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Chapter 1

Introduction

The goal of this work is to present the Jordan measure and give an overview
of its main properties. In particular, we want to explain how the Jordan
measure generalizes the concept of volume: defined first only for boxes, then
for elementary sets and lastly for the so-called measurable sets. The latter, turns
out, define a quite large family, containing for example any triangle, any ball
and actually any bounded set that has the graph of a continuous function as
boundary (a proof of that will be provided in chapter 4). The first results we
introduce regard additivity, monotonicity and translation invariance of the
Jordan measure J, which are proven initially only for the family of elementary
sets and then generalized to the collection of measurable sets. The same
procedure is used also when showing that, up to normalization, the previous
properties uniquely determine J. This, somehow surprisingly, observation
is followed by the discretization formula, which can be seen as an additional
motivation for the claim that J extends the concept of volume naturally.

In the second part, that is chapters 3 and 4, we exploit the properties of
the maps J and J, used for the definition of the Jordan measure, to obtain
measurability criteria. For that purpose, we need to introduce the formalism
used in [2], and in particular the idea of splitting Rd into cubes of side length
1/n and counting how many of them are contained in some fixed set A. To
motivate this procedure we consider the example of the unit disc D in two
dimensions, where one can explicitly give an infinite sequence of elementary
sets converging, as set-theoretic limit, to D.

The main theorem we obtain (using the approach proposed in [2]) tells us
that a set A is measurable if and only if its boundary has measure zero. We
can use this result, which is crucial for proving measurability of many sets,
to analyze in detail two subsets of R2: the unit ball and the triangle. For the
latter we also provide an explicit formula, where, interestingly, the derivation
we provide mimic the one usually proposed in Euclidean geometry.
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1. Introduction

In the last part of this work, we give a few examples of non-measurable sets,
which indicate some limitations of the Jordan measure.
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Chapter 2

Elementary sets

2.1 Definition and first properties

We’ll start with some definitions, which are needed for the construction of
the so-called elementary sets.

Definition 2.1 An interval I is a subset of R of the form [a, b] = {x 2 R |a 
x  b}, [a, b) = {x 2 R |a  x < b}, (a, b] = {x 2 R |a < x  b}, or

(a, b) = {x 2 R |a < x < b}, where a  b. In that case, we call a and b the

endpoints of I.

Note that we allow a = b, which means in particular that the empty set
∆ = (a, a) and isolated points {a} = [a, a], a 2 R, are also considered
intervals. These two special cases of intervals are exactly the ones having
zero length, which we define as follows:

Definition 2.2 The length of an interval I ⇢ R with endpoints a  b is defined by

the quantity |I| := b � a.

Remark 2.3 To denote the cardinality of a set, we will always use #{·}. In particular,

| . | it’s to be interpreted only in the sense of the previous definition and not as the

cardinality mapping.

We may notice that, as we would expect, the length of an interval is depending
only on the endpoints, in particular [a, b], (a, b], [a, b) and (a, b) have all the
same length.

Using Cartesian products of intervals, we now can define boxes.

Definition 2.4 A box B is a subset of Rd
of the form I1 ⇥ I2 ⇥ · · · ⇥ Id, where

I1, ..., Id are intervals
1
. Moreover, if each Ii has endpoints ai and bi we define the

volume of B as |B| := ’d

i=1(bi � ai).

1Whenever we write Rd, it’s implicit that we’re considering only the cases d � 1.
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2. Elementary sets

Note that |B| = |I1| · · · |Id| and that a 1-dimensional box is an interval with
volume equal to its length.

We now move to the main object of this section, i.e. the class of sets that can
be constructed using (finite) unions of boxes.

Definition 2.5 E ⇢ Rd
is an elementary set if it can be written as a finite union of

boxes. We denote with Ed the class of all elementary sets in Rd
.

When we try to combine elementary sets by taking (finitely many) unions
and intersections, we notice that the resulting sets are still elementary. This
fact is easy to visualize geometrically when d = 2 and can be proven for any
dimension d, as we shall see in the next lemma. The idea of the proof is
really to think as if d was equal to 2 and to use that boxes behave similarly in
any dimension.

Lemma 2.6 (Boolean closure of Ed) Let E, F ⇢ Rd
elementary sets, then E [ F,

E \ F, E \ F and E4F are also elementary, where E \ F := {x 2 E |x /2 F}
and E4F := (E \ F) [ (F \ E). Moreover, also the translation of E by x 2 Rd

E + x := {y + x |x 2 E} is an elementary set.

Proof Let E = B1 [ · · · [ Bn and F = C1 [ · · · [ Cm, both in Ed. First, we
want to prove that E [ F 2 Ed. But E [ F = B1 [ · · · [ Bn [ C1 [ · · · [ Cm,
which is a finite union of boxes, and so we directly get the aimed result.

We now consider E \ F. Notice that

E \ F = (B1 [ · · · [ Bn) \ (C1 [ · · · [ Cm) =
n[

i=1
Bi \ (C1 [ · · · [ Cm)

=
n[

i=1

m[

j=1
Bi \ Cj.

Therefore, it suffices to show that for any fixed i 2 {1, ..., n} and j 2 {1, ..., m}
the set Bi \ Cj is a box. Fix i and j and let’s first assume that Bi and Cj are
both closed, i.e. that Bi \ Cj can be written, for some {ak, bk, ck, dk}1kd, as

 
d

’
k=1

[ak, bk]

!
\
 

d

’
k=1

[ck, dk]

!
.

The latter is either the empty set or of the form

d

’
k=1

[max{ak, ck}, min{bk, dk}], (2.1)

and thus in particular a box. Consider now the general case, where we do not
necessarily have closedness of the boxes. Then the intersection of Bi and Cj
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2.1. Definition and first properties

Figure 2.1: Possible shapes for E \ F.

can also be written as in 2.1, with the only difference that the corresponding
intervals may be open/half-open/half-closed or empty. In particular, Bi \ Cj

is a box.

We now want to show that E \ F is elementary. There is a main difference
to the previous part, which consists in the fact that the difference of two
boxes is general not a box (while the intersection of two boxes is a box itself).
Indeed, even in two dimensions, this set could be for example ”U” or ”L”
shaped (see figure 2.1). A possible solution to this issue is to divide E [ F

in a union of small enough sub-boxes. As first, we notice that, exactly like
we did previously, we can reduce the problem to the case where E and F are
boxes. Indeed

E \ F =

 
n[

i=1
Bi

!
\

m\

j=1
Cj =

 
n[

i=1
Bi

!
\

0

@
m\

j=1
Cj

1

A
C

=
n[

i=1

0

@Bi \
m[

j=1
C

C

j

1

A

=
n[

i=1

m[

j=1

⇣
Bi \ C

C

j

⌘
,

and therefore we only need to prove that, for fixed i and j, Bi \ Cj is elemen-
tary, since then the (above proven) closure of Ed under finite unions directly
gives the result.

To this purpose we take Bi [Cj and divide it in small disjoint boxes D1, ..., DN

which are either fully contained in Bi \ Cj or fully contained in Cj (figure 2.1
could be helpful to convince yourself that this is always possible). But then
Bi \ Cj is a finite union of boxes, and thus elementary.

The claim that E4F := (E \ F) [ (F \ E) is elementary follows directly from
what was shown above, as it’s a union of elementary sets.

Lastly, for x = (x1, ..., xd), we notice that E + x = (B1 + x) [ · · · [ (Bd + x).
Moreover, for each 1  i  d, Bi + x (where Bi has endpoints {ak, bk}1kbk

)
is a product of intervals (with endpoints {ak + xk, bk + xk}1kbk

) and in
particular a box. This concludes the proof. ⇤
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2. Elementary sets

There is a second result related to elementary sets which we would like to
prove. This observation will allow us to define properly the measure of an
elementary set.

Lemma 2.7 Any elementary E ⇢ Rd
can be written as a disjoint union of boxes.

Proof The idea is to divide E is small enough boxes, similarly to what we
did in the proof of the previous lemma. Following the approach used by Tao
in lemma 1.1.2 of [6], we start with the case where the dimension d is equal
to 1.

Let E = I1 [ · · · [ In, where each Ii has endpoints a2i�1 and a2i. Write then
the 2k endpoints a1, ..., a2k in ascending order, that is a(1)  a(2)  · · · 
a(2k). Consider now a family of intervals {Jj}j2{1,...,2k�1}, where each Jj has
endpoints a(j) and a(j+1). Then every Ii can be written as a disjoint union
of the J1, ..., J2k�1, where for each j we only need to decide correctly which
boundaries of Jj must be open and which closed. We can thus get a disjoint
family of intervals whose union is exactly E.

Consider now the general case d � 1.

Let E = B1 [ · · · [ Bn, where Bi = Ii,1 ⇥ · · ·⇥ Ii,d, i 2 {1, ..., k}. Now for each
j 2 {1, ..., d} consider the family I1,j, ..., In,j and apply to it what we’ve just
proven for the case d = 1. We thus get a family of disjoint intervals J1,j, ..., Jñ,j
such that each Ii,j can be written as a union of them. But then, by taking
Cartesian product, we can express each Bk as a disjoint union of boxes of the
form Ji1,1 ⇥ · · ·⇥ Jid,d, i1, ..., id � 1. Since the union of those disjoint boxes is
exactly E, we conclude the proof. ⇤

2.2 Measure of an elementary set

Now we want to give each elementary set a measure, and the idea is simply
to extend the concept of ”volume of boxes” to elementary sets.

Theorem 2.8 Assume that E 2 Ed can be written as disjoint union B1 [ · · · [ Bn.

Let m(E) = |B1|+ · · ·+ |Bn|, then m : Ed ! R+ is a well defined map
2
, in the

sense that is independent of the choice of the partition B1, ..., Bn.

Proof Let B1, ..., Bn and C1, ...Cm be boxes in Rd such that E = B1 t · · ·t Bn =
C1 t · · · t Cm

3. For i 2 {1, ..., n} and j 2 {1, ..., m} we define Ai,j := Bi \ Cj,

2The set R+ stands here for the non-negative real numbers.
3We will use many times the notation X t Y for the union of two disjoint sets. Similarly,

we write X1 t · · · t Xn for a union of n pairwise disjoint sets.
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2.2. Measure of an elementary set

which is a box as intersection of boxes. Observe then that

Bi = E \ Bi =

0

@
m[

j=1
Cj

1

A \ Bi =
m[

j=1

�
Cj \ Bi

�
=

m[

j=1
Ai,j ,

Cj = E \ Cj =

 
n[

i=1
Bi

!
\ Cj =

n[

i=1

�
Bi \ Cj

�
=

n[

i=1
Ai,j.

On the other hand, for any boxes D, D1, ..., Dk such that D = D1 t · · · t Dk

we have |D| = |D1|+ · · ·+ |Dk| 4. This shows in particular, since the {Ai,j}i,j
are disjoint, |Si Ai,j| = Âi |Ai,j| and |Sj Ai,j| = Âj |Ai,j|. Therefore, we obtain

n

Â
i=1

|Bi| =
n

Â
i=1

m

Â
j=1

|Ai,j| =
m

Â
j=1

n

Â
i=1

|Ai,j| =
m

Â
j=1

|Cj|. ⇤

Now that we have a definition for the measure m, it’s natural to ask ourselves
what are the properties of such a mapping. In particular, we would like
that, for boxes, m is consistent with the previously defined volume. At the
same time, since we know that an object doesn’t change its volume when
translated, m should also satisfy translation invariance. These (and many
other) properties are indeed true and summarized in the following theorem.

Theorem 2.9 Let E, F 2 Ed ⇢ Rd
. The map m : Ed ! R+ satisfies the following

properties:

(1) m(∆) = 0.

(2) m(B) = |B| for any box B.

(3) (Additivity) m(E t F) = m(E) + m(F).

(4) (Monotonicity) If E ⇢ F then m(E)  m(F).

(5) (Subadditivity) m(E [ F)  m(E) + m(F).

(6) (Translation invariance) For any x 2 Rd
, m(E + x) = m(E).

(7) (Normalisation) m([0, 1)d) = m([0, 1]d) = 1.

Proof We start with (1), which is just a consequence of the empty set being
a box with volume zero. For (2) we notice that B can be written as a disjoint
union of boxes B1, ..., Bn by simply choosing n = 1 and B1 = B, and so
m(B) = |B| by independence of the choice of the partition (theorem 2.8).
Note that this also proves normalisation.

4This can be proved by using a subdivision, as we did for example in lemma 2.6.
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2. Elementary sets

Let’s now prove the finite additivity. Write E = B1 t · · · t Bn and F =
C1 t · · · t Cm as union of boxes. Then E t F = B1 t · · · t Bn t C1 t · · · t Cm

and so by the independence of the choice of the partition

m(E [ F) =
n

Â
i=1

|Bi|+
m

Â
j=1

|Cj| = m(E) + m(F).

Monotonicity and subadditivity are direct consequences of additivity, since

m(F) = m((F \ E) t (F \ E)) = m(F \ E) + m(F \ E) � m(F \ E) = m(E)

whenever E ⇢ F, and therefore

m(E [ F) = m(F t (E \ F)) = m(F) + m(E \ F)  m(F) + m(E).

For the translation invariance we observe first that if E is a disjoint union of
boxes, say B1 t · · ·t Bn, then same holds for E+ x = (B1 + x)t · · ·t (Bn + x).
Moreover, for any box B = ’d

k=1(ak, bk) we have

|B + (x1, ..., xd)| =
d

’
k=1

(bk + xk � (ak + xk)) =
d

’
k=1

(bk � ak) = |B|.

By combining both observations, we obtain m(E + x) = Ân

i=1 |Bi + x| =
Ân

i=1 |Bi| = m(E). ⇤
The properties proved in the previous theorem are not very surprising and
seem quite natural. In fact, the proof was straightforward. There is an other
interesting feature: those properties uniquely define the measure m (actually
a few of them are enough, see following theorem).

Theorem 2.10 Let m̃ : Ed ! R+ be a map satisfying finite additivity, translation

invariance and normalisation (as defined in theorem 2.9). Then m̃ = m.

Proof We follow the steps proposed in exercise 1.5 of [7]: we first prove that
m and m̃ are equal for sets of the form [p, q]d, p, q 2 Q, and then we extend
this result to any box B by using density of Qd in Rd.

We fix n 2 N and we observe that

[0, 1) =
nG

j=1


j � 1

n
,

j

n

◆
, (2.2)

[0, 1)d =
G

j1,...,jd2{1,...,n}


j1 � 1

n
,

j1

n

◆
⇥ · · ·⇥


jd � 1

n
,

jd

n

◆
. (2.3)

Moreover, by translation invariance we get, for all j1, ..., jd 2 {1, ..., n},

m̃

 
0,

1
n

◆d
!

= m̃

✓
j1 � 1

n
,

j1

n

◆
⇥ · · ·⇥


jd � 1

n
,

jd

n

◆◆
.
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2.2. Measure of an elementary set

Since the disjoint union in 2.3 contains exactly n
d terms we have, by additivity

of m̃,

m̃

⇣
[0, 1)d

⌘
= n

d · m̃

 
0,

1
n

◆d
!

. (2.4)

Similarly, for any k 2 N

m̃

✓
0,

k

n

◆◆
= k

d · m̃

 
0,

1
n

◆d
!

=
k

d

nd
· m̃

⇣
[0, 1)d

⌘
=

k
d

nd
,

where we used 2.4 and normalisation of m̃. We conclude that for any q 2 Q

we have m̃
�
[0, q]d

�
= q

d.

At this point, for any aj, bj 2 Q we can use translation invariance, with
x = (�a1, ...,�ad), to get that

m̃ ([a1, b1)⇥ · · ·⇥ [ad, bd)) =
d

’
j=1

(bj � aj).

Consider now a box B = I1 ⇥ · · ·⇥ Id, where each interval Ij has endpoints
aj < bj. We want to approximate this box by two other boxes having rational
endpoints. Let thus # > 0 arbitrary. First, by density of Q ⇢ R we can find,
for each j 2 {1, ..., d}, points a

�
j

, a
+
j

, b
�
j

, b
+
j
2 R such that

a
�
j
< aj < a

+
j

, b
�
j
< bj < b

+
j

, |a±
j
� aj| < #, |b±

j
� bj| < #.

We then define I
±
j

:= [a⌥
j

, b
±
j
) and the two boxes B

± := I
±
1 ⇥ · · ·⇥ I

±
d

. Now,
since B

� ⇢ B ⇢ B
+, we get by monotonicity m̃(B

�)  m̃(B)  m̃(B
+). Let’s

try to compute more explicitly what this inequality means:

m̃(B
+) =

d

’
i=1

(b+
j
� a

�
j
) 

d

’
i=1

(bj � aj + 2#)

m̃(B
�) =

d

’
i=1

(b�
j
� a

+
j
) �

d

’
i=1

(bj � aj � 2#)

which implies, for M = maxj (bj � aj)| {z }
:=mj

,

|m̃(B
±)�

d

’
i=1

(bj � aj)|  2# · M
d�1 · d. (2.5)

For the last inequality we used the following general fact:
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2. Elementary sets

Claim 2.11 Let B = ’d

i=1(ai, bi) and B# = ’d

i=1(ai + #, bi � #) for some # > 0.

Then m(B \ B#)  2# · d · M
d�1

, where M := max1id(bi � ai). Moreover,

|Dn|
n!•���! |B| for any sequence of boxes {Dn}n2N satisfying that for all # > 0

there exists a N 2 N such that n � N implies B# ⇢ Dn ⇢ B.

Proof We first define, for 1  i  d, the sets

Ai :=
d[

i=1
(a1, b1)⇥ · · ·⇥ (ai�1, bi�1)⇥ [bi � #, bi)⇥ (ai+1, bi+1)⇥ · · ·⇥ (ad, bd)

and

Ãi :=
d[

i=1
(a1, b1)⇥ · · ·⇥ (ai�1, bi�1)⇥ (ai, ai + #]⇥ (ai+1, bi+1)⇥ · · ·⇥ (ad, bd).

But since B \ B# is contained in
S

d

i=1(Ai [ Ãi), we get that

m(B \ B#) 
d

Â
i=1

2

 
# · ’

j 6=i

(bj � aj)

!


d

Â
i=1

2# · M
d�1 = d · 2# · M

d�1.

For the second part of the claim we notice that, by additivity of m,

m(B)� m(B#) = m(B \ B#)
#!0��! 0.

But for n large enough we have B# ⇢ Dn ⇢ B and therefore, by monotonicity
of m,

m(B) � lim sup
n!•

m(Dn) � lim inf
n!•

m(Dn) � m(B#).

By taking # ! 0 we obtain the desired result. ⇤
A clear consequence of 2.5 is that m(B) and m̃(B) are equal for any box B.
The last step needed, in order to conclude the proof of the theorem, is to
generalize this equality to any elementary set. But this can be done by simply
using the definition of m and additivity of m̃. Indeed, for any partition of E

into boxes, m(E) = m(B1) + · · ·+ m(Bn) = m̃(B1) + · · ·+ m̃(Bn) = m̃(E). ⇤

Remark 2.12 Claim 2.11 is a very useful result, which we are going to use also in

the next chapters. Note that, by reversing the roles of B and B#, one can show that

the second part of the claim is true also if we have the condition B ⇢ Dn ⇢ B�#

instead of B# ⇢ Dn ⇢ B.

2.3 The discretization formula

To compare the size of two finite sets the most natural tool is cardinality,
which is however not very useful for comparing intervals, since in that case

12



2.3. The discretization formula

the only possible cardinalities are 0, 1 and •. To solve this problem, one can
for example introduce the idea of volume, as we did in section 2.1. But is
there a direct connection between the two concepts (cardinality and volume)?
The answer is actually yes, and what is very surprising is the simplicity of
the formula that allows this connection. Indeed, we have the following result.

Lemma 2.13 Let I ⇢ R be an interval, then

|I| = lim
n!•

Dn(I) := lim
n!•

1
n

#
⇢

I \ Z

n

�
,

where for n 2 N we define
Z
n
= { k

n
| k 2 Z}.

Proof Let first take a look at a very simple case: I = [0, 1]. Then we have that
1
n

#{ 0
n

, ..., n

n
} = n

n+1 converges to 1, i.e. to the length of [0, 1]. Consider now a
general I with endpoints a < b (the case I = {a} is trivial). Then there exist
k, m 2 Z such that k

n
/2 I but k+1

n
2 I, and m

n
2 I but m+1

n
/2 I. In particular

|(b � a)� m � (k + 1)
n

|  2
n

,

but also Dn(I) = 1
n

#{ k+1
n

, ..., m

n
} = 1

n
· (m � k). Therefore,

|Dn(I)� |I|| 
����
m � (k + 1)

n
� |I|

����+
����Dn(I)� m � (k + 1)

n

���� 
2 + 1

n

n!•���! 0.

And we conclude the proof. ⇤

This result can actually be extended to boxes and even elementary sets, as
the next proposition shows.

Proposition 2.14 Let B ⇢ Rd
be a box and E ⇢ Rd

an elementary set. Then

|B| = lim
n!•

Dn(B) := lim
n!•

1
nd

#
⇢

B \ Zd

n

�
,

m(E) = lim
n!•

Dn(E) := lim
n!•

1
nd

#
⇢

E \ Zd

n

�
. (2.6)

Proof Let B = I1 ⇥ · · ·⇥ Id, then #{B \ Zd

n
} = ’d

i=1 #{Ii \ Z
n
} and therefore

Dn(B) =
d

’
i=1

#{Ii \ Z
n
}

n
=

d

’
i=1

Dn(Ii)
n!•���!

d

’
i=1

|Ii| = |B|

Take now E elementary, then we know that m(E) = |B1|+ · · ·+ |Bk| for some
disjoint boxes B1, ..., Bk (where, as already said before, the choice of the boxes
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2. Elementary sets

is arbitrary). Then for any i, j we have, by disjointness, #{Bi} + #{Bj} =
#{Bi [ Bj}, and therefore

|B1|+ · · ·+ |Bk| =
k

Â
i=1

lim
n!•

1
nd

#{Bi \
Zd

n
} = lim

n!•

1
nd

k

Â
i=1

#{Bi \
Zd

n
}

= lim
n!•

1
nd

#{E \ Zd

n
}.

Note that we can interchange limit and sum as the latter has only finitely
many terms. ⇤

Remark 2.15 Here we would like to point out that this result also provide an

alternative proof that m(E) is independent of the choice of the partition B1, ..., Bk.

Indeed, one sees that the right-hand side of 2.6 depends directly on E. In particular,

one could use the discretization formula to provide an alternative definition of

m : Ed ! Rd
.
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Chapter 3

Definition and first properties of the
Jordan measure

3.1 Area of the two-dimensional unit ball

In this first section, we want to see a possible way of approximating the area
of the two-dimensional unit ball using elementary sets.

To this purpose we define, for k 2 N, the set

Qk :=
⇢

q 2 R

���� q =
i

2k
for some i 2 Z

�
.

We then define the family of all cubes having vertices in Qk and side length
1
2k

, that is

Dk :=
⇢✓

p, q +
1
2k

◆
⇥
✓

p, q +
1
2k

◆���� p, q 2 Qk

�
.

It’s clear that for every k 2 N and each x 2 Qk + ( 1
2k+1 , 1

2k+1 ) there exists
exactly one cube Dk in Dk having center in x. We are going to denote this
unique cube as Dk(x) (see figure 3.1).

We want to approximate the area of the closed unit ball1
B ⇢ R2 from the

inside, by using the previously constructed cubes. We can start with D1(0),
which is of course not a very precise approximation. Let’s thus use cubes of
side length 1

2 . Then the best we can do is to take

A1 = D2

✓
1
4

,
1
4

◆
[ D2

✓
�1

4
,

1
4

◆
[ D2

✓
1
4

,�1
4

◆
[ D2

✓
�1

4
,�1

4

◆
,

1From now on we will use for open and closed unit balls the notations B := {x 2
Rd| kxk < 1} and B := {x 2 Rd| kxk  1}. Similarly for y 2 Rd and r > 0 we write
Br(y) := {x 2 Rd| kx � yk < r} and Br(y) := {x 2 Rd| kx � yk  r}, as well as Br := Br(0)
and Br := Br(0).
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3. Definition and first properties of the Jordan measure

.

D8( 5
16 , 13

16 )

5
16

13
16

� 1
4

Figure 3.1: In orange the set A1, in yellow the set A2 \ A1, and in green an example for a cube
Dk(x).

which is still equal to D1(0). Things start to improve when we move to cubes
with side length 1

4 , since now we get A2 = A1 [ (A2 \ A1), where the part
we’re adding to the previous approximation, A2 \ A1, has area 4 · 1

4 = 1 (see
figure 3.1). One continue this procedure inductively, getting for each k � 1
an elementary set Ak (containing Ak�1) which is a disjoint union of cubes in
Dk.

Remark 3.1 Formally, we could define Ak as the union of all sets Dk that lies in

the family {Dk 2 Dk|Dk ⇢ B}.

The {Ak}k�1 are elementary, but there is still an issue that we would like
to solve: these sets are not closed and in particular any point that lies on
the boundary of the cubes composing Ak is itself not in Ak. We thus define
Ck := Ak, which is still an elementary set. We now claim that we can quantify
explicitly the accuracy of this approximation.

Claim 3.2 Let k � 1 and rk = 1 �
p

2
2k

. Consider the closed balls Brk
:= {x 2

R2| kxk  rk}. Then

Brk
⇢ Ck ⇢ B ⇢ 1

rk

Ck.
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3.2. The Jordan measure

Proof We start with the inclusion Brk
⇢ Ck. Pick any point x = (x1, x2) 2 Brk

,
and let ai = max{a 2 Z| a

2k
 xi}, i 2 {1, 2}. Notice that any cube in Dk has

a diagonal of length
p

2/2k, i.e. exactly 1 � rk. In particular we deduce that
D := ( a1

2k
, a1+1

2k
)⇥ ( a2

2k
, a2+1

2k
) is a cube fully contained in B, and hence one of

the cubes composing Ak. But since x, which is contained in D, was arbitrary,
we get that Brk

⇢ Ck. On the other hand, the inclusion we have just proved
also implies B = 1

rk

Brk
⇢ 1

rk

Ck =
1
rk

Ck, and we conclude. ⇤

Remark 3.3 Note that, as k goes to infinity, rk converges to 1. In particular, we

expect to see |m(Ck)� m(C̃k)|
k!•��! 0, for C̃k =

1
rk

Ck. We will see a formal proof

of that in section 3.3.

3.2 The Jordan measure

The example in the previous section can be seen as a motivation for the
following definitions, which describe a natural way of defining the Jordan
measure on Rd.

Definition 3.4 Let A ⇢ Rd
be a bounded set.

• The Jordan inner measure J(A) of A is defined as

J(A) = sup {m(E)| E 2 Ed, E ⇢ A}.

• The Jordan outer measure J(A) of A is defined as

J(A) = inf {m(F)| F 2 Ed, A ⇢ F}.

Definition 3.5 We say that a bounded set A ⇢ Rd
is Jordan measurable if J(A) =

J(A), and it that case we call J(A) = J(A) = J(A) the Jordan measure of A. Let

Jd be the family of all Jordan measurable sets in Rd
, then J is the map

J : Jd ! R+

A 7! J(A).

Before saying anything about J we would like to observe a few properties of
J and J.

Lemma 3.6 J and J are monotone. Moreover, J is subadditive.

Proof Consider A ⇢ B ⇢ Rd. Any elementary set E contained in A satisfies
E ⇢ B and therefore, by taking the supremum as in the definition of J,

sup {m(E)| E 2 Ed, E ⇢ A}  sup {m(E)| E 2 Ed, E ⇢ B}.

17



3. Definition and first properties of the Jordan measure

Similarly, any F containing B satisfies A ⇢ F and so, by taking the infimum
as in the definition of J,

inf {m(F)| F 2 Ed, A ⇢ F}  inf {m(E)| F 2 Ed, B ⇢ F}.

This proves monotonicity of the inner and outer Jordan measures. Now, for
the second claim, consider C, D ⇢ Rd arbitrary and elementary sets G, H

with C ⇢ G and D ⇢ H. By subadditivity of m

J(C [ D)  m(G [ H)  m(G) + m(H),

and by taking the infimum as in the definition of J(C) and J(D) we get
J(C [ D)  J(C) + J(D). ⇤
It’s difficult to imagine, directly from definition, how Jd looks like, and in
particular it’s not clear which sets exactly are Jordan measurable. A useful
tool in that sense is the following theorem, which can be interpreted as
”measurable sets are almost elementary”. We would like also to point out
that we can see, directly from definition 3.4, that elementary sets are Jordan
measurable (since both the supremum and infimum in the definition are
taken at the set A itself).

Theorem 3.7 (Characterization of Jordan measurability) Let A ⇢ Rd
be a

bounded set. Then the following are equivalent:

(1) A is Jordan measurable.

(2) For every # > 0, there exist elementary sets E and F such that E ⇢ A ⇢ F

and m(F \ E)  #.

(3) For every # > 0, there exists an elementary set E ⇢ A such that J(A \ E)  #.

(4) For every # > 0, there exists an elementary set E such that J(E4A)  #.

Proof We are going to prove (1) ) (2) ) (3) ) (4) 2. Let # > 0.

(1) ) (2): By definition of J(A) there exists E ⇢ A elementary such that
m(E) > J(A)� #

2 , and similarly F � A elementary such that m(F) < J(A) +
#
2 . Then, since A Jordan measurable,

m(F) < J(A) +
#

2
= J(A) +

#

2
< m(E) + 2 · #

2
.

Moreover, E ⇢ F and so by theorem 2.9 we have m(F) = m(E) + m(F \ E).
Combining both observations, we get m(F \ E) < #.

(2) ) (3): Let E, F as in (2). Since A \ E ⇢ F \ E we get, by definition of J,
J(A \ E)  m(F \ E) < #.

2For the first three implications we follow the proof proposed for exercise 2.2 in [7].
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3.2. The Jordan measure

(3) ) (4): This implication is direct since for E as in (3) holds A4E =
(A \ E) [ ∆.

(4) ) (1): For E as in (4) we have J(A \ E) + J(E \ A) < #, and so in particular
J(A \ E) < # and J(E \ A) < #. By definition of J we can find elementary F

and G such that (A \ E) ⇢ F, (E \ A) ⇢ G and

m(F)  J(A \ E) + #  2#,

m(G)  J(E \ A) + #  2#.

But then the elementary sets H := E \ (F [ G) and K := F [ G [ H satisfy
H ⇢ A ⇢ K and

m(K)� m(H) = m(F [ G)  m(F) + m(G)  4#,

which, by taking the limit # ! 0, concludes the proof. ⇤
Now we would like to analyze more in detail Jordan measurable sets. With
the following few results we are going to show that Jd satisfies properties
which are similar to those of Ed, and that in particular we can find statements
that are analogous to lemma 2.6 and theorems 2.9, 2.10.

Lemma 3.8 (Boolean closure of Jd) Assume A, B 2 Jd, then A \ B, A [
B, A \ B and A4B are in Jd too.

Proof All the claims are direct consequences of lemma 2.6, and to prove
them we’re going to use the representations of measurability (3) and (4) of
theorem 3.7. Fix # > 0 arbitrary. Let E, F elementary such that E ⇢ A, F ⇢ B

and J(A \ E) < #, J(B \ F) < #. Then by subadditivity of J:

J((A [ B) \ (E [ F))  J(A \ (E [ F)) + J(B \ (E [ F))

 J(A \ E) + J(B \ F) < 2#,

J((A \ B) \ (E \ F))  J((A \ B) \ E) + J((A \ B) \ F)

 J(A \ E) + J(B \ F) < 2#.

Which, by (3) in theorem 3.7, shows that A [ B and A \ B are in Jd.

Moreover, regarding A \ B, we have

(A \ B)4(E \ F) = ((A \ B) \ (E \ F)) [ ((E \ F) \ (A \ B))

⇢ ((A \ B) \ (E \ B)) [ ((E \ F) \ (E \ B))

⇢ (A \ E) [ (B \ F).

Thus by subadditivity and monotonicity J((A \ B)4(E \ F)) < 2#, and we
conclude by (4) in theorem 3.7. The case A4B follows exactly as in lemma
2.6. ⇤
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3. Definition and first properties of the Jordan measure

Theorem 3.9 Let A, B ⇢ Rd
be Jordan measurable sets. Then:

(1) (Additivity) If A, B disjoint, then J(A [ B) = J(A) + J(B).

(2) (Monotonicity) If A ⇢ B, then J(A)  J(B).

(3) (Subadditivity) J(A [ B)  J(A) + J(B).

(4) (Translation invariance) For any x 2 Rd
, A + x 2 Jd and J(A + x) = J(A).

Proof As in theorem 2.9, the key part is to show additivity, since then
monotonicity and subadditivity follow directly:

J(B)
(1)
= J(B \ A) + J(B \ A) � 0 + J(A), if A ⇢ B,

J(A [ B)
(1)
= J(B \ A) + J(A)

(2)
 J(B) + J(A).

Let thus A, B ⇢ Jd be disjoint and # > 0. Then we can find elementary sets
E�, E+, F�, F+ such that E� ⇢ A ⇢ E+, F� ⇢ B ⇢ F+ and

J(A)� #  m(E�)  J(A)  m(E+)  J(A) + #,
J(B)� #  m(F�)  J(B)  m(F+)  J(B) + #.

Then, since E� t F� ⇢ A t B ⇢ E+ t F+,

J(A [ B) � m(E� t F�)
2.9
= m(E�) + m(F�) � J(A) + J(B)� 2#,

J(A [ B)  m(E+ t F+)
2.9
 m(E+) + m(F+)  J(A) + J(B) + 2#.

By taking the limit # ! 0 we obtain the desired additivity.

We are left with translation invariance, which is a direct consequence of the
translation invariance of m. Indeed, for # > 0 and E± as above,

J(A + x)� #  m(E+ + x)� #
2.9
= m(E+)� #  J(A) 

 m(E�) + #
2.9
= m(E� + x) + #  J(A + x) + #.

Taking the limit # ! 0 gives both measurability and the desired equality. ⇤

At this point it may seem natural to claim that not only m (see theorem 2.10),
but also J are unique when we require additivity, non-negativity, translation
invariance and normalisation. This assertion is indeed true, and in section
4.2 we will see how it can be proved.
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3.3. The d-dimensional unit ball

3.3 The d-dimensional unit ball

Let’s go back to the unit ball example seen in section 3.1. Recall that for
B = {x 2 R2| kxk  1} we were able to find sequences of elementary sets
{Ck}k2N, {C̃k}k2N such that for all k we have Ck ⇢ B ⇢ C̃k and C̃k =

1
rk

Ck. In
order to show that B is Jordan measurable it would be enough to prove

m

✓
1
rk

Ck

◆
=

1
r

2
k

m(Ck),

since then we can use that rk = 1 �
p

2
2k

k!•��! 1 to conclude J(B) = J(B) (by
definition). As one may expect, we can actually prove a more general result,
telling us that homothetic transformations yl,a(x) = lx + a, a 2 Rd, l > 0,
preserve measurability and stretch the Jordan measure by a factor ld, that is

J(yl,a(A)) = ld
J(A). (3.1)

The key observation is that the family of elementary sets contained in A ⇢ Rd

{E ⇢ A | E elementary }

is in bijection with the family of elementary sets contained in lA + a

{F ⇢ lA + a | F elementary }

through the map E 7! lE+ a. By taking infimum and supremum we get that,
assuming A to be measurable, the upper and lower Jordan measure of lA+ a

coincide. Moreover, m(lE) = ld
m(E) for every elementary E = I1 ⇥ · · ·⇥ Id,

since the endpoints of each Ii are stretched by a factor l, and so, because of
the translation invariance of m, we conclude the desired property 3.1.

We now want to generalize the derivation we saw in section 3.1 to the more
general case of the d-dimensional unit ball. We proceed in the exact same
way as before, as we shall see in the following.

Claim 3.10 J(B) = J(B).

Proof Recall the notation Br(y) = {x 2 Rd| kx � yk < r} for the open ball
of radius r with center x 2 Rd. Let Qk := {q 2 R| q = i

2k
for some i 2 Z} as

defined before, and

Dk :=

(
Dk =

d

’
j=1

Ij

����� Ij =

✓
pj, pj +

1
2k

◆
, pj 2 Qk

)
,

Ak := {Dk 2 Dk | Dk ⇢ B}.

With this setup we now take k 2 N large enough so that dk :=
p

n/2k < 1
and fix the radius rk := 1 � dk = 1 � p

n/2k. We then claim that for each
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3. Definition and first properties of the Jordan measure

x = (x1, ..., xn) 2 Brk
the box D := ’(xi � 1

2k
, xi +

1
2k
) is fully contained in

B. But this is indeed a direct consequence of D having diagonal diag(D) =
maxx,y2Dkx � yk = dk. This allows us to find a Dk 2 Dk such that x 2 Dk:
for each 1  i  d let ai = max{a 2 Z| a

2k
 xi}, then

✓
ai

2k
,

ai + 1
2k

◆
⇢
✓

xi �
1
2k

, xi +
1
2k

◆
,

and thus Dk := ’i

⇣
ai

2k
, ai+1

2k

⌘
⇢ B. Therefore, since x was arbitrary, Brk

⇢
Ck := Ak and we get the exact same result as in 3.2:

Brk
⇢ Ck ⇢ B ⇢ 1

rk

Ck.

The latter can be used to get

J(B) � sup
k2N

m(Ck) = lim
k!•

m(Ck) = lim
k!•

1
r

d

k

m(Ck)
3.1
= lim

k!•
m(

1
rk

Ck) � J(B).

But since by definition J(B)  J(B), we conclude J(B) = J(B). ⇤
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Chapter 4

Jordan measurability

4.1 Characterization of the Jordan measure using cubes

The above example of the d�dimensional unit ball may suggest that, when
checking measurability of a set, we do not really need to work with the whole
range of elementary sets: it might be enough to look only at finite disjoint
unions of cubes with fixed side length. The purpose of this section is to show
how this can be done and what are the consequences of this procedure.

The construction we’re proposing in the next two sections is mainly based on
the approach used by Laczkovich et al. in chapter 3 of [2]. However, some of
the definitions (and most of the proofs) are modified in a way that allows the
reader to connect them better to the content of the previous chapters.

We’ll start with a generalization of the sets Dk seen in section 3.3.

Definition 4.1 For n 2 N we let Kn be the family of closed cubes in Rd
having

side length
1
n

and vertices in
Z
n

.

The first result we present, which follows the observations in section 3.1 of
[2], regards the partition of Kn into three groups.

Claim 4.2 Let A ⇢ R
d

be a bounded set. Then each K 2 Kn is in exactly one of the

following families:

• K is an interior cube, that is K ⇢ Å.

• K is an exterior cube, that is K \ A = ∆.

• K is a boundary cube, that is K \ ∂A 6= ∆.

In particular, we say that K is an interior or boundary cube of A if K \ A 6= ∆.

Proof We would like to show that K being a boundary cube is the same
as being neither an interior nor an exterior cube. The fact that K being a
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4. Jordan measurability

boundary cube implies that it cannot be neither an interior nor an exterior
cube it’s clear. For the other implication, assume by contradiction that exists
K ⇢ Å [ Åc such that K is neither an interior nor an exterior cube1. Then
9x, y 2 K such that x 2 Å, y 2 Åc. But by convexity of K we get that
the segment from x to y is contained in K and therefore also the point
z = x + t0(y � x), where t0 = sup{t � 0| z = x + t(y � x) 2 A}. But any
open ball around z intersects both Å and Å

c and so z 2 ∂A, which contradicts
the condition K ⇢ Å [ Åc. ⇤
Now, for any bounded A ⇢ Rd we define Jn(A) as 1

nd
times the number of

interior cubes K 2 Kn of A, and similarly we define Jn(A) as 1
nd

times the
number of cubes K 2 Kn which are interior or boundary cubes, that is

Jn(A) =
1
nd Â

K2Kn

K⇢Å

1, Jn(A) =
1
nd Â

K2Kn

K\A 6=∆

1.

Remark 4.3 Let A(n) := {K 2 Kn| K ⇢ Å} be the elementary set given by the

union of all interior cubes of A, then

|Jn(A)� J(A(n))| = | Â
K2Kn

K⇢Å

|K|� J(
[

K2Kn

K⇢Å

K)|  const(d) · J(
[

K2Kn

K⇢Å

∂K)

 const(d) · Â
K2Kn

K⇢Å

J(∂K) = 0,

since, for each K, ∂K is a union of boxes with zero volume. Similarly, for A
(n) :=

{K 2 Kn| K \ A 6= ∆} we have Jn(A) = J(A
(n)).

Note moreover that A ⇢ B ⇢ Rd
implies A

(n) ⇢ B
(n)

, and therefore we can already

see that both Jn and Jn are monotone.

The constructed mapping Jn and Jn are exactly the formalization of the
procedure used in section 3.3 to check measurability of the unit ball2. With
the following results we want to show that this approach works actually for
any bounded set, in the sense that the obtained sequences converge, as n

goes to infinity, to the inner and outer Jordan measures.

Lemma 4.4 For any closed box B we have that

lim
n!•

Jn(B) = lim
n!•

Jn(B) = |B|.
1Here we write Åc for the set of points in the interior of A

c = Rd \ A.
2Note that actually in section 3.3 we were considering the sequences {J2n}n and {J2n}n,

however, since we are only interested in the limit as n goes to infinity, this is the same as
considering the sequences {Jn}n and {Jn}n.

24



4.1. Characterization of the Jordan measure using cubes

Proof The proof, whose first part is taken from lemma 3.3 in [2], has some
analogies with the proof of the discretization formula 2.13, and indeed the
two results are strictly related3. Let B = ’d

i=1[ai, bi] and B
(n), B(n) as defined

in remark 4.3, and for each 1  i  d let pi, qi 2 Z such that pi�1
n

< ai  pi

n

and qi�1
n

 bi <
qi

n
. We notice that a cube K = ’d

i=1[
ki

n
, ki+1

n
] is an interior

or boundary cube if and only if pi  ki + 1  qi for all 1  i  d. In
particular, B

(n) and B(n) are boxes of the form B(n) = ’d

i=1(ai + # i, bi � # i),
B
(n) = ’d

i=1(ai � di, bi + di) for some #1, ..., #d, d1, ..., dd  1
n

. We can therefore
apply claim 2.11 with {Dn}n = {B(n)}n and remark 2.12 with {Dn}n =

{B
(n)}n, giving us limn!• J(B(n)) = limn!• J(B

(n)) = |B|. We conclude by
remark 4.3. ⇤
Before proving the aimed convergence of Jn and Jn we need find a way to
describe the Jordan measure using only closed boxes, which can be done as
follows.

Lemma 4.5 For any bounded A 2 Rd
we have

J(A) = inf

(
N

Â
i=1

|Ki|
����� A ⇢

N[

i=1
Ki, K1, ..., KN closed boxes

)
, (4.1)

J(A) = inf

(
N

Â
i=1

|Ki|
�����

N[

i=1
Ki ⇢ A, K1, ..., KN closed boxes s.t.K̊1, ..., K̊N disjoint

)
.

Proof We start with the first equality. Let µ(A) be the right-hand side and
note that, by definition 3.4 and lemma 2.7,

J(A) = inf

(
N

Â
i=1

|Bi|
����� A ⇢

N[

i=1
Bi, B1, ..., BN disjoint boxes

)
.

Let now B1, ..., BN be disjoint boxes whose union contains A. Then in par-
ticular A ⇢ [iBi and choosing Ki = Bi, 1  i  N, gives Âi |Bi| = Âi |Bi| =
Âi |Ki| � µ(A). Since the B1, ..., BN were arbitrary, we get J(A) � µ(A). On
the other hand, for any family of closed boxes K1, ..., KN with A ⇢ [iKi =: E

we can write E as disjoint union of boxes B1, ..., BM (by lemma 2.7). There-
fore Âi |Bi| = m(E)  Âi |Ki| and since the K1, ..., KN were arbitrary we get
J(A)  µ(A). Thus, the first of the two equalities is proven.

For the second one, denote the right-hand side with µ(A) and recall the
definition of the inner Jordan measure

J(A) = sup

(
N

Â
i=1

|Bi|
�����

N[

i=1
Bi ⇢ A, B1, ..., BN disjoint boxes

)
.

3Specifically, cubes in Kn have vertices in Z
n

, which is exactly the set used for stating the
discretization formula.
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4. Jordan measurability

Let K1, ..., KN be closed boxes contained in A with pairwise disjoint interiors.
Then also the disjoint boxes {Bi}1iN := {K̊i}1iN are contained in A,
where Âi |Bi| = Âi |Ki|. Therefore Âi |Ki|  J(A) and, since the K1, ...KN

were arbitrary, µ(A)  J(A). Finally, let B1, ..., BN be disjoint boxes contained
in A and E := tiBi. For any # > 0 we can find closed boxes Ki ⇢ Bi

such that |Ki| � |Bi|� #
N

. In particular, the sets K̊1, ..., K̊N are disjoint and
satisfy [iKi ⇢ A, as well as Âi |Ki| � m(E)� #. By taking the limit # ! 0
we obtain m(E)  µ(A) and by arbitrariness of the B1, ..., BN we conclude
J(A)  µ(A) ⇤
Theorem 4.6 For any bounded set A

lim
n!•

Jn(A) = J(A), (4.2)

lim
n!•

Jn(A) = J(A). (4.3)

Proof For the proof we are going to follow the structure proposed for the-
orem 3.4 in [2]. We start with equation 4.2. Since, for all n 2 N, Jn(A) =
J(A

(n)) and A
(n) is an elementary set containing A, we get Jn(A) � J(A) and

so lim infn!• Jn(A) � J(A). We now want to find an analogous inequality
for lim sup

n!• Jn(A). Let for that purpose K1, ..., KN be closed boxes with
A ⇢ E := K1 [ · · · [ KN . Since Jn is monotone (remark 4.3) and subadditive4,

Jn(A)  Jn(
N[

i=1
Ki) 

N

Â
i=1

Jn(Ki),

but we also have, by lemma 4.4, Jn(Ki)
n!•���! |Ki| for each 1  i  N.

Therefore, by combining both observations, we obtain lim sup
n!• Jn(A) 

ÂN

i=1 |Ki|. But, since the cubes K1, ..., KN were arbitrary, we can take the
infimum as in 4.1, and we get lim sup

n!• Jn(A)  J(A), which concludes
the proof of 4.2.

Now we move to 4.3. First notice that if Å is empty then J(A) = 0 = Jn(A).
Assume therefore that A has non-empty interior. Then, by remark 4.3,

lim sup
n!•

Jn(A) = lim sup
n!•

J(A(n))  J(A).

Consider now any family of closed boxes K1, ..., KN contained in A with
pairwise disjoint interiors. Notice first that any cube which is in the interior
of K̊i for some 1  i  N is also in the interior of

S
N

i=1 K̊i, and so, since the
K1, ..., KN are disjoint, we get

Jn(
N[

i=1
Ki) �

N

Â
i=1

Jn(Ki).

4For all A, B ⇢ Rd we have that any cube K intersecting A [ B is intersecting also A or B

(or both), and so in particular Jn must be subadditive.
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4.2. Measurability criteria

But then, by monotonicity of Jn and lemma 4.4,

lim inf
n!•

Jn(A) � lim inf
n!•

Jn(
N[

i=1
Ki) � lim inf

n!•

N

Â
i=1

Jn(Ki) =
N

Â
i=1

|Ki|,

and since the K1, ..., KN were arbitrary we obtain, by taking the supremum as
in lemma 4.5, lim infn!• Jn(A) � J(A). This concludes the proof of 4.3. ⇤

4.2 Measurability criteria

With the above theorem, one can now prove a very important criterion for
measurability. We are going to use the proof presented for theorem 3.7 in [2],
which is surprisingly short.

Theorem 4.7 For every bounded set A

J(A) = J(A) = J(A) + J(∂A).

In particular, A is measurable if and only if J(∂A) = 0.

Proof Let n 2 N. The number of cubes intersecting A is the same as the
number of interior or boundary cubes of A, that is, the number of interior
cubes plus the number of cubes intersecting ∂A. But since ∂A = ∂A we
obtain

Jn(A) = Jn(A) = Jn(A) + Jn(∂A).

By taking the limit n ! • and using theorem 4.6, we get the aimed equali-
ties. ⇤

Remark 4.8 If A ⇢ Rd
is contained in a measurable set C satisfying J(C) = 0,

then by monotonicity J(A) = 0 = J(A). We call such a set A a null set. In

particular, any null set is measurable and any set whose boundary is a null set is

measurable.

A first evidence that this theorem is quite important is for example the fact
that, with this new measurability criterion, we can now prove uniqueness of
the Jordan measure J : Jd ! R+.

Theorem 4.9 Let µ : Jd ! R+ be a map satisfying additivity, translation invari-

ance and the normalisation µ([0, 1)d) = 1. Then µ = J.

Proof The structure of the proof is similar to the one of theorem 3.18 in [2].
Let µ be a map satisfying the above properties. Then we claim that µ is
necessarily monotone. Indeed, if A and B are measurable with A ⇢ B, we
get by additivity

µ(B) = µ((B \ A) t A) = µ(B \ A) + µ(A) � µ(A).
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4. Jordan measurability

Let K, K
0 be cubes of the form ’d

i=1[
ai

n
, ai+1

n
) for some a1, ..., ad 2 Z, and let

Gn be the family of all such cubes that are contained in [0, 1)d. By translation
invariance we get µ(K) = µ(K0), and so by additivity

1 = µ
⇣
[0, 1)d

⌘
= µ

 
[

K2Gn

K

!
= n

d · µ(K),

which implies µ(K) = 1
nd

.

Claim 4.10 For K as above we have µ(K) = µ(K).

Proof Notice first that by monotonicity, additivity and translation invariance
µ(K)� µ(K)  µ(∂K)  µ(∂[0, 1]d). For the case d = 1 we have

{0, 1} ⇢


0,
1
N

◆
[


1, 1 +
1
N

◆
for all N 2 N,

and so µ(∂[0, 1])  2 · 2
N

N!•���! 0. While for the case d  2, we notice that we
can cover (similarly to the case d = 1) the boundary of [0, 1]d with C(d) · N

many cubes of side length 1
N

, where C(d) is a fixed constant depending only
on the dimension d. Therefore, we get

µ(∂[0, 1]d)  C(d) · N

Nd

N!•���! 0. ⇤

We can now use the claim to get that µ is equal to J on Kn and also that

µ(A(n)) = J(A(n)), µ(A
(n)) = J(A

(n)).

Hence for all n we have

Jn(A) = J(A(n)) = µ(A(n))  µ(A)

and

Jn(A) = J(A
(n)) = µ(A

(n)) � µ(A).

But Jn(A) and Jn(A) converge, respectively, to J(A) and J(A), which are
both equal to J(A) by measurability of A. Therefore, we conclude J(A) 
µ(A)  J(A). ⇤
Before moving to the next section, we would like to present one more criterion
for measurability. Recall that theorem 4.7 was proven using the formalism
constructed in section 4.1, that is by considering interior and boundary cubes.
One may notice that this is somehow similar to the approach used in section
2.3 for the proof of the discretization formula (equation 2.6), where we were
counting the points of the form a

n
, a 2 Z, contained in an elementary set.

The next proposition shows that the discretization formula holds actually for
any measurable set.
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4.3. Examples of measurable sets

Proposition 4.11 Let A ⇢ Rd
be a Jordan measurable set, then

J(A) = lim
n!•

Dn(A) := lim
n!•

1
nd

#
⇢

A \ Zd

n

�
.

Proof The proof is actually a direct consequence of the discretization formula
for elementary sets (proposition 2.14). In particular, we would like to point
out that one can prove the claim without using any of the results seen in the
previous section.

Consider elementary E, F such that E ⇢ A ⇢ F. Then
⇢

E \ Zd

n

�
⇢
⇢

A \ Zd

n

�
⇢
⇢

F \ Zd

n

�

and so, for all n 2 N, Dn(E)  Dn(A)  Dn(F). Note moreover that the
discretization formula for elementary sets gives us

m(E) = lim
n!•

Dn(E)  lim
n!•

Dn(F) = m(F).

At this point we take the supremum over all elementary E ⇢ A and the infi-
mum over all elementary F � A, and we conclude J(A)  limn!• Dn(A) 
J(A). ⇤

4.3 Examples of measurable sets

Now that we have all the necessary tools, we can check the measurability of
many different sets.

Lemma 4.12 Products A ⇥ A
0 ⇢ Rd+e

of Jordan measurable sets A ⇢ Rd
and

A
0 ⇢ Re

are Jordan measurable with measure J(A ⇥ A
0) = J(A) · J(A

0).

Proof We first prove that products E ⇥ F of elementary sets E ⇢ Rd, F ⇢ Re

are elementary with m(E ⇥ F) = m(E) · m(F).

Indeed, for E = tn

i=1Bi, F = tm

j=1Cj we have that E ⇥ F = ti,j Bi ⇥ Cj is
elementary. But since |Bi ⇥ Cj| = |Bi| · |Cj|, we get

m(E ⇥ F) = Â
1in

1jm

|Bi ⇥ Cj| = Â
1in

1jm

|Bi| · |Cj| =
 

n

Â
i=1

|Bi|
! 

m

Â
j=1

|Cj|
!

= m(E) · m(F).

Now let’s prove the result for general measurable sets. Let # > 0 arbitrary.
Consider E, F, E

0, F
0 elementary such that E ⇢ A ⇢ F, E

0 ⇢ A
0 ⇢ F

0 and

m(F)� #  J(A)  m(E) + #, m(F
0)� #  J(A

0)  m(E
0) + #.
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4. Jordan measurability

Then, by the previous observations, we get elementary sets E ⇥ E
0, F ⇥ F

0

such that E ⇥ E
0 ⇢ A ⇥ A

0 ⇢ F ⇥ F
0 and

(J(A)� #)(J(A
0)� #)  m(E) · m(E

0) = m(E ⇥ E
0)  J(A ⇥ A

0)

 J(A ⇥ A
0)  m(F ⇥ F

0) = m(F) · m(F
0)

 (J(A) + #)(J(A
0) + #).

Since # > 0 was arbitrary we conclude. ⇤
The proof of the next result is based on the one proposed by Laczkovich et al.
for theorem 3.13 in [2].

Proposition 4.13 Let H ⇢ Rd
be a compact set and f : H ! R a continuous

function. Then graph( f ) := {(x, f (x))|x 2 H} ⇢ Rd+1
has measure zero.

Proof The idea of the proof is to use uniform continuity of f ( f is a continu-
ous function on a compact set) to approximate its graph with finitely many
small cubes. Let thus # > 0 and choose d > 0 such that for all x, y 2 H with
|x � y| < d we have | f (x)� f (y)| < # (possible by uniform continuity).

Since H is bounded we can find a cube K containing H. Let now n large
enough such that

p
d

n
< d, and consider the family {Ki}i2I of cubes in Kn

which are intersecting K (the union of those cubes gives then K
(n)). The

family of closed sets {Hi}i2I
:= {Ki \ H}

i2I
satisfies then H ⇢ [i2I Hi and

diag(Hi)  diag(Ki) =
p

d

n
< d, i 2 I. In particular, since Hi compact, the

restriction of f to Hi attains both its maximum Mi and its minimum mi.
But diag(Hi) < d implies that for all i 2 I we have the bound Mi � mi < #.
Finally, since

graph( f ) ⇢
[

i2I

Ki ⇥ [mi, Mi],

we obtain

J(graph( f ))  J

 
[

i2I

Ki ⇥ [mi, Mi]

!
,

and so by lemma 4.12 and subadditivity

J(graph( f ))  Â
i2I

J(Ki) · (Mi � mi)  Â
i2I

J(Ki) · # = Â
i2I

J(K̊i) · # = J(
[

i2I

K̊i) · #

 J(K) · #.

But # > 0 was arbitrary, and we’re done. ⇤

Corollary 4.14 The area under the graph of a continuous, real-valued, non-negative

function on a compact set H ⇢ Rd
, i.e. the set A( f ) := {(x, y)| x 2 H, 0  y 

f (x)}, is measurable.
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4.3. Examples of measurable sets

Proof By theorem 4.7 we only need to check that the boundary of A( f ) is a
null set. But ∂A( f ) is contained in ∂B [ graph( f ), where B is the closed box
H ⇥ [0, maxx2H f (x)]. Therefore, by proposition 4.13 we get

J(∂A( f ))  J(∂B) + J(graph(A)) = 0. ⇤

Remark 4.15 The previous corollary can be generalized to continuous real-valued

functions on compact sets. Indeed, if f is of this form, we can define the non-negative

functions f+ = max{ f , 0} and f� = max{� f , 0}, which satisfy f = f+ � f�
and all the assumptions of corollary 4.7. But then

∂A( f ) := ∂{(x, y)| x 2 H, 0  y  f (x) or f (x)  y  0}
= ∂A( f+) [ ∂A(� f�)

is a null set
5
, and thus A( f ) is measurable.

Corollary 4.16 Any open or closed ball is measurable.

Proof Since the open and the closed ball have the same boundary, it’s enough
to check that ∂Br(x) = {y 2 Rd| ky � xk = r} is a null set. Moreover, since
the homothetic transformation yr,x(y) = ry + x preserves measurability, it’s
enough to consider the case r = 1, x = 0. Define the functions

f : {y = (y1, ..., yd�1) 2 Rd�1| kyk  1} ! R, f (y) :=
q

1 � kyk2

and g := � f , both continuous by continuity of the norm. Then the boundary
of B1(0) is contained in the union of graph( f ) and graph(g), which are both
null sets by the previous proposition. Therefore ∂B1(0) is a null set itself. ⇤

Remark 4.17 Note that we can actually compute the Jordan measure of any ball

Br(x) ⇢ Rd
up to a constant Cd depending only on the dimension. Indeed,

J(Br(x)) = J(yr,x(B1(0))) = r
d · J(B1(0)) = r

d · Cd,

for Cd := J(B1(0)).

Proposition 4.13 is a key result, which can be used for many objects in R2

or R3. As a motivating example, we consider triangles in two dimensions.
Let T be a triangle in R2 with vertices a, b, c 2 R2. The boundary of T is the
union of three line segments, and for each of them there are two options:

• the segment is the graph of an affine transformation L : [0, 1] ⇢ R ! R,
and thus in particular the graph of a continuous function,

• the segment is a vertical line, i.e. of the form {(x0, y0 + t)}0tt0 , and
therefore contained in the boundary of some box B.

5Here we use that, by symmetry, ∂A(� f�) and ∂A( f�) have the same Jordan measure.
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• •
z z’

.

jz(T
(1)
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.
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1 T

(2)
1

••
z’

z

T
(1)
1

.

jz

⇣
jz0

⇣
T
(2)
1

⌘
[ T

(1)
2

⌘

.

T
(2)
1

.

jz0

⇣
T
(2)
1

⌘

Figure 4.1: Representation of the point reflections applied to two di↵erent triangles. For the

triangle on the right we have T
(2)
2 = ∆.

In both cases the line segment has measure zero and so the same holds for
∂T, which implies that T is measurable.

We now want to show how one can explicitly compute the Jordan measure
of such a triangle. For that, we first need to prove invariance of the Jordan
measure under point reflections.

Lemma 4.18 For z 2 Rd
, let jz(x) = 2z � x be the reflection through the point

z. Then for any A ⇢ Rd
measurable we have that jz(A) is measurable with

J(jz(A)) = J(A).

Proof Consider c 2 R and any interval I ⇢ R with endpoints a  b. Then
jc(I) is an interval with endpoints 2c � b and 2c � a, that is an interval with
length 2c � a � (2c � b) = b � a. Similarly, for z = (z1, ..., zd) 2 Rd and any
box B ⇢ Rd having endpoints ai  bi, 1  i  d, we have that jz(B) is a box
satisfying

|jz(B)| =
d

’
i=1

(2zi � ai � (2zi � bi)) =
d

’
i=1

(bi � ai) = |B|.

Therefore, for any elementary set E = B1 t · · · t Bn we have that jz(E) =
jz(B1)t · · ·t jz(Bn) and m(jz(E)) = |B1|+ · · ·+ |Bn| = m(E). We conclude
by observing that for any elementary set E contained (resp. containing) A,
jz(E) is an elementary set contained (resp. containing) jz(A), and so, since
jz is invariant on Ed, J(A) = J(jz(A)) (resp. J(A) = J(jz(A))). ⇤
The next step consists in considering the special case of a triangle T where
both vertices a and b are contained in the x-axis R ⇥ {0}.

Using the height h := max{|y| | (x, y) 2 ∂T} we can now split T in two parts,
by defining

T1 := {(x, y) 2 T | |y|  h

2
}, T2 := {(x, y) 2 T | |y| > h

2
}.
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S1

S2

S3
•

•

c

b

c1

b2

c2

b1

Figure 4.2: The three right triangles S1, S2 and S3.

Now we split both T1 and T2 into two pieces T
(1)
1 , T

(2)
1 and T

(1)
2 , T

(2)
2 (possibly

empty) so that there exist z, z
0 2 R2 and point reflections jz, jz0 for which

B1 := T
(1)
1 [ jz

⇣
T
(1)
2

⌘
[ T

(2)
1 [ jz0

⇣
T
(2)
2

⌘

(see figure 4.1, left part) or

B2 := T
(1)
1 [ jz

⇣
jz0

⇣
T
(2)
1

⌘
[ T

(1)
2

⌘
[ T

(2)
2

(see figure 4.1, right part) is a box6.

By applying the previous lemma, we thus obtain that, for some i 2 {1, 2},
J(T) = J(Bi) = |Bi|, which is equal to 1

2 · h · |b � a|.

Remark 4.19 The procedure we used to obtain the formula for the measure of such a

triangle is exactly the one that’s used in Euclidean geometry to motivate the formula

”half the base times the height”. Therefore, if we define the area of a two-dimensional

triangle as it’s Jordan measure, we see that this intuitive idea of ”splitting the triangle

into pieces” corresponds to an actual formal proof.

The last step now consists in the generalization of the previous formula to
any arbitrary triangle T. By translation invariance it’s enough to consider the
case where a = (a1, a2) = (0, 0). For simplicity, we consider the case where
c2 � b2 and b1 � c1

7. Then J(T) is equal to the Jordan measure of the box
[0, b1]⇥ [0, c2] minus the Jordan measure of three right triangles S1, S2, S3 (see
figure 4.2), for which we can use the above formula. Hence,

J(T) = J([0, b1]⇥ [0, c2])� (J(S1) + J(S2) + J(S3))

=

����c2b1 �
✓

c2c1

2
+

b2b1

2
+

(b1 � c1)(c2 � b2)
2

◆����

=

����c2b1 �
1
2

b1c2 �
1
2

c1b2

���� =
1
2
|c1b2 � c2b1|.

6Actually we should say that Bi is a box, since the boundary of Bi is in part contained in
Bi and in part not contained, and so Bi is not a box in the sense of definition 2.4. However we
still have J(Bi) = |Bi|.

7In the general case one gets something of the form J(T) = |B|� J(S1)� J(S2)� J(S3)�
|B0|, for some boxes B and B

0.
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4. Jordan measurability

To summarize, we’ve shown that for any triangle T with vertices a, b, c we
have

J(T) =
1
2
|(c1 � a1)(b2 � a2)� (c2 � a2)(b1 � a1)| .

Remark 4.20 The above result can be used when considering convex polygons: by

use of fan triangulation, that is splitting the n-polygon into n � 2 different triangles,

one gets a procedure for computing the Jordan measure of any convex polygon. For

more details about triangulations we refer to [1].

4.4 Examples of non-measurable sets

Now that we have seen a few examples of measurable sets, the question
that arises is how one can find non-measurable sets. For this purpose, the
most known example is probably Q := Qd \ [0, 1]d. The reason for Q being
non-measurable is strictly related to the definition of an elementary set,
which states that any elementary E must be a finite union of boxes. In
particular, we cannot use the fact that Q can be written as a countable union
of isolated points q 2 Qd to conclude J(Q) = 0. In the following we show
non-measurability of Q in three different ways.

• The first approach consists in applying directly the definitions of J

and J to Q. Let for that purpose B be a box contained in Q, then we
have two options: either B̊ 6= ∆ or B is a box with measure zero. The
first case is actually not possible since otherwise B̊ contains a point
r 2 [0, 1]d \ Qd, which gives a contradiction. Therefore, we conclude
that any elementary E = B1 t · · · t Bn contained in Q satisfies J(E) =
J(B1) + · · ·+ J(Bn) = 0 + · · ·+ 0 = 0, and we get J(Q) = 0. On the
other hand, if E is an elementary set containing Q, then [0, 1]d = Q ⇢ E.
But since E is measurable we have J(E) = J(E), and therefore J(E) � 1.
Taking the infimum over all elementary E containing Q gives J(Q) � 1.
Actually, since E = [0, 1]d is elementary we get J(Q) = 1, which proves,
together with J(Q) = 0, non-measurability of Q.

• A second, way shorter, approach consists in observing that the bound-
ary of Q is exactly [0, 1]d. In fact this implies J(∂Q) = 1, which proves,
by failure of the boundary condition in theorem 4.7, non-measurability
of Q.

• Lastly, we want to use the discretization formula to show that Q cannot
be measurable. Assume by contradiction that Q was measurable, then
by proposition 4.11 we have

J(Q) = lim
n!•

#{Q \ Zd

n
}

nd
= lim

n!•

(n + 1)d

nd
= 1.
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4.4. Examples of non-measurable sets

On the other hand, for the translated set Q
0 := Q + (

p
2, ...,

p
2) we

have, since Q
0 \ Qd = ∆,

J(Q0) = lim
n!•

#{Q
0 \ Zd

n
}

nd
= 0.

Therefore, combining both observations, we get a contradiction to trans-
lation invariance of J, which implies that Q must be a non-measurable
set.

A direct consequence of what we’ve just observed is that, for any 0  a < b,
one can find a non-measurable set C ⇢ Rd with inner measure a and outer
measure b. In fact, we can consider the set C

0 = Qd \ [0, (b � a)
1
d ]d, which

satisfies J(C0) = 0 and, by repeating the argument used for Q, also

J(C0) = J

⇣
[0, (b � a)

1
d ]d
⌘
= b � a.

Therefore, by defining C = C
0 t [b, b + a

1
d ]d we obtain a set with

J(C) = J

⇣
[b, b + a

1
d ]d
⌘
= a and J(C) = (b � a) + a = b.

At this point, it’s natural to ask ourselves if the previous result is true also
when we impose additional conditions on the non-measurable set we’re
considering. In particular, we could for example try to see if, for all # > 0,
there exists an open set U ⇢ R with inner Jordan measure smaller than # and
outer Jordan measure 1. This is actually possible and is a consequence of the
following claim, which provides an open set A having upper measure b � 1
and therefore also, by picking U := 1

b
A, the aimed set U.

Claim 4.21 For all # > 0 there exists an open subset A of R with J(A)  # and

J(A) � 1.

Proof Let {qn}n2N be an enumeration of Q \ [0, 1] and, for all n � 1, define
the interval An := (qn � 1

2n+1 , qn + 1
2n+1 ). Then choose N 2 N such that

Â•
n=N

1
2n < # and define A =

S
n�N An.

First we look at J(A). Assume that E is a closed elementary set contained
in A. Then, since E is compact and {An}n�N an open cover of E, there must
exist a M 2 N such that E ⇢ S

M

n=N
An. In particular,

J(E)  J

 
M[

n=N

An

!


M

Â
n=N

|An| 
•

Â
n=N

1
2n

< #.

Since in general the (arbitrary) elementary set E does not need to be closed,
we need to approximate it with a closed elementary set Ẽ ⇢ E ⇢ A. By the
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4. Jordan measurability

above argument, we then have that J(Ẽ) < #. However, Ẽ can be chosen so
that we at least have the upper bound J(E)  #. Hence, for any elementary
E ⇢ A we get J(E)  #, which implies that J(A)  #. Now, for J(A),
consider some E elementary containing A. Then in particular, by density of
the {qn}n�N , [0, 1] ⇢ A ⇢ E. Therefore J(E) = J(E) � 1 and since E was
arbitrary, we get J(A) � 1. ⇤
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