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Motivation and setup

• the goal of this chapter is to treat the implied volatility which requires an
algorithm for solving a nonlinear equation

• the general problem is

• given a function F : R→ R, find an x∗ ∈ R such
that F (x∗) = 0

• in general, of course, we cannot find an x∗ analytically, and must therefore
content ourselves with an approximation via a computational method

• it is worth keeping in mind that, depending on the nature of F , there may
be no suitable x∗, exactly one x∗ or many x∗ values

• we introduce two algorithms for solving a nonlinear equation

• the bisection method
• Newton’s method (also called Newton-Raphson method)
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The bisection method

• is based on the observation that if a continuous function changes sign, then
it must pass through zero, that is

• for continuous functions F , if xa < xb with F (xa)F (xb) < 0
then there exists some x∗ with xa < x∗ < xb
with F (x∗) = 0

• having found xa and xb with F (xa)F (xb) < 0 we could evaluate F at the
mid-point xmid := (xa + xb)/2

• the sign of F (xmid ) must match either the sign of F (xa) or F (xb); this
means that one of the intervals [xa, xmid ] or [xmid , xb] must contain an x∗

• by repeating this process we can construct an arbitrarily small interval in
which an x∗ must lie, hence we can find an x∗ to any level of accuracy
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The bisection method: algorithm

• Step 1: find xa and xb with xa < xb such that F (xa)F (xb) ≤ 0

• Step 2: set xmid := (xa + xb)/2 and evaluate F (xmid )

• Step 3: if F (xa)F (xmid ) < 0 then reset xb = xmid . Otherwise
reset xa = xmid

• Step 4: if xb − xa < ε then stop. Use (xa + xb)/2 as the approximation
to x∗. Otherwise return to Step 2.

• note that we must choose a value ε > 0 for our stopping
criterion xb − xa < ε

• it is easy to see that the value (xa + xb)/2 on termination is no more than a
distance ε/2 from a solution x∗ (hence ε controls the accuracy of the
process)

• because the bisection method halves the length of the interval [xa, xb] on
each iteration, we may bound the error at the kth iteration by L/2k+1

where L is the length of the original interval, xb − xa

• this is referred to as a linear convergence bound because the error decreases
by a linear factor (in this case 1/2) on each iteration
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Newton’s method

• is faster than the bisection method

• can be derived in a number of ways: here we will use a Taylor series
approach

• suppose we wish to compute a sequence x0, x1, x2, ... that converges to a
solution x∗

• we may expand F (x + δ) for small δ by

F (xn + δ) = F (xn) + δF ′(xn) + O(δ2)

• ignoring O(δ2) and setting F (xn) + δF ′(xn) = 0 gives δ = −F (xn)/F ′(xn)

• it follows that if xn is close to a solution x∗ then

xn+1 = xn −
F (xn)

F ′(xn)

should be even closer

• given a starting value, x0, the last iteration defines Newton’s method
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Newton’s method

• since we discarded an O(δ2) term in Taylor’s approximation we may expect
that the error xn − x∗ squares as n increases to n + 1: that is
if xn − x∗ = O(δ) then xn+1 − x∗ = O(δ2)

• to see this more clearly, note that using F (x∗) = 0 and
assuming F ′(xn) 6= 0 a Taylor series gives

xn+1 − x∗ = xn − x∗ −
(
F (xn)− F (x∗)

F ′(xn)

)
= xn − x∗

−
(xn − x∗)F ′(xn) + O((xn − x∗)2)

F ′(xn)

= O((xn − x∗)2)

• this type of analysis can be formalised in a theorem
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Newton’s method: Theorem

Suppose

• F has a continuous second derivative

• x∗ ∈ R satisfies F (x∗) = 0 and F ′(x∗) 6= 0

Then

• there exists a δ > 0 such that for | x0 − x∗ |< δ the sequence given by

xn+1 = xn −
F (xn)

F ′(xn)

is well-defined for all n > 0,

• with
lim

n→∞
| xn − x∗ |= 0,

• and there exists a constant C > 0 such that

| xn+1 − x∗ |≤ C | xn − x∗ |2 .
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Newton’s method: comments

• the last inequality shows that Newton’s method has a quadratic (or second
order) convergence

• this result requires the starting value x0 to be chosen sufficiently close
to x∗; in practice Newton’s method works very well when a suitable x0 is
found, but may fail to converge otherwise
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Newton’s method: computational example

• suppose we wish to find the value of x∗ such that P(X ≤ x∗) = 2
3

where X ∼ N(0, 1)

• essentially we want to solve F (x) = 0, where F (x) := N(x)− 2
3

with

N(x) =
1
√

2π

∫ x

−∞
e−

s2

2 ds

• it follows from the definition of N that F is an increasing function and
F (0) = 1

2
− 2

3
< 0 and lim

x→∞
F (x) = 1− 2

3
> 0

• hence we may immediately conclude that the equation F (x) = 0 has a
unique solution 0 < x∗ <∞
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Newton’s method: computational example

(cont’d)

• we may apply the bisection method with xa = 0 and with xb sufficiently
large such that F (xb) > 0

• for the choice xb = 10 and a tolerance of ε = 10−5 in the stopping criterion
the bisection method needs 20 iterations

• setting x0 = 1 and stopping with Newton’s method
when | xn+1 − xn |< 10−5 only four iterations are needed to produce an
error of around 10−12 and the error roughly squares from one step to the
next

• repeating Newton’s method with x0 = 2 however, results in a sequence that
blows-up
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Motivation

• the Black-Scholes call and put values depend on S , K , r , T − t and σ2

• of these five quantities, only the asset volatility cannot be observed directly;
how do we find a suitable value for σ?

• approach: extract the volatility from the observed market data - given a
quoted option value, and knowing S , t, K , r and T find the σ that leads to
this value

• having found σ, we may use Black-Scholes formula to value other options
on the same asset

• a σ computed this way is known as an implied volatility ; the name
indicated that σ is implied by option value data in the market

• this is a totally different way to get σ compared with the historical volatility
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Option value as a function of volatility

• we focus here on the case of extracting σ from a European call option quote

• an analogous treatment can be given for a put, or alternatively, the put
quote could be converted into a call quote via put-call parity

• we assume that the parameters K , r and T and the asset price S and
time t are known

• in practice we will typically be interested in the time-zero case, t = 0
and S = S0

• we thus treat the option value as function of σ only, and, from now on,
denote it by C(σ)

• given a quoted value C∗, our task is to find the implied volatility σ∗ that
solves C(σ∗) = C∗

• it is possible to exploit the special form of the nonlinear equation arising in
this context
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Option value as a function of volatility:

σ →∞

• since volatility is non-negative, only values σ ∈ [0,∞) are of interest

• let us look at C(σ) in the case of large or small volatility

• first assume σ →∞

• recall

d1 =
log(S/K ) + (r + 1

2σ
2)(T − t)

σ
√
T − t

so that d1 →∞ and hence N(d1)→ 1
• similarly d2 = d1 − σ

√
T − t so that d2 → −∞ and

hence N(d2)→ 0
• using Black-Scholes formula

C (σ) = S · N(d1)− K · e−r(T−t) · N(d2)

it follows that
lim

σ→∞
C (σ) = S
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Option value as a function of volatility:

σ → 0+

• next we look at σ → 0+ and distinguish three cases

1 S − Ke−r(T−t) > 0; in this case log(S/K ) + r(T − t) > 0
so that if σ → 0+ we have d1 →∞, N(d1)→ 1, d2 →∞
and N(d2)→ 1.
Hence, C → S − Ke−r(T−t).

2 S − Ke−r(T−t) < 0; in this case log(S/K ) + r(T − t) < 0
so that if σ → 0+ we have d1 → −∞, N(d1)→ 0,
d2 → −∞ and N(d2)→ 0.
Hence, C → 0.

3 S − Ke−r(T−t) = 0; in this case log(S/K ) + r(T − t) = 0
so that if σ → 0+ we have d1 → 0, N(d1)→ 1/2, d2 → 0
and N(d2)→ 1/2.
Hence, C → 1

2 (S − Ke−r(T−t)) = 0.

• these three cases are summarized neatly by the formula

lim
σ→0+

C(σ) = max(S − Ke−r(T−t), 0)
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Bounds for the option value as a function of

volatility

• now we recall from previous lectures that the derivative of C with respect
to σ, that is the vega, is given by

vega = S
√
T − t N′(d1)

and in particular we know that ∂C/∂σ > 0

• since C = C(σ) is continuous with a positive first derivative, we conclude
that C is monotonically increasing on [0,∞)

• from
lim
σ→0+

C(σ) = max(S − Ke−r(T−t), 0)

and from
lim
σ→∞

C(σ) = S

the values of C(σ) must lie between max(S − Ke−r(T−t), 0) and S

• consequently the equation C(σ) = C∗ has a solution if, and only if,

max(S − Ke−r(T−t), 0) ≤ C∗ ≤ S
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The second derivative of C (σ)

• for later use we will calculate the second derivative

• differentiating

vega :=
∂C

∂σ
S
√
T − t N′(d1)

we get
∂2C

∂σ2
= −

S
√
T − t
√

2π
e−

1
2
d2

1 d1
∂d1

∂σ

• using

d1 =
log(S/K) + (r + 1

2
σ2)(T − t)

σ
√
T − t

we have

∂d1

∂σ
= −

log(S/K) + r(T − t)

σ2
√
T − t

+
1

2

√
T − t

= −
log(S/K) + (r − σ2/2)(T − t)

σ2
√
T − t

= −
d2

σ
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The second derivative of C (σ) (cont’d)

• consequently

∂2C

∂σ2
=

S
√
T − t
√

2π
e−

1
2
d2

1 ·
d1d2

σ
=

d1d2

σ

∂C

∂σ

• from the last equation it follows that ∂C/∂σ has its maximum over [0,∞)
at σ = σ̂ given by

σ̂ :=

√
2 |

log(S/K) + r(T − t)

T − t
|

Exercise Prove that ∂C/∂σ has a unique maximum over [0,∞) at σ = σ̂ defined
above.

• moreover
∂2C

∂σ2
=

T − t

4σ3
(σ̂4 − σ4)

∂C

∂σ
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Bisection for computing the implied volatility

• we will write our nonlinear equation for σ∗ in the form F (σ) = 0 where
F (σ) = C(σ)− C∗

• to apply the bisection method, we require an interval [σa, σb] over
which F (σ) changes its sign

• it follows from
lim
σ→∞

C(σ) = S

and from
lim
σ→0+

C(σ) = max(S − Ke−r(T−t), 0)

and the monotonicity of C(σ) that this can be done by fixing K
(say K = 0.05) and trying [0,K ], [K , 2K ], [2K , 3K ],...
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Newton’s method for computing the implied

volatility

• Newton’s method takes the form

σn+1 = σn −
F (σn)

F ′(σn)

where F ′(σ) = ∂C
∂σ

is given above

• using F (σ∗) = 0 and the mean value theorem, we have

σn+1 − σ∗ = σn − σ∗ −
F (σn)− F (σ∗)

F ′(σn)

= σn − σ∗ −
(σn − σ∗)F ′(ξn)

F ′(σn)

for some ξn between σn and σ∗

• hence
σn+1 − σ∗

σn − σ∗
= 1−

F ′(ξn)

F ′(σn)
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Newton’s method for computing the implied

volatility

• we know that F ′(σ) is positive and takes its maximum at the point σ̂ from
above

• hence, using the starting value σ0 = σ̂ we must have 0 < F ′(ξ0) < F ′(σ)
so that the last equality implies

0 <
σ1 − σ∗

σ0 − σ∗
< 1

• this means that the error in σ1 is smaller than, but has the same sign as,
the error in σ0

• we will distinguish if σ̂ < σ∗ or if σ̂ > σ∗
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Newton’s method for computing the implied

volatility

• to proceed assume first that σ̂ < σ∗

• then from the last inequalities we have σ0 < σ1 < σ∗

• we know F ′′(σ) < 0 for all σ > σ̂ and ξ1 lies between σ1

and σ∗

• hence 0 < F ′(ξ1) < F ′(σ1) and

0 <
σ2 − σ∗

σ1 − σ∗
< 1

• repeating this argument we get

0 <
σn+1 − σ∗

σn − σ∗
< 1 for all n ≥ 0

so the error decreases monotonically as n increases

• in a similar manner one can treat the case σ̂ > σ∗
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Newton’s method for computing the implied

volatility

• overall we conclude that with the choice σ0 = σ̂ the error will always
decrease monotonically as n increases

• it follows that the error must tend to zero and the previous theory shows
that the convergence must be quadratic

• therefore using σ0 = σ̂: this is our method for computing the implied
volatility
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Implied volatility with real data

• we now look at the implied volatility for call options traded at the London
International Financial Futures and Options Exchange (LIFFE) as reported
in the Financial Times on Wednesday, 22 August 2001

• the data is for the FTSE 100 index, which is an average of 100 equity
shares quoted on the London Stock Exchange

Exercise price Option price
−− −− −−
5125 475
5225 405
5325 340
5425 280.5
5525 226
5625 179.5
5725 139
5825 105
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Implied volatility with real data

• the expiry date for these options was December 2001

• the initial price (on 22 August 2001) was 5420.3

• we take values of r = 0.05 for the interest rate and T = 4/12 for the
duration of the option

• the implied volatility computed for the eight different exercise prices is
decreasing (from approx. 0.19 to 0.174)

• of course, if Black-Scholes formula would be valid, the volatility would be
the same for each exercise price

• however in this example the implied volatility varies by around 10%
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Implied volatility with real data

• note: implied volatility is higher for in-the-money equity call options than
for out-of-the-money equity call options

• this behaviour is typical for data arising after the stock market crash of
October 1987

• pre-crash plots of implied volatility against exercise price would often
produce a convex smile shape; more recent data tends to produce more of
a frown
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Implied volatility: some final comments

• the widely reported phenomenon that the implied volatility is not constant
as other parameters are varied does, of course, imply that the Black-Scholes
formulas fail to describe the option values that arise in the marketplace

• this should be no surprise, given that the theory is based on a number of
simplifying assumptions

• despite the disparities, the Black-Scholes theory, and the insights that it
provides, continue to be regarded highly by both academics and market
traders

• it is common for option values to be quoted in terms of vol ; rather than
giving C∗, the σ∗ such that C(σ∗) = C∗ in the Black-Scholes formula is
used to describe the value

• many attempts have been made to fix the nonconstant volatility
discrepancy in the Black-Scholes theory; a few of these have met with some
success but none lead to the simple formulas and clean interpretation of the
original work: see Chapter 17 of Hull (2000)
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Answer to the Exercise

Exercise Hint: Discuss the monotonicity of ∂C/∂σ analysing

the sign of ∂2C
∂σ2
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