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It is theoretically possible, believe it or not, to cut an 
orange into a finite number of pieces that can then be 
reassembled to produce two oranges, each having ex- 
actly the same size and volume as the first one. That's 
right: with sufficient diligence and dexterity, from any 
three-dimensional solid we can produce two new ob- 
jects exactly the same as the first one! 

Mathematicians, upon  first hearing of this result 
(otherwise known as the Banach-Tarski Theorem), are 
generally somewha t  blas6; they know that funny 

counterintuitive things crop up all the time whenever 
infinity is involved. Most mathematicians encounter 
the result for the first time in graduate school and file 
it away in their strange results category (along with 
space-filling curves, Cantor functions, and non-mea- 
surable sets). But in spite of the relative simplicity of 
the proof, discovered by Stefan Banach and Alfred 
Tarski in 1924 and hinging on the Axiom of Choice, 
many mathematicians go no further than the lay scien- 
tist who  comes across the result. 

* This article was originally published in French in the February 1987 
issue of Pour la Science. The translation was done by the author. 
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The mathematics of infinity is almost always coun- 
terintuitive and has been so ever since its inception at 
the end of the nineteenth century when Georg Cantor 
proved the completely astounding result that infinity 
came in different sizes. This result initially so upset 
the mathematical coummunity that Henri Poincar6 
once maligned it as a disease from which mathematics 
would have to recover.1 

The purpose of this article is neither to explain the 
subtleties of infinity nor to give a rigorous proof of the 
Banach-Tarski Theorem. Instead, a few simple notions 
about infinity will be explained that will serve as the 
basis for the subsequent explanation of the main ideas 
of the proof of this wonderful theorem. 

Let's start with a bit of elementary geometry. Two 
subsets of the plane are said to be congruent when one 
can be made to coincide precisely with the other using 
only translations and rotations in the plane. The es- 
sence of congruence is that the distances between the 
points of the first set remain unchanged after it has 
been moved to coincide with the second set. Con- 
gruence, however, is not to be confused with one-to- 
one correspondence. The set of even numbers {2, 4, 
6 . . . .  }, for example, is not congruent to the set of nat- 
ural numbers {1, 2, 3 . . . .  } because there is no way to 
overlay one set on the other even though the two sets 
can be put into one-to-one correspondence. Nothing 
prevents an infinite set from being congruent to a 
proper subset of itself, however. Consider, for ex- 
ample, the two infinite sets {1, 2, 3 . . . .  } and {5, 6, 
7 . . . .  }. Congruence is demonstrated by shifting all of 
the elements of the first set four units to the right. 

E q u i v a l e n c e  b y  F i n i t e  D e c o m p o s i t i o n  

Let's return to our orange. Before we actually begin 
converting it into two oranges, we need the notion of 
"equivalence by finite decomposition." In spite of its 
complex name, the idea is simple. Basically, we divide 
an object X into a finite number of disjoint parts and 
then rearrange them into a new object Y. (Note that 
"rearranging" a given set means that the set, in its ini- 
tial position, is congruent to the set in its final posi- 
tion.) Under these circumstances, we say that X is 
equivalent by finite decomposition to Y. This type of 
equivalence is transitive. In other words, if a set X is 
equivalent to Y, which in turn is equivalent to Z, then 
X and Z are also equivalent by finite decomposition. 

Now, let's consider our first little "paradox": the set 
of positive integers, N, is equivalent by finite decom- 
position to the integers with a one-element "hole" in 
them-- for  example, the set of integers with one of its 
members, say 5, removed�9 There are various demon- 
strations of this fact but the one given below will turn 

1 Martin Gardner,  Mathematical Carnival, N e w  York: Vintage Books 
(1965), Ch. 3, p. 27. 

out to be the most instructive for what follows. First, 
create two subsets of N: the set B consisting of all mul- 
tiples of 5 (i.e., {5, 10, 15 . . . .  }) and its complement A 
containing all non-multiples of 5 (i.e., {1, 2, 3, 4, 6, 7, 
�9 . .}). By definition, these two sets are disjoint, and 
their union is equal to all of N. We now are in a posi- 
tion to introduce the key technique of this proof and 
all of the others in this article, including the Banach- 
Tarski Theorem itself. We will call this technique 
"shifting toward infinity." We shift B toward infinity 
by 5 units,  thus producing a new set B' equal to 
{10, 15, 20 . . . .  } which is, by definition, congruent to 
B. We now have, on the one hand, a disjoint union of 
sets (A U B), which is equal to the positive integers, 
and a second disjoint union of sets (A U B'), which is 
equal to the positive integers with the element 5 re- 
moved. But, as we have said, B and B' are obviously 
congruent, as is, even more obviously, A with itself. 
We can therefore conclude that the set of integers and 
the set of integers with 5 removed are equivalent by 
finite decomposition. 

The next proof is slightly more complicated but is 
based on the same principle of shifting toward infinity 
that was used to show that N and N \ .  {5} were equiv- 
alent by finite decomposition. This time we will con- 
sider a circle and a circle with a one-point "hole" in it. 
The claim is that these two sets are equivalent by finite 
decomposition. Here is an outline of how the proof 
goes. 

Let C be a circle with radius 1 unit, and let 0 be 
some point (in fact, the one we are going to "remove") 
on the circumference of C. From point 0, we move 
counterclockwise along the circumference a distance 
of exactly one unit, the radius of the circle. Call the 
point at which we stopped 1, and then continue 
walking. Exactly one unit later, stop and mark the 
point where you stopped by 2, etc. Call B the set of all 
points {0, 1, 2, 3 . . . .  }. 

Just as in the previous demonstration, A will desig- 
nate the points (of the circle this time) that are not in 
B. Now imagine that the set B is the channel selector 
dial of a television. Turn the dial one click to the left. 
This dial-turning superimposes the set {0, 1, 2 . . . .  } on 
the set {1, 2, 3 . . . .  }. The latter set we call B; and ob- 
viously B and B' are congruent. Since the circle C is 
equal to A U B and the circle without the point 0 is 
equal to A U B', we conclude that the circle and the 
circle with a one-point hole are equivalent to each 
other by finite decomposition. 

Next, we wish to demonstrate that a closed one-by- 
one square can be decomposed and reassembled to 
form a closed isosceles triangle whose altitude is equal 
to one of the sides of the original square�9 

The first thing we might try is to cut the square 
along one of its diagonals, thus obtaining two right 
triangles (see Figure 1). The desired isosceles triangle 
would be produced by reassembling the two right tri- 
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Figure 1. How to transform a square into an isosceles triangle. 

angles in such a way  that two of their legs would coin- 
cide and their hypotenuses  would meet  at a point. 
This method, however,  does not work. When we cut 
the square, we do not produce two complete right tri- 
angles. The diagonal of the square can only be used to 
constitute one of the hypotenuses, not both. Further- 
more, the definition of equivalence by finite decompo- 
sition requires that the constituent parts must be dis- 
.joint (this, at least, does correspond to our real-world 
notion of what is meant by the separate parts of some- 
thing). When we cut an object in half we do not allow 
some points to belong to both halves. Figure I shows a 
way  of cutting the square that satisfies this condition. 

Unfortunately, there are two candidates for the alti- 
tude of the isosceles triangle and no points at all along 
one of its sides. Why not try to remove one of the extra 
altitudes and "paste"  it along the edge of the triangle 
that is without points? It turns out that this trick al- 
most works, but, as you can see in Figure 2, it falls 
slightly short of the mark. Even after pasting in this 
altitude of length 1, a "hole" remains. We still need a 
segment of length V~ - 1. We will use the technique 
of shifting toward infinity to excise from the original 
square a line segment of the required length and then 
will show that this "'theft" is of absolutely no dele- 
terious mathematical consequence. Then, our minds 
at ease, we will finish our construction by plugging 
the hole in the side of the triangle with the purloined 
line segment. 

How do we filch the required line segment from the 
original square? Basically, we show that the square 
and the square minus the desired line segment are 
equivalent by finite decomposition. The precise speci- 
fications of this line segment require it to have a length 
of V 2  - 1 with one end including its endpoint and 
the other end not. The excision technique is virtually 
identical to the one that allowed us to show a circle 
and a circle missing a point were equivalent by finite 
decomposition. Now,  instead of removing a point 
from a circle, we will remove a line segment from a 
disk. We therefore begin by inscribing the circle C of 

Figure 2. The unit square is equivalent to the square minus 
a line segment of length ~ -  1. 

the preceding demonstration in the square. We will be 
considering the closed disk D whose boundary is C. 
To each of the points 0, 1, 2, . . . attach a segment of 
length V~  - 1 (see Figure 2). Call these segments 
L(0), L(1) . . . . .  The remainder of the proof is exactly 
the same as before except that C, the circle, is now 
replaced by D, the disk, and the point 0 by the line 
segment L(0). We have therefore shown that the disk 
and the disk with a line segment missing are equiva- 
lent by finite decomposition. Further, because our 
theft of the line segment didn't  affect any part of the 
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Figure 3. The transformations of the sphere are composed of rotations about the F and G 
axes. The angle between the axis is chosen so that fg is not equal to gf. 

square outside of the disk, we can safely assert that 
the square and the square without the missing line 
segment are also equivalent by finite decomposition. 
Finally, we insert L(0) in the hole along the side of the 
triangle and obtain the desired result; the closed 
square is equivalent by finite decomposition to the 
closed isosceles triangle. 

Until now we have only performed our shift-to- 
ward-infinity vanishing act on sets whose size was in- 
significantly small compared to the sets that contained 
them: a point taken from a circle and a line segment 
excised from a disk. While this may be mildly inter- 
esting, it's hardly spectacular. Let's now take a look 
and see how these techniques can also be applied to 
much larger sets, such as the entire volume of a solid 
ball. 

Hausdorff's Paradox 

We now have the tools necessary to produce two or- 
anges from one. The heart of the proof of the Banach- 
Tarski Theorem is based on a result of Felix Hausdorff. 
Hausdorff's result concerns only the skin of the or- 
ange (a "skin" of thickness zero). The Hausdorff par- 
adox, as it is called, shows that it is possible to divide 
this skin, once an insignificantly small (more precisely, 
countably infinite) set of points has been removed, 
into three disjoint sets of points A, B, and C such that 
A, B, C, and B U C are all congruent to one another. 
Now, that is positively weird! The mutual congruence 
of these three sets means that A is congruent to the 
disjoint union of two copies of itself. This is referred to 
as a paradoxical decomposition of A. Essentially, by 
carefully reassembling these sets, A, B, and C, we ob- 
tain a set of two complete orange skins each of which 
is equivalent by finite decomposition to the original 
orange skin. In other words, one sphere can be cut up 

and reassembled into two spheres identical to the first. 
Can we do the same thing to solid balls? The answer 

is yes; intuitively, we must  imagine applying the 
Hausdorff technique to hollow balls whose skins get 
progressively thicker and thicker. Finally, we apply 
this construction to a "hollow" ball whose inside con- 
sists only of a single point to produce two equivalent 
balls each missing its center point. We have thus done 
the construction for the closest thing possible to a solid 
bal l--namely,  a solid ball without its center. Having 
gone that far, it is a relatively easy matter to show that 
the solid ball and the solid ball without its center are 
equivalent by finite decomposition. This completes the 
proof of the Banach-Tarski Theorem: a ball is equiva- 
lent by finite decomposition to two copies of itself. 

Now let's take a look at the proof of Hausdorff 's  
paradox, the mainstay of the Banach-Tarski Theorem. 
Recall that Hausdorff's construction is only concerned 
with the surface of the ball (i.e., the sphere) and not 
the ball. 

Given a sphere S, we will select two axes of this 
sphere, F and G. The angle formed by these two axes 
at the center of the sphere is to be 45 ~ . We will desig- 
nate by f a clockwise rotation of the sphere by 180 ~ 
about the F axis and by g a clockwise rotation of the 
sphere by 120 ~ about the G axis. We call f and g trans- 
formations of the sphere (see Figure 3). We will use com- 
binations of these transformations to describe different 
sequences of rotations of the sphere. For example, the 
composite transformation g2f specifies the operation 
consisting of turning the sphere 180 ~ about F, followed 
by two rotations of 120 ~ about G. To avoid an unneces- 
sary proliferation of exponents, we will write ~ to des- 
ignate g2. (Remember that ~ represents not only a 
clockwise rotation of 240 ~ but also a rotation of 120 ~ in 
the opposite direction.) From now on we will call f, g, 
and ~ elementary transformations. From a given position 
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Figure 4. The simple machine used to produce the set of all possible transformations. 
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of the sphere, if we apply f twice in a row, the sphere 
will be returned to its initial position. We write f2 = 1, 
whe re  1 is the ident i ty  t r a n s f o r m a t i o n - - i n  other  
words, the transformation that does not change the 
position of the sphere. Similarly, since g represents a 
rotation of 120 ~ g3 = 1. 

These two observations allow us to reduce complex 
transformations to a simpler form. For example, g S f 3  

= (g3)(g2)(/2)(f) = 1-(g2) .  1 . f  = g2f. On the other 
hand, there is no way  to simplify the composite trans- 
formation gfgfgf~ because the position of the two axes 
F and G was carefully selected in such a way that fg 
does not equal gf. In other words,  starting with a 
given position of the sphere, when we perform the 
transformations in the order g, then f, the sphere will 
be in a different position than had we done first f, 
then g. 

We are only interested in transformations reduced 
to their lowest form, and we will use an iterative ma- 
chine (see Figure 4) to produce the set Q of all of these 
transformations. To start the machine running, we put 
the identity transformation I into the hopper. The ma- 
chine executes the following three rules: (1) when 1 is 
the only transformation in the hopper, it produces the 
three elementary transformations f, g, and g; (2) when 
a transformation whose  leftmost element is f goes 
through the rule box, two new transformations are 
p roduced- - the  first by adding an additional rotation 
by g to the transformation in the box, and the second 
by adding an additional rotation by 3 (for example; if 
f~ f  goes into the rule box, gfgf and gfgf  will come out); 
(3) when a transformation whose leftmost element is g 
or g goes through the rule box, a new transformation 
is produced by adding an additional rotation by f to it 
(for example, if gfg goes into the rule box, fgf~ will 
come out). 

The transformations produced in the rule box then 

drop into a transformation copier, which produces a 
copy of each transformation and sends it back up to 
the hopper;  the original transformation then drops 
into the large collection bag below the machine�9 This is 
how Q, the set of transformations 1, f, g, g, fg, gf, gf, 
�9 . . , is produced�9 The angle between the axes F and G 
was chosen to ensure that each of the elements of Q 
represents a unique position of the sphere with respect 
to its initial position. 

A Full Iterative Machine 

This four-part  machine with its hopper ,  rule box, 
transformation copier, and collection bag forms the 
basis of the more powerful iterative machine that we 
need for the Banach-Tarski Theorem. The full iterative 
machine not only must be capable of producing all of 
the transformations in Q, but  also must be able to sort 
them into three disjoint subsets, I, J, and K whose  
union is equal to all of Q and that have the following 
properties: 

f l  = I U K; gI = J; 3I = K. 

What do these equalities mean? Consider the first 
one, fl = J u K, which means that if you apply f (a 
clockwise rotation of 180 ~ ) to all of the transformations 
in / ,  you obtain exactly the set of transformations J u 
K. In other words, I is congruent to J u K. Similarly, gI 
= J means that upon applying g (a clockwise rotation 
of 120 ~ to all of the transformations in I, you obtain 
exactly all of the transformations in ]. Thus, I is con- 
gruent to ]. Similarly, we find that I is congruent to K. 

Figure 5 shows the full-blown iterative machine that 
will create these three sets of transformations I, J, and 
K. The major conceptual difference with the basic ma- 
chine (Figure 4) is the addition of three transformation 
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sorters. The role of these sorters is simple: based solely 
on the lef tmost  e lementary  t ransformation of any 
transformation entering the sorter, they determine the 
tube down which it will be sent. The machine operates 
sequentially. First, it processes all of the transforma- 
tions in its I hopper,  then everything in its J hopper, 
and finally everything in its K hopper before returning 
to the I hopper. For this reason, we can talk of cycles 
of the machine. Were I to be asked to put my finger on 
the key technique of the proof of the Banach-Tarski 
Theorem, I wouldn ' t  hesitate to single out this clever 
way of generating the three disjoint subsets, I, J, and 
K of the set Q of all transformations of the sphere. 
Figure 6 indicates several stages of production of this 
machine. 

It should be clear, at least empirically, that we now 
have the desired relationships be tween the various 
subsets of Q, namely: fl = l u K; gI = J; ~I = K. 

Are some of the pieces starting to fall together? The 
H a u s d o r f f  paradox  states that  we can divide the 
sphere (minus a countable set) into three disjoint 
subsets of points A, B, and C such that A, B, C, and 
B U C are pairwise congruent. We produced with our 
iterative machine three disjoint subsets of transforma- 
tions of the sphere L J, and K such that L J, K, and 
J u K are pairwise congruent. If you think this is too 
much of a coincidence to be an accident, you are right. 
We are indeed closing in on the result. 

Two Spheres from One 

Let's return to our sphere. No matter how many times 
you  rotate it in any imaginable way  about  a fixed 
center, when you  are finally done, you can always 
find exactly one axis that would have allowed you to 
go from the initial position of the sphere to its final 
position in just one rotation. This is what  we do for all 
of the transformations in Q. For each transformation, 
regardless of its length, we determine the axis of rota- 
tion that would have allowed us to go from the initial 
position directly to the final position of the sphere. 
This axis cuts the sphere at two points that we call, not 
surprisingly, poles. We then collect in a set D both 
poles associated with each transformation in Q. This 
set D represents the points on the sphere that, for at 
least one transformation of Q, do not move. (It turns out 
that D, being a countable set, is infinitesimally small 
compared to the entire sphere.) All of the other points 
on the sphere move for every transformation in Q. 
This set of points, which we will call D* or, alternately, 
S \.  D (where S is the sphere), is the one that interests 
us and is virtually the entire sphere anyway. 

How should we go about defining the three other 
sets of points A, B, and C whose disjoint union will be 
equal to D*? To each point p in D*, apply all of the 
transformations in Q, collecting the resulting points in 

a set called Q(p) = {p, tip), g(p), ~(p), fg(p) . . . .  }. It is 
easy to show that for any two distinct points p and p', 
the sets Q(p) and Q(p') are either identical or disjoint. 
From each of the sets created in this way, pick a point. 
Collect all of these points together in a set M. (The 
possibility of creating this set M implies our tacit ac- 
ceptance of the Axiom of Choice. Before devoting time 
to a discussion of this axiom, let's finish the proof.) A 
moment 's  reflection will convince you that the set D* 
is equal to the set obtained by applying all of the 
transformations of Q to the points in M. 

The last little step in the proof consists of dividing 
D* into three disjoint subsets A, B, and C such that A, 
B, C, and B U C are pairwise congruent. With the 
means now at our disposal, this will be easy. Recall 
the three subsets of transformations L J, and K that we 
constructed so carefully. Define A as the set of points 
resulting from the application of all of the transforma- 
tions of I to the set M. Similarly, B and C will be pro- 
duced by the application of all of the transformations 
of J and K, respectively, to M. This construction gives 
the desired disjoint decomposition of D* into A, B, and 
C. Because f l  is equal to ] U K, however, f(A) is ob- 
viously equal to B U C. Since f is simply a rotation by 
180 ~ we can conclude that A and B U C are congruent. 
By similar reasoning, clearly gI = J implies that A and 
B are congruent, and ~I = K implies that A and C are 
congruent. The transitivity of congruence allows us to 
conclude that A, B, C, and B U C are all pairwise con- 
gruent. 

Now we are ready to use our trick of shifting to in- 
finity. Recall the image of the television channel se- 
lector knob.  Imagine instead that we now have a 
spherical knob with two axes of rotation. Suppose that 
the transformation f represents a click of the button by 
180 ~ about its first axis; to make the set A coincide with 
the set B U C, we need only turn the knob by one click 
about  this axis. In a similar fashion, one 120 ~ click 
about  the second axis (i.e., the transformation g) 
brings the set A directly onto B, while two clicks make 
A coincide with C. 

Finally, we are in possession of the result that will 
take us directly to the decomposition we need to finish 
the Banach-Tarski construction. Remember that our 
goal is to cut the ball into a finite number of pieces that 
will be reassembled into two balls of the same size and 
volume as the first one. As we have already said, our 
starting point will be the Hausdorff paradox. The idea 
is as follows: Given that the surface of the ball can be 
cut into four disjoint sets A, B, C, and D such that A, 
B, C, and B U C are all mutually congruent, we can use 
the set B U C as a "cutting template" to produce the 
pairs of sets that will eventually be reassembled into 
two separate spheres. Lay this template on top of A 
and cut out two sets A 1 and A 2 that are congruent to B 
and C, respectively. Since both B and C are each con- 
gruent to A, the decomposition of A into A 1 and A 2 is 
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Figure 5. The full-blown machine used to generate and sort all of the transformations. 

Cycle 0 Cycle 1 Cycle 2 Cycle 3 

Contents of Bag I 1 1 1, fg, gf, f~ 1, fg, ~f, f~, fgf 

Contents of Bag J empty f, g f, g f, g, fgf, gfg, gfg 

Contents of Bag K empty ~ g, gf g, gf, ~fg, ~f~ 

Figure 6. The results of the first iterations of the transformation-producing and sorting machine. 

paradoxical. We then decompose B and  C in a similar 
fashion into B 1 and  B 2, and C 1 and C 2. In other words, 
we can decompose S into disjoint subsets as follows: 

S = A U B U C U D  
= (A I UA2) U (B 1 UB2) U (C 1UC2) U D  
= (A I U B 1 U C1 U D) U (A 2 U B 2 U C2). 

From (A1 U B1 U C1 UD) we make one sphere $1, 
which  is equivalent  by finite decomposi t ion  to the 

original sphere S (since A is congruent  to A t, B is con- 
gruent  to B 1, etc.). Only one t iny detail remains to be 
s h o w n .  Can  we cons t ruc t  a s econd  sphe re  f rom 
(A 2 U B 2 U C2)? 

Rest assured,  we haven ' t  come this far for the an- 
swer to be no! First, notice that A 2 U B 2 U C 2 can almost 
be reassembled to make a second sphere S 2, identical 
to the original one; all that  is missing is the set D 
whose  size, as we have already pointed out is "insig- 
nificant" compared to that  of S. The demonstrat ion 
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that a sphere and a sphere with the set D removed are 
equivalent by finite decomposition is essentially the 
same as the proof that a circle and the same circle with 
a point missing are equivalent by finite decomposi- 
tion. Thus S 2 \ D and S 2 a r e  equivalent by finite de- 
composition, and that concludes the proof. We have 
shown that the sphere S, when properly dissected, 
can be decomposed and then reassembled into two 
spheres $1 and S 2, each of which is equivalent by finite 
decomposition to S! 

Applications 

So we have now shown that one basketball, if it is cut 
up carefully enough, can spawn two. So much the 
better for the sports world,  but what about the 
banking community? Can a bank note, even of the 
smallest denomination, produce two of its kind? Un- 
fortunately not. The mathematician A. Lindenbaum 
proved that no bounded set in the plane can have a 
paradoxical decomposition, 2 and a bank note, sad to 
say, is a bounded set in the plane. 

We have already described the "thickening" tech- 
nique by which we transform the spheres into balls. 
To produce these two copies by means of the Banach- 
Tarski Theorem, we need the Axiom of Choice. What 
could be more intuitively obvious than this axiom, 
which claims that it is possible to start with any collec- 
tion of non-empty sets and create a new set by se- 
lecting one element from each of the sets in the collec- 
tion. 

The validity of the Axiom of Choice, like that of Eu- 
clid's Fifth Postulate some two hundred years before, 
was a hotly debated subject within the mathematical 
community this century. The question was finally re- 
solved around the beginning of the 1960s. The fate of 
this axiom resembled that of the Fifth Postulate. It 
turned out that the Axiom of Choice, like the Fifth 
Postulate, is neither true nor false, but independent of 
the other axioms of the system. If we accept it as true 
- - a n d  what could be more natural?--we are mathe- 
matically obliged to accept the strange result of Banach 
and Tarski that derives from it. 

So much for theory. N o w  let's move on to some 
amusing practical applications. All you need is a sharp 
knife, a small loaf of bread, a few fish, and a large 
audience. Then if you go about carefully doing the 
cuts and reassemblies indicated in this article, who  
knows where it all might lead. 

FARG, Perry Building 
330 Packard Road 
University of Michigan 
Ann Arbor, MI 48104 USA 

2 A. Lindenbaum, Fund. Math. (I926), 8, p. 218. 
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