
Analysis III for D-BAUG, Fall 2016 — Lecture 8

Prof. Dr. Martin Larsson (martin.larsson@math.ethz.ch)∗

1 Transforms

The following picture from Farlow’s book illustrates the basic idea of transforms in solving
mathematical problems:

To give a more concrete illustration, consider the following problem of multiplying two
large numbers by using logarithms. Historically, the transform and inverse transform steps
(taking logarithms and exponentials) were performed by looking up the numbers in tables.
Adding the two logarithms is an easier and more reliable operation than directly multiplying
the two original numbers.

∗These notes draw heavily on the Analysis III (D-BAUG) lecture notes by Menny Aka from the fall semester 2015,
which he generously shared with me. I have also taken material from Alessandra Iozzi’s notes.
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932 × 587

log(932) + log(587) 13.212358

547084

compute
logarithm

add

compute
exponential

The Laplace transform uses the same philosophy. A typical application is to transform a
differential equation (which may be tricky to solve directly) into an algebraic equation (which
is solvable by simply re-arranging the terms), and then apply the inverse transform to obtain
the solution of the original differential equation. Here is an example:

f ′(t) = f(t), f(0) = 1

−1 + sF (s) = F (s) F (s) =
1

s− 1

f(t) = et

Laplace
transform

solve the
algebraic equation

inverse
Laplace

transform

What is not revealed by this diagram is how to pass from the original equation f ′(t) = f(t)

with initial condition f(0), to the algebraic equation involving the Laplace transform F (s), and
then back from the solution F (s) of the algebraic equation to the solution f(t) of the original
equation. That’s our next task: to develop the theory of Laplace transforms, and use them to
solve problems!

Finally, it should be mentioned that there are many other transforms that are sometimes
useful. One example is the Fourier transform, which we will have a look at later on.
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2 The Laplace transform

Definition. The Laplace transform of a given function f(t) is the function
F (s) given by

F (s) =

∫ ∞
0

e−stf(t)dt. (2.1)

We also denote the Laplace transform of f(t) by L{f(t)} or L{f(t)}(s). The
inverse Laplace transform of a given function F (s) is the function f(t) such
that (2.1) holds. We also denote the inverse Laplace transform of F (s) by
L−1{F (s)} or L−1{F (s)}(t).

The obvious questions of when the Laplace transform and its inverse exist will be postponed
for now. Instead, we’ll first look at some examples. This involves computing indefinite integrals
of the form

∫∞
0
a(t)dt where a(t) is some function. Recall how these are defined:∫ ∞

0

a(t)dt = A(t)
∣∣∣∞
0

= lim
T→∞

A(t)
∣∣∣T
0
= lim

T→∞
A(T )−A(0)

whenever the limit exists, and where A(t) is an antiderivative of a(t): A′(t) = a(t).

3 Examples of Laplace transforms

Example 3.1. We start with the simplest possible case: f(t) = 1 for all t ≥ 0. Then

L{1} =
∫ ∞
0

e−st · 1 dt = e−st

−s

∣∣∣∞
0

= lim
T→∞

e−sT − 1

−s
=

1

s
(for s > 0).

Notice that in this case, the Laplace transform F (s) = L{1} only exists for s > 0. As we will
see, it is often the case that the Laplace transform only exists for sufficiently large values of s.

Example 3.2. Let f(t) = eat for some fixed constant a. Then

L{eat} =
∫ ∞
0

e−steatdt =

∫ ∞
0

e−(s−a)tdt =
e−(s−a)t

−(s− a)

∣∣∣∞
0

=
1

s− a
(for s > a).

Again, you see that the Laplace transform only exists for sufficiently large s.

Example 3.3. Now consider power functions f(t) = tn, where n ≥ 1 is an integer. We obtain

L{tn} =
∫ ∞
0

e−sttndt

=
e−sttn

−s

∣∣∣∞
0
−
∫ ∞
0

e−st

−s
ntn−1dt (integration by parts)

= 0 +
n

s

∫ ∞
0

e−sttn−1dt (since n ≥ 1)

=
n

s
L{tn−1} (definition of Laplace transform).
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Iterating the equality L{tn} = n
sL{t

n−1} leads to

L{tn} = n

s
L{tn−1} = n

s
× n− 1

s
× L{tn−2} = · · · = n

s
× n− 1

s
× · · · × 2

s
× 1

s
L{t0}.

Finally, using that L{t0} = L{1} = 1
s by Example 3.1, we write this as

L{tn} = n!

sn+1
.

4 Linearity

The Laplace transform is linear:

Theorem. The Laplace transform satisfies

L{αf(t) + βg(t)} = αL{f(t)}+ βL{g(t)} (4.1)

for any constants α and β. Similarly, the inverse Laplace transform satisfies

L−1{αF (s) + βG(s)} = αL−1{F (s)}+ βL−1{G(s)}. (4.2)

In particular,

L{αf(t)} = αL{f(t)} and L−1{αF (s)} = αL−1{F (s)}

Let us verify that this theorem is correct. If f(t) and g(t) are functions and α and β con-
stants, then

L{αf(t) + βg(t)} =
∫ ∞
0

e−st (αf(t) + βg(t)) dt

= α

∫ ∞
0

e−stf(t)dt+ β

∫ ∞
0

e−stg(t)dt

= αL{f(t)}+ βL{g(t)},

using simply that integration is linear. We have thus derived (4.1). To derive (4.2), suppose we
are given F (s), G(s), α, and β. Define the inverses f(t) = L−1{F (s)} and g(t) = L−1{G(s)}.
Plugging this into (4.1), which we just checked is a valid equality, we get

L{αL−1{F (s)}+ βL−1{G(s)}} = αL{L−1{F (s)}}+ βL{L−1{G(s)}} = αF (s) + βG(s).

Taking the inverse Laplace transform of the left- and right-hand sides, we then get

αL−1{F (s)}+ βL−1{G(s)} = L−1{αF (s) + βG(s)}.

This is nothing but (4.2).
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Example 4.1. Linearity is often useful for computing Laplace transforms of functions that
consist of simpler building blocks. For example, let f(t) = 2t2 − 8. Then by linearity,

L{2t2 − 8} = 2L{t2} − 8L{1}.

But we already know that L{t2} = 2/s3 and L{1} = 1/s, so

L{2t2 − 8} = 2× 2!

s3
− 8× 1

s
=

4− 8s2

s3
.

Example 4.2. Here is another example: Let f(t) = cosh(at), where a is a constant. Since the
hyperbolic cosine is given by cosh(a) = 1

2 (e
at+e−at), linearity along with the Laplace transform

of eat (which we already know) give

L{cosh(at)} = L{1
2
(eat + e−at)} = 1

2
L{eat}+ 1

2
L{e−at} = 1

2
× 1

s− a
+

1

2
× 1

s+ a
,

at least if s > a and s > −a, or equivalently, s > |a|. Simplifying, we get (verify this!)

L{cosh(at)} = s

s2 − a2
(for s > |a|).

Example 4.3. The two previous examples show how linearity can be used to compute the
Laplace transform of functions consisting of simpler building blocks. But be careful! The
Laplace is not multiplicative:

Warning: L{f(t)g(t)} 6= L{f(t)}L{g(t)} in general.

A simple example that illustrates this is the following. We already know that L{1} = 1/s.
Therefore, L{1}L{1} = 1/s2. But this means that L{1 · 1} 6= L{1}L{1}!

5 Existence and uniqueness

In several of the examples we’ve seen so far, L{f(t)}(s) only exists for some, but not all, values
of s. This raises an important concern about the inverse Laplace transform: if L{f(t)}(s) only
exists for some values of s, how can we be sure that f(t) can be uniquely recovered from its
Laplace transform? In other words, how can we be sure that the inverse Laplace transform
exists? We will now develop general conditions on the function f(t) that guarantee that its
Laplace transform exists, at least for enough values of s to ensure that the inverse Laplace
transform also exists.

Definition: A function f(t) is called of exponential order (with constant c)
if

|f(t)| ≤Mect

for all t ≥ 0 and for some constant M .
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It’s useful to have a simple way to check that a given function is of exponential order. The
following lemma gives one way of doing this.

Lemma: If f(t) is continuous and the limit limt→∞
f(t)
ect exists and is finite for

some constant c, then f(t) is of exponential order with constant c.

To verify that the lemma is true, suppose we have a function f(t) such that the given limit
exists for some constant c. Let’s call the limit L = limt→∞

f(t)
ect . From the definition of lim, there

exists a (possibly large) constant T such that |f(t)|ect ≤ |L|+1 for all t ≥ T . Moreover, since |f(t)|ect is

continuous, it achieves a maximum value on the interval [0, T ]; let’s call it K = max0≤t≤T
|f(t)|
ect .

Combining these two bounds gives |f(t)| ≤ ect max{|L| + 1,K} for all t ≥ 0. In other words,
f(t) is of exponential order with constant c, which is exactly what we wanted to verify.

Exercise 5.1. To practice using the lemma, check that any polynomial is of exponential order.
It may be a good idea to do this in several steps:

• First use the lemma to check that any power function tn is of exponential order.

• Then, use the lemma a second time to check that if f(t) and g(t) are of exponential order,
and if α and β are constants, then αf(t) + βg(t) is also of exponential order.

• Finally, use the previous two facts to deduce that any polynomial is of exponential order.

Once you have solved this exercise, you could also think about what can be said about the
constant c in the definition of exponential order for the case of polynomials!

Theorem (existence). Let f(t) be a piecewise continuous function that is of
exponential order with constant c. Then F (s) = L{f(t)} exists and is finite for
all s > c.

To derive this result we use the following fact from calculus: If a(t) is a piecewise continu-
ous function with

∫∞
0
|a(t)|dt < ∞, then

∫∞
0
a(t)dt exists and is also finite. Equipped with this

fact, it’s enough to check that
∫∞
0
e−st|f(t)|dt < ∞ for any s > c. Since f(t) is of exponential

order (and using the comparison theorem for integrals), we get∫ ∞
0

e−st|f(t)|dt ≤
∫ ∞
0

e−stMectdt =
M

s− c
<∞

for any s > c. This is what we wanted to show.
Next, let’s give a uniqueness result. It shows that it’s enough that L{f(t)}(s) exists for all

sufficiently large s in order to recover f(t). Due to the existence theorem, this happens if f(t)
is of exponential order.
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Theorem (uniqueness). Let f(t) and g(t) be piecewise continuous functions
and of exponential order. If there is a constant c such that L{f(t)}(s) =

L{g(t)}(s) for all s > c, then f(t) = g(t) for all t ≥ 0 at which f(t) and g(t)

are continuous.
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