose the problem 7° y =, a combinatory
equation of the simplest kind. It is in general necessary to extend & to find a soluticn
to this equation; e.g. while « € Q(x), its inverse, the square-root function is not in
Q(x). Here, we propose simultaneous combinatory recursion, namely the equations

TOY—1L

y{\"“'—-y,\_ ?
7T ° Vi

which represent Newton’s method, starting with an appropriate seed function o,
for the approximation of the inverse of 7. If g, is chosen well then 70 7= for

—. v TOoy—1t
T.:p,y y-——;_’_o;— S

again, of course, assuming a strong enough theory of combinatory differsntial fields,
including some elementary knowledge of numerical «nalysis.

Example 4.4. Other combinatory equations: Consider the rational recursion

Yerr=ay(1-y)
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which arises from a first-order difference equation employed in population dynamics.
The problem is to describe the dependence of fixpoints on the parameter value a.
It has of course the formal solution

o= py(ay(l=y)),,

an element in suitable combinatory extensions. The value of a wauld contain
descriptions of the successive bifurcations and chaotic behaviour 0" a; this set
would therefore contain formulas like

w<a<d, > @oa=foa
a<a<d, » @og=fBjocav@ca=f,0a
<a<d, » @oa=Bycav@oca=8,°av@oa

=Bpeav@eca=p,ca

.

for suitable ¢y, dy,...B, BosBis--- .
The same mathematical area is the source of more examples appropriate for our
machinery. Another biological example is

rél—yv, )

Yrer = W€
with solution
miy(e o (r(1=y)))g,

which is combinatory recursive over a field containing the exponential functicn e.
Arother interesiing example which is extensively treated in the literature is

_ {a}'k if yo <3,
P la-p) if ye>t

The combir.atory recursion that solves this is easy to write down and left as an
exercise to the reader.
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