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PROBABILITY THEORY

The Concept of Probability

The set of all possible outcomes is called the sample space and is usually denoted by 2. An element

w €  is called an elementary outcome.

Examples 0.1. Different experiments require different choices of {2, where 2 can be any set. Here we

list a few first examples.

e The experiment of tossing a coin can be modeled by Q := {Head, Tails}. One could also take

Q= {H, T}, so the choice of a sample space is all but unique.
e Drawing one of six balls can be modeled by Q :={1,2,...,6}.

e Assume we want to model the motion of a small particle in a fluid. Such a motion can be

interpreted as a continuous function f : R, — R3, hence we choose Q := C(R,,R3).
e To model the random number of emails received during a weekday we may choose (2 := Nj.

Let us now consider A = “the set of all observable events”. For now, we take A = 2 (which denotes
the powerset of Q). For an A € A we say that A occurs if the element w belongs to A, so if we have
we A

Example 0.2. Consider the experiment of throwing a die, so Q := {1,2,...,6} is a suitable choice.
Let us consider the event A := {the number is < 5} = {1,2,3,4} € A . In this case, if the die falls on

1,2,3 or 4, we say that the event A occurs.

After choosing (£2,.4), we will define a map P : A — [0, 1] which, if it fulfills certain properties, is be
called a probability measure and P(A) is called the probability with which the event A occurs. The
triplet (€, .A,P) is then called a probability space.
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1 Discrete Probability Spaces

1.1 Introduction

\n bthe evenk you
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In this section, we will put ourselves in the case where (Q is either finite or infinitely countable and

always consider A := 2. We will assume that to each w € Q we can assign a weight p(w) € [0, 1] such

that

> pw) =
weN
For an event A € A = 2% we then set

P(A) =) plw).

w€eA

Note that P: .4 — [0, 1] is now completely determined and we have the following properties:

o V2 e Q: P({w}) = plw).

e P(Q) =
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e For any sequence (Ag)reny C A of pairwise disjoint events we have

IP(|_|Ak> = 3 P(A).
k k
Indeed, observe that

P(LJ4) = D p@) = 3 pw) = P4

k wel ]y, Ax k weEAg k
holds.
This construction motivates the following definition.
Definition 1.1. A set function P : A — [0, 1] is called a probability measure if
e P(0)=0,P(Q) =1,

e for any sequence (Ag)ren C A of pairwise disjoint events we have

P(|_|Ak) =3 P4, (1.1)
k k

called sigma additivity of P.
In this case, the triplet (2,.4,P) is called a probability space.
Proposition 1.2. Let (2, A,P) be a probability space and A, B € A arbitrary. Then
e P(A°) =1—-P(A),
e P(AUB) =P(A)+P(B) -P(ANB),
e if AC B then P(A) < P(B), called monotonicity of P.
Proof.
e By sigma additivity we immediately get
P(A)+P(A°) =P(AUA®) =P(Q) =1
which proves P(A°) =1 — P(A).
e Observe that we have AU B = AU (B~ A). Hence again by it we get
P(AUB) =P(A) +P(B\ A).
On the other hand, we have B = (AN B) U (B \ A), so again by

P(B) = P(ANB) +P(B ~ A),
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so we arrive at

P(AUB) =P(A) + P(B\ A)
=P(A) +P(B) —-P(AN B).

e Assume A C B and thus AN B = A. Then again by (|1.1)) we have

P(B) = P((AN B)U (B ~ A))
— P(A) + P(B ~ A) > P(A),

——
>0

which concludes the proof. O
Remark 1.3. Note that the second identity of can be generalized to any subsets
Ay, A E.Aby

k k

P( U Ai) =SS Py NN Ay,

i=1 j=1 1<i1<...<i;<k
Examples 1.4.

e A coin is tossed. Let p € (0,1) be the probability that the coin falls on heads. Set Q = {0,1}
and p(1) = p, so p(0) = 1—p(1) = 1 —p. If P is the associated probability measure, then we have

D if A={1}
1-p if A={0}
1 ifA=0Q
0 if A=10.

P(A) =

for any A € A =29 The triplet (€2, 4, P) is then called a Bernoulli-model.

e Consider the same coin but now toss it n times. We denote by w the number of Heads obtained
by drawing this n tosses, so Q = {1,2,...,n}. Under an additional assumption, we can then
show that

) = (D)=

n!
w!l(n—w)!”

are the "right” weights for w € {2, where (Z) = The associated s probability measure

is given by
n W n—w
P(A)=> ()1 -p)
weA

for any A € 2. The triplet (Q, A, P) is then called Binomial-model with success probability p

and number of trials n.
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e Let w be the number of calls an SBB employee receives between 8:00 and 10:00, so 2 = Ny. For
w € Q consider

eI\
p(w) =

w!
for a fixed A > 0 called intensity/rate. Then

e~ A\
P(A) = A

|
w.
wEA

and (€, A,P) is called a Poisson-model with intensity A. In this case, for
A = {“At least one call received”}

we have

P(A)=1-P{0})=1—e".

1.2 Random Variables

Definition 1.5. Any map X : Q — R is called a random variable.

Remark 1.6. If Q is finite, then X (£2) is also finite and if € is infinitely countable then X (Q) is at

most also infinitely countable.
Examples 1.7.

e Consider the experiment of tossing a coin twice. Put w = (w1, ws) with w; = “the face of the i-th
toss”. Then

Q=1{1,2,...,6}°
Set X(w) := w; +ws and Y (w) 1= wyiwy for w € . Then X and Y are both random variables.

e Let w be the random number of emails received on a day. Set 2 = Ny and X (w) = 1y,—¢}. Then

X is a Bernoulli random variable.
Now let X be any random variable on a sample space 2 and for z € X () consider the event
{X =2} ={we | X(w) =z}
We will also write
P(X = ) = P({w € Q| X(w) = a})

The values P(X = ), as values in X (2), induce a new probability measure on 2% () We denote this
new probability measure by PX. Then for any B € 2X() we have

P¥(B) =) P(X =u).
rEB

The probability measure PX is called the distribution of X.
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Example 1.8. Let Q@ = Nj and p(w) = ew;,l for w € Q and put X (w) := w?. Then we have

P(X > 3) = P¥([3,00)) = P({w € Q| X(w) > 3}
=P{weQ|w>V3}) =P{weQ|w>2})
=1-P{0}) —P({1}) =1 —2¢"* =~ 0.26.

1.3 Expectations
We start with the case where X is a non-negative random variable.

Definition 1.9. Let X > 0 be a random variable defined on Q with given probability weights p(w)
for w € Q. Then the expectation of X is defined by

E[X] := Z X(w)p(w) € [0, o0].

Now for any function f: Q — R set fi := max(f,0) and f_ = max(—f,0). Then we have f = f, — f_
and |f| = fy + f_ with f, [ >0.

Definition 1.10. Let X be any random variable on Q. If min(E[X ], E[X_]) < oo then we define the
expectation of X by

E[X] =E[X4] - E[X_] € [-00, o0
say that X is integrable.

Proposition 1.11. If X is a non-negative or integrable random variable then we have

EX]= > z-P(X=u)

z€X ()

Proof. In both cases, we have

EX] =) Xwpw = Y Y Xwpw)

weN r€X(Q) wX(w)=z

= Y = ( > p(c«)))
zeX () w: X (w)=x

= Z z-Pwe | X(w) =z}
zeX ()

= > = PX=ux
zeX(Q)

which proves the claim. O
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Examples 1.12.

e For any A € 2 we have

e Let Q = Ny and X (w) = w with the weights p(w) = ¢ 2 for w e Q and a fixed A > 0. Then

w!

we have
A
E[X]—Zw-p(w):z:w O
weN w=1
= e =\
= =X 2o\

(w—=1)! Z w!

w=1 w=0
——

e Let Q={1,2,...,n} with weights p(w) = (")p“(1 — p)"~ and set X (w) := w. Then we have

w

w=0 n=1
= ; Doy 1P

Proposition 1.13. Let X,Y be two integrable random variables.
(i) If X <Y holds then we have E[X] < E[Y].
(ii) We have |E[X]| < E[|X]].

(i11) For any «, B € R we have ElaX + Y] = aE[X] + SE[Y].

Example 1.14. Consider the experiment of tossing a coin n times with p = “probability of obtaining
heads”. We are interested in the expectation of the number of times the coin falls on heads. The

outcome of each experiment can be written as

w= (w1,...,wn)

10
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where

1 if we obtain heads in toss ¢
Ww; =
0 if we obtain heads in tails 7.

with © = {0,1}". Now set

X(w) = Z w;.
i=1

Then X(Q) = {1,2,...,n} and X represents the number of times we obtained heads. Furthermore,
set

Xi(w) = w;
for each ¢ € {1,2,...,n} which represents the outcome of the i-th toss. Then we have

and )i | X; = X. Hence by using linearity of the expectation we get
E[X] = E[Z XZ} =Y E[X,] = np.
=1 =1
Lemma 1.15. Let X be a N-valued random variable. Then we have
E[X] =) P(X >n).
n=0
Proof. Observe that we have

{(X>n}= || (X=k

k=n-+1

for all n € N. Thus using sigma additivity of P we get

P(X>n)= Y PX=k=)Y LpanPX=k).
k=n+1 k=0
Now by using Fubini’s theorem we have
Z P(X >n) = Z Z Lin<k-13P(X = k)
n=0 n=0 k=0
=Y P(X =k)Y Tinck 1
k=0 n=0
=k
oo
=> k-P(X = k) =E[X]
k=0
which concludes the proof. O

11
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Example 1.16. Let X be a geometric random variable with success probability p € (0,1), that is
P(X = k) =p(1 - p)*

for k € Ny. Intuitively, X represents the “random waiting time” before a success which may happen

with probability p. Using we get
oo oo

EX]=Y P(X>n)=> > pl-pF
n=0

n=0 k=n-+1
=Y pl—p"> (1 -pt
n=0 k=0
N———
1
> 1— 1
—a-pY o=l

n=0

Note that for a coin with success probability p = § we get E[X] = 1.

1.4 Laplace Models

A Laplace model assumes that all elementary events w € ) have the same probability to occur. This

model only “makes sense” if ) is finite. In this case, we have

1
p(w) = @
for all w € 2 and
A
)= 14

for all events A € A. P is also called the (discrete) uniform probability measure on (£2,.A).

Examples 1.17.

(1) Throw a fair die. All faces have probability p = % to occur. Let

A := {the received number is odd} = {1, 3,5}.

Then we have P(A) = % =1

(2) Consider an urn with N balls numbered from 1 to N and K of them are red, N — K are white.
EXPERIMENT. We draw n < N balls from the urn with replacement.

Let k € {1,...,n} and consider the event

Ry, := {exactly k red balls were drawn}.

12
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QUESTION. What is P(Ry) under the assumption of a Laplace model?

— Here we have
Q={w=(w1,...,wn) |1 <w; <N} ={1,...,N}"

and thus |Q| = N". Hence under a Laplace model we have

_ |Re| _ | R
9 Nm

P(Ry)
Now WLOG we may assume that all red balls are numbered from 1 to K. Then we have

{1,...,K} ifiE{i1,...,ik}

we R, «<— J1 <4 <...<i<nsuch that w; €
{K+1,...,N} else,

which shows that

il = () v = g

and thus
(KEOV = K)"F ()R — Ry

P(Ry) = N - NENn—Fk

() () (-4 - (o

for p := % Hence we obtain a Binomial model with success probability p and number of trials

n.

1.5 Conditional Probabilities

Let Q be a finite or infinitely countable sample space and A = 2. Consider an event B € A such that

P(B) > 0. We are now interested in the case where B occured.
QUESTION. What is the probability of A € A given that B already occured?

Definition 1.18. The conditional probability of A given B is defined by

P(ANB)
P(A|B) i= ——
INTUITION. Consider P to be a finite distribution on a finite 2. We know that then
|A|
P(A) = —
1€2]

holds for all events A. Now if it is known that B occurred, it is as if the whole €2 is replaces by B.
Thus we arrive at

_|AnB| [AnB|/|Q P(ANDB)

~lenBl  IBl/Io]  P(B)

P(A ] B)

13
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Remark 1.19. If € is finite and P is the uniform distribution on (£2,2%) then the probability measure
2% 5 [0,1], A~ P(A| B)

is again uniform on (B, 27). In fact, for all w € B we have

CP(w}nB)  Pw) 1)l 1
P B="5G ~®® B/ B

Examples 1.20.

(1) Consider a fair die, so @ = {1,...,6} and P({w}) = §. Let A:={1,2,...,5} and B := {2,4,6}.
Then

_P(ANB) _|AnB| 2
PAIR =" = B s

(2) Let X be a geometric random variable with success probability p € (0,1). For r € Ny consider

the event
W, ={X>r}={we|Xw)>r}

For any s > r let us compute

POV W) = =5y = B,y

where

B(W,) = B(X 2 7) = Y p(1 - p)*
k=r

oo

=p(l-p) ) (1-p)f=@1-p"
k=0
Hence we get
_ (1 7p)s _ s—r

Observe that this conditional probability depends only on the elapsed time s — r. This property
is called the memoryless property.

Theorem 1.21 (Law of total probability). Let (B;)icr be a partition of Q, that is Q =| |..; B;. Then

for any A € A we have

icl

P(A)= > P(A]|B)P(B).

it P(B;)>0

14
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Proof. Since (B;); is a partition of €2, we have

A=||AnB)

icl

and since all AN B; are pairwise disjoint, using sigma additivity we get

<P(Bi)=0
——
P(A)=> P(ANB)= Y PANB)+ > PANBE)

icl i:P(B;)>0 i: P(B;)=0

=0
= Y PA|B)PB),
i:P(B;)>0
which concludes the proof. O

Examples 1.22.

(1) Assume that the participation rate in the vote for a new mayor depends conditionally on the age

of the voters as follows:

if age € [18, 30],
if age € (30, 50],

WIN D=

if age € (50, 00).
Furthermore, we know that the proportion of the voters

e whose age € [18,30] is 20%,
e whose age € (30,50] is 35%,
e whose age € (50, 00) is 45%.

QUESTION. What is the global participation rate?

— We have Q = “Population of voters” = {w1,...,wn} and the experiment is selecting an
individual of Q at random (meaning that [P is the discrete uniform probability measure). Consider

the events

A; := {the person selected has age € [18,30]},
As := {the person selected has age € (30, 50]},
Az := {the person selected has age € (50,00)},
V := {the selected person participates in the vote}.

15
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Then we have

P(A;) =0.2, P(V|A;) =0.25,

P(As) = 0.35, P(V | As) = 0.5,

2
P(As) =045, P(V|A3) =3

and we want to compute P(V'). Now by applying the [Law of total probability 1.21| we get

3
P(V)=> P(V | A)P(A;) = 0.525.

i=1
We have two urns:

e In urn 1 there are 2 white balls and 1 black ball.

e In urn 2 there are 3 white balls and 3 black balls.
EXPERIMENT. First, we select one urn at random where urn 1 is selected with probability p.
Secondly, we select one ball from the selected urn uniformly at random.
QUESTION. What is the probability of selecting a black ball?

— Put

B := {the selected ball is black}, A; := {urn i is selected}

for ¢ € {1,2}. Using the [Law of total probability 1.21| we have that

P(B) =P(B | A1)P(A1) + P(B | A2)P(A2)

In the following, we are going to also provide a more detailed solution to the problem. An
elementary outcome of this experiment is given by a pair (urn, ball) with urn € {U,Us} and
ball € {W;, Wa, By, W{, W3, W4, By, B, B4} such that

Q = {(Ul, Wl), (UQ, WQ), (U'l7 Bl), (UQ, Wll), e (UQ, Bé)} = {wl, e 7(,dg}.

Furthermore, for the weights p(w) := P({w}) we have

!

P(A;) = p(w1) + p(wa) + p(ws) = 3p(w1) =p

16
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which now implies

p
p(w1) = p(wa) = p(ws) = 3
Similarly, we also get
1—p
plws) = ... =plwy) = —=

and thus we can now compute

P(B) = p(ws) + p(wr) + p(ws) + p(wy) =

(SIS

1
2
Theorem 1.23. For any events Ay, ..., A, € A such that P(A1N...NA,;) > 0 we have

P(A1N...NA,) =P(A)P(Ay | A))P(A3 | A1 NAg) - P(A, | AN N Au_y).
Proof. First, note that since Ay N...NA; C 7, A; holds, we have

P(AiN...NA4;) >P(A4Nn...NA4,) >0
by assumption for every j € {1,...,n}. Furthermore, by definition we have
P(A; N Ag) =P(A1)P(As | A1)

and thus by induction we get

P(A1 ... A) = P(A1 0.1 An 1)P(An | AL Ao 0 Ans)
= P(Al)IP(AQ | Al)]P)(Ag ‘ AN Ag) cee P(An | Ain...N Anfl)

which concludes the proof. O

Example 1.24 (Birthday paradox). Consider a group of n people.
QUESTION. What is the provability that 2 people share their birthday?

— For simplicity, we assume that
e every year has 365 days,
e all days have the same probability to be a birthday.

Put
E := {at least 2 people have the same birthday}.
Note that if n > 365 then P(F) = 1. Hence we assume that n < 365 holds. We have

E° = {all n people have different birthdays}

17
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and
Q={w=(w1,...,wn) |1 <w; <365} ={1,2,...,365}",
S0
EC={weQ|Vi#j:w #wj} Q. (1)
Now consider the following events:
e Ay := {person 1 has birthday on some date € {1,...,365}},

e A, := {person 2 has birthday that is different from person 1},

e A, := {person 3 has birthday that is different from person 1 and 2},

e A, := {person n has birthday that is different from person 1,2,...,n —1}.

Note that then E¢ = A; N...N A, and thus by we get

P(E°) = P(A)P(As | A) - P(Ap | Ay 0.0 Ap_y)
364 363 366 —n
365 365 365

which implies

n—1 .

365 — 1

P(E)=1- .
(B) };[1 365

Now we are going to also present a solution with Q and the assumption of a Laplace model. Under

this assumption, by using (1) we get

|E¢| [T7, (365 — i)
P(E)=1-P(E‘)=1-— =1—===07
n—1 . n—1 .
:171_[1.:1(365 z):17H365—z.
36571 365

=1

18
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1.6 Bayes Rule

Let A and B be two events with P(A),P(B) > 0. Then we have
P(A | B)P(B)
P(A)

which is called Bayes rule and directly follows from the definition of conditional probability (Definition]
1.18). Now we can combine Bayes rule with the [Law of total probability 1.21] as follows: If we have

0 < P(B) < 1 then

P(B | A) =

P(A) = P(A | B)P(B) + P(A | B)P(B)

and thus
P(A | B)P(B)
(A| B)P(B) +P(A| B )P(B)

P(B|A4) = 5

19
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Example 1.25 (false positive / false negative). In a certain population, the probability that and

individual is affected by an illness K is p = ﬁ. It is possible to get tested but the test is not perfect.

This means that if we set
B := {person has illness K}, T := {test is positive},

then we have P(T' | B) = 0.96 and P(7° | B) = 0.94, so with 4% we get a false negative and with 6%
a false positive.

QUESTION. What is the probability that a person is ill, given that he tested positive?

— Using Bayes rule, we get

P(T | B)P(B)
(T'| B)JP(B) + P(T'| B°)P(B°)

P(B|T)= P ~ 0.14.

Theorem 1.26. Let (B;)icr be a countable partition of Q2 such that P(B;) > 0 for alli € I. Then for
every event A € A with P(A) > 0 we have

P(A | Bi)P(B;)
2jer P(A | Bj)P(B))

P(B; | A) =

1.7 Independence

Definition 1.27. A collection of events (A;);er is said to be independent if

V.J C I with |J| < oo we have IP( N Aj) = [T B4y
JjeJ jeJ

In this case, we also say that the events (A;);er are mutually independent.
Remarks 1.28.

e Note that in the indexing set I can be arbitrary.

e For any event A € A the collections {4, Q} and {4, } are independent.

e For any events A, B € A with P(A),P(B) > 0 we have that A and B are independent if and only
if P(A| B) =P(A) or P(B | A) = P(B) holds.

e In[Definition 1.27|the requirement “V.J C I with |.J| < 00” cannot be relaxed in general as shown
in the following example.

Example 1.29. Consider the experiment of tossing a fair coin twice and the events

A := {the first toss results in heads},
B := {the second toss results in heads},

C' := {the tosses result in different outcomes}.
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Then Q = {0,1}? and under the assumption of a Laplace model, we have P({w}) = 1 for all w € €.

Furthermore, we have

P(A) = 5. B(B) = 3 P(O) = 5
and
P(AN B) = i _ P(A)P(B),
PANC) = i — P(A)P(C),
P(BNB) = i — P(B)P(B),

which means that the events A, B, C are pairwise independent. But we have
1
P(ANBNC)=P0) =0+# 3= P(A)P(B)P(C)
and thus the evens A, B, C are not mutually independent.

Lemma 1.30. Let (A;);er be an independent collection of events. If we set B; := A; or B; := A§ for

all i € I then the new collection (B;)icr is again independent.

Definition 1.31. A collection of random variables (X;);c; defined on the same probability space 2

is said to be independent if the events {X; = x;};cs are independent for every choice of z; € X;(Q).

NOTATION. In probability theory, when we have two functions X : 2 — R and g : R — R we often
write g(X) := g o X to denote their composition.

Proposition 1.32. Let X4,...,X, be independent random variables. Then for any functions g; :
Xi(Q) = R for 1 <i<n such that E[|g;(X;)|] < oo we have

Hgi(Xi)‘| = HE[Qi(Xi)]'

To prove this result, we need the following lemma.

E

Lemma 1.33. Let X : Q — R% be a random vector of dimension d, which means that all its components
X, : Q@ = R are random variables. If g : X (Q) — R is any function with g > 0 or E[|g(X)|] < oo then
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Proof. In both cases, we have

Elg(X)] = > g9(X(w))p(w)

weR

= ) D gX(W)pw)

z€X () w:X(w)=x

- Y g0 Y pw)

z€X(Q) w:X (w)=x
= Y 9@PX =a), (1)
zeX ()
where p(w) := P({w}) and at (1) we used o-additivity of P. O

Proof of [Proposition 1.33, Put X := (X1,...,X,) and consider the function

h:X(Q) =R, (x1,...,20) = [ lo(@i)l-
i=1
Then h > 0 and thus by we can write
E [H |gi<xi>|] —ER(X) = Y h@)P(X =),
i=1

Now note that by independence of X1,...,X,, we have

P(X =2)=P(X; = Xn = 2n)

L1y---y
n

i=1

Hence we get

)= S (T[lstwl) - (T]P06 =)

(T1,..,xn)EX(Q) =1 i=1
=33 Y o X = )
Tp Tn—1 xr1 1=1
= H Z lgi () |P(X; = ;)
=1 xz;
= [ Ellg:(Xi)[] < o0
i=1

| n

because we have E[|g;(X;)|] < oo for all 1 < i < n by assumption. Hence E[[]; ¢:(X;)] is finite as

well and by replacing h by h(z) =[]}, gi(z;) we can conclude. O
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Example 1.34 (false positive / false negative). Recall the setting of [Example 1.25| Let

Ty := {1° test is positive}, T := {2"? test is positive}

and assume that
e P(I'NTy | B)=P(Ty | B)P(T> | B),
e P(Th'NTy | B°) =P(Ty | B)P(T, | B,
e P(Ty | B)P(T> | B) = 0.96,
e P(Ty | BS)P(T» | B€) = 0.06.

Then we have
P(TyNTy | B)P(B)

=0.72.
P(T, N Ty | B)P(B) + P(Ty N T, | B°)P(B°)

P(B|TiNTy) =
by Bayes rule.
Example 1.35. Consider n independent tosses of a p-coin, so = {0,1}". For 1 < i < n define
Xi:Q—={0,1},w— w;,

so X; represents the (random) outcome of the i-th toss. Let P be the probability measure on A := 2
such that

(2) X1,...,X, are independent.

QUESTION. What is P?
— Note that (1) is equivalent to

Ve e {0,1}: P(X;=z)=p"(1-p) "

Now let w = (w1,...,w,) € Q. Then

P({W}) :P(Xl :wla"'aXn :OJn) = H]P(Xz :Wi)7 (3)
i=1
= prb(]_ — p)l_wi frng pZ?:l wb(l — p)n_zyzl Wi
i=1

for k:=>"" , w; = [{i | w; = 1}| where at (3) we used independence. Hence P is uniquely given by

P({w}) = p*(1 —p)* "
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Now put

n
Sy = Z X; = “the number of Heads obtained in n-tosses”
=1

so Sp(2) ={0,1,...,n}. For k € S5,(2) we have
P(S, = k) = P(in - k)
i=1

= oo PX;, =1, X, =1,X; =0,Vi ¢ {ir,

1<ir<...<ip<n

(Z)p’“(l —p)" "

Furthermore, we have

and

E[S?] = zn: E°P(S, = k)
k=0

- ék? <Z)pk(1 —p)h =

i

i)

by Note that this will result in an involved computation. A simpler way to compute

E[S2] is the following :

n

s =2l(5x) ] =250+ 3w

i=1 1<i#j<n

:]E[Sn]+E[ 3 Xin}
1<iZj<n

e+ Y EXX]]

e ——
1<i#j<n —E[X,]E[X,]=p

=nmp+ Y P

1<i#j<n
=np + (n* —n)p® = np +n’p® —np?
=np(1 - p) + E[S,]”
and thus

E[S2] — E[S,]?> = np(1 — p)

which is the variance of S,,.
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1.8 Conditional Expectation

Let Q be countable, A = 2% and P the probability measure associated with given weights {p(w) | w €
Q}.

Definition 1.36. Let B € A with P(B) > 0. For a random variable X with E[|X|] < co we define
the conditional expectation of X given B by

E[X | B] :=

Remarks 1.37.
e We have E[X | Q] = E[X].
e We have

Taca X@LpWne) _ 5~ ) r)Ln(e)

E[X | B] = PG5 pe s

il
weN P(B)
e The map A — [0,1], A — P(A | B) is o-additive In fact, if (4;);eny C A is a collection of pairwise

disjoint sets, then

P(Lal 5) = "

_ P(U(AN B))
P(B)

Y, P(4; N B)

)

=> P(A; | B).
i
Using this, we get

EX|Bl= ) PX=z|B)
zE€X ()

Definition 1.38. Let B = (B;); be a partition of {2 with P(B;) > 0 and let X be a random variable
on  with E[|X|] < co. Then we define

EX |B]: Q- R, w— Y E[X|Bilp,w),

called the conditional expectation map of X given B.

CONVENTION. Note that in [Definition 1.36| we assumed P(B) > 0. For the following definition, we use
the convention E[X | B] =0 if P(B) = 0.
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Definition 1.39. Let X and Y be two random variables on € such that E[|X|] < co and let {y;}; =
Y (©2). Then the conditional expectation of X given Y is defined to be the random variable

EX Y] :=EX [{Y =y:}i] = Z]E[X Y = yilly—y,y-

Proposition 1.40. Let X, X’ and Y be random variables on Q such that E[| X|],E[|X’|] < oo.

(i) The conditional expectation map is linear, so for all & € R we have

ElaX + X' | Y] = oE[X | Y] + E[X' | Y].

(i1) Let g : X(©2) — R be a map with E[|g(X)|] < co. Then we have

E[g(X) | X] = g(X).

(iii) If X and Y are independent then E[X | Y] = E[X].
(iv) We always have E[E[X | Y]] = E[X], called the tower rule.
Proof.
(i) Follows from linearity of the expectation.

(ii) Set X(£2) = (x;);. Then by definition we have
Elg(X) | X] =Y E[g(X) | X = @]l {x=0,)-

Now, for P(X = ;) > 0, compute

Elg(X)1 x—s.)]
P(X = .L“l)
_ Elg(zi)l{x=z,}]

Elg(X) | X = @] =

Hence we get

E[g(X) | X] = Zg(%’)]l{X:zi} = g(X).
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(iii) Write Y(92) = {y;}; and observe that

E[X |Y]=) EX|Y =ullyy—y,

=3 ) aPX =z |Y =y)ly_y,

i TEX(Q)

=Y D PX =)Ly, (1)

i zeX(Q)

= E[X],
where at (1) we used independence of X,Y.

(iv) By definition, we have
EX[Y]= ZE[X Y = yill{y—yy
and thus
BIELX | Y] = B[S 1Y =il
Now using the triangular inequality, we get

EELY | YI) B[S BIX | Y = gl roy)

= Z IE[X |Y = y][E[Ly=y,] (2)
= ZlEX Y =yl|P(Y =) (2)
_Z‘ Z 2P(X =z |Y =y)|PY =y;) (2)

i zeX(Q)
<Y D P =Y =y)PY =y)

i zeX(Q)
= Y 1) PX =Y =y)

z€X (Q) i

> [alP(X =) =E[|X]] < o0

z€X(Q)
where at (2) we used linearity. A similar computation now shows that
EE[X [ Y]] = E[X]

holds. O
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Proposition 1.41 (Jensen’s inequality). Let X be a random variable with E[X?] < co. Then we have

E[lX]] < VE[X?]
and thus E[| X|] < co.

Proof. Observe that we have

E[lX]]

I
]
=
pac}
>
I
&

I
]
£l
5
>
I
J
5
>
I
&

IA
]

gk\'}
=

>
\%
]
pac}

>
\l/
=

= VE[X?] < o0,
where at (1) we used the Cauchy-Schwarz inequality. O

Now consider the function

QUESTION. What is the value of arg min,cp ¥(c)?
Observe that we have
Y(c) = E[X? - 2Xc+ c?] = E[X?] — 2cE[X] + 2
and thus
¥ (c) = —2E[X] + 2¢ = 2(c — E[X]) = 0. <= ¢ =E[X]
Hence ¢* := E[X] is the unique stationary point of ¢, which is a strictly convex function, so

argcgergin E[(X — ¢)?] = E[X].

Theorem 1.42. Let X be a random variable on Q such that E[X?] < co. If B = (B;); ias a partition
of Q such that P(B;) > 0 then

E[(X — E[X | B])?] = Zargﬂf?;n)@]g{(x - Zj:cﬂlaiﬂ-
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Corollary 1.43. Let X and Y be two random variables on Q such that E[|X|] < co. Then

E[X |Y]= argmin E[(X — g(Y))?].
g:Y (Q)—R
Efg(Y)?*]<oo

We omit the proof of ['heorem 1.42
Proof of [Corollary 1./3 By definition we have

EX | Y] =E[X | B]
for B := (B;); with B; = {Y = y;} if we write Y (Q) = {y;};. By [Theorem 1.42| we thus know that

)= o[- Faton)]

Now for any given (¢;); there exists a function
g:Y(Q) =R

such that g(Y) = >, c;ly—,,;. Conversely, let g : Y (©2) — R be any function and define ¢; := g(y;).
Then again g(Y') = >, ¢il{y—y,} holds. Now observe that then

XEWQEwH=2ﬁ@fMY=y0=MMWﬂ

which concludes the proof. O
Examples 1.44.

(1) Let X,Y be two random variables defined on §2 with

X(Q) = Y(Q) = {0,1},

p € (0,1) and
MX:Y:@:%
P(X =0,Y =1)= -2
MX:1J@A»=3%Q
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Then

EX|Y]= ) EX|Y=yly—y
yeY (Q)
—E[X | Y = 0[l{y—oy +E[X |V = 1]l y_y
—P(X =1]Y =0)lpy—gy +P(X = 1|Y = 1)ly_yy
=1 =p)liy—oy +pliy—1}.

Similarly, we get

ElY | X]=(1—-p)lx=o+plx=1.

Consider random variables X, Y on Q such that Y ~ Pois(\) for A > 0 and conditionally on
Y =k, X has a binomial distribution with success probability p € (0,1) and k& number of trials.
Then
e M\F

k!

and
0 if j >k

PX=jly=k={ 7
() (L p) i<k

QUESTION. What are E[X | Y] and E[X]?
— Here we can use that fact that if S ~ Binomial(n,p) then E[S] = np. Hence we have
EX|Y =k =kp

and thus

EX [Y]= ka]l{Y:k}
k>0

=p> kly_g =pY.
k>0

Now using the tower rule, we get

E[X] = E[E[X | Y]] = E[pY] = pE[Y] = pA.

(3) Let X and Y be two independent random variables such that

X ~ Pois(A1), Y ~ Pois(Ag)
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for A1, A2 > 0 and put S := Y7 + Yo ~ Pois(A\ + A2).
QUESTION. What is E[X | S]7

— To determine this, we need to compute P(X =z | S = s) for all z,s € Ng. Observe that

P(X =2,5=5)
—FEg

 PX =u25=5s)

Y P(X=2,S=s)

PX=z|S=s)=

We have
{X=z,=s}={X=2,X+Y=s}={X=2Y=s—z}
and thus
0 ifx>s
P(X =2 S = 8) = e MAT eT 23T
Hence
Z]P’(X =2/, =35)= Z P(X =2Y =s—1)
z’ z'=0
_ e”‘l)\f, e’>‘2)\§71,
i (s —a")!
ei)\li/\2 - B} z'ys—a’
- s! Z <x’))\1 A2
z’'=0
e—)\l—)\g
= S! ()\1 + )\2)8
=P(S=5s)
Now we get
s! AENSTE
PX=z|S=s)= 172
( z| 2 zl(s =) (A1 + Ao)®
-0 GE) (-x3)
- X Al + )\2 )\1 + )\2
and thus

A1
X | S =s~Bi ial
| s inomia (M mn AZ,S) ,

where X | S = s denotes the random variable X given the event S = s. Hence

At

E[X|S’:s]:>\1+)\25
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and thus

E[X | S] =) E[X|S=sls—y
s>0
A A
=y 2 g =—"1 6.
;)AH—/\QS = = X

In particular, if A; = A then E[X | S] = 5.

Note that in the case of Ay = A2 there is a quicker method to compute E[X | S]. Observe that
in this case

E[X|S]=E[X+Y —Y |
—E[S|S]—E[Y | 9]
= S—E[X|S]

since X and Y “play the same role” and thus E[X | §] = .
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2 Random Walks

2.1 Introduction

Let N € N and consider the sample space 2 := {—1,1}"V with the uniform probability measure on

A =29 that is

Iy
Q] 2

P(A)
for all A € A.
Definition 2.1. Set Sp(w) :=0and for 1 <n < N

Sp(w) = w

k=1

for w = (w1,...,wn) € Q. Then the sequence (S,)n>0 is called a random walk
at 0.

3 independent realizations of RW with 20 steps

with N steps starting

I I I I
0 5 10 15

Time

Figure 1: Three random walks starting at 0 with N = 20.
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3 independent realizations of RW with 100 steps

u,c .«'*‘MA«

0 20 40 60 80 100

10

5
|

0
|

-10

Time

Figure 2: Three random walks starting at 0 with NV = 100.
For k € {1,..., N} set X (w) := w;, so we have

Sn :ZXk
k=1
Now observe that
HXp =1} = |{we Q| Xp(w) =1} =2V

and thus P(X), = 1) = . Now fix integers 1 < k1 < ... < k; < N and y,,..., 2, € {—1,1}. Then

we have

|{Xk1 :.’Ekl,...,Xk ::L'kl}| — 2Nfl

1
and thus
P(Xkl Zxkl,...,Xkl :Jikl) =

But this means that

l
P( O{ij = xkj}) = % = HP(Xk-j = xkj)
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3 independent realizations of RW with 1000 steps

40 60

20

-20
|

0 200 400 600 800 1000
Time

Figure 3: Three random walks starting at 0 with N = 1000.

which proves that X,..., Xy are independent.

Remarks 2.2.

e For a given Q, the graph of the points (n,S,(w))o<n<n is called the trajectory of the random
walk.

e For k € {1,..., N} we have
E[Xy] = 0.

We can even say that X = 2U — 1 holds for Uy := 1yx, -1y and Uy,...,Un b Bernoulli(%),

so Uy, ...,Un can be viewed as the outcome of tossing a fair coin N times.
e We have
N N
E[S,] = E[Zxk} =Y E[Xi] =o0.
k=1 k=1

Theorem 2.3. Letn € {1,...,N}. Then we have

Sp(Q)={2k—n|0<k<n}.
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Moreover, for k € {0,...,n} we have

P(S, = 2k —n) = (Z)z—

Proof. By we know that
X =20 — 1

for 1 <k < N where Uy,..., Uy b Bernoulli(%). Then by definition of S,, we get

Sn=2> Ux—n
k=1
where }°;'_; Ui ~ Binomail(n, ). Hence we have

Sp(Q)={2k—n]0<k<n}

and
P(Sn =2k —1) =P( > U; = k)
j=1
B n 1 k - 1 n—k
- \k/) \2 2
n
= 27’”'
(i)

which concludes the proof. O

Lemma 2.4. Let (Sy,)1<n<n be a random walk with N steps starting at 0. Then for alln € {1,...,N}
we have

P(S, =0) if n is even
TES, () P(S,=1)=P(S, —1) ifn is odd.

Proof. For k € {0,...,n} we have

P(S, =2k-n)  (})2™"
P(S, =2(k—1)—n) (,",)2"
(k—l)!(n—k+1)!:n—k+1>1

kl(n —k)! ET
= n—-k+1>k < n+12>2k
n+1

k< .
— K=< 9

C =
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This means that if n is even, then C' > 1 if and only if & € {0,...,%}. In this case, the function

k +— P(S,, = 2k —n) is increasing on {0,..., 5} and decreasing on {%,...,n}. Hence P(S, =2k —n)
3

is maximal for k£ = 2, so
OrgrlliignIP(Sn =2k —n)=P(S, =0).
A similar analysis proves the other case where n is odd. O

Remark 2.5. With the help of Stirling’s formula

n
n! ~ 2mn <E)

n— oo

we can show that

P(S, =0) ~ —=

n—00 71—%

holds if n is even. The same holds for P(S,, = £1) if n is odd.

2.2 The Reflection Principle

Let (Sp)1<n<n be a random walk starting at 0.
For a given ¢ € UnN:0 Sn(Q) ={=N,...,N} define

Te(w) :==min({1 <n < N |S,(w) =c} U{N +1}).
Lemma 2.6 (Reflection principle). For a >0 and b > —a we have

P(T_u <n,S, =b) =P(S, = —2a—b).

Theorem 2.7. For a > 0 we have
P(T_, <n)=2P(S, < —a)+P(S, =—a)
= ]P)(Sn g (_a7 CLD

Proof. Observe that we have

{T_o <n}= El {T_, <n,S, =b}.

b=—o0c0
Hence by o-additivity we get
P(T_o<n)= Y P(T_,<n,S,=b)
b=—o0
—a—1 00
=Y P(T.<nS,=b+ > P(T_,<nS,=b)
b=—o0 b=—a
= 01 :ZC2
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The reflection principle

0 20 40 60 80 100
Time

Figure 4: A random walk with N = 100 reflected at —a = —2.

Now using the [Reflection principle 2.6 we can write

b=—a

—a

= > P(S,=t)=P(S, < —a).

t=—o0
Furthermore, we have

—a—1

Ci= Y P(T_,<nS,=Db)
b=—o0

—a—1

= ) P(S,=b)

b=—o0

=P(S, < —a—1)=P(S, < —a).
Hence

P(T_, <n)=P(S, < —a) +P(S, < —a)
=2P(S,, < —a) +P(S, = —a).
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Now we show that P(T_, < n) =P(S, & (—a,a]). Observe that we have

P(S, < —a)= Y _ P(S,=t)

I
=~
"

I
|

G

= P(S, =2) =P(S, >a)
Hence
P(T_, <n)=2P(S, < —a) +P(S, = —a)
=P(S, < —a) +P(S, < —a) +P(S,, = —a)
=P(S, > a) + P(S, < —a)

=P({S > a} U{S < —a})

=P(Sn & (—a,d])
which concludes the proof. O

Corollary 2.8. For a # 0 we have
o P(T, > N)N\,0 as N — o0,

o E[T,] /o0 as N — oo.

Proof. Observe that we have

P(T, > N) =P(S, € (—a,al)

P(Sy =0) if N is even
'~y =1) if N is odd

Now by we have
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Meanof T,fora=1

o
o
o —
Y
o
Ln —
-
8 - o
- ° _—
O /
/
‘O
&)
o
I I I I I I
0 1000 2000 3000 4000 5000
N

Figure 5: E[T,] for a = 1 as N grows.
Note that {T,, > n} =0 for n > N + 1 and thus

N
E[T.] =Y P(T, > n)
nNO
= ZIF’(Sn € (—a,al)
n=0

N
> P(S, =0)
n=0

N
Yoo P(S2r =0) if N is even
N—1
Y ilo P(S2r =0) if N is odd.

But we also have P(Sg, =0) ~ \/% and since

n—
>
=1 ™k

we can conclude that

]E[Ta} N—o00 50
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Mean of T, fora=2

o
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o
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i /
o O
mn ’

o

)

| | | | | |

0 1000 2000 3000 4000 5000

N
Figure 6: E[T,] for a = 2 as N grows.
holds. O

Theorem 2.9. For N € N and 2n < N it holds that
P(Tp > 2n) = P(S2, = 0).
Example 2.10. Take N > 3 and n = 1. We want to check that holds, i.e. that we have
P(Tp > 2) = P(S, = 0),
without using it. Observe that we have

]P(To > 2) =1 —P(TO < 2)

=1-P(Th =2) (1)
=1-P(S, =0)
=15 =5 =B(5:=0)

where at (1) we used the fact that To > 0 holds by definition and Tj is always even.
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Example 2.11. Take N > 5 and n = 2. We again want to check that
P(Th > 4) =P(S, =0)

holds. Compute

and observe that

_q_1_L_3
2 8 8
— P(S4 = 0)
Remark 2.12. Recall that by we have
P(Sa, =0 N
Gon=0) 5 Jam

and thus by we get
lim P(Tg > 27’L) = lim P(Sgn = O) =0.
n—oo n—o0
Hence we have
lim P(Tp < 2n) =1,
n—roo

which means that the random walk is recurrent.

2.3 The arcsin Law

Let N € N and consider a random walk (Sy,)o<n<aon starting at 0. Set
L(w) :=max{0 <n < 2N | S, (w) =0}

to be the last visit at 0 of the random walk.

Theorem 2.13. For n < N we have

P(L = 2n) = P(Sap = 0)P(Sy(y—_n) = 0)
=z () (%)
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Proof. Define

A={L=2n}={we Q| L(w)=2n}
={w € Q| Sop(w) =0 and Sg(w) # 0 for k > 2n}.

Now observe that we have

2n k
A:{(Il,...,ng)G{fl,l}zN| in:O, Vk > 2n : Z xl7é0}

=1 1=2n+1
2n 7
= {(l"b-~-7332my17--~7y2N—2n) S {17_1}2N ‘ ZIZ = Oa V1 SJ S 2(N—’I’L) . Zyl 7&0}
i=1 =1

Now set

2n
Bl = {(‘rla"'vx?n) € {_171}271 | sz = 0}7
i=1

J
By = {(ylv'-wa(N—n)) € {—1»1}2(N_n) | V1<j<2(N-n): Zyl 7 0}
i=1

and observe that then we have
A= B; x Bs.
This implies
|A| = |Bi| - |Ba|.

Note that we have

2n

{820 =0} = { (@1, wan) € (=1, 112V | Y = 0}
=1
and thus
{San = 0} = [ By - 22N~

which implies

_ {Sen =0} _ [Bi]- 22N By

P(S2n = 0) Q| 92N = 92n

Furthermore, we have

{To>2(N—n)} ={weQ|Si(w) #0,...,9n-n) # 0}

— {(xl,...,ng) e{-1,1}*V|v1 §j§2(N—n):ixi7é0}
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which implies

B(Ty > 2(N —n)) = 120> ;g — 1)}

_|By]- 2" |By|

22N T 92(N-n)’

Now by applying we get
P(To > 2(N —n)) =P(S2(n—n) = 0)
and thus, putting everything together, we have

_ 1AL 1B [ By]
T 92N T 92n.92(N-n)

= P(S, = 0)P(Sy(n_py = 0)
= () (W)

Now implies the following interesting result.

P(A)

which concludes the proof.

The arcsin law 2.14. We have P(Ss, = 0) ~ —— and thus

VTN
1 1 n
( ) /(N —n) Nf(N)
for f(z) := ﬂ\/ﬁ Hence we have

P(;\fﬁgv)z Z be(;)z/ozf(a:)dx:iarcsin\/g.

.
n: g <z
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L
Histogram ofm for N = 5000
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Figure 7: Histogram of ﬁ for N = 5000 and the function % arcsin +/z in blue.
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3 General Models

3.1 Introduction
Definition 3.1. A triplet (2, .4, P) is said to be a probability space if the following hold.
(a) A is a o-algebra, that is
e Qe A,
e Ac A = A°c A,
o (4); CA = |J;Ai € A
(b) P is a probability measure, that is
o P() =1,
o P is o-additive, so if (A;); C A are pairwise disjoint then P(| |, A;) = >, P(4;) holds.
Examples 3.2.

e Let Q be countable, A = 2% and let {p(w) € [0,1] | w € 2} be given weights with }°__,, p(w) = 1.
Then

P:A—[0,1,A— Zp(w)

weA

is a probability measure.

e Let QO =10,1] and let A = B([0, 1]) be the Borel o-algebra, i.e. the smallest o-algebra containing
all closed intervals [a,b] C [0,1]. Then it can be shown that there exists a unique probability
measure [P on A such that

P(la,b]) =b—a

holds for all such intervals. This measure P is also called the uniform distribution on [a,b].
Remarks 3.3.
e For (A;); € A we have [); 4; € A.

e For (4;); C A we define

A, := “infinitely many A; occur”.

Then
A ={Vn e N3k > n: Ay occurs} = m U Ag.

n>1k>n
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e Instead of o-additivity, we may also define a weaker version called additivity by the following

property: If Ay,... A, € A are pairwise disjoint, then

]P’(QAZ) :iIP’(Ai).

Theorem 3.4. Let P: A — [0,1] be an additive measure. Then the following are equivalent.

(a) P is o-additive.

(b) If Ay C Ay C ... are all in A then

n—oo

P((JA4n) = lim P(4,),

which is called continuity from below.

(c) If Ay D Aa D ... are all in A then

n—oo

P(ﬂAn) = lim P(4,),
n
which is called continuity from above.
Proof. (a) = (b). Take A1 C A; C ... all in A and define
Bl = Al, Bn = An AN An—l
for n > 2. Then (B),),>1 are pairwise disjoint with
U Ay = |_| By
k k
and
n
A, = |_| By
k=1

Now using g-additivity, we get

IP(UAk) - IE”(|_|Bk) - iP(Bk)

n

= 3wt 22
=1

= lim P(4,),

n—oo

where at (1) we used additivity of P.
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(b) = (a). Let (Ax)r C A be pairwise disjoint. Define

Bl = Al, Bn = AnUBn—l-
Then we have By C By C ... and all are in .A. Hence by (b) we get
F(Lja) =2 () = o i
k k
@ ) n 7 o
= lim ;P(Ak) = P(Ag),

=1 k=1
where at (1) we again used additivity of PP.

(b) <= (c). Follows by using the property A € A — A° € A. O

Corollary 3.5. For any (Ax)r C A we have
P([J4r) < Do P(ar)
k k

if P is o-additive.

Tu Savoss qur

Francamente no,
( ¢ tul
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Lemma 3.6 (Borel-Cantelli lemma). Let (Ay)r € A and Ao = (51 Upsyp Ak

(a) If 3, P(Ar) < oo then P(As) = 0.

(b) Under the additional condition that (Ag)x are (mutually) independent, it holds that

> P(A)) =00 = P(As) = 1.
k
Proof.  (a) Consider the sets By, := Uan Ay. Then (B,,),, is monotone decreasing and thus we have

n—oo

P(ﬂBn) = lim P(B,)
which implies
P(As) = nIEEOP( U Ak) < Tim SO P(4)) =0
k>n k=n

where the last equality follows since ), P(A;) < oo is assumed.

(b) Fix n > 1 and consider By, := (-, A§ for all m > n. Then (B, ), is monotone decreasing and

hence we have

IP’( N Bm) — lim P(B.,).

m—00
m>n
Furthermore
() Bm=[) 4
m>n k>n
and thus .
(1) = g 7( () %)
k>n k=n

Now since (A )y are assumed to be independent, we get
m m
PN 48) = i, T P = i TT0 20
k>n k=n k=n

Now note that 1 — 2 < e~® holds for all x > 0. Hence

m

H (1-P(4x)) < ﬁ e P = eXP( - zm: P(Ak))
k=n k=n

k=n

and recall that by assumption >, -, P(Ay) = oco. Since n is fixed, this implies 3, -, P(Ay) = oo
and thus we can conclude that

IP( N Ag) < W}i_r}n@exp(— iP(Ak)) =0

k>n k=n

49



Fadoua Balabdaoui

Probability & Statistics

holds for all n € N fixed. Now note that the sequence (ﬂkz” Af), is monotone increasing and

thus
roac) =#(U ) 41) = () 41) o
k>n

n>1k>n
SO
P(Ay) =1

and we can conclude.

O

Example 3.7. Let X1, Xs,... be independent outcomes of throwing pi,ps, ... coins with p; € (0,1).
Applying the Borel-Cantelli lemma to Ay := {X} = 1} implies the following results.

o If 37,5 pi < oo then P(X) = 1 infinitely often) = 0.

o If >°, -, p; = oo then P(X}, = 1 infinitely often) = 1.

3.2 Transformations of Probability Spaces
Let (€, A,P) be a measure space, Q # () and A a o-algebra on €.

Definition 3.8. An application @ : (2, A) — (Q, A) is said to be measurable if for all B € A we have
d~1(B) € A.

Remarks 3.9.

e We can generate a o-algebra with a given collection of subsets of 2 as follows: Given a collection
C C 29, the o-algebra generated by C is defined by

a(C) := ﬂ D.
DOC
D o-algebra

o If A= O'(é) with € C 22 then the application ® : Q — € is measurable if and only if
VC eC:d YO € A.
Theorem 3.10. Let ® : Q — Q be a measurable application and define

P:A—[0,1],A— P(®1(A)).

Then P is a probability measure on A and P is called the image of P under ® or the distribution of ®
under P or the induced probability measure by ®.
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Proof. We need to check that P is o-additive and that ]P’(Q) =1 holds. By definition, we have

P(Q) = P(®1(Q)) = P(Q) = 1.

Now let (Ax)r € A be pairwise disjoint. Then we have

}f”(|_|Ak> - P(¢>—1(|_|Ak)) - [P’<|_|<I>‘1(Ak))
k k k
=Y P@ 7 (A) = D P(4)
k k
which concludes the proof. O

3.3 Real Random Variables
Let C := {(—o0,b] | b € R}, denote by B := ¢(C) the the Borel o-algebra and set Q := R, A := B.

Definition 3.11. Let (92, .4,P) be a probability space. A random variable is a measurable application
X : Q — Q =R. The distribution of X, denoted by 1x, is equal to the image of P under X, so

VBeB: pux(B)=PX '(B))=P(X € B).
Examples 3.12.

e Consider X : (Q,A) — (R, B) such that

a2
ez dx

nx(B) =P(X eB) = [ ——

holds for all B € B. Then X is said to be a Gaussian or Normal random variable. In this case,
we write X ~ N(0,1) and we have

E[X] =0, Var(X)=1.

In particular,

px((ood) =PX )= [ eF ar

e
—oo V2T
e Consider X : (Q,4) — (R, B) to be a random variable such that
_ n j n—j
= ¥ (Mpa-n
jefo,1,..mynB

for p € (0,1) and n € N. Here we recognize a Binomial random variable with success probability p
and number of trials n. Note that in this case, we can replace (R, B) by (€2,2%) for Q = {1,...,n}.
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3.4 Distribution Functions

Definition 3.13. Let X : Q — R be a real random variable. The application
Fx :R —=[0,1],b = px((—o0,b]) = P(X < b)
is called the (cumulative) distribution function of X or CDF' in short.
Proposition 3.14. Let p be the distribution of X and F the CDF of X.
e For a < b we have p((a,b]) =P(X € (a,b]) = F(b) — F(a).
e Fora € R we have pu({a}) = F(a) — F(a_), where F(a_) := limy4, F'(a).
Theorem 3.15. For any distribution function Fx, we have the following properties:
e monotonicity: Vo <y : Fx(z) < Fx(y),
o right-continuity: Fx(z) = limpo Fix(z + h),
e lim,, o Fx(z) =0 and lim,_, Fx(x) =1.

Moreover, any function F with the properties above is the distribution function of some random vari-
able.

Lemma 3.16. Let F' be a distribution function and define
F7Y(t):=inf{z € R | F(z) >t}
for allt € (0,1). Then
o F~1 is monotone increasing,
o F~1 is left-continuous,
e VzeR: F 1(F(x)) <,
o Vte(0,1):t< F(FL(t)).

Definition 3.17. For t € (0,1), the value F~!(t) is called the ¢-quantile of F. If t = § then F~!(t) is
called the median of F.

Definition 3.18. Let A be a g-algebra of subsets of €.

e 4 is called a measure if p : A — [0,00] such that u(@) = 0 holds and y is o-additive. Then

(Q, A, p) is called a measure space.

e A measure 4 is called finite if p(Q) < oo.
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e A measure y is called o-finite if there exists a partition {Fj }r>1 of  such that u(Fy) < oo holds
for all £ > 1.

e Let p1 and po be two measures on A. Then ps is said to be dominated by pq if
j1(4) =0 — pa(A) =0

holds for all A € A. In this case, we also say that us is absolutely continuous with respect to puq

and write po < 1.

Theorem 3.19 (Radon-Nikodym). Let (Q, A, 1) be a measure space such that u is o-finite. Let v be
another measure on A such that v is absolutely continuous with respect to u, so v < u. Then there

exists a measurable function f such that
e [20,
e VAec A:v(A)= [, fdpu.

The function f is called the Radon-Nikodym derivative / density of v with respect to u and we write
f =49 If v is a probability measure, i.e. v(€) = 1, then

.
/fwzl
Q

holds.
Examples 3.20.

e Consider X : (2, 4,P) — (X,2%, 1) with X := X(Q) assumed to be countable and let u be the
counting measure, so u(B) = |B|. Write X = {x;};en. Then p is o-finite and u(B) = 0 if and

only if B = (). Hence we have
VB e2¥:u(B)=0 = pux(B) =0,

80 ux < p. Then by the Radon-Nikodym theorem there exists a measurable function fx > 0
such that

P(X € B) = ux(B) = /BfX dp = fo(y)

yeB

holds for all B € A :=2¥. If B = {z} then
P(X =z) = fx(z)

for any x € X. Hence we find that the Radon-Nikodym density of the distribution of X (in this
discrete case) is given by the probability mass function P(X = z).
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e Now consider X : (2, 4,P) — (R, B, A) such that ux < A where X is the Lebesgue measure, so
A is o-finite. Hence by the Radon-Nikodym theorem there exists a measurable function fx >0
such that

P(X € B) = ux(B /fdi /fx
DovpeR: P(X <b) = / Ix(x

for all B € B where Fx is the distribution function of X. Note that (1) is a non-trivial fact that
has to be shown. In this case, fx also called the probability density function or pdf in short.

3.5 Standard Types of Distributions
3.5.1 Discrete Distributions

Let X be a random variable such that X () = {xy}ren is countable with fx(z) = P(X = z). Then

Fx(r) =P(X <) Z [x(xr)

k:zp<z

holds for all z € R :
Examples 3.21.
e X has a Dirac distribution at a, written X ~ Dirac(a), if
X:Q->Rwra
holds with P(X =a) = 1.

e X has a Bernoulli distribution with success probability p € (0, 1), written X ~ Bernoulli(p), if
we have X (2) = {0, 1} with

e X has a Binomial distribution with success probability p and number of trials n € N, written
X ~ Binomial(n, p), if we have X () = {1,...,n} with

P =) = (7)o

for all x € X(Q).

e X has a Poisson distribution with rate A € (0, 00), written X ~ Pois(A), if we have X (Q2) =Ny

with .
Y A

:E'
for all x € X(Q).
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e X has a Geometric distribution with success probability p € (0,1), written X ~ Geo(p), if we
have X () = N with
P(X =z)=p(1-p)*

for all x € X(Q).

3.5.2 Absolutely Continuous Distributions

A real random variable X : (Q,.4) — (R, B) is said to have an absolutely continuous distribution if

there exists a measurable function fx > 0 such that
px(B) = [ fx(a)da
B
for all B € B and [ fx(z)dx =1 holds.
Remarks 3.22.
(1) The CDF Fx is always continuous if X is absolutely continuous.
(2) If fx is continuous at some zo € R then Fy is differentiable at xo with F% (x¢) = fx(zo).
(3) A density fx is defined up to a set of measure 0.
(4) F% = fx holds almost everywhere.

Proof. (of 1) Let 29 € R and h > 0. Then
Fx (20 + h) — Fx(x0) = P(X € (z0, 20 + h])

$0+h
=/ fX(t)dt:/]l(mo,mo-‘rh](t)fX(t)dt'
T R

0

Now note that 0 < 1, ,2,4+nfx < fx holds and fx is integrable, so by the dominated convergence

theorem we have
Jim (P (o + 1) = (o)) = Jim | 1ygs (050

N /R%ii%]l(wo’meh] (t)fx(t)dt = 0.

Hence F'x is continuous. O
Examples 3.23.

e X has a Uniform distribution on [a, ] for a < b, written X ~ U([a, b)), if

1

fx(z) = m]l[a,b} ()
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holds with CDF

0 fzx<a

Fy(z)=q4%2 ifa<az<b
1 if x > 0.

e X has an Ezponential distribution with intensity/rate A > 0, written X ~ Exp(}), if

fX (I) )\67)\1’]1[0700) (:ZJ)

holds with CDF
0 ifz <O

Fx(e) = 1—e? ifz>0.

e X has a Gamma distribution with shape parameter oo > 0 and rate A > 0, written X ~ I'(a, A),
if

A\ 1 e
fx(x) = 2 e M g ooy (2),

where .
I(a) = / tole~t gt
0
Note that in this case there is no closed form for the CDF.

e X has a Normal/Gaussian distribution with parameters u € R, 02 > 0, written X ~ N (i1, 0%),
if
1 _ =2
e 202

fx(z)

V2o

for £ € R. Again there is no closed form for the CDF.
3.5.3 Transformations of Random Variables
Let X : (2, A) — (R, B) be a random variable and g : R — R a measurable function. Then
Y =g(X)=goX
is again a random variable with distribution
py (B) = px(g~'(B)).

Example 3.24. Let X ~ N (0,1) and Y = X?2. Then
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is symmetric around 0. Hence

= e g 0 (9)
. -
N [0,00)\Y
(%) -1 —%]1 ( )
= — e 0o

NG Y [0,00)\Y

A
v
fora=\= % Then /7 =T (%) and thus Y ~ T (%, %) . The distribution of Y is better known under
the name of Chi-square distribution with one degree of freedom and in this case we write ¥ ~ X%l)'

Nl

e Mg 00) (y)

Consider again a real random variable and let

g:U—=V
be bijective in C! and non-zero on U, where U C R is open. Now if P(X € U) =1 then Y = go X is
a random variable which has an absolutely continuous distribution with density

71|fX Og_l'

fy=—7
lg'og

Examples 3.25.

o Let
g R>Rzx—axr+b

for a # 0,b € R. Then g € C'(R) and ¢'(x) = a # 0 and g is bijective with

If X admits a density fx then Y = g o X admits the density

Frly) = = fx (y‘b)

~ al a

for y € R.
e Let X ~(0,1) with fx = 1) and
g:(0,00) > R,z — —logz.

Then again g € C1((0,00)), g is bijective and ¢'(x) # 0 for all x € (0,00). Hence Y = go X
admits the density
Jy(y) = e Y1 (0,00)(¥)

and thus Y ~ Exp(1).
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3.6 Expectation (revisited)

Definition 3.26. Let X : (Q, A,P) — (R,B) be a real random variable such that X > 0. Then we

define
(1

E[X] ::/QX(w)d]P’(w) :)/Rxdux(:c)

where px is the induced probability measure by X given by ux(B) = P(X~!(B)) = P(X € B). Note
that (1) needs to be proven (was done in Analysis III).

Definition 3.27. For an arbitrary random variable X, we define
E[X] := E[X,] — E[X_]

if E[X_] and E[X ] are not both infinite. In this case we still have

E[X] = / X(w)dP(w) = / xdpx ().
Q R
Recall 3.28. We defined X = max(X,0) and X_ = max(—X,0).

Note 3.29. In the discrete case, we have

/Rxdux(x) = Z%’P(X = ;)

iel

where {z;};, = X(Q). In the absolute continuous case, we have

[einx@ =[x a

where fx is the density of the distribution of X with respect to the Lebesque measure.

For g : (R, B) — (R, B) a measurable function such that ¥ = g(X) = g o X is integrable, that is
E(Y]) < 00 4= E(Y) < o0,
we have
BY] = | o(X() dP(w)
= [ @) dux(a)

> 9(xi))P(X =z;) in the discrete case

Jp9(x) fx () d in the absolute continuous case.

Definition 3.30 (Moments of random variable). Let X be a random variable. Then we define
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for k € N the k-th moment of X by E[X*].

for k € (0,00) the k-th absolute moment of X by E[|X|*].
e for k € N the k-th centered moment of X by E[(X — E[X])¥].

e for k € (0,00) the k-th absolute centered moment of X by E[|X — E[X][¥].

For k£ = 2 we call
Var(X) = V(X) := E[(X — E[X])*’] = E(|X — E[X]?)

the variance of X.

Definition 3.31 (Standard deviation). For a random variable X we define the standard deviation of
X by o(X) := /V(X)

Proposition 3.32 (Properties of the variance). Let X be a random variable. Then
(1) V(X) = E[X?] - E[X]>.
(2) E[X?] > E[X]%
(3) V(aX +b) = a?V(X) (V is translation invariant!).
(4) o(aX +b) = Jalo(X).
(5) Let X1 and X3 be two independent random variables such that V(X1),V(X2) < co. Then
V(X1 + Xo) = V(X1) + V(X?)
holds.
PROOF IDEA.
(1) Use linearity of E and that the expectation of a constant is the constant itself.
2) Follows from (a) since V(X) > 0 always holds.

)
(2)
(3) Use definition of V and linearity of E.
(4) Follows from the definition of standard diviation using (c).
()

5) Compute

V(X1 + Xo) = E[(X1 + X2)?] — E[X; + X;)?

= E[X] +2X, X5 + X3] — (E[X1]? + 2E[X1]E[X] + E[X2]?)

= E[X7] + ERXrX0] + E[X]] - E[X1]? — 2EDCHEIRG] - E[X)? (a)
= E[X7] - E[X1]* + E[X3] - E[X]?

=V(X1) + V(X2).

where at (a) we used the independence of X; and Xs.
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Examples 3.33.
e Let X ~ Bernoulli(p),p € (0,1). Then we know that E[X] = p. Hence

V(X) =E[(X —p)*] = p(1 —p)* + (1 —p)(0 — p)?
(1-p)?+ 1 -pp*=p(l—p)(L—p+p)

Alternatively, we see that
V(X) = E[x?) - E[X]* 2 E[X] - E[X] = p — p* = p(1 - p).
where at (1) we used the fact that X (w) € {0,1}.
e Let X ~ Bin(n,p) with n € N and p € (0,1). Then E[X] = np and thus
V(X) = E[X?] — E[X]* = E[X?] — n®p®

and
EX?) =Y g(z)P(X =2;) = > K’ (Z)p’“(l —p)F
i k=0

= ... (gets complicated)

where X(Q) = {0,1,...,n} and P(X = k) = (})p"(1 — p)"~*. But note that in this case we also
have X = X; +...+ X,, with X1,..., X,, are independent outcomes of tossing a p-coin n times,
so X1,...,X, are i.i.d. (independent identically distributed) ~ Bernoulli(p). Hence

V(X) = V(X;) = npV(X1) = np(1 - p).
=1

e Let X ~ Pois(A) with A € (0,00), so E[X] = A. Then

21 g€ AV ke™*\
E[X}_Zk k! _Z(k‘—l)!
k=1 k=1

_ i (k + 1)6—/\>\k+1 i ke—)\)\k-‘rl

k! k!
k=0 k=0

o0 —Myk vk
:)\Zke )\+)\ e A

Hence we have V(X) = A2 + X\ — A2 = \.
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o Let X ~U(0,1), so fx(x) = L,11(x) and

1
E[X]:/l’fx(x)dz:/ xda:zl.
R 0 2
Furthermore )
R 0 3
and thus
V(X)=E[xY -EXP=s-1_1
B T3 4 12

In general consider Y ~ U(a,b). Then X := ¥=2 ~ 1/(0,1) and thus

Y —a 1 1 a+b
E = - — E|Y]| = —(b— =
[ba] 2 Y=a+50-a==

and

(b—a)?
Y) =
= V() 5
o Let X~ N(0,1), 50 fx(e) = he=% and
R R Y
odd

Furthermore,

B = [ () do = [ 2 e da
R R

_ 1 —x?/2 5. 1 —z2/2 _22/9
—ﬁ/ﬂgx-xe’”/dx—ﬁ [—J:ex/](iooo—i—/Rei/d:c

| S ——
0

=L [ e 2 =1

N

and thus
V(X) =E[X?] -E[X])? =1.

In general, for X ~ N(m,c?) we have

E[X]=m
E[X?] = 02 + m?
V(X) = o?
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3.7 Inequalities

Theorem 3.34 (Jensen’s inequality). Let X be an integrable random variable and g : R — R be a
convex function such that g(X) = go X is integrable. Then

Elg(X)] = g(E[X])
holds and is called Jensen’s inequality.

PROOF IDEA. Since g is convex, taking the tangent {(x) of the graph of g at any point z € R gives the
inequality
9(x) = U(z) = g(E[X]) + a(z — E[X]),

where «a is the slope of the tangent, i.e. a = ¢/(E[X]). Then
Elg(X)] = E[l(X)] = g(E[X]).
Remark 3.35. To remember the direction of Jensen’s inequality, replace g(x) by 22 and recall that
E[X?] > E[X]*
always holds.

Theorem 3.36 (Generalized Tchebychev’s inequality). Let g : R — R be a real measurable function
such that
9g=0

and g is non-decreasing on R. Then for any ¢ € R such that g(c) > 0 we have that

P(X >¢) <

holds. This is called the generalized Tchebychev inequality.

Proof. Let ¢ € R such that g(c) > 0. Then

]l[c,oo) (IL’) < =

holds for all x € R since g is non-decreasing. Hence

Eit o) < £ [26)] - B0

which concludes the proof. O
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Example 3.37 (Markov’s inequality). Let g(x) = max(z,0) = ;. Replace the random variable X
by |X| to obtain

Elg(X)] _ E[IX]]
g(c) c

for all ¢ > 0, which is called Markov’s inequality. If X admits a finite variance V(X) < oo, then

P(X]>¢) <

P(|X —E[X]| > ¢) = P(X — E[X])? > ¢?)

holds for all ¢ > 0. For example, if X ~ N (u,o?) we obtain

o2 1
P(|X —pu|>30) < — ==
(X — 4l > 30) <

since we have E[X] = p and V(X) = o2

3.8 Several Random Variables: Random Vectors

Definition 3.38 (Random vector). Let Xi,..., X, be n real random variables defined on the same
probability space (Q2,.4,P). Consider

X = (X1,...,Xn) : (Q,A,P) - (R, B"),

B"=o <{ﬁ(ai,bi] | —oco<a; <b < oo})

D o({Ar x ... x A, | A; € BY)

where

is the Borel o-algebra on R™ and (1) can be shown. Then X is a random vector, meaning that it is
measurable with respect to A and B™. We can also define ux to be the image of P under X, that is
the probability measure (R™,8") induced by X. Hence

VB € B": ux(B) =P(X € B) = P((X4,...,X.) € B).

Furthermore, the (comulative) distribution function of X is given by

Fx(z1,...,z,) =P <X € H(oo,xz]> =P(X; <z1,..., X, <xp).
i=1
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DISCRETE CASE. Let X(Q) = X1(Q) x ... x X,,(2) with X;(Q2) being coutable. Then ux has density
with respect to the counting measure, so

px(B)= > PXi=mz1,..., X, =)
(z1,...,xn)EB

ABSOLUTELY CONTINUOUS CASE. Then pux has density fx with respect to the Lebesgue measure A
on R™, so

/fx T1yeeoy Tn)d(T1,. .0, Zp)

is a measurable function from (R, B") to (R, B) and
- fx(@y, ... ;xn)d(xy, ..., zn) =1
holds. Marginal distributions. ”Individual” distribution of the components Xi,...,X,. Fix ¢ €
{1,...,n}.
QUESTION #1. How can we deduce the distribution of the component X; from the (joint) distribution

of X7
— For B € B we have ux,(B) =P(X; € B) by definition. Now, note that

{X;eB}={X;€eR,....X; 1R X, €B,X,1; €R,..., X,, e R}

and thus
px,(B) = px (R x Bx R"™).

QUESTION #2. If X has density fx w.r.t. the Lebesgue measure on R™, is the distribution of X;
absolutely continuous w.r.t. the Lebesgue measure on R and if yes, what is its density?
— We have that

:U’X7(B):/ fX(Ila"'ax )d(‘rla"'axn)
Ri—1x BxR™—?

/ / J}l,..., )d(ml,...,xi_l,xi+1,...,xn) d.’l}‘i (1)
RL IXR”‘ k3

density of the distribution of X;

where at (1) we used Fubini’s theorem. So the answer is yes and to obtain the density of X;, wone

needs to integrate the (joint) density fx over the remaining components.
Remark 3.39. A similar result holds for discrete distributions:
]P)(Xi:xi): Z P(Xl=$17~~~,X¢71:$1717Xi+1:!Ei+1,~-7Xn=fUn)~

z; €X;()
Fe{1,...,n}~{i}
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Example 3.40. Consider the random pair Z = (X,Y") with density
fz(2,y) = ye  "Nipsy>0)-
We now want to compute the marginal densities fx and fy. Let’s check that fz is a density. We have

fa d(z,y) = / / yet lpsysy dedy
R2 R JR ——

Ty>01 Ta>yy

:/ / ye_’”da:dy:/ y/ e Tdxdy
0 y 0 y
e )
=/ yl—e "]y dy:/ ye Vdy = 1,
0 0

where at (1) we used integration by parts. Hence

fx(x) =/sz(:c,y) dy:/]Rye’Iﬂ{pym} dy
x .’EQ

=e - ]l{x>0}/ ydy = ?e_x]l{ooo}

0

= —13 3 le 1

and thus X ~ I'(3,1) holds. Similarly we have
fr) = [ falop)da
= / ye "1ipsysoy dr = / ye T dx - Tyy~oy
R (
- Yy
=y -Lyysoy / e dr =ye 50y
y

2

O

and thus Y ~ T'(2,1).
Definition 3.41 (Independence). Let X7, ..., X,, be real random variables defined on (£, .4, P). Then
X1,...,X, are said to be independent if

VAy,..., A, € B:P(X, eAl,...,XneAn):H]P’(XieAi)

i=1

holds.

Theorem 3.42. Let X1,..., X, be independent random variables such that for all i € {1,...,n} the

distribution of X, admits a density fx, w.r.t. the Lebesgue measure on R. Then the distribution of
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X =(X1,...,X,) is absolutely continuous w.r.t. the Lebesgue measure on R™ with density

n

Fx(@rs.yzn) = [T fx (o).

i=1
Conversely, if X admits a density fx of the form
fx(1,. . m0) = g1(@1) -+ gn(Tn)

for all xy,..., 2, € R with measurable g; > 0, then X1,...,X,, are independent with

_ gi(zi)
fx, (i) = W

forallz; e R and i € {1,...,n}.

Example 3.43. Let X = (X1,...,X,) be a random vector with density

1 lsn 2
— -5 i1 T
fX(xla"'v'xn)_ (271_)”/26 2 T

We have that

>

1 ef%
V2
and thus X7, ..., X, are independent and we have X; ~ N (0,1) for all i € {1,...,n}. In this case X is
called a Gaussian/Normal vector with expectation (0,...,0) and covariance matrix ¥ = I, x,, € R"*".

N

fx(x1, .. xn) = H
i=1

3.9 Transformation of random vectors

Let X : (Q,AP) — (R",B") be a random vector and g : (R",B") — (R™,B™) be a measurable
function. Then
Y =gX)=goX

is again a random vector with distribution given by

py =pxog .
Theorem 3.44. Let
g: (R",B") = (R",B"),z — m+ Sz

with m € R™ and S € GL,(R) fized. If X is a random vector admitting o density fx, then Y =
9(X) =m+ SX admits the density

1

= me(S*l(y —m))

fr(y)
for ally € R™.
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Exercise 3.45. Let X; and X5 be two independent random variables with densities fx, anf fx,
respectively and let Z = X7 + X5, called the convolution of X; and X,. Show that Z admits the
density

fZ(Z):Afxl(w)fxg(z—x)dx.
Z 1 1) (x, 0
= ()= 9 )+ 0)

3.10 Covariance and Correlation

HiNT. Note that

holds.

Definition 3.46 (Covariance). Let X; and X3 be two random variables defined on the same probability
space (9, A, P) satisfying

E[| X1 Xa] < o0,
E[[X1]], E[[Xa[] < co.

Then, the covariance of X1 and X5 is defined by
COV(XhXQ) = ]E[(Xl — ]E[Xl])(XQ — E[XQ])}
Remark 3.47. Let X1, X5 be random variables as in the definition of covariance. Then

(1) COV(Xl,XQ) = ]E[X]XQ] — E[Xl]E[XQ},

(2) Jeov(X1, Xa)| < VE[X: — EX1PVEXz — E[X]] = \/V(X1)/V(X2).
Hence if V(X;),V(X3) > 0, then we get

|COV(X1, X2)|
V(X1)V/V(X2)

€ [0,1].

PROOF IDEA.
(1) Direct computation using linearity of E.
(2) Follows from the Cauchy-Schwarz inequality.
Theorem 3.48. Let X1, X5, X3 be random variables as in the definition of covariance. Then
(a) cov(X, X) =V(X).
(b) cov(Xy, Xa) = cov(Xa, X1).

(c) cov(Xy,aXs + B) = acov(X1, Xs) for all a, B € R.
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(d) cov(Xy, X + X3) = cov(Xy, Xa) + cov(X7y, X3).

(e) V(X1 + X2) = V(X1) + V(X3) + 2cov(Xy, Xa).
(f) If X1 and X5 are independent, then cov(X1, X2) = 0 holds.
PROOF IDEA.
(a)-(d) Clear.

(e) We have
V(X1 + X2) € cov(Xy + Xa, Xy + Xa)
= cov(X1, X1) + cov(X7, Xa) + cov(Xa, X7) + cov(Xs, Xo)
=V(X1) 4 2cov(Xy, Xo) + V(X2).

In general, it holds that

n

V(iale> = Ziaﬂlj . COV(XZ',XJ')
i=1

i=1 j=1

= Za?V(Xi) + Z a;a; - cov(X;, X;)

i=1 1<i#j<n

a?V(X;) +2 Z a;a; - cov(X;, X;)

1 1<i<j<n
for all ay,...,a, € R.

(f) If X; and X5 are independent, then
by Def.
E[X1X2] = E[XﬂE[XQ] — COV(Xl,Xg) =0
holds.

Definition 3.49 (Correlation). Let X; and X5 be two random variables defined on the same prob-
ability space such that V(X7),V(X3) € (0,00) holds. Then the correlation of X; and X5 is defined

by
cov(X1, Xo)

V(X1)VV(X2)

Remark 3.50. Let X1, X5 be as in the definition of correlation. Then

p(leXQ) =

(a) |p(X1,X2)| <1 (Cauchy-Schwarz inequality).
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(b) We have p(X;,X2) =1 if any only if there exists a o > 0 with
P(X2 — E[X3]) = a(X1 — E[X4]) = 1.
In the same way p(X;, X2) = —1 holds if any only if there exists a a > 0 with
P(X1 - E[X1]) = a(Xz - E[X5]) = 1.

This means that correlation is a measure of linear dependence.

3.11 Limit Theorems

Definition 3.51 (Modes of convergence). Let (Z,), and Z be random variables defined on the same

probability space.
(a) We say that the sequence (Z,),, converges in probability to Z if
Ve >0: li_)m P(|Z,—Z| >¢)=0

holds and we denote it by 7, LNy
(b) We say that (Z,), converges to Z almost surely (in short a.s.) if

P(lim Z,=2) =1

n—oo

holds and we denote it by Z,, =5 Z.
Lemma 3.52. We have Z, =2 Z if any only if
Ve>0: nlergOIP(|Zk —Z|<eVk>n)=1
holds.

Proof. First set
Ape =A{lZx - Z| <e|k>n}

and note that
Zn 225 7 = PVe>0I>1Vk>n:|Z, - Z|<e)=1
— }P’( ﬂ U An,a) =1.
e>0n>1
Note that the sequence (Un21 A, ¢)e is decreasing when ¢ is decreasing. Indeed, if €5 < &1 then

UAn,sg:{3n21Vk2ni|Zk—Z|§52}

n>1

§{3n21Vk2n|Zk—Z|§el}

= 4Ane,

n>1
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Hence we get
f(NUa) = m(U )
e>0n>1 n>1

CLAIM. Now we have

P U Ane) =1 = ¥e>0: P({J Ane) = 1.

e>0n>1 n>1

“ =" Observe that

U An,e 2 m U An,e

n>1 e>0n>1
= P(gl Ane) = ]P(Qogl Ane) =1
— Ve >0 P(HLEJIA”,E) ~1.

=" 1fe>0P(U,5 Ane) = 1, then we have

;ii%lp(gl/xnys) 1= P(UAne)=1.

e>0n>1

This proves the ‘Claim‘. Now, note that the sequence (A, .), is increasing and hence

]P’( U Aw) = lim P(A4,.).

n—o00
n>1

Therefore, we can conclude that
Zp 225 7 = Ve >0: nan;OIP(An,E) +1
= V5>0:nlgr;O]P’(|anZ|§s,Vk2n):1

holds. OJ
Theorem 3.53.

(i) Almost sure convergence implies convergence in probability.

(i) If we have

Ve >0: iIP’(|Zn—Z\>5)<oo

n=1
then
Ty — 7

holds.
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Proof.

(i) We have that
{|1Z — Z) < e,Vk >n} C{|Z, — Z| < e}.

Now, form it follows that
Zn 225 7 = ¥e>0: lim P(|Z, - Z| <e,Vk=n) =1

= V5>O:HILII;OP(|ZH—Z\§£):1

= V€>0:nli_)rr;OP(|Zn—Z|>5):0

— 7,5 7
where at (1) we used that

P(|Z, — Z| <e) >P(|Z, — Z| < &,Vk > n)

holds.

(ii) For a fixed € > 0 define
By =A{|Z, — Z| > ¢}.

By the first statement of the Borel-Cantelli lemma, we have
> P(Bn:) <00 = P(Bu) =0,
n>1

where
By, = ﬂ U By (= {Bk, infinitely often}).

n>1k>n

Hence we have

P(BS,.) =1 < IP’( Un B,g,e) =1
n>1k>n
——
=Ane

— lim ]P’( U Am) ~1

n—o00
n>1

< lim P(4,.) =1
n—oo
— lim P(|Z; — Z| <e,Vk >n)
n—oo
and thus again using we can conclude that
Zn 2 Z

holds since € > 0 was arbitrary.
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Example 3.54. Note that convergence in probability does not imply convergence almost surely. In

fact, consider (X,,),, to be independent Bernoulli random variables such that

holds for all ¢ > 1. For £ > 0 we have

P(X,=1)=1 ifee(0,1)

P(|X, —0]>¢)=P(X, >¢) =
0 ife>1.

Hence
Ve >0: ILm P(|X,—0]>¢)=0

and thus X, B) 0 holds. Now observe that

Z]P(XHZDZZ%:OO

n>1 n>1

also holds and since (X,,),, are independent, it follows from the second statement of the Borel-Cantelli

P(ﬂ U{szl})zl.

n>1k>n

lemma that

Since (Uy>,{Xr = 1})n is decreasing, we have that

IE”( N U= 1}) - nlLH;OIP( U (X = 1})

n>1k>n k>n
and thus
lim P(X; =1 for some k > n) = 1. (1)
n— oo

Suppose for a contradiction that X,, <=5 0 holds. Then

Ve>0: lim P( Xy <e,Vk>n)=1

n—oo

must holds. For ¢ € (0, 1) this means
lim P(X), =0,Vk >n) =1 < lim P(X; =1 for some k >n) =0

n—roo n— oo

which contradicts (1). Hence (X,,), does not converges almost surely to 0.
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3.12

Proposition 3.55 (W.L.L.N.). Let X1, X5, ..

space. Assume that

Vie{l,...,n}:
Vi<i#j<n:
Vie{l,...,n}:

Weak Law of Large Numbers (W.L.L.N.)

., Xy, be random variables defined on the same probability

V(Xl) < 0,
cov(X;, X;) =0,
E[X;] = m € R,

ZV(Xl-) = o(n?) as n — oo,
i=1

hold. Then we have
X, 5m
with

Yn = Xz

S|

Il
—

K2

which is called the sample mean or empirical mean.

Proof. We have

- 1« y
EX,=E |- X;| ==Y E[X)] =
LR S B o
——
n-m
and
V(X,) =V lix _ly zn:X-
v n i=1 ) ’I’L2 i=1 Z
1 n
== V(X)) +2 Y cov(X;, X))
2 Z >
m\i= 1§i<j§nT
1 n
= EZV(X’)
1=1
By [T'heorem 3.36| we have
— — V(X,
P(| X, —E[X,]| >¢) < (52 )
_ 1 — 1 1
= P(Xn—m|>e) < — > V(X) — =o(l)5 =o(1)
1=1
:’I’LV(Xl)
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as n — oo and thus

Ve>0: lim P(|X,—m|>e)=0 — X, 5>m

n—o0

which concludes the proof. L

SPECIAL CASE. Let Xi,..., X, be i.i.d. random variables such that E[X;] = m and V(X;) = 02 holds
for every ¢ € {1,...,n}. Then cov(X;, X;) = 0 holds for ¢ # j and we have

ZV(XZ-) =no? = o(n?)
i=1
as n — oo. In this case, we have
-~ P
X, —> m.
Theorem 3.56 (S.L.L.N.). Let Xy,...,X, be i.i.d. random vairbales such that
E[X?] = E[X}] < c0.
Then X, 22 B[X1] = m holds as n — oc.
Remark 3.57. We have
(a) E[X}] < 00 = V(X;) < oo

(b) The assumption that E[X?] < oo should hold is “too strong”. Indeed, the SLLN holds under the
weaker condition that E[|X;|] < co holds but the proof for this will be more involved.

(¢) Note that S.L.L.N. = W.L.L.N. holds since convergence a.s. implies convergence in probability.

Proof. (of (a)) By [Jensen’s inequality 3.34] we have

E[l X, < \/E[X?] < o

which implies

V(X1) = E[X?] - E[X1])? < cc.

3.13 Weak Convergence (Convergence in Law / Distribution)
Definition 3.58.

e Let py, for n > 1 and p be probability measures on (R,B). We say that the sequence (i),

converges weakly to p if
[ fann 2= [ i

holds for all continuous and bounded functions f.
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e Let Z, for n > 1 and Z be random variables (not necessarily defined on the same probability
space). We say that the sequence (Z,), converges weakly or in law/distribution to Z if (uz, )n
converges weakly to iz, where pz, and pz are the distributions of Z,, and Z respectively. This
means

[ fanz, 2= [ fane
or equivalently  E[f(Z,)] =% E[f(Z)]
should hold for all continuous and bounded functions f on R. We denote this by

pn S, 2,5z
or [ £>u, Zn ENy4
Lemma 3.59. Let p, and p be probability measures on (R, B) with (commulative) distribution func-

tions F,, and F respectively, that is Fy,(z) = pn((—00,z]) and F(x) = p((—o0,x]) for v € R. Then the

following statements are equivalent:
d
® iy —> M.
o F,(x) 2= F(x) holds for any continuity point x of F.
o [ fdun "= [ fdu for any f € C3(R), where

C3R):={fecC3R)|IM>0: sup |[fD(z)] <M}
7€{0,1,2,3}

Theorem 3.60 (Lévy’s continuity theorem). Let Z, and Z be random variables and define

0z, (t) = E[e""]
0z (t) := E[e"?]

for t € R, which are called characteristic functions of Z,, and Z. Then
ZnH 7 = VER: g () 222 ou(t)
holds.

Example 3.61. Let X,, ~ Bin (n, %) for A € (0,00) and n € N such that n > A. Then X, 40X ~
Pois(A) holds.
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Proof. We have

n

(et " 14 A =1\ noo e 1)
n n

14 %) = ¢f holds for ¢ € C. Similarly, we have

it o ¢ N
px(t) = B[] = Y e
k=0
o0 ity \k
= (e"A)" e’ —1)
—e e
k=0
~
—erelt
which proves the example by using [Iheorem 3.60 O

3.14 The Central Limit Theorem (C.L.T.)

Theorem 3.62 (CLT). Let X1,...,X, be i.i.d. random variables with E[X;] =m € R and V(X;) =
0% € (0,00) for anyi € {1,...,n}. Then

7*/5(?; —m) 4 g N (0.1

holds, where again X, = %Z?:l X; as usual. (This means that

PP ce) 2 [ ot

holds for any £ € R.)
Example 3.63. Let X1,...,X, "< Bernoulli(p) with p € (0,1). Then E[X;] = p and V(X;) =
p(1 —p) € (0,00) hold and thus by [Theorem 3.62| we have

p(1—p) 7

or equivalently

V(X —p) L N(0,p(1 — p)).
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Example 3.64. Suppose a load of 49 boxes is to be transported by an elevator. The weight of the
boxes have expected value m = 92 kg and standard deviation ¢ = 6 kg.

QUESTION. What is the probability that the 49 boxes can be transported if we know that the maximal
weight should not exeed 4410 kg?

— ANSWER. Let p = “the probability that the 49 boxes can be transported”. Let Xi,..., X, with
n = 49 be the weights of the boxes. Then by the assumptions we have

49
— 4410
p= P(Z X; < 4410) =P (X49 < 49)
i=1

o - 0o

- (e < (5 m)

V49(X 49 —
- P VAI(X g9 —m) < %(gofgg)
g ~———
~—2.333

~P(Z < —2.333) = 0.0098

where Z ~ N(0,1) by using [Theorem 3.62)
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STATISTICS

4 Introduction to Statistics

4.1 Notation
Notation. Let X be a random variable X : (Q, A,P) — (R, B).
e We know that X induces a probability measure, denoted by px, that is
VB e B:ux(B)=P(X € B).
Here, we will denote ux by P.

o We will write X ~ P to mean that X has distribution equal to P.
PROBLEM. In statistical applications, the distribution P is unknown.

— SOLUTION. We will estimate P based on i.i.d. “copies” of X, so X1,...,X,.
e We write X := X (Q2) = “the sample space (to which the values of X belong)” and

X, = (X1,...,X,) € X" = “the random sample of size n”.

4.2 (Parametric) Statistical Models
Definition 4.1. A (parametric) statistical model stipulates that
PEPZZ{P9|9€@},

where © C RY for some d € N is a parametric space and Py is a probability measure on (R, B) for all
0 € ©. In particular, if X ~ P = Py for some 6 € © and if X admits a finite expectation, we will write
Ey[X] := E[X]. Also, if X admits a finite variance, then we will write Varg(X) := V(X).

Example 4.2. Let X ~ Pois() for some 6 € (0,00). This means that
Pe{Py|0ec(0,00)}
——
-
with

e ANE
Fy(B) = Z k!
keB )
for all B € B. Suppose that X ~ N (u,0?) and put § = (u,0?). Then

PeP={Py|0cRx (0,00)}

and 1
(@—m)?
VBEB:PBz/ e 227 dx.
"B = |, Vo
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4.3 Parametric of Interest and Estimators
Let P = {Py | 0 € O} be some (parametric) statistical model.

Definition 4.3. A parameter of interest is v = Q(P), where Q : P — I' C R¥ is some given map for
k € N. For § € © we will write g(¢) = Q(Pp) where g: © — T.

Examples 4.4.

e Consider again X ~ N (u,0?) and let

1=QP) = [ 2dP()

R

be the parameter of interest. Then for 6 = (u,0?) we have
o(6) = [ wdPa) = BalX) = p.
R

o Let X ~ Exp(A) for A € (0,00), s0 § = A and © = (0,00). Set g(A\) = A, which means that we
are “interested” in the rate A\. Now compute

E\[X] :/ xhe M dx = [—xe P +/ e dx
0 — o

=0

I e
_)\/0 e dm—)\.

But this is equivalent to

and thus

holds.
We consider a random sample X,, = (X1,...,X,) € X" = X(Q)™.

Definition 4.5 (Estimator). An estimator T is a measurable map T : X — I'. We will also call the

value T'(X4,...,X,) an estimator or a statistic.
Examples 4.6.

e Suppose we observe Xq,..., X, LA N (ut,0%). Then consider

Tl(X17"'7X7L) = X1
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and

— 1
To(Xp, ... X)) =X, = =S X,
2( 1 ’ ) TLZ

QUESTION. Which estimator is “better”?

o Let X1,..., X, BN U(0,0) with 6 € (0,00) =: © and consider the estimators

Tl(Xl,...,Xn) = 2yn
TQ(Xl,. .. ,Xn) = Imax Xz

1<i<n
1
(X1, .., X)) = 2L max X,

n  1<i<n

QUESTION. Which estimator is “best”?

4.4 The L.L.N. and Constructing Estimators

Note. Recall that if X;,..., X, are i.i.d. random variables such that E[|X;|] < oo, then by the
W.L.L.N. (Proposition 3.55)) we have

X, 5 m:=E[X;] = E[X]]

for all 1 < < n. If we are interested in p1 (= ) = [, 2 dP(z), then a sensible estimator is X, (at least

for n large enough).

Theorem 4.7 (Continuous mapping theorem). Let f be a real function with Cy = {points of continuity of f}.
For a random variable Z such that P(Z € Cy) =1, it holds that
P P
Zp = 4 = f(Zn) _>f(Z)7
20" 7 = [(2) 5 1)

takes the form g(0) = f(Ey[X]) with X a

This means that if the parameter of interest g(8) = Q(Fp)
., X, and f is a continuous function, then

random variable having the same distribution as X7, ..
T(X1,...,Xn) = f(X,)

is a sensible estimator of g(¢). We have

Example 4.8. Consider again X, X1,..., X, =" Exp(A) with A € (0,00) = © and g(A) = A. We

have already shown that
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holds for f(x) = ! continuous on ©. Then by the [Continuous mapping theorem 4.7| we know that

1 —
TX,...,Xn - = = X’I’L
(X111 X0) = 2= = F(X)
is a good estimator of g(\) = A since
- a.s./P

holds. On the other hand, suppose that the parameter of interest g(6) takes the form Eg[k(X)] with
k such that Eg[|k(X)|] < co. Then, by the L.L.N., a sensible estimator would be

1 n
=1

Examples 4.9.

e Consider X,..., X, L N (i1, 0%). We are interested in estimating o2, where 6 = (u,02) € © =
R x (0,00). We have

0? = Varg(X) = Ey[X?] — Eg[X]%.
Now consider the estimator
1 & —2
T ) == X?-X
(‘Tla y L ) n ; i n

1< -
=— E (X; — Xn)2  (— sample/empirical variance)
n
i=1

IN FaACT. We have

n

1 — — 1 — —2
- Z;(Xi ~X,)? = - Z;(Xf —2X; X, +X,)
1 n 1 n 2
=-) X7 -2X, - X;+X,
n i=1 n =1
=X,

1 & -
= -3 X?-2X,+X,
ni:l

1 < —2
= 5;)@27}(”.

e Suppose that based on i.i.d. random variables X, X1,..., X,, we are interested in estimating the

(common) comulative distribution function

Fx, (t) = P(X; < t) = Fx(t) = P(X < )
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for t € R. Then

FX(t):/Q]l{X(w)gt} dP(w)

:/]l{wgt} dP ()

R

= EP[H{th}]
——
=:k(X)

with P = px = the distribition of X. A sensible estimator is
F,(t):=TF,(¢ _ ; 1
W= Falt) = 23 Lo

where F, = F,, is called the empirical/sample cumulative distribution function. By the L.L.N.

we have
Fa(t) 2255 Fx(t)
for every t € R and by the [CLT 3.62 we also have

Fu(t) — Fx(1)
VFx(t)(1 - Fx(t))
for ¢t € R such that F(t) € (0,1). We also get

vn 2 N(0,1).

sup |I3'n(t) — Fx(b)] 2550,
teR

which is called the Glivenko-Cantelli theorem.

4.5 Mean Squared Error

Definition 4.10. The mean squared error (MSE) of some estimator T of g(0) is the quantity

MSEy(T) := Eq[(T — g(6))?]
= Eo[(T(X1,..., X,) — 9(0))2].

The bias of T is the quantity
biasg(T) := Eg[T] — g(0) = Eo[T(X1, ..., Xn)] — g(0).
The estimator T is said to be unbiased if
VO € © : Ey[T] = g(9)

holds, which is equivalent to biasg(T) = 0 for every 0 € ©.
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You're G(N(l‘js And your opinion
fluctuates oo much.

Lemma 4.11. We always have
MSEy(T) = biasy(T)? 4 Vary(T).

Proof. We have

= Eo[((T — Eo[T]) — (9(0) — Eo[T1))?]
= Eo[(T — Eo[T1])* — 2(T — Eq[T])(9(0) — Eo[(T)]) + (9(0) — Eo[T])?]
= Eo[(T — Eo[T1)*] — 2Eo[(T — Eo[(T)])](9(6) — Eo[T]) + (9(6) — Eo[T1])?

=Eq[T]-Eo[T]=0
= Varg(T) + biasy(T)?

which proves the lemma. O
Examples 4.12.

e Let X, X1,..., X, beiid. random variables with finite expectation p and finite variance o2.
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Then we have

and thus X, is an unbiased estimator of p for every p € R. We also have

MSE,,(X,,) = bias,, (X ,)* +Var,(X,)
—_———

=0
= Var, <711§:X1> = 2Var#(§n:Xz)
i=1 i=1
= 7112 iVar“(Xv) = %naz = %2.
i=1
Now let T7(X4,...,X,) := X; as in a previous example. Then we have

MSE,,(T}) = MSE,,(X;) = Var,(X;) = 0®
and thus X, is strictly better that T} in the sense of the MSE for all n > 2.

e Consider the same setting as above but now we are interested in estimating 2. For this, consider
the estimator

1 _
52 .= — D (X=X,

I
>
|
=
e
|
s
&
3
|
=
>
|
=
+
=8
|
3
|
=
e

=n(Xn—p)
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Thus we have

EolS2) = - i 1E9LZ<XZ- — ) = (X — )

1 1 1
=——7 <n02—nn02> :7n—1(n_1)02202

and thus the estimator is unbiased. Note that this means that the sample variance
o1 ¥ )2
On = — Z(XZ - Xn)

is a biased estimator of ¢2. Indeed, we have

~2 (n — 1)57%
O'n _—

n
-1 1
— E[62] = B[] = o
n n
:0’2—0-—2
n
and thus )
biase(52) = Eg[62] — 02 = — 2 222
n

but 62 is always biased. Note that by the [W.L.L.N 3.55 we have

n

3 B I — )] = 0 = Var(Xa)

and
Xn 5o

With the function f(x) = (z — u)? we have, by the [Continuous mapping theorem 4.7, that

(Xn =)= f(Xn) = f(u) =0

and thus

We also have S2 = —-62 and thus
525 52
also follows. Now take h(x) = v/ and conclude that

G0 = 1(62) B h(o®) = o

again by the |Continuous mapping theorem 4.7| and similarly S, LS
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4.6 The C.L.T. and Building Confidence Intervals

Recall that if X,..., X, are i.i.d. random variables such that E[X;] = y € R and Var(X;) = 02 €
(0,00) for every i € {1,...,n}, then

VXn =10 4, 5o, 1),

g

Slutskey’s Theorem 4.13. If Z, 4 7 and A, Eac R, then A,Z, 4 wZ holds. Note that here

the number a is not random.

— CONSEQUENCE. By the [CLT 3.62] and [STutskey’s Theorem 4.13| we have

on

for any estimator &,, such that &, E) o holds.
IN FACT. Consider the function f(z) = Z for z € (0,00). By the|CLT 3.62, we have that

f(on) =1
and thus
x/ﬁ(){n —n) _ VnXn—p) o 4 A(0,1)
Op g On
holds.

4.6.1 Application: Confidence Interval for the Expectation u

For a < b we have

P(a<‘/7M<b>’H—°°>P(a<Z<b) (1)

On

with Z ~ N(0,1) as a consequence of [Lemma 3.59 and [CLT 3.62} Indeed, we have

On

and IP)<\/ﬁ(xn—u)<a)7H_c>°>19>(z<a).

on
Now taking the difference shows (1). Note that (1) is also equivalent to saying
= b5n ~ af&n n— 00
PlX,——C< Xp——| —P Z<b)=PZ<b)-PZ<
(%022 <n <X 22 ) 225 Pa< 2 <) =Pz <) -R(Z <)
= ©(b) — ®(a),
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where ®(§) = \/% ffoo e~ % dt for & € R. We can now take a and b such that ®(b) — ®(a) = 1 — «
with o € (0,1) small.

For example, we can take a = @1 (%) the $-quantile of ® of Z and b = o1 (1 — %) the (1 — %)—
quantile of ®. We will write a = (¢ and b = (1_¢. It turns out that @ = —b in this case. To show this,
it is enough to show that

@
®(-G-g) =5
Let ¢ € R. Then

m‘”
IS
=y

Il

<1 2 ¢ 1 (=02
e / e 2
oo V2T co V21
¢ 1 2
:1—/ e~z dt=1- ().

oo V2T

(—-() =

Therefore, we have

o Q
Hence, with this choice of a and b, we have that

1-2

JPM(Xn—C\/E Ung,u<Xn+<g&n>—>1—a

<:>IP’N<M6[X,L—

Under some additional assumption, we can even show that

—_ _S& —_ —_« n 0o
IE”M(MGLXn—g1 1A 25n]) —l-a

holds. Hence when n is large enough, we have

P, pue[X I L +—<1’%&] ~1-a
1 ,LL n \/ﬁ 9 n \/ﬁ n ~ )

=:Ian

where I, ,, is called a two-sided symmetric confidence interval for u with asymptotic level 1 — «, so
Pu(p€lon)~1—a

for large n.

Example 4.14. Suppose that Xi,..., X, "~ Pois(A) for A € (0,00). Then we have

Vil =) 4 N(0,1)

On
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with
Gn =0 =VX

and A = Ey[X;] = Vary(X1). We can either take

. 6n, Or
On =
Sn,
or we can also take &, = v/ X,. Indeed, by [W.L.L.N 3.55( we have
X, 5 A

:\/ig\f)\

by considering f(x) = v/ which is continuous on (0, c0). Hence for a confidence interval for A we can
take either of one of the following

[+ 41—04/25—11 ~ Cl—a/ZoA'n
I = | X, — y Xn y
1 i N + NG
- Cus2Sy — /28
I — X"7<1 /2 ann+C1 /291
i vn vn
-* Cl—a/Q yn ~ Cl—a/Q yn
Iy = |X, - eV X, g a2V A
Jn Jn

89



Fadoua Balabdaoui

Probability & Statistics

5 Estimators

5.1 The Method of Moments and the Maximum Likelihood Estimators

Let k£ € N and recall that the k-th moment of a random variable X is given by E[X*] provided that
X* is integrable, meaning that E[|X*|] < oo holds. A usual notation for the k-th moment is

= E[X"].

If the distribution of X is Py, for some 6, € ©, then we can also write

i (00) = By [X4] = [ aF dPy (o)

Definition 5.1. The k-th sample or (empirical) moment is defined by

1 n
A k
i = — §4 X!
i=1
i.i.d.

with X1,...,X,, '~ Py,. Note that fi; = X,, holds.

In the following definition, we assume that © C R< for a d € N.

Definition 5.2. The moment estimator 0 is a solution to the system of equations
up(0) = jy, for ke {1,...,d}

subject to existence.

QUESTION. Why will this be a good estimator?

— By the we have
A = Egy [X*] = 11 (6o)
for k € {1,...,d} for a random variable X ~ Py, . Assume that fi, = 1z (0), then
i (0) = (o)
and one expects that 0 is close to 0y as n grows.

Examples 5.3.

o Let Xyi,..., X, K" N(mo, o) for 6y = (mg,08) € ©® = R x (0,00) € R?. For X ~ Py for

0 = (m,o?), we have
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To obtain the moment estimator 9, we need to solve

so we arrive at

Hence by using

we see that a solution is given by

.oy a.s./P

é: (Yn,a'n) _— (m(]’o'g) = 90.

ii

o Let Xq,..., X, Kb (o, Bo) for g, Bo > 0. The statistical model in this case is

,P:{P9|9€(O,OO)2}

with
Py(B) = /Bfg(x) dx
for go
Jo(z) = @xa_le_ﬁx]l{mo}-

We are interested in estimating « and . For that, we compute the 2 first moments, 1 (6) and
u2(0) for some 6 = («, 8) € (0,00)%. We have

u1(0) = /Rxfg(x) dx = /000 xﬁ—amo‘*le*m dx

')
o /Ba > a+l—1_-—pB=x
= F(a)/o x e dx
B T(a+1) [ gt g, o«
“F ey e

=1

and

ug(ﬂ):/Rfog(x)dx: 5 /Oooxa”leﬁz dx

I(a)
o ﬂa F(OL+2) >~ BOHFQ a+2—1_-—px
T g fy Ty
=1
ala+1)
-

91



Fadoua Balabdaoui

Probability & Statistics

Now the moment estimator 6 = (&, 5) solves the following system
ILL1(0) = % = yn
pal®) = S5 = LTI X7
5 =X,
A a(a+1) 1 n 2 2 1 n T O\2 ~2
B2 T n 171Xz _Xn:EZizl(Xl_Xn) =0,
Hance we get o
X,
and .,
X,
o =
52

as a solution of the system and thus the moment estimator is given by 6 = (&, B)

Remark 5.4. The moment estimator can be viewed as a “plug-in” estimator. This means that we

raplace a theoretical quantity by its sample/empirical/observed couterpart.

5.2 Maximum Likelihood Estimator (MLE)

Assume we observe i.i.d. random variables Xi,..., X, ~ Py, where 6y € ©. We also assume that for

all 0 € ©, Py admits a density py with respect to a o-finite dominating measure p.
e In the discrete case, p is the counting measure and py(z) = Pyp({x}).
e In the absolutely continuous case, y is Lebesgue measure and Py(B) = [ po(x) dx for B € B.

If f is some real function defined on a domain Z, we will denote by argmax_ ., f(z) the location of a
maximum of f (provided that it exists).

Definition 5.5. The likelihood function is given by

Lx:© =R, 0 [ pe(X:)
i=1
where X = (X1,..., X,;) € X". The mazimum likelihood estimator (MLE) of 6 based on X7,..., X,
is defined by

0 := arg max Lx(0),
0co

subject to existence and uniqueness.
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Remark 5.6. The function x — logz is strictly increasing on (0, c0). Hence

0 = arg max log(Lx(6))
0co

= arg max lo X;)).
g ; g(po(X4))

The function
x(0) == log(pa(X;))
i=1

is called the log-likelihood function. To find the MLE of §, we resort often to finding the solution(s) of

the equation
00 (> log(po(X))) = 0.
i=1

where sg(x) := Jg log(pe(x)) is called the score function.

QUESTION. Why does the MLE work? The hope is that the MLE 0 ~ 0y as n — oo. Note that

. 1 —
f = arg max — log(pe(X;
gma 3 og(pa( )

looks like the “average (sample mean)” of log(ps(X1)), .. .,log(pe(X,)). This makes us think that

0o z arg max Eq, [log(pg(X))]
0cO

with X ~ Py,. The function z — —logz is convex on (0,00). Then, by [Jensen’s inequality 3.34] we

have for any random variable Y > 0 such that E[|log(Y)|] < oo we have

E[-logY] > —logE[Y]
<= EllogY] <logE[Y].

Suppose that for any 6 € © we have Eg,[| log(pg(X))|] < oo with X ~ Py,. Then

Eg, [log(pe(X))] — Eg, [log(pg, (X))] = Eg, [log ( po(X) ) }
—_——

Po, (X)
-y
< log(Eg,[Y]) = log (Eeo [;’?Z,(())(())}) ’
where
o o)) = | e )

=/mummw=1
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This implies that for all # € © we have
B, [log(pe(X))] < Eq, [log(pe, (X))]

and thus we get
0 = arg max Eg, [log(pe(X))].
0c©

Examples 5.7.
, Xn N (po, o) with pg unknown and suppose that og is known, so the parameter

o Let Xla ce
of interest is p19. We want to compute the MLE of yi9. We have P = {P, | p € R} and P, admits

the density with respect to Lebesgue measure
1 _ (m—;;)Z

plt(m) = \/ﬂaoe 202

The likelihood function is
L(w) = [ [ pu(X2)
i=1

for p € R =0©. Then

n
1 — 5 (Xi—p)?
e 29

Le(w) =] Woro
1

=1
~ iz Tl (Xamw)?

(2m)"/2op

take the log n 1 - 2
= Ilx(p) = 3 log(27) — nlog(oo) — %2 ;(Xi — )7,

1 & |
Uy (p) = TZ(Xi—n) = —5Xn—p)=0
% i 90
= pn=X,

and thus p = X, is the unique stationary /critical point of fx. Furthermore, we have

n

lx(p)=——5 <0
x (1) 0(2)

and thus fx is strictly concave on R, so
p=Xn

is the MLE.
o Let Xq,...,X, N Exp(\g) for some unknown Ay € © = (0, 00). Recall that
pa(z) = Ae MLy
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for x € R. Then

n

Lx(\) = [[ pa(xXi) = [T re M1 x,50)
i=1

i=1
— Nl A 2io Xi H]]'{Xi>0}
i=1

=1{x;>0,...,X,>0}

Note that because of independence, we have
P(X;>0,....,X,>0) = ﬁIF’(Xi >0)=P(X; >0)" =1,
i=1
because
P(X; >0) = / Loy fx, (@) dx
R ——

=pa ()

:/ Aoe N dx = 1.
0

with fx, is the density of the distribution of X;. This implies that
Lx(\) = ANle A 2iz X

holds a.s. Furthermore, we have

=1
(N =0 < ;—ZXl:O
i=1
n 1
= A= =7 ==
Zz—lXi Xn
ﬂg(x):—% <0

and thus fx is strictly concave on (0,00), so the MLE is given by
. 1
)\ = =
Xn
iid.

o Let Xi,..., X, "~ N(up,03), where yy and oy are both unknown. This means that

'P:{PQ‘QZ(M,OJ) eERx (0,00)}
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and Py has density

Then

_n — 5oy (Xi—p)®
9)_2‘1;[11)6( H 2mo c '

= #e 202 27, 1(Xs #)
(27()”/20'"
lx(0) = —— 10g(27r) — nlog(o ~ 5,2 Z

The goal is to find the maximizer of fx on © = R x (0, 00). For this, let us fix ¢ € (0,00) and
consider the function

fo(p) = tx(p,0)
and let us maximize f, over R. Since o is fixed, we have
1 — — |
= 72 Z (Xn - U) =0
= u= Yn.
and since again f” < 0, we see that X, is the maximizer of f, over R. We conclude that
Ux(p, 0%) < lx(X,07)

for any o € (0,00). Now put
9(0) = tx(Xn,0) = —= 1og(2w> — nlog(o 202 Z

and let us maximize g on (0,00). We have

Q\S

g'(0) =

1 n
-

and recall that

Q>
3[\’)

0k

S\H
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was the sample variance. Hence

n  no
glo) =2+
g g
n .2 2y !
= — — :O
2@ 0%
= o’ =52
1 n
= o=6,=,|— > (Xi—X,)?
nz:l
Furthermore,
§(0) = 5y = 162 = To(o? - 362)
02 gin 4 n
and
(A _ n .9 ~2\ 2n
g (6n) = (6, —36,) = —— <0.
Jn n

Hence 6, is a local maximizer of g. But since ,, was the only (unique) stationary point we find,

this implies that &,, has to be a global maximizer of g. Hence we conclude that
g(0) < g(om)
holds for any o € (0,00) and thus in total we get
lx(p, 0%) < bx(Xp,67)

for all (u,0?) € ©. Thus the MLE is given by

0=(X,,5%).

97



Fadoua Balabdaoui

Probability & Statistics

6 Hypothesis Testing

Let X1,...,X, beii.d. random variables with distribution Py, for some unknown 6 € ©. To simplify
the notation, we will write X to denote (X1,...,X,) =X =X,,.

PROBLEM. Let ©g and ©; be subsets of © with ©g N ©; = ). We want to decide between the two
statements

Hy: 6 €0 versus Hy: 60,

based on the observation X. This is called a testing problem.
o “f € Oy is called the null hypothesis Hy.
e “f € ©1” is called the alternative hypothesis H;.

Example 6.1. Suppose that X ~ Bin(20,6) is the observed data for # € (0,1). Consider the testing
problem

3
Hy: 6=~ versus Hy: 9:1
Suppose that X = 14 holds. Then we have

20
Pro(X = 14) =Py jo(X = 14) = (14>2—2O ~ 0.036
20 3 14 1 20—14
P, (X =14) =Py 4(X = 14) = (14> <4) <4) ~ 0.168.
We now look at the ratio
Py (X =14)
Pu, (X =14) — 7

QUESTION. Is 4.56 “big enough” to decide for H;?

Definition 6.2. In any testing problem, we can describe the situation as follows:

Truth
Ho H,

€ |Regect H, | Eqcoc of v

1z Type T

v

ég Accert H / Ecoc of
ot Type I

o Error of Type I: The error of rejecting Hy while it is true.
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e Error of Type II: The error of accepting Hy while H; is true.
Definition 6.3. Consider the testing problem
Hy: €0 versus H,: €0,

A (non-randomized) statistical test at some given level « € (0,1) is a measurable map

o X" —{0,1}
such that
1 means that Hy is rejected
P(x) =
0 means that Hy is accepted
and

sup Py, (®(X)=1) < a.
6o €Bg

For 6; € ©; the quantity 5(61) := Py, (P(X) = 1) is called the power of the test ® at 6;.

Remark 6.4. Notice that

1—pB(01) =1 Py, (2(X) =1)
=Py, (2(X) =0)
= Error of the 2™ kind at 6.

Example 6.5 (Statistical test). Let X ~ Bin(20,0) with 6 € ©® = (0,1) and consider the testing

problem

1
VErsus H : 0> 2

so here we have ©g = (0, 3] and ©; = (1,1). Set a := 0.05 and consider the non-randomized test

Hoie

IN
NN

1 if X>c¢
0 ifX<e¢

for some ¢ € R satisfying

00<1/2
<= sup Py, (X >¢) <a (1)
6<1/2
We can show that the function
20 20
_ k —k
0 Po(X > c) _k_ZH <k>e (1- )"
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is non-decreasing on ©. This then implies that

sup Py, (X > ¢) = Pg,—1/2(X > ¢)
00<1/2

and thus ¢ must satisfy

20 790\ /1)
Pyo—1/2(X >¢) <a < Z (k) (2) <a

k=c+1
<~ P90:1/2(X S C) 2 11—«

— F90:1/2(C) > l—a= 0957
where Fp,_1 /> is the CDF of X ~ Bin(20, ). We have
Fyo—1/2(13) ~ 0.942 < 0.95 < 0.979 ~ Fy,_1/2(14)

and thus ¢ = 14 is the first ¢ such that (1) holds. Note that ¢ = 14 is the 0.95-quantile of the
distribution of Bin(20, ). So the test is given by ®(X) = 1{x>14} and we have

sup Py, (X > 14) = Py _y /o(X > 14) = 1 — Fy,_y5(14) ~ 0.02 < 0.05.

0<1/2 ]
- reject Ho

We can compute following values:

6, | 06 075 085
B(61) | 0.125 0.617 0.932

6.1 Randomized Tests

We still consider the testing problem
Hy: 0 €0 versus H;: 0 €0O,.

Definition 6.6. A randomized statistical test at level o € (0,1) is a measurable map

o X" —[0,1]
with
1 means that Hj is rejected
®(X) =14 ¢ means that Hy is rejected with probability ¢
0 means that Hy is accepted
and

sup Eg, [@(X)] < a.
ESSH

For 0; € O, the quantity 5(61) := Eq, [®(X)] is called the power of ® at 6;.
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| have ko reject the
aull hypothe sis that you

didn't eat N\ peza. / Your alpha is

Remarks 6.7.

e Note that ®(X) is always equal to the probability of rejecting Hp.
e If &(X) = g, then this means that we toss a g-coin to decide whether we reject Hy or not.

Examples 6.8 (Randomized statistical test). Consider again X ~ Bin(20, ) and the testing problem
1 1
Hy: 0 <= Versus Hi: 0>-.
2 2

We have seen Py —1/2(X > 14) =~ 0.02 < 0.05, which means that there is room for the test to be less

conservative. This motivates us to consider the randomized test

1 if X >14
O(X)=1<q fX=14
0 ifX <14

with ¢ € [0,1] such that

sup Eg,[®(X)] = a.
00<1/2

We are going to admit that

0 5352 E90 [(P(X)} = EG():l/Q [@(X)]
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Then, ¢ must satisfy

Eg, [®(X)] = 1-Pgy—1/2(P(X) = 1) + ¢ Pg,—12(®(X) = q)
+ 0- ]P’go:l/g(fl)(X) =0)
= Pgy_1/5(X > 14) + qPg_1 (X = 14) = 0.5,

This means that

0.05 — Pgy—1/2(X > 14)
q =
P90=1/2(X = 14)

~ 0.79

and thus the randomized test is given by

1 if X > 14
O(X)=¢079 if X =14
0 if X <14

and the error of type I is exactly equal to a. We can compute the following values:

6, 06 075 0.85
B(61) | 0.224 0.75 0.968

Observe that this test is now “more powerful” than the test in

6.2 The Neyman-Pearson Test

Definition 6.9. A hypothesis Hy is said to be simple, if the corresponding parameter subspace contains
only one element, i.e. Og = {0p}. If |©¢| > 1, then Hj is said to be composite.

In the following, we will consider testing a simple Hy versus a simple alternative H;. In general, if
p is the (unknown) density of X € X™ with respect to some o-finite dominating measure p and if

p € {po,p1} for some known densities pg and p1, we can consider the testing problem
Hy: p=po versus Hi: p=p. (1)
This formulation can be put in the previous context by writing
p=(1—"0)po+0p:
for 6 € {0,1}, ©p = {0} and ©1 = {1}. Then (1) is equivalent to

Hy: 6=0 versus Hy:0=1 (2)
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Definition 6.10. A Neyman-Pearson test at level o € (0, 1) for the testing problem (1) is a randomized
test of the form
1if 2 s g,

po(X)

Pnp(X) =4 qo if 15383 = kq
s p1(X)

0 if (%) < ke

with k, > 0 and g, € [0, 1] such that
Epo [Pnp (X)] = o

NP-lemma 6.11. Let a € (0,1) and ky, qo be such that
Ep [Pnp(X)] = a
holds. Then for any other test ® such that

Eyp, [@(X)] < @

we have

Epl [(I)NP(X)] > Em [&)(X)]
Remark 6.12. We say that ®np is uniformly most powerful (in short UMP).
Proof. We first show that

= / (@xp(@) = 8(2)(p1(2) — kapo(a)) dp(x) 2 0
=:f(x)

holds, where p is the o-finite dominating measure of the problem (i.e. either the counting measure or
Lebesgue measure). Observe that

- [ f@)du(o) + [ (@) du(z)
{z | p1(z)>kapo(z)} {z | pr(z)<kapo(z)}

x) du(x) > 0.
+/{M( f(2) du(z) >

z)=kapo(z)} \_’0"

(1 —®(x)) (pr(x) — kapo(x)) du(x)

/{a: | p1(x)>kapo(z)}

>0 >0
+f (0= 8(0)) (11 (+) — kapo(®)) () > 0
{z | p1(z)<kapo(x)} >0
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This means that
[ (@se(@) = 8a@)p(@)du(e) 2 k[ (@xp(o) = Bla)poo) du(o)

= By, [Pxp(z) — D(2)] >
> E,, [Onp(2)] — By, [0(2)] >

and thus we get

as claimed. m

Remark 6.13. What are k, and ¢,7?

— It can be shown that k, can be always taken to be equal to the (1 —a)-quantile of the distribution
of Y = i;gg under Hy (so p = pg). This means that if we denote by Fj the CDF of Y under X ~ pg
then

ko =inf{y e R | Fo(y) > 1 —a}

holds. On the other hand, we know that ¢, satisfies

Ppo (Y > ka) + ¢aPp, (Y = ka) = a
<—1- Fo(ka) + qa(Fo(ka) — Fo(ka, ) =,

where Fy(kq—) = limy_,;, Fy(y). Hence

—(-Fo(ka)
e Utal) it By (k) > Fo(ka-)

Ga =
0 it Fy(ka) = Fo(ka_),

so the value of ¢, depends on whether Fj is continuous at k, or has a jump.
Example 6.14. Let X ~ Bin(n, ) with n € N and 6 € (0,1). We want to test
Hy: 6 =0, versus Hy: 06=0,

for 61 > 0y using the NP-test. Note that

i) = (1)1 - oy

is the density of X ~ Bin(n, #) with respect to the counting measure and define py = py, and p; := py, .
Then

g;g; zgg:g;i:_: (91(1—90) )!L’(l—l%)”:: o)

- “\G(1—61)/) \1—6,
1
>
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and g is strictly increasing and bijective. This means that the NP-test can be rewritten as

1 i X >e,
Onp(X) =4 ¢qn if X =cq
0 if X <ecq

where ¢, is the (1 — a)-quantile of the distribution of X under Hy, so ¢, is the (1 — ) quantile of

Bin(n, 6p) and g, as in the remark.

Example 6.15. Let X = (X1,...,X,,) € R” (so X = R) where X1,..., X, L N(u,0?) with u € R

unknown and og > 0 is known. Consider the testing problem
Hy: p=po versus H :p=m

with pg # p1. We want to determine the NP-test of level a. For u € R, we have
( ) n 1 < 1 ( )2>
L1yeeey Ty ——lliex —— (T —
PulT1 v 1 /—2 0 p 9 g H

1 R )
= —x—€eXp| ——= T, — [
Ver'of ( 20 ;( ! )

and thus

pi(@1, - Tn) exp (2;2)(2”:(% — po)® — Zn:(afi - M1)2)>

pO(Ilw",xn) i—1 i—1

@) (n(ul — o)
=exp| —————

_ n(p1 — po)"”
0’% (xn MO) 20[2)

where (1) follows by inserting —pug + po into the second sum and computing it. Hence

pl(xlw"?xn)
po(X1, ..y Tp)

< (1 — p0)(Tn, — po) > “something”.

> “something”

For the right-sided testing problem g3 > po this means that
Ty — o > “something” <= 7, > “something”

since here p1; — po > 0. Then, the NP-test is given by

(I)NP(Xl,...,Xn): du ian:Ca
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with ¢, € R and ¢, € [0,1] such that

EMO [@Np(Xl, e 7Xn)] = .

In the following, we will use the fact that if Xi,..., X,, are independent random variables such that
X; ~ N (pi,0?) then

z”: a; X; ~ N(Zn: a;fii, Zn: ajo})
i=1 i=1 i=1

holds for every a; € R. In particular, if X;,...,X, e N (p,02) then

_ 1 n o2
X, = E;XL NN(Ua?O)
holds which implies that
P (X, =c,)=0

because of the continuity of the normal distribution. Hence

1 if X, >ca
Onp (X, .., X)) = .
0 otherwise

where c,, is the (1 — a)-quantile of the distribution of X,, under Hy. Note that by using

B3 Y — Ho Ca — M0
Az RGO

(0 iy

we get

P (X, >co) =

=Py, ( "T;‘S > C“‘T%’;‘; )
—P (Z > ﬁ) =«

= 1-P(Z < flo ) =1 —
< V/n> “

where Z ~ N(0,1), so C\/“# = (1—q is the (1 — a)-quantile of N'(0,1). Using this approach, we also

get

1 if Yeazmo) o ¢

0 othervvlse.
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For the left-sided testing problem, we assume that pg > p1. Recall that the NP-test is based on the

ratio

P (B0, 2n) _ (n(ulg to) (Tn — Mo)) exp <_2(u1 - M0)2> > “something”
Do (T15 -+, Zn) o 20§

< T, < “something”.

Using similar arguments as for the right-sided problem, we can show that the NP-test of level « is

given by

1 if Eazm0) o ¢

Onp (X, ..., X)) = oo
0 otherwise.

Now consider the two-sided testing problem
Ho: p=po  versus  Hy: pu+# po,

so ©1 = R~ {0} which gives rise to the name. Note that here we cannot apply the NP-test, because

H, is not simple. However, we can show that the following test

1 if YViXazwol o 0

B(Xy,...,X,) = 7 $1-o/2
0 otherwise

has good properties and is of level a.. Let us show that it is indeed of level a.

Proof. We need to show that
E, [®(X1,...,Xn)] <«

holds or equivalently o
X —
Puo (\/ﬁ to) > Cl—(x/Q) <a
g0
under Hy, so X,, ~ N (ug,08) and we also have

M ~ N(0,1).

0o
Thus we get
X, —
P,, <\/ﬁ|naoﬂo| > Cla/2> =P(|Z] > Ci—a/2)
=P(Z > Coajpp or Z < —Ci_ay2)
=P(Z > Cloap) T P(Z < —Cioayo)
= 2P(Z > lea/Z)
=21-(1-%9)) =«
for Z ~ N(0,1) by using the symmetry of the normal distribution. O
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7 One Sample Tests

SETTING. We observe i.i.d. random variables X1, ..., X,, whose distribution results from shifting some

“baseline” distribution by some amount 6§ € ©. This 6 is called the shift or location parameter.
Examples 7.1.

o Let Xy,..., X, i N(0,0?) for § € R and o € (0,00), where o can be known or unknown. The

“baseline” distribution is N'(0,0?) and the location parameter is

0= Eo[X1] =F;'(3)
—— ———
expectation median

with Fy the CDF of N'(6,0?%). Note that here the expectation and the median are equal because
N(0,0?) is symmetric around 6 (generally this does not hold).

e Let Xy,..., X, S U(0,6+1). The “baseline” distribution is ¢(0, 1) and the location parameter

0 is
0= BolXi] — § = Fy '(3) -

(SIS

We can consider the following testing problems:
o Right-sided given by
Hy: 6 =20, versus Hyi: 0>0y
or Hy: 0<86, versus Hy: 0> 0.
o Left-sided given by
Hy: 0 =0, versus Hy: 6<6y
or Hy: 6> 6, versus H,: 0<6,.
o Two-sided given by

H() 1 0= 00 versus H1 . 0 7& 00.

7.1 The Student’s Test
We assume that X1, ..., X, =" N(0,02). For v € (0,1) set
¢y = 7-quantile of N(0,1)

and let us first assume that o = o¢ is known.
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e Consider the (simplified) right-sided testing problem
Hy: 0 =20, versus Hi: 0=0,
with 6; > 6. We know that the NP-test

Onp (X1, Xn) =1 mx,—00)

{ ><1—a}

oo
is UMP of level « by the
e For the (simplified) right-sided testing problem
Hy: 0 =0, versus Hy: 60=0

with 6y > 6; we know that the NP-test

Oyp (X1, X)) =1 e
(2 Xa=fo) ¢y

00
is UMP of level «, again by the

e For the two-sided testing problem
Hy: 60 =20, versus Hy: 6#06
the test

O(X1,. ., X)) =1 ¢ _
" {W>Cl—a/2}

is of level o and has some “good” properties.

Note that if o is unknown, the previous tests cannot be used. In a way, we need to estimate o. In this

case, o is called a “nuisance parameter”.

Definition 7.2 (The student distribution). A random variable Y is said to have a Student distribution

if
7
VX/m
with Z ~ N(0,1) and X ~ X%m) = “Chi-square distribution with m degrees of freedom”, that is

X=X +X2+... +X2,

where X1,...,X,, v (0,1) and Z and X are independent. The Student distribution is also called
the t-distribution and denoted by
Y ~ Tim)-
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Remark 7.3. It can be shown that the Student distribution with m degrees of freedom is absolutely

continuous with density
)

U

for x € R. Note that f is symmetric around 0. If m = 1, then

f(x)

T(1) = Cauchy distribution.

Theorem 7.4. Let Xy,...,X, ik N(0,0?). Then we have

V(X — )

S, ~ ﬁn—l)v

where

n—1+*%

1=

The Student’s test. Let X1,..., X, "= N(0,0%) and for simplicity, consider the (simpler) testing
problem
Hy: 6=20, versus Hi: 6=0

with 6, > 6y and o is unknown. Consider the following test

1 if Yr(Xn=0o) >t 11a
B(X1,. .., X,) = S
0 otherwise,

where
th—1,1-a = (1 — a)-quantile of T(,_1).

The test defined above is of level . Indeed, we have

Ego [q)(Xla cee 7Xn)] = ]POO (w > tn—l,l—a)

= P(Tn_l > tn—l,l—a) =1- (1 — Oé) =«

by [TTeoRem T for Tt ~ T

Since the test ® does not involve the particular value of 6, it can be used again for testing

Hy: 0 =0, versus Hy: 0> 0.
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Now let § < 0y and compute

EQ[(I)(XM s ,Xn)] =Py <W > tn—l,l—a)

n(X,—0+6-6
= Pé’ <f( S O) > tn—l,l—oz)

_ P, ViXn —0) Vb —6) b
Sh, Sh, ’
—_——
>0
S P@ (\/ﬁ( Sn - 0) > tnLloz)

This means that

IPO (W > tnl,la) S 1-— PG ( M S tnl,la)
n n

~T(n-1)
=l-(l-a)=«

and the calculation holds for every 6 < 8. Hence we get

sSup PQ (m > tn—l,l—a) = sup E@[(I)(Xh cee 5Xn)] § «
0<6o " €0,

with ©g = (—o0, fp], so ® has level « for the testing problem

Hy: 6 <86, versus Hy: 0> 0.
For the analoguous left-sided testing problem

Hy: 0>0,h versus Hy: 6<6

we can show that the test

1 if Vn(Xn—6o)
(I)(Xla"'aXn): Sn
0 otherwise

< tnfl,a

is of level o, meaning that

sup Eg[®(X1,...,X,)] < a,
0>0,

where

tn—1,0 := a-quantile of T, _1).

111



Fadoua Balabdaoui

Probability & Statistics

Now consider the two-sided testing problem
Hy: 60 =20, versus Hy: 0+#6,.

Here, the test
1 if V| X —6o|

(I)(Xla"'aXn): Sn
0 otherwise

>tp11-a/2

is of level «. Indeed, put
\/E(Xn — 90) under Ho
=——F— ~ Tu-y

and compute

(1)

P90<|Tﬂ—1| > tn—17l—a/2) = ]P)(|Tn—1| > tn—l,l—a/2)
= HD(Tn—l > tnfl,lfa/2) + IP>(Tn—l < _tnfl,lfoz/Q)
=2 P(Tnfl > tnfl,lfa/Q)

2o1-0a-3)=a

where (1) works because 7,1y does not depend on 6 and at (2) we used the symmetry of the student’s
distribution.

Example 7.5. We observe the following values sampled from five i.i.d. random variables with distri-
bution A (,0?) :

0.926, 0.513, 1.272, 1.359, —0.038
We want to know whether 6§ = 0 is a plausible assumption. Formally, we want to test
Hy: 6=0 Versus H,: 0#0.

Since ¢ is unknown, we may use the two-sided student test in this case for n = 5. We take o = 0.05,

put _
B V5 X5

T4 . S5

and we know that
ta0.975 = 2.776

is the 0.975-quantile of 7). Using this, we find that
X5 =0.806, S5 = 0.577
— |T4| = T4 =3.121 > t4,0,975

and thus we reject Hy at the level a = 0.05. Let us now take o = 0.01. The only thing that changes
in the test is the quantile of 74, so we compute

t470_995 =4.604 > Ty.

Hence at this level we cannot reject Hy.
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7.2 The Sign Test

Let X4,..., X, beii.d. random variables from an unknown distribution. Let m denote the (unknown)
median of distribution, so
m = F_l(%)
where F' is the CDF of the distribution. Consider the testing problem
Hy: m=mg versus Hy: m+#mg

for some fixed value mgy. We assume that the CDF F' is continuous at m. This means that

1
—_——— 2
=F(m)

holds for every i € {1,...,n}. Consider the statistic
. = under H .
T ={i | Xi >mo} =D Uix,ome} -~ Bin(n, 3).
i=1

We want to reject Hy if |T,, — §| is “too big”. Consider the test

1 if |1, — 2| > co
B(Xy, ..., X,) = T~ 51
0 otherwise,

where ¢, is chosen such that
Em" [(I)(Xh te ’X")} = IP)m0(|Tn - %' > Ca) <a.
Now using
(T — 2> ca} = {Tn > 2+ cal U{T, < 2 —co}
we get

Pro (| T = 51 > ca) = Prg(Thn > § + ca) + Pry (T < § — ca)

P
Proo (Tr > 5 + ca) + Py (n — Ty, > § + ca).

Now observe that

n

n — Tn =n — Z]l{X1>mo} = Z(l — ]l{Xi>m0})
i=1 i=1

n
under Hy . 1
= E Tix,<moy  ~ Bin(n, 3).

=1
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This implies that

IP)mo(|Tn - %I > Ca) =

P (T > 5 4 ca) <
= Ppy(Th > 5 +ca) <5

and thus we take ¢, such that

2 + cq = (1 = §)-quantile of Bin(n, 3).
Example 7.6. Let Xq,..., X, b N(0,0%). We want to test

Hy: 6=0 versus H,: 60#0.

Note that here 6 is the expectation and also the median. This means that we can use one of the

following tests:

e The Student test

1 ifm>tnfllfa2
Oy (X1,..., X)) = Sn A=e/

0 otherwise.

e The sign test

1 if |1, — 2| > ca
Bo(X1,..., Xp) = 2
0 otherwise,

where T,, and ¢, are as above.

Note that the Student test uses some knowledge about the distribution while the sign test does not,

so we may expect the first test to be better (i.e. to have a higher power).

7.3 Two Sample Tests

SETTING. We observe X1,...,X, bl N(01,0%) and Y1,...,Y, L N(0s,02) for 01,0, € R and
o € (0,00) such that (Xi,...,X,) and (Y1,...,Y,) are independent. We want to test
Hy: 601 =0, versus Hy: 0, #0-.
Remark 7.7 (Some facts about the Gaussian distribution).
2]

(1) For any random variable Z we have Z ~ N (6, 0?) if any only if for all ¢ € R we have E[e

. 1,2 2 .
=217 Here E[e"#] is called the characteristic function.

(2) Z=(Zy,...,Z)T € R* for some k € N is a Gaussian vector with expectation 8 and covariance
matrix 3, so Z ~ N (0, %), if and only if

E[eitTZ] _ eitTG—%tTZt
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holds for all ¢ € RF. Here 8 = (01,...,0;)T with 6; = E[Z;] and

Zij = COV(ZZ‘, Z]) = E[(Zl — 91)(23 — QJ)] = ]E[ZzZ]] — 019J

(3) If Zy,...,Z; are independent random variables such that Z; ~ N(6;,02) for i € {1,...,k},

then Z = (Z1,...,2;)7 is a Gaussian vector with parameters 8 = (61,...,0;) and ¥ =
diag(o?,...,02) € R**¥ Let t = (t1,...,tx) € R*. Then we have

k
E[eith} _ E[ei ijltjzj] ) H eitiZ;
j=1

k

k

. . 1,2 2

(2 I I E[eztjzj’} — | I eZtJOj_itjUj
i=1

j=1
= ¢! Sk, tﬂa‘% Sk o]
_ ez'tT(%%tTZt7
where at (1) we used independence.
(4) If Z ~ N(0, I;,) € R, then for any § € R* and A € R**" we have
Y =0+ AZ ~ N(9, AAT).
~———

€Rk

(5) Any linear combination of the components of a Gaussian vector is a Gaussian random variable.
Indeed, let Z = (Z1,...,Zk)T ~ N(0,%) and ay,...,a; € R. Put X := Z?:l a;Z; and a =
(a1,...,ax)T, then

X=d"2Z

holds. For t € R put a := ta and observe that

]E[eitX] — ]E[eitaTZ} _ E[eiaTZ]

— eiaTeféaTEa

iaTOt— %aTEatz

= e ,

so X ~ N(aT8,a”Sa).
(6) f Z = (Zy,...,Z;)T is a Gaussian vector, then Zy,. .., Z are independent if any only if
COV(ZZ‘7 ZJ) =0 (1)

holds for all 1 <7 < j < k. Indeed, observe the following.
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“=". If Z1,...,Z), are independent, then Z; and Z; are independent for any fixed 1 <1 < j <k
and thus (1) holds.

“«<=". Suppose that ¥;; = cov(Z;, Z;) = 0 holds for all 1 <i < j < k. Then we have
¥ = diag(o?,...,0%)
with 02 = cov(Z;, Z;) = var(Z;). Let § = E[Z] and t € R¥. Then

T Tg_ l.T Sk )
E[ezt Z] :ezt -5t Et:ezzjzl 0; 22] N ] 7

k 1 k
_ Heitj i Et o’ H zt] J
j=1 j=1
which is equivalent to
k
H eitiZi | = H]E[elthj]7
Jj=1

so Z1,..., 2y, are independent.

(N U Z=(Zy,....,72,)" and W = (Wy,...,W,,)T are such that (Z, W)T is a Gaussian vectors,
then Z and W are independent if any only if

cov(Z;, W;) =
holds forall1 < j<kand 1 <j<m.

Remark 7.8. Recall that if Xq,..., X, BN N(6,5?%) then we have

Now note that

VAR, — ) _ it Vntt
S, S — N2
n - 1\ (Xi—Xn)

_ 2 _
Then M ~ N(0,1) is independent of —L5 37" ( '—Xn) and Z?:l(%f ~ X%nfl) holds.
Proof.
e We already know that Xi,..., X, bhg N(0,5?%). From above we also know:

— Fact 3: X = (X1,...,X,)7 is a Gaussian vector.

116



Fadoua Balabdaoui

Probability & Statistics

— Fact 5: We know that X,, is a Gaussian random variable with X,, ~ N (E[X,], Var(X,))
which implies that

X, -0

a2

n

~N(0,1).

e We now show that M is independent of ﬁ S (@) ’ . To show this, we show that
X, is independent of (X7 — X,,,..., X,, — X,,)T. We have that (X,,, X1 — Xp,..., X, — X,)T
is a Gaussian vector since it is a linear transformation of (X1,...,X,,)T (see fact 4 above). We
also have

cov( X, Xi — Xp) = cov(Xp, X;) — cov(Xp, Xp)
= cov(Xp, X;) — var(X,,)

1 n 0_2
= cov ﬁzxj’Xi Y
Jj=1
2
= —cov(X;, X;) z
1 o?
= “var(X;) — — =0
var(X;) -
which concludes the proof. O

Back to the testing problem. Recall the testing problem

H() : (91 = 92 versus H1 : 91 75 92.

The vector Z = (X1,...,Xn,Y1,...,Ym)T € R"™™ is a Gaussian vector with expectation
0=(61,...,00,05,...,0)7 ¢ R*™
———— ——
n m
and covariance ¥ = diag(o?,...,0%) = 02l 1. Then X,, — Y, is a Gaussian random vector because

it is a linear combination of Z. Its parameters are

E[X, — Vo] = E[X,] - E[V,n] = 61 — 0,

and ) )
Var(X,, —Y,,) = var(X,) +var(Y,,) = 7 4+7 = MU2,
noom nm
hence X, — Vi ~ N (61 — 0, 262) and X,, — Y, "% A7 (0, 2Emo2) |

THE IDEA. If | X, — Y| is “too big”, then we reject Hy. But what is “too big”?
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CASE 1. 0 = g9 is known. Then under Hy we have

The test of level « is given by

1 it fmm KVl o
(X1, X Vi, Vi) = nm oo tmafz

) m
0 otherwise,
where (j_q/2 is the (1 — §)-quantile of N'(0,1).
CASE 2. ¢ is unknown. It is a “nuisance” parameter which needs to be estimated. Consider

8- [T 3 -V

and

It can be shown that under Hy we have
Tn,m ~ 7-(n+m—2)~

In this case, the test of level a is given by

1 it T, >t —21—
(I)(Xl,...,Xn,Yl,...,Ym)Z | ) ‘ n+m—2,1—a/2

0 otherwise,

where 2,4, _21-q/2 is the (1 — %)—quantile of Ttntm—2)-

118



Fadoua Balabdaoui

Probability & Statistics

119



Fadoua Balabdaoui

Probability & Statistics

APPENDIX

A Convergence Results for Random Variables

Definition A.1. Let p > 1 and let (X,,),, be a sequence of real-valued random variables. We say that
P
X, converges in LP to a random variable X, denoted by X, L, X, if

E[| X, — X|P] =20
holds.

Definition A.2. A family (X;);cs of real-valued random variables is said to be uniformly integrable,
or UI in short, if

K—o00
sup B[ X1, > ] =0
1€

holds.

If not indicated otherwise, the following implications hold for any sequence of random variables and E

denotes convergence of the mean, ODF, denotes pointwise convergence of the CDF’s at the continuity
. CF S L .

points and — denotes pointwise convergence of the characteristic functions.

L" rzp=>1 LP

Ll
DCT

E

iy
Ul "UI
a.s. /_\\&

up to subsequence assuming limit
is constant
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B Summary of Distributions

Definition B.1. For a random variable X : 2 — R the support of X is defined to be the smallest

closed set Rx C R with P(X € Rx) = 1.
Definition B.2. For any random variable X : 2 — R we define its skewness by

_ E(X-E[X)?* __E[(X - E[X])’
E % B[(X — E[X])27/2

Definition B.3. For ¢,c > 0 we define the gamma function by

I'(t) ::/ ' lem " dx
0

and the lower incomplete gamma function by
(&
G(t,c) :z/ e du.
0

B.1 Discrete Distributions

Random Variable X Uniform ~ U(E) Bernoulli Binomial Geometric Poisson Negative Binomial
Parameters E pel0,1] neN,pel0,1] pe(0,1] A>0 7> 0,pel0,1]
Support Ry finite set £ C R {0,1} {0,1,...,n} {0,1,2,...} {0,1,2,...} {0,1,2,...}

PMF P(X = k), k € Rx x (1= p)Li=o +ple=r | ()P —p)"* (1=pkp e Tt —p)

(oo tnEB| (L -p)Liso+plis1 | hp(n—t,1+1) | 1— (1 —p)ld+! Ll

n

CDF P(X <1), t€ Ry

Lp(v,k+1)

giat _gi(b+1)t

Characteristic function gx (f) (at1)=c%)! 1—p+pe’ (1 —p+pe)" e exp{A(e’ — 1)}

. 1—
Expectation % YecE® p np ,,p A lﬁTpp
(b—a+1)>—1 1
Variance for E :lfa ’ b} p(1—p) np(l —p) pzp A (1—11;)2
! 1-2p 1-2p 2—p 1 14p
Skewness 0 V) Vo) T—p VAN Nzl
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B.2 Continuous Distributions

Random Variable X

Uniform Exponential Gaussian Beta Gamma Xf
Parameters la,b] A>0 ueR o?>0 a,f>0 v,¢>0 keN
Support Rx la,b] CR [0,00) R [0,1] [0, 00) [0, 00)
Density fx(z), © € Rx = e \/217067 (eoi)® % r’é:’)x“"le’"’; mm’“/z’le"’ﬂ
CDF P(X < 1), t € Ry oS IRRIRES DR N e P (1) I(a, B) get %//f)
Characteristic function ¢x (t) C";};ﬁr’ ioit(]?é 0 N exp {m‘t - if} Fi(a;a + Bsit) (%) (1 — 2it)=*/2
Expectation %b % I otz 1 k
Variance % = o? m % 2k
Skewness 0 2 0 % \iﬁ %
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