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Abstract

In this thesis, we contribute to various critical (non-local) Partial Differential Equations by employing
a variety of methods often connected to compensation phenomena to account for criticality of the
PDEs. Generally speaking, this thesis consists of two main parts: The first part treats the so-called
half-harmonic gradient flow, the natural L2-gradient flow associated with the 1/2-Dirichlet energy as
first introduced by Da Lio and Rivière in [21]. We establish existence, uniqueness, regularity and
bubbling results for this flow for arbitrary target manifolds and thus generalise the existing theory for
harmonic maps to the non-local case ([102], [103], [104]). This generalisation is not unexpected, as the
general theory of fractional harmonic maps greatly parallels the developments of the classical harmonic
map theory. As as a result, while employing different techniques to account for the intricacies of non-
local interactions, the broad ideas are often quite similar. To briefly summarise, we show that existence
of solutions with non-increasing energy (which is a property to be expected for smooth solutions) is
ensured for a short amount of time and such solutions are even smooth and unique among the set
of strong competitors, i.e. there does exist only one solution for which we may make sense of the
derivatives in the L2-sense. We also see that energy might concentrate at specific points characterised
by a lower bound on the limes inferior of the localised 1/2-Dirichlet energy, resulting in the formation
of a half-harmonic bubble, but at most at finitely many times and one may extend solutions for all
times by gluing. This immediately leads us to concentration-compactness-type phenomena typical in
the context of conformally invariant PDEs. Indeed, among the most important tools in our proof is a
control on the energy concentration for short times. Therefore, it is not surprising that for sufficiently
small initial energies, the solutions exist globally, remaining smooth everywhere and uniqueness may
be extended to the set of weak competitors. In fact, if the initial energy is sufficiently small, bubbling
cannot occur due to the fact that the bubble which would be formed has to absorb a quantum of
energy strictly larger than 0.

The second part of the thesis explores critical chirality, a concept explored in Da Lio-Rivière
[23] and generalising improved regularity properties that are usually linked to the emergence of anti-
symmetric potentials to situations, where such a structure is a-priori not available. The paper Da
Lio-Rivière [23] inspired two quite different kinds of compensation results: A Bourgain-Brezis-type
inequality leading to a characterisation of Bergmann spaces ([25]) as well as a regularity result for Dirac
equations which may be phrased in such a way that it applies to certain systems of divergence-type
PDEs ([26]) related to the Clifford derivative. The former relies on revealing improved regularity for a
specific iterated operator, using Clifford algebras in order to study such inequalities on arbitrary tori.
The latter follows in the footsteps of Da Lio-Rivière [23] and again uses Clifford algebras as a natural,
albeit not immediately evident extension of the inclusion R ⊂ C ⊂ H to reveal the possibility for a
gauge-approach to the regularity theory in spirit of Rivière [70]. The technique employed, especially
regarding the introduction of a suitable gauge operator, forces us to assume that the domain has
dimension ≤ 8 due to the properties connected to parallelisability of spheres in dimensions 0, 1, 3, 7,
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but not for higher dimensional spheres.



Zusammenfassung

In dieser Dissertation trägt der Autor zur Untersuchung verschiedener (nicht-lokaler) Partieller Dif-
ferentialgleichungen bei, indem eine Vielzahl an Methoden im Zusammenhang mit Kompensations-
Effekten zur Diskussion kritischer PDEs ausgenutzt werden. Diese Arbeit lässt sich grob in zwei
Teile separieren: Im ersten Teil wird der sogenannte halb-harmonische Gradientenfluss behandelt,
der natürliche L2-Gradientenfluss im Zusammenhang mit der 1/2-Dirichlet Energie, welche erstmals
von Da Lio und Rivière in [21] eingeführt wurde. Wir zeigen Existenz, Eindeutigkeit, Regularität
sowie erste Bubbling-Resultate für diesen Gradientenfluss mit Bild in einer beliebigen Mannigfaltigkeit
und verallgemeinern somit die existierende Theorie für harmonische Abbildungen ([102], [103], [104]).
Diese Verallgemeinerung ist nicht unerwartet, zumal die allgemeine Theorie der gebrochenen harmonis-
chen Abbildungen in groben Zügen der Entwicklung der klassischen Theorie harmonischer Abbildun-
gen folgt. Folglich, obschon die verwendeten Techniken sich zwangsläufig aufgrund des nicht-lokalen
Charakters der Gleichung oberflächlich unterscheiden, bleiben die zugrundeliegenden Ideen mehr oder
weniger gleich. Kurz zusammengefasst zeigen wir, dass die Existenz von Lösungen für den Fluss
mit nicht-wachsender Energie (eine Eigenschaft, welche man von glatten Lösungen erwartet) während
eines hinreichend kleinen Zeitfensters garantiert ist und dass diese Lösungen sogar glatt sowie eindeutig
unter starken Kompetitoren sind, d.h. eindeutig unter Funktionen, welche ein schwaches Differential in
L2 besitzen. Zudem sehen wir, dass sich die Energie in einzelnen Punkten akkumulieren kann, welche
durch eine untere Schranke an die lokale 1/2-Dirichlet Energie charakterisiert werden können. Diese
Konzentration führt zur Formierung einer sogenannten halb-harmonischen Bubble, wobei solche nur
an endlich vielen Punkten entstehen und sich daher die lokalen Lösungen durch ”Zusammenkleben”
zu einer globalen ergänzen lassen. Das führt uns direkt zu Konzentration-Kompaktheit-Phänomenen,
welche typisch für unter konformen Transformationen invarianten PDEs sind. Tatsächlich ist eines
der wichtigsten Hilfsmittel in unseren Beweisen eine Abschätzung, welche uns Kontrolle über die En-
ergiekonzentration für kurze Zeiten gewährt. Natürlich zeigt dies auch direkt, dass mit hinreichend
kleiner Anfangsenergie auch globale Existenz ohne Singularitäten sowie Eindeutigkeit sogar unter
schwachen Kompetitoren gilt. Dies begründet sich in der Tatsache, dass Bubbling unmöglich ist, weil
die Formierung einer Bubble ein nicht-verschwindendes Energiequantum konsumieren würde.

Der zweite Teil des Dissertation beschäftigt sich mit kritischer Chiralität, einem Konzept un-
tersucht in Da Lio-Rivière [23] und ein Hilfsmittel in der Verallgemeinerung von verbesserten Regu-
laritätseigenschaften, welche gewöhnlich mit anti-symmetrischen Potentialen assoziert werden, darstellt,
man jedoch auf allgemeinere Situationen übertragen möchte. Das Paper Da Lio-Rivière [23] inspiri-
erte zwei ziemlich verschiedene Kompensations-Resultate in diesem Zusammenhang: Eine Bourgain-
Brezis-Ungleichung, welche eine Charakterisierung von Bergmann-Räumen erlaubt [25], sowie ein
Regularitätsresultat für spezielle Dirac-Gleichungen welches sich mittels geeigneter Formulierung auf
gewisse PDE-Systeme bestehend aus Erhaltungsgleichungen im Zusammenhang mit der Clifford-
Ableitung anwenden lässt [26]. Ersteres baut auf der verbesserten Integrabilität eines Faltungskerns
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im Zusammenhang mit einem iterierten Operator auf und verwendet dazu Clifford-Algebren um die
Ungleichungen auf Tori zu beweisen. Letzteres hingegen folgt stärker dem Ansatz aus Da Lio-Rivière
[23] und verwendet abermals Clifford-Algebren als die natürlichen, aber nichtsdestotrotz nicht offen-
sichtlichen Verallgemeinerungen der Inklusionsfolge R ⊂ C ⊂ H um einen geeigneten Gauge-Operator
zu definieren in Analogie zu Rivière [70]. Die eingesetzte Technik, speziell die Einführung eines
geeigneten Gauge-Operators, forcieren eine Einschränkung des Resultats auf Gebiete mit Dimension
≤ 8. Dies begründet sich in gewisser Hinsicht in der Parallelisierbarkeit der Sphären mit Dimension
0, 1, 3 sowie 7, welche für höher-dimensionale Sphären nicht mehr gilt.
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1 Introduction

Geometric Analysis describes, broadly speaking, the area of mathematics concerned with the intrigu-
ing interactions between geometry and analysis, in particular through the manifestation in terms of
PDEs naturally associated with, for instance, minimisation of specific energy/area/volume functionals.
Many interesting objects and intensely researched topic lie within its scope, such as minimal surfaces,
curvature flows or harmonic mappings, just to name a few. In recent times, certain problems in Geo-
metric Analysis, especially suitable geometric variational problems, have found natural counterparts in
dimensions where the emerging energies involve non-local quantities, such as the fractional harmonic
maps or self-repulsive knot energies. Among the pioneers in this field are Da Lio, Rivière ([21], [22]);
Schikorra ([76]); Mazowiecka, Schikorra ([57]); Da Lio, Schikorra ([27], [28]); Millot, Sire ([60]); Blatt,
Reiterer, Schikorra ([6]) and many others who have contributed to the theory of critical points of these
energies and extended techniques and results from the local theory, for example about harmonic maps,
to the non-local case by ingenious arguments and careful investigation of compensation phenomena
occurring under these circumstances.

The goal of this thesis is to summarise the author’s contributions to the field of Geometric Anal-
ysis. These may be naturally split in two parts: Results about the half-harmonic gradient flow and
compensation phenomena in a more broad sense. The former results are contained in the sequence of
articles [102], [103], [104] and provide existence, uniqueness and regularity results for such non-local
gradient flows under a variety of assumptions. Moreover, behaviour in singular times is also stud-
ied, ultimately leading to results similar to the ones for the harmonic map flow, relating for instance
singularity formation to energy concentration. The key ingredients for establishing the result are a
local existence result which is founded in elliptic regularity combined with a maximum principle and
a generalisation of the approach by Struwe in [89].

On the other hand, the articles [25], [26] are a collaboration with Da Lio and Rivière. These are
concerned with compensation phenomena building on inherent symmetries in a special, but natural
system of PDEs. In [25], the author and collaborators study a peculiar compensation phenomena first
observed in Da Lio-Rivière [23] during the proof of a generalisation of the main result in Bourgain-
Brezis [8], ultimately leading to a surprising characterisation of Bergmann spaces in terms of their
boundary values, analogous to the relation between boundary values and Hardy spaces on the disc.
Meanwhile in [26], the work in Da Lio-Rivière [23] again provides the foundation and the author
and collaborators consider the question whether the results obtained generalise to arbitrary domains.
Technical obstructions due to the introduction of quaternions in Da Lio-Rivière [23] as well as the
use of natural compact Lie groups in the quaternions require care to adapt the argument, ultimately
leading to a surprising restriction on the dimension of the domain. The techniques in both cases
rely on compensation phenomena in different guises: Either by explicitly computing a kernel that has
better integrability properties than naively anticipated or by gauge techniques ultimately leading to
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exposing the inner symmetries that allows one to apply Morrey bootstrap techniques.

1.1 Harmonic and Fractional Harmonic Maps

For our discussions in this section, in particular to avoid considerations of boundary behaviour, we
usually restrict to the domain being a m-torus Tm:

Tm := S1 × . . .× S1︸ ︷︷ ︸
m times

' Rm/2πZm,

or a circle S1 equipped with the flat Riemannian metrics, while the smooth target manifold is usually
denoted by N and assumed to be closed and isometrically embedded in some RK , for some sufficiently
large K ∈ N. Naturally, most of the results below may be phrased in a more general setup using
arbitrary Riemannian manifolds and involving the associated gradient, working for example with
Laplace-Beltrami operators instead of the usual Laplace operator, but we shall usually not pursue the
highest degree of generality in favour of clarity of presentation throughout this introduction.

1.1.1 Harmonic Maps - A Classical Object in Geometric Analysis

Among the most prominent and extensively studied variational problems is the minimisation of the
Dirichlet energy. It is defined as:

E(u) :=
1

2

∫
Tm
|∇u|2dx, ∀u ∈ H1(Tm;Rn). (1.1)

A weakly harmonic map u = (u1, . . . , un) ∈ H1(Tm;Rn) is a critical point of the Dirichlet energy, i.e.
for weakly harmonic maps we require:

d

dε
E(uε)

∣∣∣
ε=0

= 0,

for all C1-variations ε 7→ uε in C∞(Tm;Rn) with u0 = u. As usual, aside from maxima and minima,
saddle points are also critical points. It is easy to see that such a map satisfies the following PDE:

−∆u = 0 in D′(Tm), (1.2)

in a weak sense, i.e.:

∀ϕ ∈ C∞(Tm;Rn) :

∫
Tm
∇u · ∇ϕ dx =

n∑
j=1

∫
Tm
∇uj · ∇ϕj = 0. (1.3)

The converse also holds true, therefore any weakly harmonic map is also a critical point for E. By
classical elliptic regularity results, one easily deduces that any such weakly harmonic map is actually
smooth and satisfies the equation (1.2) in a pointwise sense. The natural properties such as compo-
nentwise maximum principles, mean value formulas and so on apply to these critical points as one
might expect.

In a next step, one may wonder what happens if we impose further restrictions on the maps u
for which we would like to minimise the Dirichlet energy (1.1). A natural restriction would be to
require that u assumes values in a given manifold N , leading to the set of competitors now being
H1(Tm;N) ⊂ H1(Tm;RK). This leads to the following notion:
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Figure 1.1.1: Two examples of critical points for special cases of Plateau’s Problem

Definition 1.1.1.1. A map u ∈ H1(Tm;N) is called (weakly) harmonic, if and only if it is a critical
point for the Dirichlet energy (1.1) for variations in H1(Tm;N).

Such maps are for example connected to instatons in theoretical physics (Jost [51]), geodesics in
Riemannian geometry, minimal surfaces (Plateau’s problem, see Figure 1.1.1, if we take discs rather
than the torus) and also closely connected to the curvature of the target manifold N , as we shall see.
For instance, if one attempts to find a minimal surface with given boundary, the lack of coercivity
of the area functional may be circumvented by minimising the Dirichlet energy instead of the area
functional and applying the uniformisation theorem (or a generalisation by Morrey, we refer to Rivière
[73] for a summary) to find critical points of the area functional by minimising the Dirichlet energy.
The key observation is that any critical point of E is automatically also critical for the area functional,
as harmonicity and conformality imply vanishing mean curvature, and the two functionals yield the
same value (up to a multiplicative constant) when evaluated in critical points. In general, on the
other hand, the Dirichlet energy provides only an upper bound for the area. Naturally, the same
considerations also apply to geodesics and these considerations were at the heart of the resolution of
Plateau’s problem by Douglas [31] and Radó [66].

Computing the Euler-Lagrange equation for harmonic maps u ∈ H1(Tm;N) may be achieved by
considering a perturbation ϕ ∈ H1(Tm;RN ) ∩ L∞(Tm) and defining a variation of u by:

uε := πN (u+ ε · ϕ)

Here πN denotes the closest point projection to N which is well-defined and smooth in a neigbourhood
of N . Thus, if ε belong to a sufficiently small neighbourhood of 0, we have an admissible variation
and may compute:

0 =
d

dt
E(uε)

∣∣∣
ε=0

=

∫
Tm
∇u · ∇ (dπN (u)ϕ) dx,

which can be rephrased, thanks to dπN (p) being the orthogonal projection to TpN , as:

−∆u ⊥ TuN ⇔ −∆u = AN (u)(∇u,∇u), (1.4)
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where AN (p) denotes the second fundamental form of N at the point p ∈ N , introducing curvature to
the equation. To be precise, we have:

AN (p)(v, w) :=
K−dimN∑

j=1

〈v, dνj(p)w〉νj , ∀v, w ∈ TpN,

where νj form a orthonormal basis of the orthogonal complement of TpN in RK . Then, the expression
AN (u)(∇u,∇u) is exactly:

AN (u)(∇u,∇u) :=
m∑
i=1

AN (u)(∂iu, ∂iu) =
m∑
i=1

K−dimN∑
j=1

〈∂iu, dνj(u)∂iu〉νj .

Therefore, if m = 1, one may immediately identify the defining equation for geodesics in a Riemannian
manifold which are again smooth and intimately connected to the geometry of N . If N = Sn−1, the
equation (1.4) takes a simpler form by observing that the normal space to Sn−1 ⊂ Rn at any point p
is spanned by p itself. This leads to the following equation, observing that ν(u) := u = Id(u) is the
normal unit vector:

−∆u =

m∑
i=1

〈∂iu, dId(u)∂i〉u =

m∑
i=1

〈∂iu, ∂iu〉u = u|∇u|2. (1.5)

At this point, it is natural to wonder whether harmonic maps are smooth. From the case of weakly
harmonic u : Tm → Rn and the ellipticity of the problem, such a result seems to be reasonable,
however the equation is critical for m = 2 and in the natural energy space H1(Tm;N). Indeed, one
can directly verify that: ∣∣A(u)(∇u,∇u)

∣∣ . |∇u|2, (1.6)

similar to the case N = Sn−1. The quadratic non-linearity, however, forces for harmonic maps u:

| −∆u| . |∇u|2 ∈ L1(Tm),

and for L1-spaces, Caldéron-Zygmund theory does not apply, meaning that we may only deduce the
following Lorentz-regularity form the integrability of the fundamental solution:

∇u ∈ L( m
m−1

,∞)(Tm),

which is worse than what we had at the beginning. If m ≥ 3, i.e. when the equation is subcritical,
then the regularity is actually strictly worse and it was actually shown by counterexample by Rivière
[69] that, if m ≥ 3, the weak harmonic maps may behave terribly, being discontinuous everywhere.
Fortunately, once we assume stationarity (i.e. minimality by among variations in the domain) of a
weakly harmonic map and thus have a monotonicity formula at our disposal, one may again prove a
suitable partial regularity result yielding regularity outside a small set (small in the sense of Hausdorff
measures). On the other end of the spectrum, if m = 1, it is known that geodesics are smooth which
may be seen by a simple bootstrap.

On the other hand, if m = 2, the homogeneity at least remains the same, so hope remains for
regularity in this case. To see that the equation is critical in H1(T2;N), let us compare the regularity
with the case that u ∈ W 1,p(T2;N) with 4 > p > 2 satisfies (1.4). Then we have, using Caldéron-
Zygmund theory and Sobolev embeddings:

u ∈W 1,p(T2;N)⇒ −∆u ∈ L
p
2 (T2)⇒ u ∈W 2, p

2 (T2;N)⇒ u ∈W 1, 2p
4−p (T2;N)
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If p > 4, we actually obtain Hölder continuity of ∇u, otherwise the integrability exponent increases.
Thus, in this case, one could bootstrap to arrive at smoothness of the solution. The same technique,
due to the considerations above, does not apply to the limiting case p = 2. As a spark of hope, one may
however see using Morrey estimates that, provided u is continuous and the non-linearity is smoothly
dependent on u and ∇u as well as quadratic in its dependence on ∇u, we may still get smoothness by
a Morrey-bootstrap.

To further illustrate the difficulties with the quadratic non-linearity, let us consider the PDE:

−∆u = |∇u|2,

for u : R2 → R. By considering v := eu, one may verify directly:

−∆v = 0⇔ −∆u = |∇u|2,

and this allows one, as is done explicitly in Rivière [73], to construct examples of solutions u by means
of the fundamental solution for the Laplacian which are not continuous. Therefore, no general regu-
larity theory for quadratic non-linearities exist and to deduce smoothness of weakly harmonic maps
u ∈ H1(T2;N), one needs to exploit further structures contained within the equation (1.4).

This leads us to the development of two key techniques to overcome the problems discussed before:
Hélein’s moving frames method Hélein [45] and Rivière’s gauge approach [70] building on previous
ideas by Uhlenbeck. Namely, the combined efforts a variety of authors, including Béthuel [4], Grüter
[41], Hélein [44], Morrey [62], Rivière [70], Shatah [83] and many others ultimately brought about
the resolution of the long-standing open problem pertaining to the regularity of weakly harmonic
maps by employing compensation phenomena inherent to so-called 2D-jacobians or div-curl quatities
summarised and studied first by Wente [101] in the context of prescribed mean curvature equations
and later on generalised by Coifman, Lions, Meyer and Semmes [14]. The key estimate is the following:

Theorem 1.1.1.1 ([101]). Let r > 0 and 1 ≤ p < 2. Denote by Br(0) ⊂ R2 the ball of radius r around
the origin. Then, if u ∈W 1,p(Br(0)) and a, b ∈W 1,2(Br(0)) are such that:

−∆u = ∂xa∂yb− ∂ya∂xb = ∇⊥a · ∇b in D′(Br(0)), (1.7)

and u has vanishing trace on ∂Br(0), then u is actually continuous and the following estimate holds:

‖u‖L∞ + ‖∇u‖L(2,1) + ‖∇2u‖L1 ≤ C‖∇a‖L2‖∇b‖L2 , (1.8)

where the constant C does not depend on u, a, b or r.

The independence of r is an immediate consequence of the scaling properties of the estimate, but
crucial in order to establish increased regularity results by Morrey bootstrapping. As hinted at before,
such results continue to hold true for scalar products of a divergence-free and a curl-free vectorfields
as well as for higher-dimensional jacobians, see Coifman-Lions-Meyer-Semmes [14].

Let us illustrate how the introduction of Theorem 1.1.1.1 applies to the situation at hand in the
special case N = Sn−1. Recalling the PDE (1.5) in this case, Shatah [83] succeeded in rewriting (1.5)
in a more suitable form (as a set of conservation laws):

∀i, j ∈ {1, . . . , n} : div (ui∇uj − uj∇ui) = 0 in D′(T2). (1.9)
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Indeed, (1.5) is equivalent to (1.9), as for example:

div (ui∇uj − uj∇ui) = ui∆uj +∇ui · ∇uj − uj∆ui −∇uj · ∇ui = uiuj |∇u|2 − ujui|∇u|2 = 0.

The converse follows also by direct considerations. The major advantage of the set of conservation
laws (1.9) lies in the following reformulation:

−∆ui = ui|∇u|2 =

n∑
j=1

ui∇uj · ∇uj

=
n∑
j=1

(ui∇uj − uj∇ui)∇uj +
n∑
j=1

uj∇ui · ∇uj

=
n∑
j=1

(ui∇uj − uj∇ui)∇uj =:
n∑
j=1

Ωij · ∇uj , (1.10)

where we used u ⊥ ∂ku for k = 1, 2, as u ∈ Sn−1 and thus the derivatives being tangential to the
manifold, while u spans the normal space to TSn−1 at u ∈ Sn−1. Therefore, we obtain another
formulation of (1.5):

−∆u = Ω · ∇u, (1.11)

where Ω = (Ωij)1≤i,j≤n, Ωij := ui∇uj − uj∇ui, is clearly anti-symmetric and divergence-free, thanks
to (1.9). As a result, we are in a situation where Theorem 1.1.1.1 applies. We emphasise at this point
that while the argument by Shatah suggests that the divergence-freeness of the terms is crucial to the
argument, indeed the relevant property is the anti-symmetry of the potential. Namely, in [70], Rivière
proved regularity for solutions of conformally invariant PDEs using a change of gauge approach to
exhibit 2D-jacobians and thus improved regularity, ultimately settling the question of regularity for
weakly harmonic maps as well as a conjecture by Hildebrandt.

To deduce improved integrability for u ∈ H1(T2;Sn−1), one now proceeds as follows: Based on
the integrability of Ω, choose r0 > 0 such that for all p ∈ T2, we have:∫

Br0 (p)
|Ω|2dx < ε0,

for some ε0 > 0 to be fixed. Then we may consider a ball of radius r < r0 around some point p ∈ T2

and split u on the ball Br(p) in a harmonic term and a term with vanishing trace:

u = v + w; −∆v = 0; u = w on ∂Br(p).

Observe that by Theorem 1.1.1.1, one immediately has:∫
Bδr(p)

|∇w|2dx ≤
∫
Br(p)

|∇w|2dx ≤ C
∫
Br(p)

|Ω|2dx
∫
Br(p)

|∇u|2dx ≤ Cε0 ·
∫
Br(p)

|∇u|2dx,

while for harmonic v, we have thanks to monotonicity properties for harmonic functions:∫
Bδr(p)

|∇v|2dx ≤ δ2

∫
Br(p)

|∇v|2dx ≤ δ2 (2 + 2Cε0)

∫
Br(p)

|∇u|2dx,
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where we used in the last step that:∫
Br(p)

|∇v|2dx =

∫
Br(p)

|∇u−∇w|2dx ≤ 2

∫
Br(p)

|∇u|2dx+2

∫
Br(p)

|∇w|2dx ≤ (2 + 2Cε0)

∫
Br(p)

|∇u|2dx,

again employing the estimate for ∇w. Therefore, choosing δ > 0 and ε0 > 0 sufficiently small:∫
Bδr(p)

|∇u|2dx ≤ 2

∫
Bδr(p)

|∇w|2dx+ 2

∫
Bδr(p)

|∇v|2dx ≤ 1

2

∫
Br(p)

|∇u|2dx,

and by iterating this estimate, there is α > 0, such that the following Morrey estimate holds:

sup
p∈T2,0<r<r0

r−2α

∫
Br(p)

|∇u|2dx < +∞

This leads to a similar estimate for −∆u by using (1.11) and thus applying Adam’s embeddings as in
Adams [1], one may deduce:

u ∈W 1,q(T2;Sn−1),

for some q > 2. Consequently, one may bootstrap this information to arrive at smoothness of the
solution. For general target manifolds N , the proof requires a change of gauge, as divergence-freeness
may not be guaranteed, but anti-symmetry still holds, see Rivière [70]. Since anti-symmetry leads
to natural gauges in the compact Lie group SO(K) (recall N ⊂ RK), the problem is solved by
introducing suitable gauge operators, but the argument requires some care, while the general idea
behind the improved regularity remains. For example, if u solves:

−∆u = Ω · ∇u,

where Ω is anti-symmetric and P is a SO(K)-valued map, then one may check the equation solved by
P∇u:

−div (P∇u) = −P∆u−∇P∇u = PΩP−1 · P∇u−∇PP−1 · P∇u = −
(
∇PP−1 − PΩP−1

)
· P∇u,

which now allows us to look for P such that ∇PP−1 − PΩP−1 is divergence-free and thus renders
similar arguments possible.

1.1.2 Fractional Harmonic Maps

So far, we have only talked about harmonic maps and their regularity theory. However, during this
thesis, we shall mostly be concerned with half-harmonic maps or their more general form, fractional
harmonic maps, as first introduced by Da Lio and Rivière in [21], see also Schikorra [76].

Firstly, it is important to define what the fractional Laplacian is. It is well-known that the
classical Laplacian may be equivalently defined as a Fourier multiplier with the multiplier |ξ|2. Thus,
it is natural to define the fractional Laplacian (−∆)s for s ∈ R as the operator associated with the
Fourier multiplier |ξ|2s. Therefore, for Schwartz functions u on Rn or smooth functions u on Tn, one
has:

(−∆)su(x) :=
1

(2π)n

∫
Rn
|ξ|2s

∫
Rn
u(y)eiy·ξdydξ, (1.12)
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or in terms of Fourier series on the n-torus. These operators thus naturally appear in the theory of
Bessel-Sobolev spaces Hs(Rn) or Hs(Tn) which are defined by:

Hs(Rn) :=
{
u : Rn → R

∣∣ (1 + |ξ|2
)s/2

û(ξ) ∈ L2(Rn)
}
, Ḣs(Rn) :=

{
u : Rn → R

∣∣ |ξ|sû(ξ) ∈ L2(Rn)
}
,

and analogously in terms of Fourier series instead of the Fourier transform for the higher-dimensional
tori.

There is another natural definition for the fractional Laplacian involving singular integrals. If
0 < s < 1, then there exists a constant Cn,s > 0, such that:

(−∆)su(x) = Cn,s · P.V.
∫
Rn

u(x)− u(y)

|x− y|n+2s
dy, (1.13)

for sufficiently regular u and similarily for Tn (in this case, the distance |x − y| is replaced by the
natural distance |eix − eiy|). Associated with the fractional Laplacians is the so-called fractional or
s-Dirichlet energy defined by:

Es(u) :=
1

2

∫ ∫
|u(x)− u(y)|2

|x− y|n+2s
dydx, (1.14)

where the domain of integration is either Rn or Tn. Among the most important properties of the
s-Dirichlet energy is its connection with the Bessel-Sobolev seminorm, namely:

Es(u) ∼ 1

2

∫
|(−∆)s/2u|2dx,

which renders Hs and Ḣs the natural energy space for Es, see for instance [63, Prop. 3.4].
For convenience in the discussions that follow, we already introduce the notions of fractional

gradient as in Mazowiecka-Schikorra [57]:

dsu(x, y) :=
u(x)− u(y)

|x− y|s
, |dsu|2(x) :=

∫
|dsu(x, y)|2 dy

|x− y|n
, |dsu|(x) =

√
|dsu|2(x). (1.15)

These quantities emerge, for instance, if we try to find a generalisation of Leibniz’ rule for fractional
Laplacians:

(−∆)s(uv) = (−∆)su · v + u · (−∆)sv − dsu · dsv(x), (1.16)

where, as with |dsu|2(x):

dsu · dsv(x) :=

∫
(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dy.

Again, the domain of integration above may always be either Rn or Tn. These quantities are naturally
related to s-Dirichlet energies and the fractional Laplacians, rendering them useful tools in the study
that will follow.

Fractional Laplacians possess local regularity properties as well, they are elliptic. For example,
provided:

(−∆)su = 0 in Br(p), (1.17)
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then we know that u ∈ Hs(Tn) is even smooth inside this ball. This may be seen by considering
suitable smooth cut-off functions ϕ with support in Br(p). Then we have:

(−∆)s(uϕ) = u(−∆)sϕ− dsu · dsϕ ∈ L2, (1.18)

so that uϕ ∈ H2s(Tn). Applying now (−∆)s/2 to (1.17), taking into account the non-local contri-
butions outside of Br(p), we may obtain higher and higher regularity for u in smaller and smaller
balls, ultimately yielding u smooth in Br(p). Alternatively and more directly, there is an explicit
Poisson kernel which allows one to deduce the very same regularity property. Namely, if (−∆)su = 0
in Br(p) ⊂ Rn, then (see Landkof [54]):

u(x) =

∫
Rn\Br(p)

u(y)(r2 − |x|2)s

(|y|2 − r2)s|y − x|n
dy.

One should notice that the non-locality forces us to consider the values everywhere outside of Br(p)
and not merely on the boundary ∂Br(p) ' r · Sn−1. Indeed, a similar observation may be made by
observing that the classical Laplacian is closely connected to Brownian motion (continuous paths),
while the fractional Laplacians are related to Lévy processes (allowing jump discontinuities). Using
stochastic processes and stopping times thus to solve equations, the requirement to assign values ev-
erywhere in the complement of Br(p) is also clear.

Let us focus our attention back to fractional harmonic maps and also restrict attention to the case
n = 1 and the circle S1 and N be an arbitrary closed manifold. We then define:

Definition 1.1.2.1. A map u ∈ Hs(S1;N) is called s-harmonic, if and only if it is a critical point of
the s-Dirichlet energy Es with respect to variations in Hs(S1;N).

Of particular importance for us later on will be the case s = 1/2, when the energy functional E1/2

becomes conformally invariant and thus, by stereographic projection, half-harmonic maps on S1 and
R are in 1-1-correspondence. Moreover, the conformal invariance of the energy functional relates half-
harmonic maps closely to other geometric PDEs with conformal invariance, such as harmonic maps
and their associated gradient flow, the Yamabe flow, Yang-Mills equation and the J-holomorphic
sphere equation. Solutions to such PDEs exhibit concentration-compactness phenomena, for example
leading to improved convergence properties of subsequences of bounded J-holomorphic curves outside
of points of concentration, while in points of concentration formation of bubbles is observed after
rescaling. We refer to McDuff-Salamon [59] for details on the theory of J-holomorphic curves. In
a similar way, the half harmonic gradient flow provides concentration estimates leading to uniform
bounds where energy does not concentrate, thus leading to a similar result in this case. Naturally,
similar convergence properties also apply to the half-harmonic map, see Da Lio [17].

As we have previously discussed in the context of the Dirichlet energy E, there is an intimate
connection to Plateau’s problem and minimal surfaces. Such a connection continues to hold for half-
harmonic maps. Indeed, these are precisely the boundary values of (branched) immersed free-boundary
minimal discs with obstacle N . The connection between minimal surfaces and half-harmonic maps
was observed in Millot-Sire [60], Da Lio-Pigati [20] and Da Lio [15] and is built on an analysis of the
Hopf differential H(U) given by:

H(U) :=
(
|∂xU |2 − |∂yU |2

)
− 2i · 〈∂xU, ∂yU〉 = 〈∂zU, ∂zU〉, (1.19)
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Weak conformality may be obtained by establishing H(U) = 0, see Millot-Sire [60], and as we have
seen before, this provides the connection between harmonic maps and minimal surfaces.

Similar to the (local) Dirichlet energy, one may wonder what the Euler-Lagrange equation for
critical points of the energy E1/2 looks like. Using variations uε := πN (u+ ε · ϕ) for ϕ smooth and ε
sufficiently small, such variations are admissible and one sees:

0 =
d

dε
E1/2(uε)

∣∣
ε=0

=

∫
S1

d1/2u · d1/2 (dπN (u)ϕ) dx,

which is equivalent, again observing that dπN (p) is the orthogonal projection onto TpN , to:

(−∆)1/2u ⊥ TuN. (1.20)

In Millot-Sire [60] and Mazowiecka-Schikorra [57], the equation (1.20) was rewritten for the target
manifold N = Sn−1 as follows:

(−∆)1/2u = u|d1/2u|2. (1.21)

At this point, it is worth considering the similarities between (1.21) and (1.5). Both share many
common features (quadratic non-linearity in the form |∇u|2 and |d1/2u|2, lower regularity by half
order, criticality, conformal invariance), but one should also keep in mind the differences (for half-
harmonic maps, we are dealing with non-local operators, forcing us to always keep track of effects
from far away). Naturally, the same kind of considerations apply verbatim to the domain R instead of
S1. We mention here that the equation is once more critical and thus Caldéron-Zygmund theory may
not be used to deduce regularity by a direct bootstrap argument, as without additional information,
u ∈ H1/2(S1) only allows for us to deduce (−∆)1/2u = u|d1/2u|2 ∈ L1(S1).

In the case of general target manifolds N , the non-linearity of the equation (1.20) takes also a
curvature-like form reminiscent of the second fundamental form that appears in the harmonic map
case (1.4). From here, a very natural question demands attention: Are half-harmonic maps actually
always smooth? This problem was first studied by Da Lio and Rivière in the papers [21] and [22] where
the equation (1.20) was rewritten by means of so-called Three-term commutator estimates. These are
special linear combinations of terms which combined have better integrability properties than each
term on their own, much in the same way as we have previously seen with Theorem 1.1.1.1 where
a naive application of Hölder’s inequality would only lead to an L1-estimate instead of the Hardy-
estimate. An important example of a Three-term commutator with applications to the half-harmonic
map equation is:

T : L2(R;Rm)× Ḣ1/2(R;Rm)→ Ḣ−1/2(R;Rm), (1.22)

T (v,Q) := (−∆)1/4(Qv)−Q(−∆)1/4v + (−∆)1/4Q · v (1.23)

While each of the products on its own involved in the definitions of T does not behave particularly
well, Da Lio and Rivière proved in [21] the following inequality:

‖T (v,Q)‖Ḣ−1/2 . ‖v‖L2 · ‖Q‖Ḣ1/2 .

Such estimates are proven by compensation phenomena found by investigating Littlewood-Paley de-
compositions, duality arguments and paraproduct decompositions, we refer to Da Lio-Rivière [21]
for a complete treatment of the arguments necessary, alternative proofs may be found in Lenzmann-
Schikorra [55]. The approach to regularity has been further developed to include higher dimensional
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domains, other critical exponents and include a fractional-type Wente inequality in Schikorra [76];
Da Lio [16]; Da Lio-Schikorra [28], [27]; Mazowiecka-Schikorra [57]. To draw similarities with the
harmonic map equation, we shall focus on the approach to regularity using Wente-type inequalities,
namely the following localised estimate which is contained in Proposition 2.4 in Mazowiecka-Schikorra
[57]:

Proposition 1.1.2.1 ([57]). Let F ∈ Lpod(R×R) be such that divs F = 0, for s ∈ (0, 1) and p ∈ (1,∞).

Moreover, let g ∈W s,p′(R). Then, for any interval Br(x0) ⊂ R and any ϕ ∈ C∞c (Br(x0)), the following
estimate:∫

R
ϕF · dsgdx ≤ C

(
|ϕ|BMO + r−1‖ϕ‖L1

)
‖F‖Lpod(BΛr(x0)×BΛr(x0))‖dsg‖Lp′od(BΛr(x0)×BΛr(x0))

, (1.24)

for an uniform constant Λ > 0.

We recall here that the space Lpod(R×R) denotes the Lp-space of functions on R×R with respect

to the measure dydx
|x−y| , satisfying F (x, y) = −F (y, x). To deduce regularity for solutions of (1.21), one

imitates Shatah’s idea [83], namely one can see:

div1/2

(
uid1/2uj − ujd1/2ui

)
= ui(−∆)1/2uj − uj(−∆)1/2ui = uiuj |d1/2u|2 − ujui|d1/2u|2 = 0, (1.25)

which is easily verified directly. Thus, rewriting (1.21) yields:

∀j ∈ {1, . . . n} : (−∆)1/2uj =
(
ujd1/2ui − uid1/2uj

)
d1/2ui + T (u) =: Ωji · d1/2ui + T (u), (1.26)

where T (u) is a remainder term of better integrability, which does allow for similar estimates as found
below. Therefore, the key features of the regularity approach to harmonic map theory are mirrored
here as well. Let us sketch the arguments in Mazowiecka-Schikorra [57] in the special and simpler case
of N = Sn−1 to conclude from here:

Given ϕ ∈ C∞c (Br(x0)), we take η to be a cut-off function on BΛr(x0) being equal to 1 on BΛr/2(x0)
with Λ > 2, we define:

ũ := η

(
u− 1

Λr

∫
BΛr(x0)

udy

)
.

We shall from now on write uBΛr(x0) for the average above to abbreviate. Now using the splitting
u = ũ+ (u− ũ), one has two terms to estimate, the first one being:∫

R
Ωji · d1/2(ui − ũi)ϕjdx =

∫
Br(x0)

∫
BΛr/2(x0)c

Ωji(x, y)d1/2(ui − ũi)ϕj
dydx

|x− y|

=

∫
Br(x0)

∫
BΛr/2(x0)c

Ωji(x, y)(η(y)− 1)(u(y)− uBΛr(x0))ϕj(x)
dydx

|x− y|

. ‖Ωji‖L2
od
‖ϕ‖L2(Br(x0)) ·

∞∑
k=1

1

2kΛr
‖u− uBΛr(x0)‖L2(B

2kΛr
\B

2k−1Λr
(x0))

. ‖Ω‖L2
od
‖(−∆)1/4ϕ‖L2 ·

∞∑
k=1

1

2kΛr1/2
‖u− uBΛr(x0)‖L2(B

2kΛr
\B

2k−1Λr
(x0))

. ‖Ω‖L2
od
‖(−∆)1/4ϕ‖L2 ·

∞∑
k=1

k

2k/2Λ1/2
‖(−∆)1/4u‖L(2,∞)(B

2kΛr
(x0))
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.
∞∑
k=1

1

2kσΛσ
‖(−∆)1/4u‖L(2,∞)(B

2kΛr
(x0)), (1.27)

where we used the estimates for localisation found in Da Lio-Pigati [20]. In the last line, we have σ ∈
(0, 1/2). The second term to estimate follows by first applying fractional Leibniz’ rule combined with
the fractional Shatah-condition (1.25) and then using Proposition 1.1.2.1 (suppressing the midpoint
for the balls in our notation):∫

R
Ωji · d1/2ũiϕjdx = −

∫
R

Ωji · d1/2ϕj ũidx

.
(
|ũ|BMO + Λ−1r−1‖ũ‖L1

)
‖Ω‖L2

od(BΛ2r(x0))‖d1/2ϕ‖L2
od(BΛ2r)

. ‖Ω‖L2
od(BΛ2r)

‖d1/2ϕ‖L2
od(BΛ2r)

·

(
‖(−∆)1/4u‖L(2,∞)(BΛ2r)

+
∞∑
k=1

1

2kσΛσ
‖(−∆)1/4u‖L(2,∞)(BΛ2r)

)

. ‖Ω‖L2
od(BΛ2r)

‖(−∆)1/4ϕ‖L2 ·

(
‖(−∆)1/4u‖L(2,∞)(BΛ2r)

+
∞∑
k=1

1

2kσΛσ
‖(−∆)1/4u‖L(2,∞)(BΛ2r)

)
,

(1.28)

using the localisation of the BMO norm as in Mazowiecka-Schikorra [57] or following Da Lio-Pigati
[20] and some σ ∈ (0, 1/2). Combining (1.27) and (1.28) (the perturbation term T (u) may be taken
care of in a similar manner) and using a duality argument following Mazowiecka-Schikorra [57], one
has thus for an appropriately chosen ϕ:

‖(−∆)1/4u‖L(2,∞)(Br(x0))

.
∣∣∣ ∫

R
d1/2u · d1/2ϕdx

∣∣∣+ Λ−σ‖(−∆)1/2u‖L(2,∞)(BΛ2r(x0)) +
∞∑
k=1

1

2kσΛσ
‖(−∆)1/4u‖L(2,∞)(B

2kΛ2r
(x0))

. λ‖(−∆)1/4u‖L(2,∞)(BΛ2r(x0)) +
∞∑
k=1

1

2kσΛσ
‖(−∆)1/4u‖L(2,∞)(B

2kΛ2r
(x0)), (1.29)

where λ := ‖Ω‖L2
od(BΛr(x0)×BΛr(x0)) + Λ−σ. In the last step, we used the combination of (1.27) and

(1.28). Observe that making Λ big and r small also renders λ arbitrarily small. Now arguing us-
ing Morrey estimates, which may be obtained by iterating the estimate above allows one to deduce
smoothness. For a different approach based on three-commutators, we refer to Da Lio-Pigati [20].
Naturally, one may extend the arguments presented to general target manifolds, but then one has to
take care of a change of gauge, see Mazowiecka-Schikorra [57] for details on this additional step.

To conclude this section, it should be mentioned that the techniques employed in the proof of
regularity are very flexible and extend to various further problems, such as for other critical exponents
(Da Lio-Schikorra [28], [27]), higher dimensional domains and even to self-repulsive knot energies
(Blatt-Reiterer-Schikorra [6], Blatt-Reiterer-Schikorra-Vorderobermeier [7] for instance) in an analo-
gous manner. This hints at the naturality of the arguments used in the context of non-local operators
as well as potential for further generalisations.
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1.2 Half-Harmonic Gradient Flow

Having introduced the notions of harmonic and half-harmonic maps, we are now in a position to turn
to the first part of this thesis and the research conducted throughout my doctorate: The properties
of the half-harmonic gradient flow.

Once one introduces the notion of (fractional) harmonic maps, one may wonder how to find critical
points or approximate them. One may even try to see if any given map in a suitable function space is
homotopic to a (fractional) harmonic map, as is motivated for the harmonic gradient flow in Struwe
[91] and for example done in the early investigation of the harmonic gradient flow in Eells-Sampson
[33] for special cases. To address such questions, it is natural to formulate the associated gradient
flow with the energy functional E which follows the direction of steepest descent, thus intuitively
approximating minima, leading to the PDE:

∂tu = −dE(u). (1.30)

The formulation of these types of problems immediatly necessitate a discussion of existence, unique-
ness, regularity and potential formation of singularities, a phenomenon if great interest in general,
but specifically in the case of conformally invariant PDEs. This is what we address in the case of the
(half-)harmonic gradient flow.

1.2.1 Harmonic Gradient Flow - A Model for later Considerations

Having these kinds of consideration in the back of our mind, we now briefly discuss the harmonic
gradient flow with the intent of drawing parallels between the half-harmonic gradient flow and the
harmonic gradient flow and identifying the key techniques and arguments to be generalised. The
governing equation for the harmonic gradient flow is:

∂tu−∆Mu ⊥ TuN, (1.31)

which may be transformed into the following expression, in much the similar way as for the harmonic
map equation:

∂tu−∆Mu = AN (u) (∇u,∇u) . (1.32)

Here, u : [0, T [×M → N is a map between general closed Riemannian manifolds and ∆M denotes
the Laplace-Beltrami operator on M and AN the second fundamental form of N embedded in N .
To formulate the problem completely, one would also need to assign an intial datum u(0, ·) = u0 ∈
H1(M ;N).

Some of the first results for the harmonic gradient flow were obtained by Eells and Sampson [33],
proving that existence and regularity of solutions in case the target manifold N has non-positive
curvature. A general existence result, not relying on special properties of the geometry of N , was later
proven by Struwe in the 1980s in [89] for two-dimensional M and also in [90] for higher dimensional
M . His approach consisted of establishing uniform estimates for solutions of the harmonic gradient
flow in terms of the initial energy as well as the concentration of energy at the starting time, which
ultimately also provided control for sufficiently close times afterwards. Using a general existence result
for such flows (Hamilton [43]) with smooth boundary data, one then obtains in a sense a concentration-
compactness-type property, leading to good convergence outside of the points of concentration, while
in points where energy accumulates the formation of a harmonic bubble is observed. To summarise,
the following result is proven in Struwe [89] (for convenience, we once more state it for T2 only, keeping
in mind that the result extends to general closed surfaces or also free-boundary versions Li [56]):
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Theorem 1.2.1.1 ([89]). Let u0 ∈ H1(T2;N). Then there exists a solution u ∈ H1(]0,+∞[;L2(T2;N))
of the harmonic gradient flow:

∂tu−∆u = AN (u)(∇u,∇u) in D′(]0, T [×T2), ∀T > 0, (1.33)

together with the boundary conditions:

u(0, x) = u0(x), for all x ∈ T2, (1.34)

and satisfying E(u(t, ·)) ≤ E(u0) for all times t ≥ 0. The solution u is regular on ]0,+∞[×T2, except
in a finite number of points (tk, xk), k = 1, . . . ,K, for some K ∈ N, where energy concentrates.
Additionally, u is unique in the class E ⊂ H1

loc([0,+∞[×T2) defined by:

E :=
{
u
∣∣∣ ∃m ∈ N,∃T0 = 0 < T1 < . . . < Tm <∞ : u ∈ L2([Ti, Ti+1[;W 2,2(T2)), ∀i ≤ m− 1

}
.

Finally, there exists a constant C > 0 independent of u0, such that:

K ≤ C · E(u0).

Thus, existence, uniqueness of strong solutions (i.e. solutions with sufficient weak regularity to
make sense of (1.33) in L2 outside of bubbling points), regularity and bubbling phenomena due to
concentration are all addressed for the harmonic gradient flow. At this point, we would like to draw
attention to the naturality of the non-increasing energy assumption: Indeed, if u : [0,∞[×T2 → N is
any smooth solution of the harmonic gradient flow, then one immediately sees by testing the equation
(1.32) against ∂tu, which lies in the tangent space TuN , that for all T > 0:∫ T

0
|∂tu|2dxdt+ E(u(T ))− E(u(0)) = 0,

therefore implying that:

E(u(T )) = E(u(0))−
∫ T

0
|∂tu|2dxdt ≤ E(u(0)).

This shows that one would a-priori expect any meaningful solution to possess this property. The
same holds for all gradient flows defined in a similar manner built upon a suitable energy functional.
However, as one knows from the linear heat flow, such conditions may be violated for non-physical
solutions (see John [49]) and indeed, there exist examples by Topping as in [94] using reverse bubbling
as well as by using inner-outer gluing methods by del Pino, Davila and Wei as in [29]. Topping also
discussed rates of convergence in [95].

At this point, however, there still are some open questions regarding the harmonic gradient flow:
Firstly, it is not clear if bubbling may occur in finite time. In Struwe [89], there are conditions tied
to the energy concentration which would force the formation of a bubble, however, no example was
provided. This was answered in Chang-Ding-Ye [12], constructing directly examples of initial datums
for which energy must accumulate in finite time in a corotational setting. The second question concerns
uniqueness of weak solutions, i.e. solutions in the natural energy class. This was answered in Rivière
[68] in the small initial energy case and later on extended in Freire [35] for arbitrary initial energies
and target spaces. Indeed, the proof in Rivière [68] relies on an absorption argument (while in
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Freire [35], Hélein’s moving frames method is employed) at almost every fixed time to establish twice
weak differentiability in the space directions using Ladyzhenskaya’s estimate. It is a manifestation of
concentration phenomena, as the smallness condition is tied to non-concentration and immediately
also leads to global smooth solutions in this case by the techniques employed in Struwe [89]. The key
result, here formulated for arbitrary target manifolds in extension of Rivière [68], is the following (we
formulate it on T2 purely for convenience’s sake):

Lemma 1.2.1.1 ([68]). Let u ∈ H1(T2;N) and f ∈ L2(T2;Rn) be given and assume that u is a
solution of the PDE:

−∆u = AN (u) (∇u,∇u) + f. (1.35)

Then u ∈ H2(T2;N).

The main difference in the proof of Lemma 1.2.1.1 in contrast to the one in Rivière [68] is that
we need to take care of the change of gauge. However, thanks to results such as Theorem I.3, I.4 in
Rivière [70], this is done in a rather direct manner: By observing that AN (p) maps to the normal
space of N at any point p, one finds that (1.35) is equivalent to:

−∆ui =
(
Aijk(u)∇uk −Ajik(u)∇uk

)
∇uj + fi, (1.36)

using Einstein’s summation convention. Thus:

−∆u = Ω · ∇u+ f, (1.37)

with Ω being antisymmetric. Therefore, Theorem I.4 in Rivière [70] applies, guaranteeing the existence
of A ∈ L∞(B,Gln(R))∩W 1,2(B) and B ∈W 1,2(B,Rn×n) for suitably small balls (where the L2-norm
of Ω is sufficiently small) with:

∇A−AΩ = ∇⊥B,
as well as ”good” estimates for A and B in W 1,2 and for dist(A,SO(n)) in terms of the local L2-norm
of Ω. It should be noted that therefore:

div (A∇u) = ∇A · ∇u+A∆u = ∇A · ∇u−AΩ · ∇u−Af = ∇⊥B · ∇u−Af.

To deduce that u ∈ W 1,q for some q > 2, one argues completely analogous to Rivière [70], see also
Rivière [73], observing that the L2-perturbation (it is clear that Af ∈ L2 again) does not obstruct
the argument due to Hölder’s inequality. To conclude the argument, one therefore applies the same
reasoning as in Rivière [68] to find that u ∈W 1,4, leading immediately by Caldéron-Zygmund theory
to u ∈ H2 and then extend it by smallness to obtain twice weak differentiability of weak solutions to
(1.32) and therefore weak uniqueness of solutions with small initial energy.

1.2.2 The Main Results for the Half-Harmonic Gradient Flow

We finally reached the point in our discussion where we are able to address the main equation for
the considerations in the first part of this thesis. The equation governing the flow induced by the
1/2-Dirichlet energy is:

∂tu+ (−∆)1/2u ⊥ TuN, (1.38)

for a general closed target manifold N . Once more, the analogy with the harmonic gradient flow is
evident. In the case N = Sn−1, the PDE may be reformulated as:

∂tu+ (−∆)1/2u = u|d1/2u|2, (1.39)
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drawing, in a certain sense, further connections with the harmonic map equation. In general, a non-
local quadratic term emerges on the RHS of (1.38), extending similarities with (1.32) from before:

∂tu+ (−∆)1/2u = P.V.

∫
S1

P (u(x), u(y))
(
d1/2u(x, y), d1/2u(x, y)

) dy

|x− y|
, (1.40)

where P is a non-local substitute of AN . For the definition of P , we refer to Section 2.2.4.1.

The major technical and obvious difference between (1.32) and (1.40) is of course the introduc-
tion of non-local operators. This obstruction also lead to slow progress in the study of the half-
harmonic gradient flow. For instance, in the paper Schikorra-Sire-Wang [77], the authors prove a
global weak existence result for a broad class of non-local gradient flows associated with Gagliardo-
Sobolev seminorms, not just for the 1/2-Dirichlet energy, including energies on domains of dimension
≥ 2. However, the results were restricted to target manifolds with sufficient inherent symmetry such
as spheres due to the techniques of discretisation and approximation in the proof, indicating that a
satisfactory treatment of existence was still open for the half-harmonic gradient flow. Moreover, the
paper Schikorra-Sire-Wang [77] did not address uniqueness at all, leaving this property open for future
investigations.

On the other hand, there were already first considerations of infinite time bubbling. In Sire-Wei-
Zheng [84], the authors studied bubbling as t→∞ for the half-harmonic gradient flow in S1 using the
inner-outer gluing method which has also been used extensively in the study of the harmonic gradient
flow, see for instance Davila-Del Pino-Wei [29]. This lead to the conclusion that bubbling is possible
asymptotically with no restrictions on the number of bubbles that emerge in the limit. Interestingly,
the authors formulated a conjecture in the same paper that no bubbling in finite time is possible, a
stark contrast to the situation for the harmonic gradient flow, as seen in Chang-Ding-Ye [12]. This
conjecture remains, according to our knowledge, open so far.

As a result, even fundamental questions pertaining to the well-posedness of the equation (1.40)
were still open and required a different technique. The essence of the approach in this thesis is
to generalise the steps in the proof of the corresponding properties for the harmonic gradient flow
(for example local control of the concentration of energy), see Struwe [89]. Therefore, the questions
reduced basically to three subproblems: Firstly, we have to establish existence of (smooth) solutions
for a small time interval, if the initial data is smooth. Such a result for the harmonic gradient
flow is fundamental in Struwe [89], as it renders the approximation procedure possible, and can, for
example, be found in Hamilton [43]. It should be noticed that here we also need to prove a generalised
approximation lemma in H1/2(S1;N), allowing us to replace arbitrary boundary data by smooth
boundary data and passing to the limit. Secondly, we need to generalise the control of the energy
concentration found for the harmonic gradient flow. This will ultimately help in establishing uniform
estimates over time intervals for Sobolev norms and thus allow for the treatment of general initial data
by approximation in H1/2(S1;N). Additionally, such concentration inequalities are also intimately
connected to concentration-compactness phenomena, quantifying the rate of accumulation. Lastly, we
would like to deduce statements about the concentration of energy and potential bubbling, potentially
to address the conjecture by Sire, Wei and Zheng. To summarise the results in [102], [103] and [104],
we have the following:

Theorem 1.2.2.1 ([102], [103], [104]). Let N be any given closed manifold and u0 ∈ H1/2(S1;N).
Then there exists a maximal 0 < T := T (u0) ≤ +∞ as well as a solution u : [0, T [×S1 → N ⊂ Rn,
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u ∈ L∞([0, T [;H1/2(S1;N)) ∩ H1([0, T [;L2(S1;N)), to the weak formulation of the half-harmonic
gradient flow:

∂tu+ (−∆)1/2u ⊥ TuN, u(0, ·) = u0 (1.41)

Moreover, the following properties hold for the solution u:

• Monotonicity: The 1/2-Dirichlet energy is non-increasing along the flow:

∀0 ≤ s ≤ t < T (u0) : E(u(t)) ≤ E(u(s)) ≤ E(u0) < +∞. (1.42)

• Regularity: The solution u is smooth on ]0, T [×S1 and solves the equation (1.41) pointwise.

• Uniqueness: The solution u is unique among competitors in H1([0, T [×S1) with non-increasing
energy. The same holds for a global extension by gluing, provided the energy decay holds for all
times.

• Small Energy: There exists ε > 0 depending on N , such that:

E1/2(u0) < ε ⇒ T (u0) = +∞ (1.43)

In addition, uniqueness holds for such u0 and the associated solution even within the energy
class L∞([0,+∞[;H1/2(S1;N)) ∩ H1([0,+∞[;L2(S1;N)) and for an appropriate subsequence
tk →∞, we have that u(tk, ·) converges weakly in H1(S1;N) to a point.

• Bubbling: It holds:
lim sup
t→T

ε(R;u, t) ≥ ε, ∀R ∈]0, 1/2[, (1.44)

where:

ε(R;u, T ) := sup
x∈S1,t∈[0,T ]

1

2

∫
BR(x)

|(−∆)1/4u(t)|2dx, (1.45)

and after suitable rescaling, the sequence of reparametrisations converge weakly to a half-harmonic
map, i.e. the formation of bubbles at time T may be observed.

The solution on [0, T [ may be extended to all of [0,+∞[ by gluing solutions, leading to finitely many
times 0 < T1 < T2 < . . . < Tk < +∞ where singularities, i.e. bubbling, may occur, with the number of
singular times being bounded by:

k ≤
E1/2(u0)

σ(N)
, (1.46)

where σ is defined by:

σ(N) := inf
{
E1/2(v) | v : S1 → N is half-harmonic and non-constant

}
> 0, (1.47)

with the convention inf ∅ = +∞.

The statements in Theorem 1.2.2.1 are very similar to the ones in Theorem 1.2.1.1. The treatment
of N = Sn−1 except for the bubbling and global existence may be found in [102], the general case
(again without bubbling and global existence) in [103] and finally, in [104] we study the local concen-
tration behaviour of solutions and establishes existence of global weak solutions by two different means.
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Since the publication of the three papers [102], [103], [104], other authors contributed to the
theory of half-harmonic maps: In Hyder-Segatti-Sire-Wang [47], the authors consider a different type
of half-harmonic gradient flow with the same critical points, but relying on extensions solving the
homogeneous heat equation. The governing equation is:

(∂t −∆)1/2u ⊥ TuN. (1.48)

They use caloric extensions, Ginzburg-Landau approximation as well as parabolic estimates relying
on monotonicity properties of special integral quantities involving the fundamental solution of the
heat equation. Thus, they are able to treat domains of arbitrary dimension (finding that, up to the
exclusion of lower dimensional subsets, regularity holds), but the flow does not allow for an immediate
interpretation of energy minimisation as is possible with the half-harmonic gradient flow we study.
Moreover, the solution constructed is not proven to be unique in an appropriate sense. It should also
be emphasised that in Hyder-Segatti-Sire-Wang [47], the operator considered is a fractional power of
the heat operator, bringing non-locality also to the time derivative.

In Struwe [93], the author considers the harmonic extensions of the boundary values in order to
treat the half-harmonic gradient flow by means of local operators. The approach heavily relies on
the Dirichlet-to-Neumann interpretation (see Caffarelli-Silvestre [11]) of the half-Laplacian (−∆)1/2

to formulate a flow for the boundary values and enables the author to find a result very similar to
Theorem 1.2.2.1. However, the draw-back of the approach presented there, at least for now, lies in
the need for parallelizability of the target manifold, since a signed distance function is used in the
arguments. Thus, our approach, while heavily employing fractional methods, remains the most gen-
eral one and especially significant, as it does not need to put any technical assumptions on the target
manifold. Furthermore, in Struwe [93], the author connects the flow to critical point theory and flows
for Plateau’s problem based on the work in Struwe [87], Jost-Struwe [50], Chang-Liu [13] among oth-
ers. We refer to Struwe [93] for a detailed exposition and relations with the half-harmonic gradient flow.

To conclude this introduction to the half-harmonic gradient flow, we would like to mention some
open problems. For instance, it is still open whether bubbling in finite time can occur, a related
conjecture may be found in Sire-Wei-Zheng [84]. Moreover, one may try to apply the techniques
to the gradient flow for different Gagliardo-seminorms as energies and higher dimensional domains,
extending potentially the results in Schikorra-Sire-Wang [77] even further. The flexibility of the
methods associated with fractional harmonic maps for various different critical exponents suggests that
similar extensions for the associated flows may also be obtained. Lastly, in a recent line of research,
Schikorra, Blatt, Reiterer and Vorderobermeier generalised regularity considerations by Freedman
and He for Möbius energies for knots to O’Hara (Blatt-Reiterer-Schikorra [6]) energies and so-called
tangent point energies (Blatt-Reiterer-Schikorra-Vorderobermeier [7]). Their approach is based on
reformulating the associated self-repulsive knot energies in terms of the normalised derivative, leading
to a connection with half-harmonic maps and the techniques associated with their regularity theory.
Blatt considered the gradient flow for the Möbius energy in [5], potential generalisations for other
types of self-repulsive knot energies may be interesting to consider in the future.

1.3 Compensation Phenomena and Dirac’s equation

Next, we switch gears and consider a different problem related to compensation results similar to
Rivière [70] and Da Lio-Rivière [23]. Namely, in Da Lio-Rivière [23], the authors prove that provided
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S ∈ Ẇ 1,2(R2, O(n)) with S2 = Id, any weak solution u ∈ L2(R2;Rn) of the PDE:

div (S∇u) =
n∑
k=1

2∑
α=1

∂xα (Sjk∂xαuk) = 0, (1.49)

automatically has some regularity:

u ∈
⋂
p<2

W 1,p(R2;Rn). (1.50)

As one would expect, the underlying reason for such a result lies in hidden compensation phenomena
that one would like to exploit. Such a regularity result is intimately connected with a concentration-
compactness result for weakly converging sequences of such solutions u. The assumptions on S are
motivated by the existence of a counterexample to the regularity result in Jin-Maz’ya-Van Schaftingen
[48], provided S ∈ W 1,2(B1(0);Sym(2)) only, so no orthogonality for the matrices S. Therefore, to
arrive at the regularity properties outlined above, more structure of the matrix S has to be available.

The regularity result for (1.49) may be equivalently stated for equations of the form:

∂f

∂z
= Ωf, (1.51)

where the imaginary part of ∂zΩ vanishes and f ∈ L2(R2;C2), Ω ∈ L2(R2; so(2)⊗ C). Indeed, one of
the main novelties in Da Lio-Rivière [23] lies in the possibility of rewriting (1.49) as (1.51). It should
be observed that Rivière [70] treats the same equation, after replacing f by f , so the result in Da
Lio-Rivière [23] allows for the discussion of new types of potentials.

Among the first projects in my doctorate was the investigation of results similar to the one pre-
sented above for domains of higher dimension. Natural obstacles immediately arose due to the use
of quaternions H1 as well as the introduction of a suitable gauge group, the unit quaternions. As
the proof critically relies on these techniques, finding alternative algebras was a crucial first point,
leading to the introduction of Clifford algebras. Moreover, during the process of investigating higher-
dimensional analogues of (1.49), two quite different results emerged in my work together with Da Lio
and Rivière, resulting in [25], [26]: A characterisation of Bergmann spaces in terms of their boundary
values ([25]) and a regularity result for solutions to Dirac’s equation ([26]). We shall go into some
more detail in the next two subsections on each of these results:

1.3.1 Bergmann-Bourgain-Brezis Inequality

When attempting to bring (1.49) into a more suitable form for a change of gauge, one first observes
that:

div (S∇u) = 0⇒ ∇⊥v = S∇u, (1.52)

by using Poincaré’s lemma. Here, we use the short hand notation:

∇⊥v :=

(
−∂yv
∂xv

)
,

1The quaternions form a non-commutative field which is isomorphic as a real vector space to R4. Denoting by 1, i, j, k
the standard basis, the quaternionic product is then determined by the identities (defining 1 to be the multiplicative
identity):

i2 = j2 = k2 = ijk = −1.

Naturally, C ⊂ H holds with the natural identifications. The fact that S3 ⊂ H ' R4 is a Lie group follows by noticing
that the standard Euclidean norm is multiplicative with respect to the quaternionic product.
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to denote the rotation, naturally applied in each component separately. Notice that therefore:

∇⊥v = S∇u = ∇(Su)−∇S · u ∈W−1,2 + L1(R2;Rn). (1.53)

Indeed, to define f := u + iv and arrive at a more manageable equation, it is therefore crucial to
establish f ∈ L2(R2;Rn). Thus, it suffices to check:

v ∈ L2. (1.54)

Fortunately, there is a result due to Bourgain and Brezis, see Bourgain-Brezis [8] and Da Lio-Rivière
[23] for its generalisation without periodicity assumption, which guarantees that such a v may be
chosen, establishing integrability of f .

The inequality by Bourgain and Brezis also allows one to deduce (by duality, if n = 2) that for any
h ∈ Ln(Rn) periodic with vanishing integral over Rn (denoted by Ln#(Rn), there exists a continuous

solution v ∈ Ẇ 1,n ∩ L∞(Rn) of the divergence system:

div v = h.

Particularily interesting is the fact that there is no bounded linear right inverse K : Ln#(Rn)→ L∞(Rn)
to the divergence operator, implying that the solution found depends non-linearily on h (again, see
[8]). The main idea is that one defines the operator T : C0 ∩H1(T2)→ L2

#(T2) given by Tf := div f
and notices that its dual operator satisfies:

T ∗ : L2
# →M+H−1(T2), u 7→ T ∗(u) := ∇u (1.55)

Here,M =M(T2) denotes the dual space of C0(T2), i.e. the Banach space of signed Radon measures.
Bourgain-Brezis’ inequality then states:

‖u‖L2 . ‖∇u‖H−1+L1 = ‖T ∗u‖M+H−1 (1.56)

By the closed range theorem, this immediately shows that T has closed range and the image actually
agrees with the annihilator of the kernel of T ∗. Since the latter is trivial (note that ∇u = 0 implies
that u is constant with mean 0, thus u = 0), surjectivity follows immediately.

Such a result is remarkable, as Sobolev embeddings are too weak to find such a solution. Results
for Hodge decompositions in critical exponents were also obtained in Bourgain-Brezis [9]. Moreover,
in Bourgain-Brezis [8], the construction of such a solution is shown to lead to a non-linear solution
operator for the divergence problem, as mentioned above. This highlights the delicacy of the problem.
Naturally, one may immediately wonder if Bourgain-Brezis’ inequality and similar kinds of estimates
could be extended to other situations and spaces, for example more general Hilbert-Sobolev spaces.
Such ideas have been pursued, for instance, in Maz’ya [58] and Mironescu [61]. Furthermore, the
following fractional version of the result in Bourgain-Brezis [8] is the focus of [25]:

Theorem 1.3.1.1 ([25]). Let n ≥ 1 be a natural number, u ∈ D′(Tn). If we have that:

(−∆)n/4u,Rj(−∆)n/4u ∈ L1 + Ḣ−n/2(Tn), ∀j ∈ {1, . . . , n}, (1.57)

where Rj are the Riesz operators2, then u− −
∫
Tn udx ∈ L

2
#(Tn) together with the estimate:

∥∥∥u−−∫
Tn
udx

∥∥∥
L2
≤ C

‖(−∆)n/4u‖L1+Ḣ−n/2 +
n∑
j=1

‖Rj(−∆)n/4u‖L1+Ḣ−n/2

 , (1.58)

2The Riesz operators Rj for j ∈ {1, . . . , n} are just the Riesz transforms with respect to the variable xj and may be
defined as the Fourier multiplier operators associated with the multiplier m(ξ) := iξj/|ξ|.
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where C > 0 is independent of u.

The main idea in proving (1.58) is the introduction of suitable operators on Clifford algebras:

Dv := (−∆)n/4

Id+

n∑
j

ejRj

 v, Dv := (−∆)n/4

Id− n∑
j

ejRj

 v, (1.59)

where ej is the standard basis of Rn considered as elements in the universal Clifford algebra and
satisfying the identities:

eiej + ejei = 2δij , ∀i, j ∈ {1, . . . , n}, (1.60)

where δij = 1, if i = j, and 0 else. One may see by direct computations that the Fourier symbol of
D2 is precisely:

2i · |m|n
 n∑
j=1

ej
mj

|m|

 = 2i · |m|n−1m. (1.61)

The inverse Fourier symbol exists and can be computed explicitly. It corresponds to the convolution
with a suitable bounded function on Tn. This ultimately allows us to obtain better integrability prop-
erties and find the L2-estimate for u− −

∫
Tn udx.

Interestingly enough, Theorem 1.3.1.1 is closely connected to the Bergmann space A(D) on the
unit disc B1(0) =: D ⊂ R2. To fix notation, one defines:

A(D) :=
{
f : D→ C| f holomorphic and ‖f‖L2(D) <∞

}
. (1.62)

This is a Banach space and related to the Hardy space H1(D) via the embedding H1(D) ⊂ A(D). The
Hardy space may be described in terms of its boundary values only3, so it is natural to wonder whether
an analogous characterisation for Bergmann spaces is available as well. Indeed, such a characterisation
is a consequence of Theorem 1.3.1.1 in the case n = 1:

Theorem 1.3.1.2 ([25]). A holomorphic function f : D→ C belongs to the Bergmann space A(D) if
and only if:

‖f‖L1+H−1/2(S1) := lim sup
r→1−

∥∥f(reiθ)∥∥
L1+H−1/2(S1)

< +∞. (1.63)

Additionally, it even holds:
‖f‖L2(D) ≤ C‖f‖L1+H−1/2(S1), (1.64)

for some constant C > 0 independent of f .

It even holds that Theorem 1.3.1.2 is equivalent to Theorem 1.3.1.1 in the case n = 1. This equiv-
alence is the second main result in [25], its proof shall be explained in Section 3.1.

3In fact, we have for holomorphic functions f :

f ∈ H1(D)⇐⇒ sup
0<r<1

∫ 2π

0

|f(reiϕ)|dϕ < +∞.

In this case, f(reiϕ) converges pointwise almost everywhere and in L1 to f(eiϕ) and the L1-norm of these boundary
values are just the Hardy norm of the holomorphic f .
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Since the publication of [25], there has been an effort to use similar ideas in another context.
In Yong-Yanqi-Zipeng [105], the authors introduce the notion of holomorphic stability for pairs of
function spaces and use the results and the proof in [25] to conclude that the Hardy and Bergmann
space on the unit disc form such a holomorphic stable pair. We refer the interested reader to the paper
Yong-Yanqi-Zipeng [105], as we shall not pursue this line of thought in the present thesis further.

1.3.2 Compensation Results for Dirac’s Equation

Let us now turn to compensation phenomena for special PDEs not involving antisymmetric poten-
tials. Before we turn to the results found in [26], let us give a brief overview of the key ideas in Da
Lio-Rivière [23]:

For simplicity, let us first consider the case of two-dimensional codomains as in Da Lio-Rivière
[23]. Namely, let u ∈ L2(R2;R2) and S ∈ Ẇ 1,2(R2;O(2) ∩ Sym(2)), such that:

div (S∇u) = 0 in D′(R2). (1.65)

The first step is to apply Poincaré’s Lemma combined with a Bourgain-Brezis inequality to find
v ∈ L2(R2;R2), such that:

∇⊥v = S∇u. (1.66)

Now, finding a matrix Q ∈ Ẇ 1,2(R2;SO(2)) under a smallness assumption on ‖∇S‖L2 , such that:

Q−1SQ =

(
1 0
0 −1

)
=: S0,

one may introduce f := S0Qu + iQv. We emphasise here that S0 could also be the identity matrix
up to a sign change. However, this case is trivial, as then also S = ±Id and thus we are only dealing
with u harmonic, for which obvious elliptic regularity properties would immediately prove regularity.
Thus, the case considered here corresponds to the interesting case.

The next observation lies in studying the equation solved by f . Due to the emergence of ∇⊥v
and ∇u in (1.66), we may state the equation in terms of the complex derivative for the function
f = S0Qu+ iQv:

∂zf =

(
0 1
−1 0

)
∂zα · f. (1.67)

Here, α is the angle of rotation associated with Q and lies in Ẇ 1,2(R2;R), see [23, Thm. III.6]. Writing
f = (f1, f2), introducing the complex unit j ∈ H and defining:

f := f1 + f2j, (1.68)

we now get the more natural formulation (here ∂L is just ∂z acting on functions from the left4):

∂Lf = −∂zαj · f. (1.69)

We notice that in the case of (1.67), the assumption Im (∂z̄∂zα) = Im (∆α) = 0 is always satisfied,
keeping in mind that α is real-valued. In the last step above, several properties of the quaternions are

4The distinction between ∂L and ∂z is made, since in the former i is considered as an element in H, while in the
latter it is considered an element in C.
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exploited such as non-commutativity of the complex units, the relation to complex conjugation and the
relation ij = k. At this point, despite starting with an equation like (1.65) without an antisymmetric
potential providing compensation properties, we have reformulated the main equation and obtained
(1.69), which now is characterised by a potential which takes values in the Lie algebra associated with
the unit quaternions, leading to the possibility of a change of gauge approach analogous to Rivière
[70]. The steps from here are then natural, but slightly technical: One needs to define an appropriate
gauge operator, absorb ill-behaved terms and establish a suitable Morrey decrease to conclude, details
may be found in Da Lio-Rivière [23].

In [26], together with Da Lio and Rivière, we continued pursuing this line of thought and pushing
the ideas used further. While many compensation phenomena involving antisymmetric potentials (for
example also for fractional PDEs as in the previously mentioned Da Lio-Rivière [22], Mazowiecka-
Schikorra [57]) have been explored since Rivière [70], a lack of such a potential (i.e. potentials with
values not in the real Lie algebra of antisymmetric matrices) still poses problems in the regularity
theory of critical PDEs. In fact, while (1.67) involves a potential, but it does not stem from a compact
Lie algebra, obstructing the gauge construction at this level.

In the paper [26], we contribute to the theory of critical PDEs with no antisymmetric potential by
considering the particular PDE:

∂Lf =

(
0 β
−β 0

)
f̂, (1.70)

for f ∈ Lm/(m−1)(Rm;C`m−1×C`m−1) and β ∈W 1,m/2(Rm; spanR{e0, e1, . . . , em−1}), with part of the
rotation of β vanishing:

∂iβj − ∂jβi = 0, ∀i, j ∈ {1, . . . ,m− 1},
here using (x0, x1, . . . , xm−1) ∈ Rm. Here, we write C`m−1 to denote the universal Clifford algebra over
Rm−1, a powerful and often useful generalisation of the complex numbers as well as the quaternions.
To define the Clifford algebra, one takes Rm−1 (indeed, any vector space V equipped with a quadratic
form Q) and defines the multiplication on the standard basis (or on any orthonormal basis for the
corresponding bilinear form B associated with Q) elements as follows:

eiej + ejei = −2δij , ∀i, j ∈ {1, . . . ,m− 1}, (1.71)

and add a neutral element 1. It is important to be aware that Clifford algebras are associative, but
generally not commutative. From the very definition, we already have e1e2 = −e2e1. Thus, the space
Rm = R⊕Re1⊕. . .⊕Rem−1 is naturally a subspace of C`m−1. Among the most prominent applications
of Clifford algebras is their intimate connection to geometry (for instance, quantities such as the scalar
product, cross product and others appear naturally in this context), the extension of decompositions
of the Laplacian into first order operators similar to ∂z∂z = ∆ by means of Dirac operators and the
definition of the Spin groups, the double-covering spaces of the special orthogonal groups. We refer
interested readers to Hamilton [42] for the basic theory and applications to gauge theory and physics as
well as to Gilbert-Murray [38] for applications more closely related to mathematical analysis, including
for example an extension of the identification of Hardy spaces by means of holomorphic functions. The
most well-known examples of Clifford algebras include:

C`0 = R, C`1 = C, C`2 = H (1.72)

Due to the close connection with complex numbers and quaternions, the appearance of Clifford algebras
should come as no surprise in the formulation of suitable generalisations of the regularity results in
Da Lio-Rivière [23].



24

The hat operator f 7→ f̂ is the grade involution, a natural generalisation of the complex conjugation
to arbitrary Clifford algebras5 with the property:

âb = âb̂, ∀a, b ∈ C`m−1.

The crucial link between the grade involution and the complex conjugation in the argument of Da
Lio-Rivière [23] follows by:

∀a ∈ C`m−1 : âem = ema,

which is nothing but an iterated application of (1.71). As a result, arguing completely analogous to
Da Lio-Rivière [23], one notices that the extension to the higher-dimensional Clifford algebra C`m by
means of adding the basis element em allows us to rewrite this equation in the following way:

∂Lg = −βem · g,

where g := f1 + f2em. From here on, one proceeds quite similar to Da Lio-Rivière [23], however there
are some obstructions in the argument related to the construction of a suitable gauge operator and
the improved regularity properties. The former results in the main theorem only holding on domains
of dimension ≤ 8, as in higher dimensions the construction of a gauge operator we employ no longer
applies. The reason lies in the fact, that the definition hinges on parallelisability of the sphere S7 by
choice of a constant coefficient elliptic differential operator of first order, or to be more precise, the
existence of the octonions, by virtue of defining the gauge operator to include an elliptic operator with
symbol that realises an orthogonal frame. For higher dimensions, no sufficiently nice division algebra
exists and this limits the techniques used to the range of domains specified. The final result may be
stated in the following form for codomains of dimension 2:

Theorem 1.3.2.1 ([26]). Let m ≤ 8. β = (β0, · · ·βm−1) ∈W 1,m/2
loc (Rm, spanR{e0, · · · , em−1}) with

∀ i, j = 1 · · ·m− 1 ∂xiβj − ∂xjβi = 0 . (1.73)

Let f ∈ Lm/m−1(Rm, C`m−1 × C`m−1) be a solution of

∂Lf =

(
0 β

−β 0

)
f̂. (1.74)

Then f ∈ Lqloc(R
m, C`m−1 × C`m−1) for all q <∞. �

This result is discussed in Section 3.2 for the case m = 3, 4 and extended in the last section, Section
3.3, to domains of dimension m ≤ 8 as well as for arbitrary codomains.

From here, there are several natural open problems associated with the PDE one could investigate.
Firstly, the motivation to study the phenomenon of critical chirality in Da Lio-Rivière [23] came partly
from the close connection with a divergence-type PDE. Such a connection is not immediately possible

5While this is one potential generalisation of complex conjugation, this does not lead to the quaternionic conjugation
on C`2 ' H. Identifying e1 = i, e2 = j, then:

̂a+ bi+ cj + dk = ̂a+ be1 + ce2 + de1e2 = a− be1 − ce2 + de1e2.

Indeed, quaternionic conjugation satisfies qp = p̄q̄, so it inverts the order of multiplication.
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for the case of higher-dimensional domains. At best, one can hope for a system of divergence-type
PDEs, as the emergence of the principal automorphism of the Clifford algebra immediately forces us
to control half of the component functions, which leads to a less natural system of PDEs. It would be
interesting to see, if an alternative approach exists, allowing a treatment of the natural divergence-type
PDE:

div (S∇u) = 0,

also for higher dimensional domains.
On the other hand, the restriction to domains of dimension ≤ 8 might be of technical nature,

i.e. inherent to the approach chosen and not a property of the equation itself. Thus, investigating
alternative approaches could lead to the discovery of further compensation phenomena and might
generalise our results to arbitrary domains.

Lastly, the Dirac equation studied in [26] appears to be closely connected, at least for 3D domains,
to Lorentz gauges via the vanishing rotation assumption. However, so far, a more explicit and general
connection to physics has eluded the study of the authors. We are convinced that the naturality and
connection in the special case of 3D domains hints at a physical interpretation of the PDE, but this
has to be studied in some future work.

1.4 Outline of the Thesis

In the current chapter, we have explored the context of the papers [25], [26], [102], [103], [104] included
in the subsequent sections in more detail and put them into a general context. Next, in Chapter 2,
the author’s contribution to the half-harmonic gradient flows are collected. To be precise, in Section
2.1, the paper [102] is contained dealing with the case of spherical target manifolds, in Section 2.2 we
have [103] generalising the previous results to arbitrary closed target manifolds, and lastly, Section
2.3 treats [104] and thus introduces a first investigation into the formation of singularities along the
flow and potentially laying the foundation for future work in this area. In Chapter 3, we discuss the
contributions to compensation phenomena inspired by Da Lio-Rivière [23] as briefly introduced above.
Section 3.1 discusses the results in [25] leading to characterisations of Bergmann spaces in terms
of their boundary values, while Section 3.2 provides a discussion of results pertaining to improved
regularity for the Dirac equation, see [26]. Additionally, in Section 3.3, we expand on the discussion
provided in [26] by including some previously unpublished results. To be more specific, we treat the
case of general codomains and give some details in the case of domains of dimension ≤ 8.



2 Half-Harmonic gradient flow [102],
[103], [104]

2.1 The Case of Spherical Targets [102]

In this section, we study the half-harmonic gradient flow with values in spheres. Similar to the
harmonic gradient flow and (fractional) harmonic maps, this case is simpler from a technical point of
view, as the equations and compensation phenomena are easier to find. In particular, we prove local
existence of the flow, uniqueness in a strong sense as well as smoothness of the solution. In case the
initial energy is small, we are even able to show that solutions exist globally and are unique in the
energy class, a result which relies on an ingenious trick by Rivière.

2.1.1 Introduction

In this paper, we shall study gradient flows associated with the half-harmonic map equation, in
particular questions pertaining to uniqueness, regularity and convergence as t → +∞ of solutions
of the fractional harmonic gradient flow in Sn−1 ⊂ Rn. In [89] and [90], Struwe studied global
existence and uniqueness for the gradient flow associated with the classical harmonic map equation
both in dimension 2 as well as higher dimensions. Recall that harmonic maps are critical points of
the standard Dirichlet energy which is defined for all maps u : M → N ⊂ Rn in H1(M ;N) by:

E(u) :=
1

2

∫
M
gαβ(x)γij(u(x))

∂ui

∂xα
(x)

∂uj

∂xβ
(x)dx,

where (M, g), (N, γ) smooth Riemannian manifolds, u = (u1, . . . , un) and employing Einstein’s sum-
mation convention. In case M = Ω ⊂ Rm and N ⊂ Rn are isometrically embedded in Rm and Rn and
equipped with the Riemannian metrics induced by the standard scalar product, this reduces to:

E(u) =
1

2

∫
Ω
|∇u|2dx

In domains of dimension 2, Struwe actually showed that up to a bubbling process at finitely many
points, the number of which can be bounded by the initial energy, there exists a unique regular solution
for all times. To be more precise, Struwe proved the following for the target manifold N = Sn−1 (a
completely analogous result holds for general N):

Theorem 2.1.1.1 (Theorem 1, p.98, [68]). Let Ω ⊂ R2 as well as u0 ∈ H1(Ω;Sn−1), γ ∈ C∞(∂Ω;Sn−1).
Then there exists a solution u ∈ H1(]0,+∞[;L2(Ω)) of the harmonic gradient flow:

∂tu−∆u = u|∇u|2 in D′(]0, T [×Ω), ∀T > 0, (2.1)
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together with the boundary conditions:

u(t, x) = γ(x), for all t ≥ 0, x ∈ ∂Ω (2.2)

u(0, x) = u0(x), for all x ∈ Ω, (2.3)

and satisfying E(u(t, ·)) ≤ E(u0) for all times t ≥ 0. The solution u is regular on ]0,+∞[×Ω, except
in a finite number of points (tk, xk), k = 1, . . . ,K, for some K ∈ N. Additionally, u is unique in the
class E ⊂ H1

loc([0,+∞[×Ω) defined by:

E :=
{
u
∣∣∣ ∃m ∈ N, ∃T0 = 0 < T1 < . . . < Tm <∞ : u ∈ L2([Ti, Ti+1[;W 2,2(Ω)),∀i ≤ m− 1

}
Finally, there exists a constant C > 0 independent of u0, such that:

K ≤ C · E(u0)

A minor drawback of this result is the additional regularity requirement in the definition of E
needed to ensure uniqueness. However, in [68], Rivière managed to remove this condition for solutions
in the energy class and N = Sn−1, provided the initial energy is sufficently small. Solutions in the
energy class actually refers to solutions u which lie merely in H1(]0,+∞[;L2(Ω))∩L∞([0,+∞[;H1(Ω))
satisfying the inequality E(u(t, ·)) ≤ E(u0). This approach exploited integrability by compensation
phenomena inherent to the structure of the harmonic map equation, namely Wente’s estimate. To be
precise, the following was proven in Rivière [68]:

Theorem 2.1.1.2 (Theorem 2, p.99, [68]). There exists ε > 0, such that for every u0 ∈ H1(Ω;Sn−1)
with:

E(u0) < ε,

existence of a unique solution of (2.1), (2.2), (2.3) in H1
loc([0,+∞[×Ω) satisfying E(u(t, ·)) ≤ E(u0)

for almost every time t ≥ 0 is guaranteed. The solution u is in fact regular in ]0,+∞[×Ω.

A key point in the proof is the smallness of the energy that allows us to deduce slightly better
regularity for the trace u(t, ·) at a.e. fixed time. One should notice that if ε > 0 is sufficiently small,
in Struwe’s result, Theorem 2.1.1.1, the possibility of bubbling could be excluded, hence establishing
global regularity. Later, in [35], Freire was able to remove the small energy restriction and prove a
general uniqueness result in the energy class for arbitrary N . He did so by employing Hélein’s moving
frame technique in the context of the harmonic gradient flow.

Our goal is to generalize the approach by Rivière in [68] to the non-local framework and thus to
the half-harmonic gradient flow.

In analogy to harmonic maps, we may say that a map u : S1 → N ⊂ Rn is weakly 1/2-harmonic,
if it is a critical point of the following energy:

E1/2(u) :=
1

2

∫
S1

|(−∆)1/4u|2dx, (2.4)

with respect to variations in the following set:

H1/2(S1;N) :=
{
v ∈ H1/2(S1;Rn)

∣∣ u(x) ∈ N, for a.e. x ∈ S1
}
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For convenience’s sake, we shall abbreviate E1/2 by E throughout the paper. Observe that the criti-

cality condition implies that for every Φ ∈ Ḣ1/2(S1;Rn) ∩ L∞(S1), in particular all Φ ∈ C∞(S1;Rn),
we have:

d

dt
E1/2 (π(u+ tΦ))

∣∣∣
t=0

= 0, (2.5)

where π is the orthogonal closest-point projection to N , which is defined in a sufficiently small neigh-
bourhood of N and smooth due to N being smooth. As we shall see, this condition is equivalent
to:

dπ(u)(−∆)1/2u = 0 in D′(S1), (2.6)

which is sometimes also stated informally in the following form, observing that dπ(x) is the orthogonal
projection to TxN for every x ∈ N :

(−∆)1/2u ⊥ TuN

In our case of interest, N = Sn−1, this could be restated as:

u ∧ (−∆)1/2u = 0 in D′(S1).

It is clear that, in order to study the regularity of 1/2-harmonic maps, the first step lies in the
reformulation of (2.6). Naturally, corresponding definitions for R instead of S1 are possible.

In fact, the regularity and reformulations were first studied by the authors in Da Lio-Rivière [21],
only the domain being R instead of S1, the same paper where 1/2-harmonic maps were first introduced.
Since Da Lio-Rivière [21], several extensions have been considered in Da Lio [16]; Schikorra [76]; Da
Lio-Schikorra [28], [27]; Da Lio-Pigati [20]. The regularity of 1/2-harmonic maps relies on the following
compensation phenomena discovered in Da Lio-Rivière [22]: If Ω ∈ L2

loc(R; so(m)), v ∈ L2
loc(R;Rm)

and f ∈ Lploc(R;Rm), where 1 ≤ p ≤ 2 satisfy

(−∆)1/4v = Ω · v + f in D′(R),

then (−∆)1/4v ∈ Lploc(R), i.e. v ∈ Ẇ 1/2,p(R). This phenomena is based on the existence of special
operators satsifying improved integrability properties due to compensation. One such operator is, for
instance, given by the so-called three-term commutator :

T : L2(R;Rm)× Ḣ1/2(R;Rm×m)→ Ḣ−1/2(R;Rm),

defined by:
T (v,Q) := (−∆)1/4(Qv)−Q(−∆)1/4v + (−∆)1/4Q · v

It is proven in Da Lio-Rivière [21] that:

‖T (v,Q)‖Ḣ−1/2 . ‖Q‖Ḣ1/2‖v‖L2

We also refer to Lenzmann-Schikorra [55] for an overview of different types of commutator estimates.
Recently in Mazowiecka-Schikorra [57], inspired also by Millot-Sire [60], the authors recast integra-
bility by compensation for fractional operators and commutator estimates in a ”classical local way”,
by applying the notions of fractional divergences and fractional gradients, see Section 2.2 for their
definitions. In particular, they succeeded in recasting the integrability by compensation in terms of
the following non-local result reminiscent of the result by Coifman, Lions, Meyer and Semmes [14]:
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Lemma 2.1.1.1 (Theorem 2.1, [57]). Let s ∈ (0, 1) and p ∈ (1,∞). For F ∈ Lpod(R × R) and

g ∈ Ẇ s,p′(R), where p′ denotes the Hölder dual of p, we assume that divs F = 0. Then F · dsg lies in
the Hardy space H1(R) and we have the estimate:

‖F · dsg‖H1(R) . ‖F‖Lpod(R×R) · ‖g‖Ẇ s,p′ (R).

Lemma 2.1.1.1 has permitted the authors in [57] to show in an alternative way the regularising
effect of non-local systems with anti-symmetric potentials.

In this paper, we are going to study the gradient flow associated with the energy E1/2 introduced
above, referred to as the fractional or 1/2-harmonic gradient flow. Namely, we shall study solutions u
of the following non-local PDE on [0,+∞[×S1 taking values in the sphere Sn−1 ⊂ Rn:

dπ(u)
(
ut + E′1/2(u)

)
= dπ(u)

(
ut + (−∆)1/2u

)
= 0, (2.7)

with u(0, ·) = u0 for some initial datum u0 ∈ H1/2(S1;Sn−1). As in the case of fractional harmonic
maps, a first step would be to rephrase the fractional harmonic flow and we shall obtain in the paper
the reformulation:

ut + (−∆)1/2u = u|d1/2u|2, (2.8)

where u satisfies u(0, ·) = u0. The notation used shall be introduced later on in the paper, however
we emphasise that the RHS of the equation is closely related to the 1/2-harmonic map equation. It
should be noted that the formulation (2.8) mirrors some of the features found in the local case and
builds upon the formulation of fractional harmonic maps in Mazowiecka-Schikorra [57]. This equation
will be derived later on in the paper.

One might ask what is known for the half-harmonic gradient flow (2.7), (2.8). For example, in
Schikorra-Sire-Wang [77], the authors studied and proved the existence of a solution to the half-
harmonic gradient flow assuming the map takes values in a sufficiently nice target manifold, i.e. a
closed homogeneous space such as the space of interest N = Sn−1. In fact, they consider for 0 < s < 1
and 1 < p < +∞ the energy functional:

Es,p(u) :=
1

p

∫
Ω×Ω

|u(x)− u(y)|p

|x− y|n+sp
dxdy,

where Ω ⊂ Rm is smooth and bounded, and study the fractional gradient flow equation given informally
by:

dπ(u)
(
∂tu+ E′s,p(u)

)
= 0, (2.9)

for closed manifolds N ⊂ Rn and the closest point projection π, showing existence of an appropriate
candidate for general N and verifying that the constructed candidate is a solution, provided N is
a homogeneous space. Their methods involve approximations by a piecewise minimization process
and immediately yield, in contrast to the techniques employed by Struwe, a global existence result.
We highlight that provided p = 2 and s = 1/2, we recover the fractional harmonic gradient flow
in (2.7), and consequently (2.8), which we will be studying, thus complementing the treatment in
Schikorra-Sire-Wang [77] in the case Sn−1. We mention that using S1 instead of a bounded interval
Ω ⊂ R does not obstruct the proof presented in Schikorra-Sire-Wang [77], as all arguments carry over
immediately, therefore the existence result continues to hold true for the domain S1, at least for closed,
homogeneous target manifolds.
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Nevertheless, the nature of the argument in Schikorra-Sire-Wang [77] does not allow for a unique-
ness statement or provide an analysis of possible types of blow-ups in (in)finite time. Questions
regarding blow-ups were studied for example in Sire-Wei-Zheng [84] where the authors exhibit that
only blow-ups in infinite time may occur for certain initial data and conjecture that the same might
hold in general.

Our main result in this paper will be the following:

Theorem 2.1.1.3. Let u0 ∈ H1/2(S1;Sn−1) be any initial data. There exists ε > 0, such that if:

‖(−∆)1/4u0‖L2(S1) ≤ ε,

then there exists a unique energy class solution u : R+ × S1 → Sn−1 ⊂ Rn of the weak fractional
harmonic gradient flow:

ut + (−∆)1/2u = u|d1/2u|2,
satisfying u(0, ·) = u0 in the sense u(t, ·) → u0 in L2, as t → 0. Moreover, the solution fulfills the
energy decay estimate:

‖(−∆)1/4u(t)‖L2(S1) ≤ ‖(−∆)1/4u0‖L2(S1).

In fact, u ∈ C∞(]0,∞[×S1) and for an appropriate subsequence tk →∞, the sequence u(tk) converges
weakly in H1(S1) to a point.

By energy class solution, we mean that u possesses the following regularity:

u ∈ L∞(R+;H1/2(S1)), ut ∈ L2(R+;L2(S1)).

The general strategy behind the proof of Theorem 2.1.1.3 is the following: First, following the
arguments in Struwe [89] for uniqueness, we show that uniqueness holds for slightly more regular
solutions than those in energy class. Namely, we require in addition that u ∈ L2

loc(R+;H1(S1)) and this
improved regularity assumption combined with Sobolev-type embeddings for Triebel-Lizorkin spaces
yields uniqueness in this class of functions. Then we establish, following the approach in Rivière [68],
that energy class solutions with monotone decreasing 1/2-energy in time and sufficiently small initial
energy are actually slightly more regular and satisfy the condition u ∈ L2

loc(R+;H1(S1)). This gain in
regularity crucially relies on the structure of an anti-symmetric potential hidden in the harmonic map
equation and changes of gauge as in Rivière’s seminal work [70] adapted in a non-local framework and
manifested in non-local Wente-type estimates like Lemma 2.1.1.1 found in Mazowiecka-Schikorra [57].
Indeed, the emergence of an anti-symmetric potential and the resulting benefits are more apparent
for Sn−1 than for general manifolds, since in this case, the potential is even 1/2-divergence-free, a
property which is in general only obtained after a change of gauge, cf. Rivière [70]. The vanishing
1/2-divergence actually leads to slightly better integrability properties of the potential and hence the
improvement in regularity, see Da Lio-Rivière [22], Da Lio-Pigati [20] and Mazowiecka-Schikorra [57].

To be precise, the following regularity result will be the key point to derive uniqueness for small-
energy solutions in the energy class:

Proposition 2.1.1.1. Let u satisfy the following regularity assumptions:

u ∈ L∞(R+;H1/2(S1)); ut ∈ L2(R+;L2(S1))

Moreover, assume u solves the half-harmonic gradient flow equation (2.8). Then for almost every time
t > 0, we have:

u(t) ∈ H1(S1).
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Combining this with a fractional Ladyzhenskaya inequality and sufficiently small energy will show
u ∈ L2

loc(R+;H1(S1)), analogous to Rivière [68].
Proving smoothness of the solution relies on bootstrap techniques and a local regularity result

from Hamilton [43] adapted to the non-local setting. Indeed, we shall use the local Inversion Theorem
in order to prove existence and regularity of solutions to the flow assuming the boundary data is
smooth. The resulting solution will be smooth by using results from Hieber-Prüss [46] on parabolic
PDEs and maximal estimates for heat flows using operator semigroups. Then, using a generalisation
of a Lemma by Schoen-Uhlenbeck [81] (our proof following the presentation in Struwe [92]) and the
extension of the harmonic map flow as presented in Struwe [89] in the case of the half-harmonic map
flow, we deduce regularity in general and for all times, provided the initial energy is sufficently small.
The ideas follow more or less Struwe [89] and we indicate the most significant changes by establishing
the key estimates. Lastly, convergence is obtained just like in Struwe [91] for the harmonic map flow.

We would like to point out that we could have chosen the formulation of the fractional harmonic
map equation introduced in Da Lio-Rivière [21]. However, we did choose the formulation in (2.8) for
its analogy with (2.1), which also inspired the current investigation into half-harmonic gradient flows.

Some of the main technical difficulties we will encounter in the course this paper will concern the
translation of results for the real line R into results for the unit circle S1 and working with Triebel-
Lizorkin spaces over S1. Regarding the former difficulties, some of results of this type may be obtained
by an extension procedure, others by changes of variables involving the stereographic projection which
connect the 1/2-Laplacian on the circle to the one on the real line, see e.g. Da Lio Da Lio [15], Da
Lio-Pigati [20], Millot-Sire [60], Da Lio-Martinazzi-Rivière [19]. Both approaches seem to be necessary,
as there are advantages to both of them. Many of the results derived by such procedures can also be
obtained directly using Triebel-Lizorkin spaces. Once all these ingredients are introduced, the proof
is based on the arguments found in Struwe [89] as well as Da Lio-Pigati [20], Mazowiecka-Schikorra
[57], Rivière [68].

In future work, the author plans to investigate uniqueness and regularity of solutions to the frac-
tional harmonic gradient flow with small initial energy in an arbitrary closed manifold N ⊂ Rn and
then to expand our considerations to solutions with arbitrary initial energy. Some bubbling phenom-
ena are expected to be observable in this case, so the more delicate analysis of this will be carried
out in a future paper. A paper dealing with uniqueness and regularity in the general setting of an
arbitrary closed manifold N ⊂ Rn is already in preparation by the author ([103]).

Let us present an outline of the paper: In Section 2, we introduce some of the most important
notions and structures for our proofs. In particular, this includes Triebel-Lizorkin spaces on S1 and
the fractional Wente-type Lemma 2.1.2.1. Then, in Section 3, we turn to establishing our main result.
First, in Section 3.1, we show the equivalence between (2.7) and (2.8). Then, uniqueness is treated in
Section 3.2 following the presentation in Rivière [68] and Struwe [89], regularity in Section 3.3 by a
bootstrap trick and using the techniques and results in Hamilton [43], Hieber-Prüss [46], Struwe [89]
and finally, we discuss convergence properties in Section 3.4 following the presentation in Struwe [91]
in the case of the harmonic map flow. The Appendices complement the presentation and add some
technical details.

Acknowledgements Lastly, I would like to thank my supervisors, Prof. Francesca Da Lio and
Prof. Tristan Rivière, for suggesting this problem, providing advice throughout the process of working
on this paper and many very helpful comments, mathematical and structural, on various versions of
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this paper.

2.1.2 Preliminaries

We briefly introduce some of the most important notions employed throughout this paper. These
concern the fractional Laplacian, fractional divergences and gradients as well as a Wente-type result
for fractional div-curl-structures as seen in Mazowiecka-Schikorra [57].

2.1.2.1 Fractional Laplacian and Triebel-Lizorkin Spaces

In this section, we introduce the Triebel-Lizorkin spaces on the unit circle S1 ⊂ R2 and recall some
properties of the fractional Laplacian. Much of the current presentation is due to Prats [64], Prats-
Saksman [65], Schikorra-Wang [79] and Schmeisser-Triebel [80].

Let us recall the following first: S1 ' R/2πZ is equipped with a natural distance function given
by:

|x− y|2 = |eix − eiy|2 = |ei(x−y) − 1|2

= (cos(x− y)− 1)2 + sin(x− y)2 = 2− 2 cos(x− y)

= 4 sin

(
x− y

2

)2

, (2.10)

so we have:

|x− y| = 2

∣∣∣∣sin(x− y2

)∣∣∣∣
We shall tacitly use this distance function, whenever we are working over S1. Moreover, we define for
any f : S1 → R:

Ds,q(f)(x) :=

(∫
S1

|f(x)− f(y)|q

|x− y|sq
dy

|x− y|

)1/q

,

for all 1 ≤ q <∞ and 0 < s < 1. Then:

‖f‖Ẇ s,(p,q)(S1) := ‖Ds,q(f)(x)‖Lp(S1),

for every 1 ≤ p ≤ ∞. If p = q, these spaces correspond to the usual homogeneous Gagliardo-Sobolev
spaces Ẇ s,p(S1). For a presentation of the operator Ds,q and its main properties, we refer to Schikorra-
Wang [79] and the references therein.

We denote by D′(S1) the collection of distributions on S1 and sometimes denote by D(S1) the
space C∞(S1) of smooth functions. Let us from now on denote by f̂(k) the k-th Fourier coefficient of
f , for all f ∈ D′(S1):

f̂(k) :=
1

2π
〈f, e−ikx〉 =

1

2π
f
(
e−ikx

)
, ∀k ∈ Z

One may also introduce the Triebel-Lizorkin spaces for S1, denoted by F sp,q(S
1) in the following way

for all s ∈ R, p, q ∈ [1,∞[:

F sp,q(S
1) :=

{
f ∈ D′(S1)

∣∣ ‖f‖F sp,q < +∞
}
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Here we write:

‖f‖F sp,q :=

∥∥∥∥∥
∥∥∥∥∥
(∑
k∈Z

2jsϕj(k)f̂(k)eikx

)
j∈N

∥∥∥∥∥
lq

∥∥∥∥∥
Lp(S1)

,

for a partition of unity (ϕj)j∈N consisting of smooth, compactly supported functions on R satisfying:

suppϕ0 ⊂ B2(0), suppϕj ⊂ {x ∈ R | 2j−1 ≤ |x| ≤ 2j+1},∀j ≥ 1

as well as:
∀k ∈ N : sup

j∈N
2jk‖Dkϕj‖L∞ . 1

The Triebel-Lizorkin spaces on S1, and more generally on the n-torus, possess an analogous theory
to the classical case of these spaces on Rn, see Schmeisser-Triebel [80], Chapter 3. In particular,
Sobolev embeddings continue to hold (Schmeisser-Triebel [80] Section 3.5.5), identifications with clas-
sical spaces such as Lp(S1) (Schmeisser-Triebel [80] Section 3.5.4) and duality results (Schmeisser-
Triebel [80] Section 3.5.6). We shall use the properties of these spaces throughout this paper and shall
refer to the given reference for details. The homogeneous spaces may be defined as well by omitting
the Fourier coefficient of 0th-order and adapting the notions accordingly.

In Prats-Saksman [65] or Schikorra-Wang [79], the authors prove the following result:

Theorem 2.1.2.1 (Theorem 1.2, [65]). Let s ∈ (0, 1), p, q ∈]1,∞[ and f ∈ Lp(R). Then:

(i) We know Ẇ s,(p,q)(Rn) ⊂ Ḟ sp,q(Rn) together with:

‖f‖Ḟ sp,q(Rn) . ‖f‖Ẇ s,(p,q)(Rn). (2.11)

(ii) If p > nq
n+sq , then we also have the converse inclusion together with:

‖f‖Ẇ s,(p,q)(Rn) . ‖f‖Ḟ sp,q(Rn). (2.12)

The constants depend on s, p, q, n.

As seen in Prats-Saksman [65] and Schikorra-Wang [79] and by using the properties in Schmeisser-
Triebel [80], Triebel [97] for periodic functions, we can similarily discover the following equivalence
with Triebel-Lizorkin spaces for all 1 < q <∞ and 1 < p <∞:

Ẇ s,(p,q)(S1) = Ḟ sp,q(S
1), (2.13)

with equivalence of the corresponding seminorms, provided p > q
1+sq . We shall prove the part of

the identification that we will be using over and over, i.e. the second part of Theorem 2.1.2.1, in
Appendix B. If s = 1/2 and q = 2, then p > 1 is the requirement in Theorem 2.1.2.1 for the equality

of Ḟ
1/2
p,2 and Ẇ 1/2,(p,2) to hold. It should be observed that while Ḟ sp,2(S1) ⊂ Ẇ s,p(S1) = Ẇ s,(p,p)(S1)

for p ≥ 2, there does not hold equality except for p = 2. The arguments for the domain S1 carry
out in complete analogy to the case treated in Theorem 1.4 of Schikorra-Wang [79], where all the
spaces are introduced over R and Rn, by using the theory in Schmeisser-Triebel [80]. One just has
to observe that the maximal function estimates used are also available on S1, see Section 3.3.5 and
3.4 in Schmeisser-Triebel [80], enabling the very same arguments to work. Therefore, Theorem 2.1.2.1
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continues to hold for S1. We shall sometimes omit mention of the domain, if it is clear from the context.

On S1, the fractional s-Laplacian is defined as a Fourier multiplier operating on Fourier series:

̂(−∆)sf(k) = |k|2sf̂(k),

for every k ∈ Z and all 0 < s < 1. In particular, this can also be phrased as a principal value:

(−∆)1/2f(x) = C · P.V.
∫
S1

f(x)− f(y)

|x− y|2
dy,

where C > 0 denotes some constant, similar formulas with less explicit kernels exist for 0 < s < 1 as
seen in Gaia [36] and Roncal-Ral Stinga [74]. We also refer to them for further details. By the Fourier
multiplier properties, fractional Laplacians interact in a natural way with Triebel-Lizorkin spaces
Ḟ sp,q(S

1), as is usual for this type of function spaces. This means that it induces an isomorphism:

(−∆)s : Ḟ t+2s
p,q → Ḟ tp,q,

for all p, q ∈ (1,∞) and t, t + 2s ∈ R, see Schmeisser-Triebel [80] Section 3.6.3 and the proof of the
analogous statement in the case Rn.

In analogy, the s-Laplacian can be defined on R as a Fourier multiplier using the Fourier transform
rather than the Fourier series and leads again to an object which can also be characterised by a similar
principal value. We omit the details, as the formulas are virtually the same as for the circle.

2.1.2.2 Fractional Gradients and Divergences

We present some of the notions introduced and studied in Mazowiecka-Schikorra [57]: We denote by
Mod(R× R) the collection of measurable functions f : R× R→ R with respect to the measure dxdy

|x−y|
and we do the same for S1 instead of R on the domain-side. If both domains are possible, we shall
merely denote this space by Mod. For a measurable function f : R→ R or f : S1 → R, we define for
0 ≤ s < 1 the fractional s-gradient as follows:

dsf(x, y) =
f(x)− f(y)

|x− y|s
∈Mod,

and the corresponding s-divergence by means of duality. It is immediately clear, but nevertheless
useful to observe:

dsf(y, x) = −dsf(x, y)

Observe that by duality, for F ∈ Mod(R × R) or F ∈ Mod(S
1 × S1), we define for every ϕ smooth

and compactly supported on R or just smooth on S1 in the latter case:

divs F (ϕ) :=

∫ ∫
F (x, y)dsϕ(x, y)

dxdy

|x− y|

This quantity is hence defined merely in a distributional sense. Lastly, we denote for F,G ∈Mod over
R or S1:

F ·G(x) :=

∫
F (x, y)G(x, y)

dy

|x− y|
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If F = G, we also write:
F · F (x) = |F |2(x)⇒ |F |(x) :=

√
F · F (x)

Therefore, we immediately have:

‖|dsf |‖Lp(S1) = ‖f‖Ẇ s,(p,2)(S1),

which hints at an intimate connection between Triebel-Lizorkin spaces Ḟ sp,q(S
1) and fractional gradient

ds, under some technical conditions on s, p, q. We highlight that for some constant Cs ∈ R depending
on s:

(−∆)sf = Cs divs dsf,

which is particularily useful for the weak formulation of PDEs involving non-local operators. This
equation is to be understood in the following sense:

Cs

∫
dsf · dsg(x)dx =

∫
(−∆)sf · gdx =

∫
(−∆)s/2f · (−∆)s/2gdx,

for the domains S1 and R. Lastly, the following identity, sometimes referred to as fractional Leibniz’
rule, is often useful:

ds (fg) (x, y) = dsf(x, y)g(x) + f(y)dsg(x, y)

This identity can be verified by directly inserting the definition.

In general, we may also introduce Lpod(S
1 × S1) or Lpod(R × R) as the collection of measurable

functions, such that the following norm is finite:

‖F‖Lpod :=

(∫ ∫
|F (x, y)|p dydx

|x− y|

)1/p

,

for 1 ≤ p <∞. The space L∞od(S
1 × S1) and L∞od(R× R) could be introduced in the usual manner.

One of the main results we shall be using later on in an appropriately modified formulation is the
following non-local Wente-type result:

Lemma 2.1.2.1 (Theorem 2.1, [57]). Let s ∈ (0, 1) and p ∈ (1,∞). For F ∈ Lpod(R × R) and

g ∈ Ẇ s,p′(R), where p′ denotes the Hölder dual of p, we assume that divs F = 0. Then F · dsg lies in
the Hardy space H1(R)1 and we have the estimate:

‖F · dsg‖H1(R) . ‖F‖Lpod(R×R) · ‖g‖Ẇ s,p′ (R).

If, for example s = 1/2 and p = p′ = 2, then we may also conclude that F · dsg ∈ H−1/2(R)
using the embedding of Ḣ1/2(R) into BMO(R). The estimate continues to hold in a similar manner.
Similarily, we may deduce the following for the domain S1:

1We briefly recall that the Hardy space H1(R) is the subspace of L1(R)-functions such that:

MΦ(f)(x) := sup
t>0
|Φt ∗ f |(x) ∈ L1(R),

where Φ is a Schwartz function on R with
∫

Φdx = 1 and Φt(x) = 1/t · Φ(x/t). Alternative characterisations using
boundary values of harmonic maps, as the dual of BMO(R) and by the theory of function spaces exist. Hardy spaces
are of interest, as they remedy some of the issues that appear when working with L1-functions.
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Lemma 2.1.2.2. For F ∈ L2
od(S

1 × S1) and g ∈ Ḣ1/2(S1), we assume that div1/2 F = 0. Then

F · d1/2g lies in the space H−1/2(S1) and we have the estimate:

‖F · d1/2g‖H−1/2(S1) . ‖F‖L2
od(S1×S1) · ‖g‖Ḣ1/2(S1).

The proof of this result is postponed to Appendix B.

2.1.3 The Fractional Harmonic Flow with Values in Sn−1

This section is devoted to the proof of our main result. For convenience’s sake, we restate it once
more:

Theorem 2.1.3.1. Let u0 ∈ H1/2(S1;Sn−1) be any initial data. There exists ε > 0, such that if:

‖(−∆)1/4u0‖L2(S1) ≤ ε,

then there exists a unique energy class solution u : R+ × S1 → Sn−1 ⊂ Rn of the weak fractional
harmonic gradient flow:

ut + (−∆)1/2u = u|d1/2u|2,

satisfying u(0, ·) = u0 and the energy decay estimate:

‖(−∆)1/4u(t)‖L2(S1) ≤ ‖(−∆)1/4u0‖L2(S1).

In fact, u is even smooth and for an appropriate subsequence tk → ∞, the sequence u(tk) converges
weakly in H1(S1) to a point.

We observe that existence is already clear due to the result in Schikorra-Sire-Wang [77]. Therefore,
it remains to check uniqueness, regularity and convergence for t → ∞. We shall treat each of these
three different aspects in a separate subsection.

2.1.3.1 The 1/2-Harmonic Gradient Flow Equation

First, we would like to prove the equivalence of the formulations in (2.7) and (2.8). To do this,
we assume that u ∈ L∞(R+;H1/2(S1)) and ut ∈ L2(R+;L2(S1)) is a solution of (2.7) such that
u(t, x) ∈ Sn−1 for almost every (t, x) ∈ R+ × S1. Therefore, it satisfies the following equation:

dπ(u)
(
ut + (−∆)1/2u

)
= 0,

where π : Rn \ {0} → Sn−1, x 7→ x/|x| is the closest point projection to Sn−1. This means:∫ ∞
0

∫
S1

(
ut + (−∆)1/2u

)
dπ(u)ϕdxdt = 0, ∀ϕ ∈ C∞c (R+ × S1;Rn)

Letting ϕ ∈ C∞c (R+ × S1;Rn), we therefore have, using the notation dπ⊥ = Id− dπ:∫ ∞
0

∫
S1

(
ut + (−∆)1/2u

)
ϕdxdt =

∫ ∞
0

∫
S1

(
ut + (−∆)1/2u

)
dπ⊥(u)ϕdxdt

=

∫ ∞
0

∫
S1

ut · uϕ̃+ d1/2u · d1/2 (uϕ̃) dxdt
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=

∫ ∞
0

∫
S1

d1/2u · d1/2 (uϕ̃) dxdt

=

∫ ∞
0

∫
S1

∫
S1

d1/2u(t, x, y) · u(t, y)d1/2ϕ̃(t, x, y)
dydx

|x− y|
dt

+

∫ ∞
0

∫
S1

∫
S1

d1/2u(t, x, y)d1/2u(t, x, y)ϕ̃(t, x)
dydx

|x− y|
dt

=

∫ ∞
0

∫
S1

∫
S1

d1/2u(t, x, y)d1/2u(t, x, y)〈u(t, x), ϕ(t, x)〉 dydx
|x− y|

dt

=

∫ ∞
0

∫
S1

u(t, x)|d1/2u|2(t, x) · ϕ(t, x)dxdt (2.14)

where we used that ut is a.e. tangential to Sn−1 (seen by using approximation by convolutions),
dπ(x)v = v for all v ⊥ x and x ∈ Sn−1 and dπ(x)x = 0. The latter was used to write:

dπ⊥(u(t, x))ϕ(t, x) = 〈ϕ(t, x), u(t, x)〉u(t, x) =: ϕ̃(t, x)u(t, x),

with ϕ̃ ∈ H1/2(S1;R) ∩ L∞(S1) by direct computation. Observe that we implicitely used:∫ ∞
0

∫
S1

∫
S1

d1/2u(t, x, y) · u(t, y)d1/2ϕ̃(t, x, y)
dydx

|x− y|
dt

=

∫ ∞
0

∫
S1

∫
S1

d1/2u(t, x, y) · u(t, x) + u(t, y)

2
d1/2ϕ̃(t, x, y)

dydx

|x− y|
dt = 0, (2.15)

since:

d1/2u(t, x, y) · (u(t, x) + u(t, y)) =
u(t, x)− u(t, y)

|x− y|1/2
· (u(t, x) + u(t, y)) =

|u(x)|2 − |u(y)|2

|x− y|1/2
= 0,

since u ∈ Sn−1 for almost all (t, x). Therefore, we have shown that:

ut + (−∆)1/2u = u|d1/2u|2 in D′(R+ × S1),

which is the formulation provided in (2.8). This proves the aforementioned equivalence between the
two formulations.

2.1.3.2 Uniqueness

The first property we verify is uniqueness. As already mentioned in the introduction, the key idea is
to first show uniqueness under slightly better regularity assumptions similar to Struwe [89]. Then, we
use the fractional Wente-Lemma 2.1.2.2 and argue similar to Rivière [70] in order to show that energy
class solutions of sufficiently small energy actually are slightly more regular and thus the uniqueness
result for more regular solutions applies in this situation.

Uniqueness under Higher Regularity Assumptions Let us assume that u, v are two solutions
to the fractional gradient flow taking a.e. values in Sn−1 ⊂ Rn and such that the following holds true:

u, v ∈ L∞(R+;H1/2(S1)) ∩ L2
loc(R+;H1(S1)); ut, vt ∈ L2(R+;L2(S1)) (2.16)

The local integrability is meant with respect to the domain [0,∞[. It should be noticed that we include
more regularity than is actually required/given by the existence result in Schikorra-Sire-Wang [77],
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which is in agreement with the uniqueness treatment in Struwe [89]. Additionally, it is easy to see
thanks to u, v ∈ Sn−1 almost everywhere, that:

u, v are bounded.

We assume that they satisfy the gradient flow associated with the 1/2-harmonic map, which we have
seen in the previous subsection to be equivalent to:

ut + (−∆)1/2u = u|d1/2u|2, vt + (−∆)1/2v = v|d1/2v|2, (2.17)

together with the boundary condition:

u(0, ·) = v(0, ·) = u0 ∈ H1/2(S1;Sn−1)

By the assumptions, we may evaluate the 1/2-Laplacian for a.e. fixed time t (as ∇u(t) for almost every
fixed time t is in L2(S1)), which shows that the gradient flow is satisfied in a strong sense by using
fractional integration by parts on the weak formulation. Our goal is to prove the following result:

Theorem 2.1.3.2. Let u, v as above be solutions to the fractional gradient flow with the same initial
datum u0. Assume that we have the following 1/2-energy decay estimate:

‖(−∆)1/4u(t)‖L2(S1), ‖(−∆)1/4v(t)‖L2(S1) ≤ ‖(−∆)1/4u0‖L2(S1), ∀t ∈ R+

Then we may conclude:
u = v,

i.e. the solutions agree for every time t > 0 as well.

It will be clear from the proof of Theorem 2.1.3.2 that it would also suffice to assume:

sup
t∈R+

‖(−∆)1/4u(t)‖L2(S1) < +∞,

and similarily for v.

Proof. The proof relies on the same ideas as the proof of uniqueness under better regularity provided in
Lemma 3.12 in Struwe [89] for the harmonic gradient flow. Therefore, we begin by defining w := u−v
and observe:

w ∈ L∞(R+;H1/2(S1)) ∩ L2
loc(R+;H1(S1)); wt ∈ L2(R+;L2(S1)),

as well as the initial condition:
w(0, ·) = 0 (2.18)

This is an immediate consequence of the regularity and initial data of u and v. Let us now combine
the equations in (2.17) to determine the non-local PDE solved by w:

wt + (−∆)1/2w = ut + (−∆)1/2u− vt − (−∆)1/2v

= u|d1/2u|2 − v|d1/2v|2

= (u− v)|d1/2u|2 + v(|d1/2u|2 − |d1/2v|2)

= w|d1/2u|2 + v(|d1/2u|2 − |d1/2v|2) =: R1 +R2 (2.19)
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If we test (2.19) against w itself, we obtain for any T ∈ R+:∫ T

0

∫
S1

wt · w + (−∆)1/2w · wdxdt =

∫ T

0

d

dt

(
1

2
‖w(t)‖L2(S1)

)
dt+

∫ T

0
‖(−∆)1/4w(t)‖L2(S1)dt

=

∫ T

0

∫
S1

|w|2|d1/2u|2 + v(|d1/2u|2 − |d1/2v|2) · wdxdt

≤
∫ T

0

∫
S1

|w|2|d1/2u|2dxdt+

∫ T

0

∫
S1

|w||R2|dxdt (2.20)

So, using the fundamental theorem of calculus, we arrive at:

1

2
‖w(T )‖L2(S1) +

∫ T

0
‖(−∆)1/4w(t)‖L2(S1)dt ≤

∫ T

0

∫
S1

|w|2|d1/2u|2dxdt+

∫ T

0

∫
S1

|w||R2|dxdt (2.21)

We emphasise that we used (2.18) in order to evaluate the integral of the derivative at t = 0. In order
to proceed, we have to investigate the term |d1/2u|2 − |d1/2v|2 more closely. To do this, let us write
for x ∈ S1 by means of the fundamental theorem:

|d1/2u|2(x)− |d1/2v|2(x) =

∫ 1

0

d

ds

(
|d1/2(v + s(u− v))|2(x)

)
ds

=

∫ 1

0

d

ds

(∫
S1

(v(x)− v(y) + s(u(x)− v(x)− u(y) + v(y)))2

|x− y|2
dy

)
ds

=

∫ 1

0

d

ds

(∫
S1

(v(x)− v(y) + s(w(x)− w(y)))2

|x− y|2
dy

)
ds

=

∫ 1

0

∫
S1

2
(v(x)− v(y) + s(w(x)− w(y)))(w(x)− w(y))

|x− y|2
dyds

≤ 2

∫ 1

0
|d1/2((1− s)v + su)|(x) · |d1/2w|(x)ds

≤ C
(
|d1/2u|(x) + |d1/2v|(x)

)
· |d1/2w|(x)

where we used Hölder’s inequality and the integrability properties of u, v during the sequence of
inequalities above. This implies the following estimate for R2:

|R2|(x) ≤ C|v|(x)
(
|d1/2u|(x) + |d1/2v|(x)

)
· |d1/2w|(x)

≤ C
(
|d1/2u|(x) + |d1/2v|(x)

)
· |d1/2w|(x), (2.22)

where we implicitely used |v| = 1 almost everywhere. By using Cauchy-Schwarz and Young’s inequal-
ity, we therefore find:∫ T

0

∫
S1

|w||R2|dxdt ≤ δ
∫ T

0

∫
S1

|d1/2w|2dxdt+ C(δ)

∫ T

0

∫
S1

|w|2
(
|d1/2u|+ |d1/2v|

)2
dxdt,

for any δ > 0. Observe that:∫ T

0

∫
S1

|d1/2w|2dxdt ∼
∫ T

0
‖(−∆)1/4w‖L2(S1)dt,
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by direct computations, see Lemma 2.1.3.2 after this proof. Thus, we may choose δ > 0, such that
after absorbing and using Cauchy-Schwarz:

1

2
‖w(T )‖L2(S1) +

1

2

∫ T

0
‖(−∆)1/4w(t)‖L2(S1)dt

≤ C
∫ T

0

∫
S1

|w|2
(
|d1/2u|+ |d1/2v|

)2
dxdt

≤ C̃
(∫ T

0

∫
S1

|w|4dxdt
)1/2

·
(∫ T

0

∫
S1

(
|d1/2u|+ |d1/2v|

)4
dxdt

)1/2

(2.23)

Using Lemma 2.1.3.1 below for each fixed t, we can estimate:∫ T

0

∫
S1

|w|4dxdt ≤ C
∫ T

0
‖w(t)‖2L2(S1) ·

(
‖w(t)‖2L2(S1) + ‖(−∆)1/4w(t)‖2L2(S1)

)
dt

≤ C̃

(
sup

0≤s≤T
‖w(s)‖2L2(S1) +

∫ T

0
‖(−∆)1/4w(t)‖2L2(S1)dt

)2

(2.24)

Here, C̃ depends on T , which may be chosen sufficiently small, as seen afterwards, by using an
iteration process to increase T step by step. We notice that there is no dependence of the constant on
the L2-norm of w(s), as we estimate:∫ T

0
‖w(t)‖2L2(S1) ·

(
‖w(t)‖2L2(S1) + ‖(−∆)1/4w(t)‖2L2(S1)

)
dt

≤
∫ T

0
sup

0≤s≤T
‖w(s)‖2L2(S1) ·

(
sup

0≤s≤T
‖w(s)‖2L2(S1) + ‖(−∆)1/4w(t)‖2L2(S1)

)
dt

= sup
0≤s≤T

‖w(s)‖2L2(S1) ·

(
T · sup

0≤s≤T
‖w(s)‖2L2(S1) +

∫ T

0
‖(−∆)1/4w(t)‖2L2(S1)

)
dt

≤ C̃

(
sup

0≤s≤T
‖w(s)‖2L2(S1) +

∫ T

0
‖(−∆)1/4w(t)‖2L2(S1)dt

)2

(2.25)

which is precisely the estimate presented above and the dependence on T is benign, i.e. C̃ remains
bounded as T → 0. Observe that we used the inequality:

sup
0≤s≤T

‖w(s)‖2L2(S1) ≤ sup
0≤s≤T

‖w(s)‖2L2(S1) +

∫ T

0
‖(−∆)1/4w(t)‖2L2(S1)dt,

which is trivially true.

Claim 1: For every ε > 0, there is T > 0 small enough, such that:∫ T

0

∫
S1

(
|d1/2u|+ |d1/2v|

)4
dxdt < ε, (2.26)

However, before we prove this claim, we observe that this is indeed sufficient to conclude our proof
of Theorem 2.1.3.2, as then we may choose T > 0 as in the proof of Lemma 3.12 in Struwe [89] to
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maximize the L2(S1)-norm on [0, T ], i.e. ‖w(T )‖L2(S1) = sup0≤s≤T ‖w(s)‖2L2(S1). This is possible by

continuity of t 7→ w(t) with respect to the L2-norm due to the assumptions in (2.16), in particular
the integrability of the weak derivative in time-direction ut, vt and thus wt. We refer to Evans [34],
Chapter 5.9.2 for details regarding this continuity. Alternatively, (2.16) implies that u, v and therefore
also w are in H1

loc(S
1×]0,∞[). Thus, by the trace theorem u(t, ·), v(t, ·), w(t, ·) lie in H1/2(S1) and

depend continuously on t, the latter property owing to the continuity of the trace operator.

In addition, for some fixed, but arbitrary, a-priori time 0 < T0 ≤ T , T as in the claim, the maximum
of the L2-norms at a given time over the interval [0, T0] must be attained at some t0 > 0, as otherwise
we have w = 0 for all times t ≤ T0, which would also show the desired equality and hence we could
restart the argument from T0 on. Thus, for sufficiently small ε > 0, we may absorb the right hand
side in (2.23) into the left hand side, immediately giving the desired result, i.e. w(T ) = 0 and thus for
all 0 ≤ t ≤ T . More precisely, from (2.21), (2.23) and a sufficiently small ε, we obtain:

1

2
‖w(T )‖L2(S1) +

∫ T

0
‖(−∆)1/4w(t)‖L2(S1)dt

≤ Cδ
∫ T

0
‖(−∆)1/4w‖L2(S1)dt+ C̃(δ)

√
ε

(
sup

0≤s≤T
‖w(s)‖2L2(S1) +

∫ T

0
‖(−∆)1/4w(t)‖2L2(S1)dt

)
,

which for δ > 0 sufficiently small and observing maximality of the choice of T (note that we may
choose T smaller than required by (2.26) to ensure that it is also the time with maximal L2-norm)
then becomes:

1

2
sup

0≤s≤T
‖w(s)‖L2(S1) +

1

2

∫ T

0
‖(−∆)1/4w(t)‖L2(S1)dt

≤ C̃
√
ε

(
sup

0≤s≤T
‖w(s)‖2L2(S1) +

∫ T

0
‖(−∆)1/4w(t)‖2L2(S1)dt

)
,

and if C̃
√
ε = 1

4 , we may absorb this contribution into the left hand side to find:

sup
0≤s≤T

‖w(s)‖L2(S1) = 0

The argument then is completed by the usual connectedness-type argument using convergence u(t)→
u(t0) for t→ t0 in L2 and iterating, see Struwe [89]. Indeed, consider the set:

I ⊂ [0,∞[, I :=
{
t ∈ [0,∞[

∣∣ w(s) = 0,∀s ≤ t
}

Clearly, 0 ∈ I by construction and hence I 6= ∅. Moreover, I is open, since if t ∈ I, we may use the
arguments above to deduce that w(s) = 0 for all t ≤ s < t + ε, for some sufficiently small ε. Finally,
I is closed, which then shows I = [0,∞[ and finishes the argument. This is clear as:

lim
s→t
‖w(s)‖L2 = ‖w(t)‖L2 ,

which proves that if all s < t satisfy s ∈ I, then w(t) = 0 in L2(S1) and hence t ∈ I.

Proof of Claim 1: Now, let us return to (2.26). We shall provide two justifications of this
estimate. The first argument postponed to Appendix A relies on some properties found in Da Lio



42

[15], Da Lio-Martinazzi-Rivière [19] connecting the fractional Laplacian on the circle to the one on
the real line. The precise results shall be stated and proven in Appendix A. A different apporach uses
Theorem 2.1.2.1 for S1 directly. Here, we shall just present an outline of the argument:

We observe that it suffices to find corresponding estimates for d1/2u and d1/2v respectively. For
these, we have:∫ T

0

∫
S1

|d1/2u|4dxdt ≤ C
∫ T

0
‖(−∆)1/4u(t)‖4L4dt

≤ C̃
∫ T

0
‖(−∆)1/4u(t)‖2L2 · ‖(−∆)1/2u‖2L2dt

≤ C̃ sup
0≤s≤T

‖(−∆)1/4u(s)‖2L2 ·
∫ T

0

∫
S1

|(−∆)1/2u|2dxdt

≤ C̃‖(−∆)1/4u0‖2L2 ·
∫ T

0

∫
S1

|(−∆)1/2u|2dxdt (2.27)

where we used u ∈ H1(S1), which immediately implies (−∆)1/4u ∈ H1/2(S1), as well as Lemma
2.1.3.1. We refer to Appendix A for the details on the proof of the estimate using an extension
procedure, in particular the first inequality which is actually the only missing step here. Alternatively,
directly using the second part of Theorem 2.1.2.1 on the domain S1, see (2.12), as described in the
preliminary section and proven in Appendix B, the first inequality could also be obtained immediately
and the rest follows by using Lemma 2.1.3.1. The main difference between these two approaches lies
in the use of Theorem 2.1.2.1 either on R or on S1, depending on which techniques are used.

The claim now follows by (2.16) and the L2-integrability of the 1/2-Laplacian of u. Notice that
the supremum is finite due to the assumptions in the statement of the Theorem.

We now prove some useful results that were invoked in the proof above or motivate the conditions
of the main result of this subsection, Theorem 2.1.3.2:

Lemma 2.1.3.1. Let u ∈ H1/2(S1). Then the following estimate holds for some C > 0:

‖u‖L4 ≤ C‖u‖1/2
L2 ‖u‖

1/2

H1/2

Proof. By Sobolev embeddings, we immediately find for some C > 0:

‖u‖L4 ≤ C‖u‖H1/4

Additionally, we have by definition:

‖u‖2
H1/4 =

∑
n∈Z

(1 + |n|2)1/4|û(n)|2

=
∑
n∈Z

(1 + |n|2)1/4|û(n)| · |û(n)|

≤

(∑
n∈Z

(1 + |n|2)1/2|û(n)|2
)1/2

·

(∑
n∈Z
|û(n)|2

)1/2

= ‖u‖H1/2 · ‖u‖L2
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This now yields:

‖u‖L4 ≤ C‖u‖H1/4 ≤ C
√
‖u‖H1/2 · ‖u‖L2 = C‖u‖1/2

L2 ‖u‖
1/2

H1/2

Thus, the Lemma is proven.

We highlight that Lemma 2.1.3.1 continues to be true on R by using classical rescaling techniques
or relying, for example, on Littlewood-Paley theory.

Lemma 2.1.3.2. It holds the following for every u ∈ H1/2(S1):∫
S1

|d1/2u|2dx ∼ ‖(−∆)1/4u‖2L2(S1) (2.28)

Proof. Let us observe the following for smooth functions u:∫
S1

|d1/2u|2dx =

∫
S1

∫
S1

|u(x)− u(y)|2

|x− y|2
dydx

=

∫
S1

P.V.

∫
S1

(u(x)− u(y))

|x− y|2
(u(x)− u(y))dydx

=

∫
S1

2P.V.

∫
S1

u(x)− u(y)

|x− y|2
dy · u(x)dx

= C̃

∫
S1

(−∆)1/2u(x) · u(x)dx

= C̃

∫
S1

|(−∆)1/4u(x)|2dx

= C̃‖(−∆)1/4u‖2L2(S1) (2.29)

for some C̃ > 0, see also the definition of the fractional Lapacian in section 2. Here, P.V. stands
for principal value. For complete rigor, one has to take the integral on a subset of S1 × S1 omitting
the diagonal and letting the neighbourhood become arbitrarily small to deduce the second equality,
to ensure the principal value can be taken and the fractional Laplacian emerges. The statement for
general u follows now by approximation.

Finally, let us motivate the decay assumption on solutions of the fractional gradient flow in Theorem
2.1.3.2:

‖(−∆)1/4u(t)‖L2(S1) ≤ ‖(−∆)1/4u0‖L2(S1), ∀t ∈ R+

It should be noted that this is a ”classical” assumption when working with gradient flows, nevertheless
we present the idea: To do this, let us assume that u is a smooth solution of the fractional gradient
flow. Then, we may test against ut and find:∫ T

0

∫
S1

|ut|2 + (−∆)1/2u · utdxdt =

∫ T

0

∫
S1

u|d1/2u|2 · utdxdt = 0, (2.30)

where the last equality follows by observing that u assumes values in a sphere, hence the derivative
in t-direction will be tangential to the sphere and, as a result, orthogonal to u, implying:

u · ut = 0
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In addition, we have:∫ T

0

∫
S1

(−∆)1/2u · utdxdt =

∫ T

0

∫
S1

(−∆)1/4u · (−∆)1/4utdxdt

=

∫ T

0

1

2

d

dt

(∫
S1

|(−∆)1/4u|2dx
)
dt

=
1

2
‖(−∆)1/4u(T )‖2L2(S1) −

1

2
‖(−∆)1/4u(0)‖2L2(S1).

=
1

2
‖(−∆)1/4u(T )‖2L2(S1) −

1

2
‖(−∆)1/4u0‖2L2(S1) (2.31)

Consequently, this computation shows that in the case of regular solutions:

1

2
‖(−∆)1/4u(T )‖2L2(S1) ≤

1

2
‖(−∆)1/4u(T )‖2L2(S1) +

∫ T

0

∫
S1

|ut|2dxdt =
1

2
‖(−∆)1/4u0‖2L2(S1) (2.32)

This yields the desired boundedness of energy (in fact monotone decay of energy) and thus motivates
the assumption we had in Theorem 2.1.3.2. We formulate this in the following slightly imprecise:

Lemma 2.1.3.3. Let u be a sufficiently regular solution of the 1/2-harmonic gradient flow as previ-
ously defined with u(0, ·) = u0. Then the following holds for all T ≥ 0:

1

2
‖(−∆)1/4u(T )‖2L2(S1) ≤

1

2
‖(−∆)1/4u0‖2L2(S1)

In fact, the energy T 7→ ‖(−∆)1/4u(T )‖L2(S1) monotonically decreases in T .

Improved Regularity of the Solution We would like to show how we may obtain the required
improvement in regularity for energy-class solutions, i.e. solutions which do a-priori not satisfy a L2-
local bound on the first derivative in space-direction, to the fractional gradient flow (2.17) in a similar
manner as in Rivière [68]. The key idea is that we may fix some time t and consider the corresponding
equation for fixed time to obtain improved regularity. Namely, we will obtain the following result:

Theorem 2.1.3.3. Let u : R+×S1 → Sn−1 ⊂ Rn be a solution of the weak fractional harmonic gradi-
ent flow (2.17) with initial datum u0 ∈ H1/2(S1) and satisfying the following regularity assumptions:

u ∈ L∞(R+;H1/2(S1)); ut ∈ L2(R+;L2(S1))

Then there exists ε > 0 such that among all such u satisfying the smallness condition:

‖(−∆)1/4u(t)‖L2(S1) ≤ ε, ∀t ∈ R+,

the solution to the fractional harmonic gradient flow (2.17) with initial datum u0 is unique.

If we assume that the energy is bounded by some sufficiently small ε > 0, then it is sufficient to
show that u(t) ∈ H1(S1) for almost every t ∈ R+. In fact, the following holds:

Proposition 2.1.3.1. Let u : R+ × S1 → Sn−1 ⊂ Rn be a solution of the weak fractional harmonic
gradient flow (2.17) with initial datum u0 ∈ H1/2(S1) and satisfying the following regularity assump-
tions:

u ∈ L∞(R+;H1/2(S1)); ut ∈ L2(R+;L2(S1)); u(t) ∈ H1(S1) for a.e. t ∈ R+
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Then there exists ε > 0 such that among all such u satisfying the smallness condition:

‖(−∆)1/4u(t)‖L2(S1) ≤ ε, ∀t ∈ R+,

the solution to the fractional harmonic gradient flow (2.17) with initial datum u0 is unique.

Proof. To verify this, let us observe that if u(t) ∈ H1(S1) for almost every t ∈ R+, we may deduce for
a fixed time t:

(−∆)1/2u(t) = u(t)|d1/2u(t)|2 − ∂tu(t)

Hence, by standard elliptic estimates for the fractional Laplacian or simply observing that with R
being the Riesz transform, we have:

∇u(t) = R
(
u(t)|d1/2u(t)|2 − ∂tu(t)

)
(2.33)

Keeping in mind that R is a continuous linear operator on L2(S1), we are led to the following estimate:

‖u(t)‖2H1(S1) ≤ C
(
‖u(t)‖2L2 + ‖|d1/2u(t)|2‖2L2 + ‖∂tu(t)‖2L2

)
≤ C

(
1 + ‖|d1/2u(t)|2‖2L2 + ‖∂tu(t)‖2L2

)
, (2.34)

where we used u(t) ∈ Sn−1 almost everywhere for almost every time t. It is clear that regarding local
L2-integrability with respect to time, it thus remains to study the following contribution:

‖|d1/2u(t)|2‖2L2

Using the same ideas as in the proof of (2.27) for the uniqueness statement Theorem 2.1.3.2 (which
are proved in Appendix A or rely on the second part of Theorem 2.1.2.1 for S1, see also Appendix B),
we may estimate this term by:

‖|d1/2u(t)|2‖2L2 ≤ C ′‖u(t)‖2
H1/2‖u(t)‖2H1

By applying this inequality to u− û(0) instead of u, we may replace the H1/2- and H1-norms by the
corresponding seminorms:

‖|d1/2u(t)|2‖2L2 ≤ C ′‖u(t)‖2
Ḣ1/2‖u(t)‖2

Ḣ1

We emphasise that adding a constant to u does not affect the LHS of the estimate above. Therefore,
we have the energy term appearing:

‖|d1/2u(t)|2‖2L2 ≤ C ′‖(−∆)1/4u(t)‖2L2‖u(t)‖2H1 ≤ C ′ε · ‖u(t)‖2H1 ,

where ε > 0 is an a priori energy estimate as in Rivière [68] and we may still choose ε > 0 appropriately.
Indeed, if ε > 0 is sufficiently small, for example ε ≤ 1/(2CC ′), we may absorb this term in the left
hand side of (2.34) to arrive at:

(1− CC ′ε) · ‖u(t)‖2H1(S1) ≤ C̃
(
1 + ‖∂tu(t)‖2L2

)
⇒ ‖u(t)‖H1 ≤

C

1− C ′Cε
(1 + ‖∂tu(t)‖L2) , (2.35)

which thus yields an estimate for the H1-norm. We observe that hence, by the integrability properties
of ∂tu and the constant function (which rely on the compactness of S1):

u ∈ L2
loc(R+;H1(S1)) (2.36)



46

Thus, we may apply the previous uniqueness statement in Theorem 2.1.3.2 even if we merely know:

u ∈ L∞(R+;H1/2(S1)); ut ∈ L2(R+;L2(S1)); ‖(−∆)1/4u(0)‖L2(S1) ≤ ε,

with ε > 0 sufficiently small as above and assuming the energy decrease holds, provided we get
increased regularity for u(t).

In particular, if we assume that the 1/2-energy is non-increasing in time, as seen to be true for
smooth solutions to the fractional harmonic gradient flow in Lemma 2.1.3.3, the smallness condition
could be rephrased as:

‖(−∆)1/4u0‖L2(S1) ≤ ε

Consequently, all that remains is to deduce H1-regularity for a.e. fixed time to apply Proposition
2.1.3.1 and deduce Theorem 2.1.3.3. The following Lemma in the spirit of Rivière [68] takes care of
this by investigating the regularity for a fixed time t ∈ R+:

Lemma 2.1.3.4. Let f ∈ L2(S1) and assume that u ∈ H1/2(S1) solves the following equation:

(−∆)1/2u = u|d1/2u|2 + f. (2.37)

Then, we have the following improved regularity property:

u ∈ H1(S1).

The key point in the proof will be the appearance of an anti-symmetric potential Ω satisfying
div1/2 Ω = 0 to which we can apply the non-local Wente-type inequality in Lemma 2.1.2.1 or (2.119)
in Appendix B. If we apply the result in Lemma 2.1.3.4 to f = ∂tu(t) and u = u(t), we may deduce
u(t) ∈ H1(S1) for almost every t, given a sufficiently small bound on the 1/2-energy at a given time t.
Thus we may derive Theorem 2.1.3.3 by combining the statements in Proposition 2.1.3.1 and Lemma
2.1.3.4.

In addition, let us observe that for given f ∈ L2(S1), this seems to be an optimal result, as any
solution (−∆)1/2u = f would satisfy u ∈ H1(S1), but no higher regularity can be deduced in general.

Proof. As in Mazowiecka-Schikorra [57], we know that there exists a map Ω ∈ L2
od(S

1 × S1;Rn×n)
depending on u, such that ΩT = −Ω and div1/2 Ω = 0, such that we derive from (2.37):

(−∆)1/2u = Ω · d1/2u+ T (u) + f, (2.38)

where T (u) is as in Mazowiecka-Schikorra [57]. In fact, we have by using the components u =
(u1, . . . , un) and Einstein’s summation convention:

ui(x)d1/2u
k(x, y)d1/2u

k(x, y) = ui(x)d1/2u
k(x, y)d1/2u

k(x, y)− uk(x)d1/2u
i(x, y)d1/2u

k(x, y)

+ uk(x)d1/2u
i(x, y)d1/2u

k(x, y)

=: Ωik(x, y)d1/2u
k(x, y) + uk(x)d1/2u

i(x, y)d1/2u
k(x, y)

= Ωik(x, y)d1/2u
k(x, y) +

1

2
d1/2u

i(x, y)|d1/4u
k(x, y)|2

=: Ωik(x, y)d1/2u
k(x, y) + T i(u) (2.39)
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Thus, the following formula for every i = 1, . . . n holds:

T i(u) :=

n∑
k=1

∫
S1

d1/2u
i(x, y)|d1/4u

k(x, y)|2 dy

|x− y|
, T (u) = (T 1(u), . . . , Tn(u)),

and moreover:

Ωik(x, y) := ui(x)d1/2u
k(x, y)− uk(x)d1/2u

i(x, y), ∀i, k ∈ {1, . . . n}

We introduce the following notion T (u, v, w) := (T 1(u, v, w), . . . , Tn(u, v, w)):

T i(u, v, w) :=
n∑
k=1

∫
S1

d1/2u
i(x, y)d1/4v

k(x, y)d1/4w
k(x, y)

dy

|x− y|
, ∀i ∈ {1, . . . , n}, (2.40)

and clearly T (u, u, u) = T (u). We have the following estimates, refining the ones already found in
Mazowiecka-Schikorra [57]:

Assume that p > 2 as well as u ∈ Ḟ 1/2
p,2 (S1) and v, w ∈ Ḣ1/2(S1). Then we have by using Hölder’s

inequality

‖T (u, v, w)‖
L

2p
p+2 (S1)

≤
(∫

S1

D1/2,2(u)D1/4,4(v)D1/4,4(w)dx

) p+2
2p

. ‖u‖Ẇ 1/2,(p,2)‖v‖Ẇ 1/4,(4,4)‖w‖Ẇ 1/4,(4,4)

. ‖u‖
Ḟ

1/2
p,2

‖v‖
Ḟ

1/4
4,4

‖w‖
Ḟ

1/4
4,4

. ‖u‖
Ḟ

1/2
p,2

‖v‖
Ḟ

1/4
4,2

‖w‖
Ḟ

1/4
4,2

. ‖u‖
Ḟ

1/2
p,2

‖v‖
Ḟ

1/2
2,2

‖w‖
Ḟ

1/2
2,2

= ‖u‖
Ḟ

1/2
p,2

‖v‖Ḣ1/2‖w‖Ḣ1/2 , (2.41)

where we used the second part of Theorem 2.1.2.1 for the circle S1, see also Appendix B. Furthermore,
standard embeddings for Triebel-Lizorkin spaces were used in the estimates above. One should notice
that:

4 >
1 · 4

1 + 1
44

= 2,

meaning that the second part of Theorem 2.1.2.1 applies to ·F 1/4
4,4 (S1). This also implies thanks to the

Sobolev-type embedding:

Ḟ
1/2
p
p−1

,2
(S1) ↪→ L

2p
p−2 (S1), ∀p > 2,

that we have an estimate of the following form by (2.41) and using duality of Triebel-Lizorkin spaces:

‖T (u, v, w)‖
Ḟ
−1/2
p,2 (S1)

. ‖u‖
Ḟ

1/2
p,2 (S1)

‖v‖Ḣ1/2(S1)‖w‖Ḣ1/2(S1) (2.42)

Moreover, if u, v, w ∈ Ḣ1/2(S1), we also know by first switching x, y and then using Hölder’s inequality
and Sobolev-type embeddings:∫

S1

∫
S1

ϕi(x)d1/2u
i(x, y)d1/4v

k(x, y)d1/4w
k(x, y)

dydx

|x− y|
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=

∫
S1

∫
S1

(ϕi(x)− ϕi(y))d1/2u
i(x, y)d1/4v

k(x, y)d1/4w
k(x, y)

dydx

|x− y|

.
∫
S1

D1/2,2(ϕ)D1/6,6(u)D1/6,6(v)D1/6,6(w)dx

. ‖ϕ‖Ẇ 1/2,(2,2)‖u‖Ẇ 1/6,(6,6)‖v‖Ẇ 1/6,(6,6)‖w‖Ẇ 1/6,(6,6)

. ‖ϕ‖
Ḟ

1/2
2,2

‖u‖
Ḟ

1/6
6,6

‖v‖
Ḟ

1/6
6,6

‖w‖
Ḟ

1/6
6,6

. ‖ϕ‖Ḣ1/2‖u‖Ḣ1/2‖v‖Ḣ1/2‖w‖Ḣ1/2 , (2.43)

again using Theorem 2.1.2.1 on the circle as well as:

6 >
1 · 6

1 + 1
66

= 3,

justifying the application in this case. This immediately yields:

‖T (u, v, w)‖Ḣ−1/2(S1) . ‖u‖Ḣ1/2(S1)‖v‖Ḣ1/2(S1)‖w‖Ḣ1/2(S1) (2.44)

Finally, if w is smooth (and similarily for v smooth), we find by similar arguments:

‖T (u, v, w)‖
L

2p
p+2
. ‖∇w‖L∞‖u‖Ḣ1/2‖v‖Ḟ 1/2−1/p

p,2

. ‖∇w‖L∞‖u‖Ḣ1/2‖v‖Ḣ1/2 , (2.45)

for all 2 ≤ p < +∞ and therefore, T (u, v, w) ∈ Lr(S1) for all r ∈ [1, 2[, provided either v or w smooth.

Let us return to (2.38). This may now be rewritten as:

(−∆)1/2u− T (u, u, u) = Ω · d1/2u+ f, (2.46)

Letting v = u− −
∫
S1 u = u− û(0), we thus see:

(−∆)1/2v − T (v, u, u) = Ω · d1/2v + f (2.47)

We notice that since each summand in (2.47) is integrable, we may include a summand with each,
such that each summand has mean 0. This allows us to apply (−∆)−1/2 and renders this operator
injective in an appropriate sense.

The next step is to approximate the terms appearing in (2.47), similar to Rivière [70]. Therefore,
let Ω0 be a smooth map from S1 × S1 into the anti-symmetric n× n-matrices, such that:

‖Ω0 − Ω‖L2
od
< ε,

for ε > 0 to be determined. This can for example be obtained by cutting Ω off in a sufficiently
small neighbourhood of the diagonal and then using convolutions to smoothen the function and thus
approximate Ω by regular functions. This way, Ω0 can also be assumed to be supported outside of the
diagonal and thus to vanish in a neighbourhood of it. We may also assume that div1/2 Ω0 = 0. This
can be achieved by otherwise solving:

(−∆)1/2h = div1/2 Ω,

in the weak sense and using Ω0 − d1/2h instead of Ω0. One might argue by noticing that div1/2 Ω0 is
smooth by the function vanishing in a neighbourhood of the diagonal and then solving for h which
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immediately will be smooth as well. The right estimate can be obtained by the following train of
thought:

‖h‖2
Ḣ1/2 =

∫
S1

(−∆)1/2h · hdz

=

∫
S1

div1/2(Ω0 − Ω)hdz

=

∫
S1

∫
S1

(Ω0(z, w)− Ω(z, w))d1/2h(z, w)
dzdw

|z − w|
. ‖Ω0 − Ω‖L2

od
‖h‖Ḣ1/2 , (2.48)

providing an estimate for d1/2h that is required to ensure that Ω0 − d1/2h remains close to Ω, while
becoming divergence-free. In addition, we may choose a smooth function ũ to be arbitrarily close to
u in H1/2(S1), i.e. for any ε > 0 given, we can take ũ in such a way that:

‖u− ũ‖H1/2(S1) < ε

One proceeds now as in Rivière [68]: We may introduce the solution operator:

τ(v) := v+(−∆)−1/2
(
(Ω0 − Ω) · d1/2v + T (v, ũ− u, ũ− u)

)
= (−∆)−1/2

(
(−∆)1/2v + (Ω0 − Ω) · d1/2v + T (v, ũ− u, ũ− u)

)
= (−∆)−1/2

(
Ω0 · d1/2v + T (v, u, ũ) + T (v, ũ, u− ũ) + f

)
(2.49)

We notice that the solution operator τ is well-defined, as we assumed that all summands have mean
0, thus we could also apply it to each summand individually. To deduce the desired regularity result,

we now show that τ defines a bijective operator from Ḟ
1/2
p,2 to itself for each p ≥ 2. As in Rivière [68],

let us split our considerations into two distinct cases:

The ”easy” Case: p > 2 This case is an immediate consequence of the ellipticity of the fractional
1/2-Laplacian and the analogue of the fractional Sobolev embeddings. Fixing v to be the solution
u ∈ H1/2(S1) as in the Lemma on the RHS, we would like to solve:

τ(v) = v + (−∆)−1/2
(
(Ω0 − Ω) · d1/2v + T (v, ũ− u, ũ− u)

)
= (−∆)−1/2

(
Ω0 · d1/2u+ T (u, u, ũ) + T (u, ũ, u− ũ) + f

)
, (2.50)

and we may conclude that the RHS on the last line of (2.50) lies in Ḟ
1/2
p,2 thanks to Sobolev embeddings

and the Lr-estimate for 1 ≤ r < 2 in (2.45), smoothness of Ω0, ũ and the properties of (−∆)1/2.
Observe that the smallness of Ω0−Ω in L2

od and of u− ũ in H1/2(S1) is used in order to conclude that
the solution operator is invertible by the usual perturbation argument. One invokes here the estimate
proved above, see (2.42), (2.44) and Hölder’s inequality applied to (Ω− Ω0) · d1/2u together with:∫

S1

(Ω− Ω0) · d1/2uϕdx ≤ ‖(Ω− Ω0) · d1/2u‖
L

2p
p+2
‖ϕ‖

L
2p′

2−p′

. ‖Ω− Ω0‖L2
od
‖|d1/2u|‖Lp‖ϕ‖Ḟ 1/2

p′,2

. ‖Ω− Ω0‖L2
od
‖u‖

Ḟ
1/2
p,2

‖ϕ‖
Ḟ

1/2

p′,2
, (2.51)
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where 1/p+ 1/p′ = 1 and we used the Sobolev embeddings for Triebel-Lizorkin spaces, hence showing

boundedness in Ḟ
−1/2
p,2 of (Ω−Ω0) ·d1/2u. Similar estimates using Hölder’s inequality as in (2.41) show

that:
‖T (v, ũ− u, ũ− u)‖

Ḟ
−1/2
p,2

. ‖v‖
Ḟ

1/2
p,2

‖u− ũ‖2
Ḣ1/2 (2.52)

Using that (−∆)1/2 defines an isomorphism between Ḟ
1/2
p,2 and Ḟ

−1/2
p,2 , see Schmeisser-Triebel [80], the

required estimate follows from (2.51) and (2.52):∥∥∥(−∆)−1/2
(
(Ω0 − Ω) · d1/2v+T (v, ũ− u, ũ− u)

)∥∥∥
Ḟ

1/2
p,2

.
(
‖Ω− Ω0‖L2

od
+ ‖u− ũ‖2

Ḣ1/2

)
‖v‖

Ḟ
1/2
p,2

(2.53)

Hence, the perturbation is small, if Ω0, ũ are sufficiently good approximations and thus τ invertible
in this case. Notice that the RHS of (2.50) lies in Lq for all q < 2. Thus, using the same arguments

as in (2.51) and also (2.41), we could deduce that Ω0 · d1/2u+ T (u, u, ũ) + T (u, ũ, u− ũ) + f ∈ Ḟ−1/2
p,2 ,

and therefore the RHS of (2.50) is in Ḟ
1/2
p,2 .

We emphasise that this step is crucially relying on the homogeneous Triebel-Lizorkin spaces

Ḟ
1/2
p,2 (S1) for p > 2 which prove to be the right one and possess an equivalent norm description

in terms of the Lp-norm of |d1/2f | for all f inside this space, see Theorem 2.1.2.1 as well as Appendix
B. See also Schmeisser-Triebel [80], Triebel [97], Schikorra-Wang [79], Stein [85] and the references
therein for further details.

The ”hard” Case: p = 2 On the other hand, this case is more delicate and requires a version of
the Wente-type result in Mazowiecka-Schikorra [57], see Lemma 2.1.2.1, for the circle. This can be
obtained by a set of changes of variables under the stereographic projection and using a partition of
unity, see (2.119) and the computations preceeding it. We postpone the details of this computation
to Appendix B, as it is basically a technical analysis of a sequence of changes of variables. This
immediately allows us to again proceed as in Rivière [68], as we may now estimate the perturbation
of the solution operator by the Wente-type estimate below:

‖(Ω0 − Ω) · d1/2v − c‖Ḣ−1/2 ≤ C‖Ω0 − Ω‖L2
od
‖v‖Ḣ1/2 ≤ Cε‖v‖Ḣ1/2 ,

where we take c as the constant rendering the term to have mean 0. To conclude the proof of Lemma
2.1.3.4, we now observe that for ε > 0 sufficiently small, the perturbation:

(−∆)−1/2
(
(Ω0 − Ω) · d1/2v

)
,

is small as well (when considered as an operator from Ḣ1/2(S1) to itself and hence the operator:

v 7→ v + (−∆)−1/2
(
(Ω0 − Ω) · d1/2v

)
,

becomes an isomorphism, now for Ḣ1/2(S1) to itself as well as for different integrability exponents
p > 2. If u is sufficiently small in Ḣ1/2(S1), the same remains true if we include the missing term
under the smallness assumption on ‖u− ũ‖Ḣ1/2 :

v 7→ v + (−∆)−1/2
(
(Ω0 − Ω) · d1/2v

)
+ (−∆)−1/2 (T (v, ũ− u, ũ− u))
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This is clear, as we may use (2.44) to deduce that the second summand is again a small perturbation
which does not affect invertibility.

As in Rivière [68], we may now deduce thanks to existence and uniqueness that u ∈ Ḟ 1/2
4,2 (S1) and,

consequently, |d1/2u| ∈ L4, using the embedding:

Ḟ
1/2
4,2 (S1) ⊂ Ḟ 1/2

2,2 (S1) = H1/2(S1), (2.54)

which shows that the unique solution v of (2.50) in Ḟ
1/2
4,2 (S1) (or, in fact, in any Ḟ

1/2
p,2 (S1) with p ≥ 2

by replacing 4 by p in the argument) actually agrees with u − û(0), where u is as given in Lemma
2.1.3.4, due to the uniqueness in the case p = 2 and the embedding (2.54) of Triebel-Lizorkin spaces.
So (−∆)1/2u ∈ L2(S1) by directly using (2.37), which immediately yields ∇u = R(−∆)1/2u ∈ L2(S1)
and so u ∈ H1(S1). Hence, we have established the desired regularity result for u. This concludes our
proof.

2.1.3.3 Regularity

Next, we show that solutions to the fractional gradient flow (2.17) are smooth for all times t > 0. The
main idea is to study the regularity of the RHS of (2.17) and bootstrap this information. In fact, a
key step lies in studying the Fourier series of

|d1/2u|2(x),

and establishing sufficient Hs-estimates to bootstrap the regularity.

Some useful Results Let us assume that u, v are trigonometric polynomials. Thus, they are of the
form:

u(x) =
∑
n∈Z

û(n)einx, v(x) =
∑
n∈Z

v̂(n)einx,

where û(n), v̂(n) = 0 for all but finitely many n ∈ N. Let us consider d1/2u ·d1/2v(x), or more precisely
its Fourier coefficients:

̂d1/2u · d1/2v(n) =
1

2π
〈d1/2u · d1/2v, e

−inx〉

=
1

2π

∫ π

−π
d1/2u · d1/2v(x)e−inxdx

=
1

2π

∫ π

−π

∫
S1

∑
j∈Z

∑
k∈Z

eijh − 1

|h|
eikh − 1

|h|
û(j)v̂(k)ei(j+k)xdhe−inxdx

=
∑
j∈Z

∫
S1

eijh − 1

|h|
ei(n−j)h − 1

|h|
dh · û(j)v̂(n− j) (2.55)

where n ∈ Z is arbitrary and we used the formulas for u, v as trigonometric polynomials. Let us
introduce:

C(j, k) :=

∫
S1

eijh − 1

|h|
eikh − 1

|h|
dh (2.56)
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Therefore, we may see using the previous computations:

̂d1/2u · d1/2v(n) =
∑
j∈Z

C(j, n− j)û(j)v̂(n− j), ∀n ∈ Z

A first step to deduce the regularity of d1/2u · d1/2v lies in the study of C(j, k). Namely, we observe
that:

C(j, j) =

∫
S1

|eijh − 1|2

|h|2
dh =

∫
S1

sin
(
jh
2

)2

sin
(
h
2

)2 dh = |j|
∫
S1

F|j|(h)dh = |j|,

where Fn denotes the n-th Féjer kernel. Using Cauchy-Schwarz and Féjer kernels, we easily deduce:

|C(j, k)| ≤
(∫

S1

|eijh − 1|2

|h|2
dh

)1/2(∫
S1

|eikh − 1|2

|h|2
dh

)1/2

≤
√
|j|
√
|k| ·

(∫
S1

F|j|(h)dh

)1/2(∫
S1

F|j|(h)dh

)1/2

=
√
|j|
√
|k|, (2.57)

for all j, k ∈ Z. The main goal is now to deduce regularity estimates leading to conclusions like
d1/2u · d1/2v ∈ Hs(S1) for some s ∈ R together with appropriate estimates in terms of u, v. Namely,
we will prove the following:

Lemma 2.1.3.5. Let u, v be trigonometric polynomials as above. Then we have for all ε > 0:

‖d1/2u · d1/2v‖Ḣs(S1) . ‖(−∆)1/4+s/2+εu‖L2‖(−∆)1/2v‖L2 + ‖(−∆)1/2u‖L2‖(−∆)1/4+s/2+εv‖L2

. ‖u‖
Ḟ

1/2+s+2ε
2,2

‖v‖Ḣ1 + ‖u‖Ḣ1‖v‖Ḟ 1/2+s+2ε
2,2

, (2.58)

as well as:

‖d1/2u · d1/2v‖Ḣs(S1) . ‖(−∆)1/4+s/2+2εu‖L2‖(−∆)1/2−εv‖L2 + ‖(−∆)1/2−εu‖L2‖(−∆)1/4+s/2+2εv‖L2

. ‖u‖
Ḟ

1/2+s+4ε
2,2

‖v‖Ḟ 1−2ε
2,2

+ ‖u‖Ḟ 1−2ε
2,2
‖v‖

Ḟ
1/2+s+2ε
2,2

, (2.59)

and by density, the same estimates continue to hold true for all u, v in the corresponding spaces. The
constants depend on s > 0 and ε > 0.

Proof. By definition, we have:

‖d1/2u · d1/2v‖2Ḣs =
∑
n∈Z
|n|2s| ̂d1/2u · d1/2v(n)|2

.
∑
n∈Z
|n|2s

∑
j∈Z
|û(j)||v̂(n− j)|

√
|j||n− j|

2

.
∑
n∈Z

∑
j∈Z
| ̂(−∆)1/4u(j)|| ̂(−∆)1/4v(n− j) (|j|s + |n− j|s)

2
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.
∑
n∈Z

∑
j∈Z
| ̂(−∆)1/4+s/2u(j)|| ̂(−∆)1/4v(n− j)|

2

+
∑
n∈Z

∑
j∈Z
| ̂(−∆)1/4+s/2v(n− j)|| ̂(−∆)1/4u(j)|

2

(2.60)

By symmetry, it suffices to restrict our attention to the first summand in (2.60). We observe:

| ̂(−∆)1/4+s/2u(j)|| ̂(−∆)1/4v(n− j)| = | ̂(−∆)1/4+s/2+εu(j)|| ̂(−∆)1/2v(n− j)||n− j|−1/2|j|−2ε,

which can be used to deduce by using Cauchy-Schwarz and Young’s inequality:

‖d1/2u · d1/2v‖2Ḣs .
∑
n∈Z

∑
j∈Z
| ̂(−∆)1/4+s/2+εu(j)|2| ̂(−∆)1/2v(n− j)|2

∑
j∈Z

1

|n− j||j|2ε


. ‖u‖2

Ḟ
1/2+s+2ε
2,2

‖v‖2
Ḣ1 , (2.61)

and completely analogous for the second summand in (2.60). Young’s inequality is used to bound:∑
j∈Z

1

|n− j||j|2ε
.
∑
j∈Z

(
1

|n− j|p′
+

1

|j|2εp

)
< +∞,

and choosing p ∈]1,+∞[ in such a way that 2εp > 1 and p′ being the Hölder dual of p. The second
estimate (2.61) follows analogously. This concludes therefore the proof of regularity.

Another useful result will be the following:

Lemma 2.1.3.6. Assume that α ∈]0, 1[ and u ∈ C0,α(S1). Then:

(−∆)su ∈ L∞(S1),

if we know:
1 > α > 2s

Proof. Up to constants, we know:

|(−∆)su(x)| .
∫
S1

|u(x)− u(y)|
|x− y|1+2s

dy

.
∫
S1

1

|x− y|1+2s−αdy · ‖u‖C0,α , (2.62)

which yields the desired boundedness if:

1 + 2s− α < 1⇒ 2s < α,

by exploiting the integrability of |x− y|1+2s−α. This concludes our proof.

For convenience’s sake, let us also state the version of Theorem 3.1 in Hieber-Prüss [46] that will
be relevant in our discussion of the regularity of solutions to the fractional heat equation:
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Lemma 2.1.3.7 (Theorem 3.1 in [46]). Let 1 < p < +∞ and I = [0, T ] be any interval with T < +∞.
Then there exists for each f ∈ Lp(I × S1) a unique solution u ∈W 1,p(I × S1) of the equation:

ut + (−∆)1/2u = f,

and satisfying u(0, ·) = 0. Moreover, we have:

‖u‖W 1,p . ‖f‖Lp . (2.63)

The result follows from Theorem 3.1 in Hieber-Prüss [46] by observing that the 1/2-Laplacian
is actually generating an analytic C0-semigroup with the required properties (see for example [46,
3.2.E)]).

Local Regularity A key step in the study of regularity lies in the local regularity. Precisely, we
will prove:

Proposition 2.1.3.2. Let u0 ∈ C∞(S1;Sn−1) be any smooth map. Then there exists T > 0, possibly
depending on u0, and a smooth map u ∈ C∞([0, T ]×S1) which solves the half-harmonic gradient flow:

ut + (−∆)1/2u = u|d1/2u|2, (2.64)

and satisfies the initial condition u(0, x) = u0(x). Moreover, it holds for all x ∈ S1 and 0 ≤ t < T :

u(t, x) ∈ Sn−1, (2.65)

i.e. the solution u indeed assumes values in the desired target manifold.

A key observation is therefore, due to the previously proved uniqueness of the solution by Theorem
2.1.3.2, that any solution of the equation (2.17) is indeed regular at least for sufficiently small times
t and provided the boundary data is smooth. If the 1/2-energy at t = 0 is small, the same holds for
energy class solutions.

Proof of Proposition 2.1.3.2. We shall follow the presentation in Hamilton [43] and adapt the
techniques to the non-local framework encountered here. Therefore, we want to study the following
map for every p > 2:

H : W 1,p([0, T ]× S1)→ Lp([0, T ]× S1), H(u) := ut + (−∆)1/2u− u|d1/2u|2 (2.66)

We want to prove that we may apply the local Inversion Theorem for Banach spaces toH for sufficiently
regular functions. This will then enable us to deduce the result in Proposition 2.1.3.2 by a slight
modification, completely analogous to [43, p.122-124].

Observe that as p > 2, any u ∈ W 1,p([0, T ] × S1) will be continuous and bounded. Therefore,
by using Sobolev-embeddings, we immediately deduce that the map is well-defined. In fact, the only
critical part is dealt with by the following computation:

‖u|d1/2u|2‖
p
Lp =

∫ T

0

∫
S1

|u|p|d1/2u|2pdxdt

. ‖u‖pL∞
∫ T

0

∫
S1

|d1/2u|2pdxdt
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. ‖u‖pL∞‖u‖
2p

F
1/2
2p,2([0,T ]×S1)

. ‖u‖3p
W 1,p([0,T ]×S1)

, (2.67)

where we used the Triebel-Lizorkin- as well as Morrey-embeddingsW 1,p([0, T ]×S1) ↪→ Ḟ
1/2
2p,2([0, T ]×S1)

and W 1,p([0, T ] × S1) ↪→ C0([0, T ] × S1) ⊂ L∞([0, T ] × S1), see [96, Theorem 3.3.1] or [80, Theorem
3.5.5]. Furthermore, the mapH is actually differentiable. Namely, we observe by computing directional
derivatives with respect to h ∈W 1,p([0, T ]× S1):

DH(u)h = ht + (−∆)1/2h− h|d1/2u|2 − 2ud1/2u · d1/2h, (2.68)

and by observing:

H(u+ h)−H(u)−DH(u)h = u|d1/2h|2 + 2hd1/2u · d1/2h+ h|d1/2h|2,

one immediately sees, using similar estimates as above in (2.67), that H is actually a C1-function.
In order to apply the local Inversion theorem, we would like to study the behaviour of the differ-

ential, in particular whether it is an isomorphism of Banach spaces. Assume for the moment that u is
actually in C0,α([0, T ]× S1) for some α > 1/2. Firstly, we observe that the map:

h 7→ h|d1/2u|2 + 2ud1/2u · d1/2h,

is a compact map from h ∈ W 1,p([0, T ] × S1) to Lp([0, T ] × S1). This is immediate due to the
Hölder continuity of u which implies boundedness of |d1/2u| and compactness of Sobolev embeddings.

Therefore, because h 7→ ht + (−∆)1/2h is invertible on the set W̃ 1,p
0 ([0, T ] × S1) containing precisely

all h with h(0, ·) = 0 (see [46, Theorem 3.1] which asserts existence and uniqueness), (2.68) defines
an invertible linear operator DH(u) : W̃ 1,p

0 ([0, T ] × S1) → Lp([0, T ] × S1) if and only if the kernel
of DH(u) is trivial. This is clear, as the operator is Fredholm with index 0, since it is a sum of an
invertible (and thus Fredholm operator of index 0) and a compact operator. Therefore, we merely
have to study the kernel of DH(u). The result we will be proving is the following:

Lemma 2.1.3.8. Assume that u is smooth. Then DH(u) has trivial kernel and DH(u) defines an
invertible operator.

To initiate the study of the kernel of (2.68) among all h with vanishing initial datum, we first
prove regularity of h in the kernel of DH(u). This will then allow us to employ maximum principles
for fractional PDE similar to Hamilton [43]:

Lemma 2.1.3.9. Let u be as in Lemma 2.1.3.8. Then, if h ∈ W̃ 1,p
0 ([0, T ] × S1) lies in the kernel of

DH(u), then h is smooth on [0, T ]× S1.

Proof of Lemma 2.1.3.9. We first observe that given h ∈ W̃ 1,p
0 ([0, T ]× S1), we have:

h|d1/2u|2 + 2ud1/2u · d1/2h ∈ L
4p

4−p ,

if p < 4 and in any Lq with q < ∞, if p ≥ 4. This follows again by Sobolev embeddings and using u
smooth (a similar inclusion with 2p/(4− p) holds, if u ∈ W 1,p only and a similar iteration applies in
this case as well). Thus:

ht + (−∆)1/2h ∈ Lq,
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for q = 4p/(4− p) or 1 < q <∞, depending on p. Since:

(∂t − (−∆)1/2)(∂t + (−∆)1/2) = ∆t,x, (2.69)

i.e. the composition equals the Laplacian in 2D, we may invoke classical elliptic regularity theory to
find:

∆t,xh ∈W−1,q ⇒ h ∈W 1,q

Observe that in case p ≥ 4, this shows that u ∈W 1,q for all 1 < q <∞. If p < 4, then:

1/q = 1/p− 1/4 < 1/2− 1/4 = 1/4⇒ q > 4,

so we may iterate the same argument to find ourselves in the case p > 4. In any case, we have that
for h with:

DH(u)h = 0,

and vanishing initial datum that h ∈W 1,q, for all 1 < q <∞. In particular, we have that for such h,
the inclusion h ∈ C0,β holds for all 0 < β < 1. This is immediate by Morrey’s embedding. Observe
that, for instance, this also means that |d1/2h| is bounded.

For the remainder of the argument, let us restrict our attention to u being smooth. By Lemma
2.1.3.6, we have:

(−∆)1/4+th ∈ L∞([0, T ]× S1), ∀t ∈ [0, 1/4[ (2.70)

Thus, combining this consideration with Lemma 2.1.3.5, we see that for all 0 < s < 1/2 and ε > 0
sufficiently small:

‖d1/2u · d1/2h‖Ḣs(S1) . ‖(−∆)1/4+s/2+εh‖L2‖(−∆)1/2u‖L2 + ‖(−∆)1/4+s/2+εu‖L2‖(−∆)1/2h‖L2

. ‖h‖C0,α‖u‖H1 + ‖u‖C0,α‖h‖H1 , (2.71)

and therefore, we know that:

(−∆)s/2
(
d1/2u · d1/2h

)
∈ L2([0, T ]× S1)

The same then holds for ud1/2u ·d1/2h as well as h|d1/2u|2 and thus leads to, by using elliptic regularity
and [46, Theorem 3.1]:

(−∆)s/2h ∈ H1([0, T ]× S1),

using (2.69). Bootstrapping using Lemma 2.1.3.5, we may deduce the same for every s > 0. For
example, using (2.59) with s = 3/4 and ε > 0 sufficiently small, we find for almost every given time t,
noting that Hs ∩ L∞ is a Banach algebra for any s > 0:

‖2u(t)d1/2u(t) · d1/2h(t) + h(t)|d1/2u(t)|2‖Ḣ3/4(S1)

. ‖u(t)‖L∞
(
‖h(t)‖Ḣ5/4+4ε‖u(t)‖Ḣ1−2ε + ‖u(t)‖Ḣ5/4+4ε‖h(t)‖Ḣ1−2ε

)
+ ‖u(t)‖Ḣ3/4‖u‖C0,β‖h‖C0,β

+ ‖h(t)‖L∞‖u(t)‖Ḣ5/4+4ε‖u(t)‖Ḣ1−2ε + ‖h‖Ḣ3/4‖u‖2C0,β , (2.72)

where β > 1/2 and the Ḣ1−2ε- and L∞-norms can be uniformly bounded using Hölder continuity and
Lemma 2.1.3.6. Therefore, we find by the previous step and integrating with respect to t:

(−∆)3/8
(
2ud1/2u · d1/2h+ h|d1/2u|2

)
∈ L2([0, T ]× S1),
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and so D(−∆)3/8h ∈ L2([0, T ]× S1), thus (−∆)3/8h ∈ H1([0, T ]× S1) similarily as before. This now
enables us to apply the second part of Lemma 2.1.3.5 with s = 3/2 and ε > 0 sufficiently small to
deduce, similar as in (2.72):

(−∆)3/4
(
2ud1/2u · d1/2h+ h|d1/2u|2

)
∈ L2([0, T ]× S1),

and thus using (2.69) and [46, Theorem 3.1] to find (−∆)3/4h ∈ H1([0, T ] × S1). This may now be
iterated arbitrarily for an increasing sequence of s. Moreover, by inserting these expressions into the
main equation DH(u)h = 0, we may deduce the same for higher derivatives in time direction, leading
to:

h ∈
⋂
s∈N

Hs([0, T ]× S1)

This shows that h ∈ C∞([0, T ]× S1) by Morrey-embeddings.
It should be noted, that due to using the 2D-Laplacian, we merely get regularity to times t < T ,

since we do not prescribe the boundary data at t = T . If we want regularity for all t ≤ T , we have to
use the result in [46, Theorem 3.1] regarding analytic operator semigroups and maximal Lp-regularity
of heat flows (notice that the 1/2-Laplacian generates an analytic operator semigroup), which actually
guarantee existence, uniqueness and estimates up to t = T . By uniqueness and the regularity for
t < T , which we may deduce by using elliptic regularity, we may extend the estimates to t = T for the
solution h by [46, Theorem 3.1]. So the result is true as stated, but requires slightly more technical
arguments at the endpoint. We emphasise that the treatment of t < T is necessary, as the uniqueness
result in Hieber-Prüss [46] requires some regularity to hold while (−∆)sh has a-priori not sufficient
regularity for [46, Theorem 3.1] to be applied.

Proof of Lemma 2.1.3.8. The smoothness of h satisfying DH(u)h = 0 with vanishing initial datum
now enables us to prove that:

h = 0

Namely, let us compute the following:

∂t
(
|h|2
)

= 2hth

= 2
(
−(−∆)1/2h+ 2ud1/2u · d1/2h+ h|d1/2u|2

)
h

= −2h(−∆)1/2h+ 2uhd1/2u · d1/2h+ |h|2|d1/2u|2, (2.73)

and observe that there exists a C > 0 (since u is smooth and thereforeHölder continuous), such that:

|h|2|d1/2u|2 ≤ C|h|2

Moreover, we may easily find:

h(−∆)1/2h = P.V.

∫
S1

h(x)− h(y)

|x− y|2
dyh(x)

=
1

2
P.V.

∫
S1

|h(x)|2 − |h(y)|2

|x− y|2
dy +

1

2
P.V.

∫
S1

|h(x)− h(y)|2

|x− y|2
dy

=
1

2
(−∆)1/2

(
|h|2
)

+
1

2
|d1/2h|2, (2.74)
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where we used:

h(x) =
h(x) + h(y)

2
+
h(x)− h(y)

2

as well as:
(h(x) + h(y))(h(x)− h(y)) = |h(x)|2 − |h(y)|2.

Therefore, we may estimate:

∂t
(
|h|2
)

+ (−∆)1/2
(
|h|2
)
≤ −|d1/2h|2 + 2uhd1/2u · d1/2h+ C|h|2

≤ −|d1/2h|2 + |u|2|h|2|d1/2u|2 + |d1/2h|+ C|h|2

≤ Ĉ|h|2 (2.75)

using the arithmetic-geometric mean to absorb |d1/2h|2 as well as the regularity of u. Here, Ĉ > 0 is
a constant not depending on h. Following the arguments in [43, p.101] for the maximum principle, we
may here deduce:

h = 0,

due to the initial values vanishing. We emphasise that the argument merely relies on the fact that

(−∆)1/2h(x) ≥ 0 at a global maximum and ht ≥ 0 and considering e−(Ĉ+1)th(t, x) instead of h(t, x).

Conclusion of the Proof of Proposition 2.1.3.2. The operator in (2.68) is invertible for smooth u be-
tween the spaces W̃ 1,p

0 ([0, T ]×S1) and Lp([0, T ]×S1), as we have seen in Lemma 2.1.3.8. Thus, arguing
as in [43, p.122] and invoking the Inverse Function Theorem for Banach spaces, we may deduce local
existence of solutions to the fractional harmonic map equation in W 1,p, for p > 2. Observe that we use
smooth boundary values u0 at t = 0 to construct a smooth solution u to the fractional heat equation
ut + (−∆)1/2u = 0 with u(0) = u0. Indeed, such a solution exists and is smooth by using the explicit
formula obtained from the Fourier coefficients of u0:

u(t, x) =
∑
n∈Z

û0(n)e−|n|teinx, ∀t ∈ R+, ∀x ∈ S1 (2.76)

It can be directly verified that this is a smooth solution of the homogeneous fractional heat equation.
We then consider the operator h 7→ H(u + h) for h with vanishing initial datum, which is thus

locally invertible. This is also the situation in Hamilton [43] and the key idea is to observe that if
f := H(u), then for f̃δ being 0 for [0, δ] and agreeing with f for other times, then for δ > 0 sufficently
small, we know that f̃δ lies in the image of h 7→ H(u + h), meaning that there is a h̃δ such that
H(u+ h̃δ) = f̃δ. Then, ũδ := u+ h̃δ is a local solution of the half-harmonic map equation up to some
time δ > 0 with the initial data u0.

It should be observed that then the local solution, i.e. only on a subinterval of [0, T ], to the
fractional harmonic gradient flow is also C∞ up to some time. This can be proven analogous to the
bootstrap for h above. Thanks to this smoothness property of the local solution, we may also deduce
that u assumes values in Sn−1 by following the arguments in Hamilton [43] and using similar tricks
as above when we were proving h = 0 for solutions to DH(u)h = 0 with vanishing initial datum. We
emphasise that is suffices to verify:

|u|2 = 1 a.e. ⇒ |u|2 − 1 = 0 a.e.,
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which can be seen again by using uniqueness of the solution to a specific flow. Namely, if u solves the
half-harmonic gradient flow and is smooth, then we may deduce:

∂t
(
|u|2 − 1

)
= 2∂tu · u
= −2(−∆)1/2u · u+ |u|2|d1/2u|2

= −(∆)1/2
(
|u|2 − 1

)
− |d1/2u|2 + |u|2|d1/2u|2

= −(∆)1/2
(
|u|2 − 1

)
+
(
|u|2 − 1

)
|d1/2u|2, (2.77)

using (2.74) and therefore, the function v := |u|2 − 1 satisfies the flow equation:

vt + (−∆)1/2v = v|d1/2u|2

One should observe that by assumption, u(0) ∈ Sn−1 everywhere, so v(0) = 0. Thus, arguing com-
pletely analogous to the proof of Theorem 2.1.3.2, we can easily deduce that v = 0 everywhere and
therefore that u ∈ Sn−1 for all t and x. This now concludes the proof of Proposition 2.1.3.2.

By uniqueness of the solutions to the fractional harmonic gradient flow, this shows that the solu-
tions to (2.17) are smooth, provided the initial value is smooth, at least for small times.

Approximation and Global Regularity It remains to check that regularity holds for all times
and remove the restriction that the initial datum needs to be smooth. Both follow by arguing as in
Struwe [89]. Firstly, we have the following result which will be crucial in reducing our considerations
to the smooth case:

Lemma 2.1.3.10. Let u ∈ H1/2(S1;Sn−1). Then there exists a sequence uk ∈ C∞(S1)∩H1/2(S1;Sn−1)
such that:

‖uk − u‖H1/2(S1) → 0, n→∞.

This Lemma is a fractional version of an analogous result proven by Schoen-Uhlenbeck in [81], our
proof follows the computations in Struwe [92].

Proof. Let ρ be a smooth, non-negative function on S1 supported on a strict compact subset of S1

with
∫
S1 ρdx = 1 and define ρε as usual by:

ρε(x) :=
1

ε
ρ
(x
ε

)
,

for all 0 < ε < 1. We shall assume that the support of ρ is B1(0), using the identification S1 ' R/2πZ.
Then, as usual for approximations of the identity, we know:

ũε := ρε ∗ u→ u in H1/2(S1;Rn),

and all convolutions are smooth. Moreover, we have:

d
(
ρε ∗ u(x), Sn−1

)
≤ inf

z∈S1

∣∣∣∣∫
S1

ρε(y)u(y)dy − u(z)

∣∣∣∣
≤
∫
S1

∣∣∣∣∫
S1

ρε(x− y)u(y)dy − u(z)

∣∣∣∣ ρε(x− z)dz
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≤
∫
S1

∫
S1

ρε(x− y)ρε(x− z) |u(y)− u(z)| dydz

≤
(∫

S1

∫
S1

ρε(x− y)ρε(x− z) |u(y)− u(z)|2 dydz
)1/2

≤ C

ε

(∫
Bε(x)

∫
Bε(x)

|u(y)− u(z)|2 dydz

)1/2

.
1

ε

(∫
Bε(x)

∫
Bε(x)

|u(y)− u(z)|2

|x− y|2
ε2dydz

)1/2

∼

(∫
Bε(x)

∫
Bε(x)

|u(y)− u(z)|2

|x− y|2
dydz

)1/2

. ‖u‖Ḣ1/2(S1), (2.78)

where we used Hölder’s inequality in the fourth line. Observe that we may thus use the absolute
continuity of the integral in order to see that the distance between ρε ∗u and Sn−1 becomes arbitrarily
small, as ε > 0 goes to 0. Thus, for ε > 0 small enough, ρε ∗ u is never 0 and thus we may use the
projection π : Rn \ {0} → Sn−1, π(x) = x/|x| and apply it to the convolution. Hence, we may define:

uε := π (ρε ∗ u)

Clearly, these functions satisfy:

uε ∈ C∞(S1) ∩H1/2(S1;Sn−1)

Moreover, as π is Lipschitz on compact domains, we may also deduce, for ε > 0 sufficiently small,
that:

uε is bounded in H1/2(S1)

Therefore, an appropriate subsequence, which we shall now denote by uk converges weakly in H1/2(S1)
to u and strongly in L2(S1) as well as almost everywhere pointwise. Additionally, by weak lower
semicontinuity of the seminorm:

‖u‖H1/2(S1) ≤ lim inf
n→∞

‖uk‖H1/2(S1)

It suffices to check that we have:

lim sup
k→∞

‖uk‖H1/2(S1) ≤ ‖u‖H1/2(S1), (2.79)

since then, we also know:
lim
k→∞

‖uk‖H1/2(S1) = ‖u‖H1/2(S1),

which, combined with the weak convergence and the Hilbert space structure of H1/2(S1;Rn), shows
that uk → u strongly in H1/2(S1;Rn).

Instead of (2.79), it also suffices to verify:

lim sup
k→∞

(∫
S1

∫
S1

|uk(x)− uk(y)|2

|x− y|2
dydx

)1/2

= lim sup
k→∞

‖uk‖Ḣ1/2(S1) ≤ ‖u‖Ḣ1/2(S1), (2.80)
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and to deduce this, let us notice:(∫
S1

∫
S1

|uk(x)− uk(y)|2

|x− y|2
dydx

)1/2

=

(∫
S1

∫
S1

|π(ũk(x))− π(ũk(y))|2

|x− y|2
dydx

)1/2

= Lip(π) ·
(∫

S1

∫
S1

|ũk(x)− ũk(y)|2

|x− y|2
dydx

)1/2

= Lip(π) · ‖ũk‖Ḣ1/2(S1) (2.81)

where Lip(π) > 0 denotes the Lipschitz constant associated with π. We observe that for k big, we
may ensure that ũk becomes arbitrarily close to Sn−1, see (2.78). We now just have to argue that for
sufficently small neighbourhoods of Sn−1, the constant Lip(π) can be chosen arbitrarily close to 1. If
this was true, then for any δ > 0 and n big enough, we would find:(∫

S1

∫
S1

|uk(x)− uk(y)|2

|x− y|2
dydx

)1/2

≤ (1 + δ)|ũk‖Ḣ1/2(S1) → (1 + δ)‖u‖Ḣ1/2(S1),

which would imply:
lim sup
k→∞

‖uk‖H1/2(S1) ≤ (1 + δ)‖u‖H1/2(S1),

for all δ > 0. The desired result then follows by letting δ → 0.

To deduce that the Lipschitz constant becomes arbitrarily small, we first observe that the function
is Lipschitz in neighbourhoods of the n − 1-sphere due to smoothness. Assume now that there is a
δ > 0, such that:

sup
k∈N

sup
x,y∈B 1

k
(Sn−1)

|π(x)− π(y)|
|x− y|

≥ 1 + δ,

where B 1
k
(Sn−1) denotes 1/k-neighbourhood of Sn−1. Choose then sequences xk, yk ∈ B 1

k
(Sn−1) ⊂ Rn

such that:
|π(xk)− π(yk)|
|xk − yk|

≥ 1 + δ

Since the sequences are bounded, they have converging subsequences, still denoted by xk, yk, with
limits x0, y0 ∈ Sn−1. If x0 6= y0, then we see:

1 + δ ≤ |π(xk)− π(yk)|
|xk − yk|

→ |π(x0)− π(y0)|
|x0 − y0|

= 1,

which is a contradiction. So x0 = y0. But in this case, we know that for k sufficiently large, we also
have that xk and yk remain in any given neighbourhood of x0 = y0. Choosing the neighbourhood small
enough, we may assume that it is convex and that the differential of π has operator norm < 1 + δ/2
for all points in the neighbourhood. The former is clear and the latter relies on π being smooth
and dπ(x) being the orthogonal projection to the tangent plane at any given point x ∈ Sn−1, thus
having operatornorm 1. Standard arguments then show that on such a neighbourhood of x0 = y0, π
is Lipschitz with Lipschitz constant ≤ 1 + δ/2, again contradicting our choice of xk, yk. Therefore, we
may conclude as previously outlined.
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If we obtain uniform existence intervals and bounds depending merely on the energy, we may
deduce regularity for general u0 by the same result for smooth initial data using Lemma 2.1.3.10 and
treat the general case analogous to Struwe [89] by approximation. So we may focus our attention on
the smooth case.

The main idea is now to establish uniform bounds for solutions to the half-harmonic gradient flow
that shall only depend on the energy and other harmless quantities and apply results like in Hieber-
Prüss [46] to establish higher regularity and extensiability of solutions in a smooth way after any given
time, similar to Struwe [89]. In order to do so, we shall first adapt Lemma 3.1 and Lemma 3.2 in
Struwe [89] to our current situation:

Lemma 2.1.3.11. There exist C > 0 not depending on R, u, T , such that for any smooth u on
[0, T ]× S1 and 0 < R < 1, the following estimate holds for all x0 ∈ S1:∫ T

0

∫
B 3R

4
(x0)
|(−∆)1/4u|4dxdt ≤ C sup

0≤t≤T

∫
BR(x0)

|(−∆)1/4u(t)|2dx

·

(∫ T

0

∫
BR(x0)

|(−∆)1/2u|2dxdt+
1

R2

∫ T

0

∫
S1

|(−∆)1/4u|2dxdt

)
,

(2.82)

by density the same result applies for all u ∈ H1([0, T ] × S1) with bounded 1/2-Dirichlet energy.
Similarily, we have:∫ T

0

∫
S1

|(−∆)1/4u|4dxdt . sup
0≤t≤T,x∈S1

∫
BR(x)

|(−∆)1/4u(t)|2dx

·
(∫ T

0

∫
S1

|(−∆)1/2u|2dxdt+
1

R3

∫ T

0

∫
S1

|(−∆)1/4u|2dxdt
)
. (2.83)

The proof follows Struwe [89] and we refer to this reference for further details.

Proof. We only treat the case x = 0, again using S1 ' R/2πZ, the general one follows by a simple
rotation. Let ϕ be a smooth function supported on B1(0) and satisfying 0 ≤ ϕ ≤ 1 as well as ϕ = 1
on B3/4(0). Then we define ϕR(x) := ϕ( xR) for any 0 < R < 1. For brevity, we shall suppress the
subscript R in the following computations. We estimate using the Ladyzhenskaya-type inequality in
Lemma 2.1.3.1 on lines with fixed time t:∫ T

0

∫
B 3R

4
(0)
|(−∆)1/4u|4dxdt

≤
∫ T

0

∫
S1

|(−∆)1/4u|4|ϕ|4dxdt

.
∫ T

0

∫
S1

|(−∆)1/4u · ϕ− c|4dxdt+

∫ T

0

∫
S1

|c|4dxdt

.
∫ T

0

∫
S1

|(−∆)1/4u · ϕ− c|2dx ·
∫
S1

∣∣∣(−∆)1/4
(

(−∆)1/4u · ϕ
)∣∣∣2 dxdt+

∫
S1

|c|4dxdt

. sup
0≤t≤T

∫
S1

|(−∆)1/4u(t) · ϕ|2dx ·
∫ T

0

∫
S1

∣∣∣(−∆)1/4
(

(−∆)1/4u · ϕ
)∣∣∣2 dxdt+

∫
S1

|c|4dxdt
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. sup
0≤t≤T

∫
BR(0)

|(−∆)1/4u(t)|2dx ·
∫ T

0

∫
S1

∣∣∣(−∆)1/4
(

(−∆)1/4u · ϕ
)∣∣∣2 dxdt+

∫
S1

|c|4dxdt (2.84)

where c is defined to be the average of (−∆)1/4u ·ϕ over S1 and thus also the 0-th Fourier coefficient.
Observe that the removal of the Fourier coefficient at 0 actually justifies the use of the seminorm
above. Moreover, in the fourth inequality, we use that we can remove c due to minimality, cf. Struwe
[89].

Let us now observe the following:∫ T

0

∫
S1

|c|4dxdt =

∫ T

0

∫
S1

∣∣∣∣∫
S1

(−∆)1/4u(y)ϕ(y)dy

∣∣∣∣4 dxdt
.
∫ T

0

∫
S1

∣∣∣∣∫
S1

|(−∆)1/4u(y)|2ϕ(y)dy

∣∣∣∣2 ·R2dxdt

. sup
0≤t≤T

∫
S1

|(−∆)1/4u(t)|2ϕdx ·
∫ T

0

∫
S1

|(−∆)1/4u(y)|2ϕ(y)dydt

≤ sup
0≤t≤T

∫
BR(0)

|(−∆)1/4u(t)|2dx ·
∫ T

0

∫
BR(0)

|(−∆)1/4u(y)|2dydt (2.85)

as R < 1. On the other hand, we may observe that:

(−∆)1/4
(

(−∆)1/4u · ϕ
)

(x) = P.V.

∫
S1

(−∆)1/4u(x)ϕ(x)− (−∆)1/4u(y)ϕ(y)

|x− y|3/2
dy

= (−∆)1/4
(

(−∆)1/4u
)

(x)ϕ(x) + P.V.

∫
S1

(−∆)1/4u(y)
ϕ(x)− ϕ(y)

|x− y|3/2
dy

= (−∆)1/2u(x)ϕ(x) + P.V.

∫
S1

(−∆)1/4u(y)
ϕ(x)− ϕ(y)

|x− y|3/2
dy (2.86)

In fact, by Gaia [36] and Roncal-Ral Stinga [74], there would need to be a slightly different kernel
than 1/|x− y|3/2 involved. However, as there are good bounds in terms of 1/|x− y|3/2 (see Gaia [36]),
the estimates we derive from here on continue to hold. The latter summand satisfies the following
estimate: ∫ T

0

∫
S1

∣∣∣∣P.V. ∫
S1

(−∆)1/4u(y)
ϕ(x)− ϕ(y)

|x− y|3/2
dy

∣∣∣∣2 dxdt
.
∫ T

0

∫
S1

∫
S1

|(−∆)1/4u(y)|2 1

|x− y|1/2
dy ·

∫
S1

|ϕ(x)− ϕ(y)|2

|x− y|5/2
dydxdt

.
∫ T

0

∫
S1

∫
S1

|(−∆)1/4u(y)|2 1

|x− y|1/2
dy ·

∫
S1

‖ϕ‖2L∞
|x− y|1/2

dydxdt

.
1

R2

∫ T

0

∫
S1

∫
S1

|(−∆)1/4u(y)|2 1

|x− y|1/2
dydxdt

.
1

R2

∫ T

0

∫
S1

|(−∆)1/4u(y)|2dydt (2.87)

where we used that ϕ = ϕR to obtain the uniform estimate in R. Combining (2.84), (2.85), (2.86)
and (2.87), we therefore have:∫ T

0

∫
B 3R

4
(0)
|(−∆)1/4u|4dxdt . sup

0≤t≤T

∫
BR(0)

|(−∆)1/4u(t)|2dx
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·

(∫ T

0

∫
BR(0)

|(−∆)1/2u|2dxdt+
1

R2

∫ T

0

∫
S1

|(−∆)1/4u|2dxdt

)
(2.88)

and the constant does not depend on R, u or T . As already noted at the beginning, the same inequal-
ity holds for all x ∈ S1 instead of 0.

We may now cover S1 by d 2π
3R
4

e = d 8π
3Re balls of radius 3R

4 around points on S1, such that each

point is contained in at most 3 balls. Then, by adding the inequalities (2.88) in these points, we find:∫ T

0

∫
S1

|(−∆)1/4u|4dxdt . sup
0≤t≤T,x∈S1

∫
BR(x)

|(−∆)1/4u(t)|2dx

·
(∫ T

0

∫
S1

|(−∆)1/2u|2dxdt+
1

R3

∫ T

0

∫
S1

|(−∆)1/4u|2dxdt
)

(2.89)

Observe that we have the power R−3 showing up due to including ∼ 1/R balls for any given R.

As in Struwe [89], we shall use the following notation for 0 < R < 1 and t ∈ [0, T ]:

ER(u;x, t) :=
1

2

∫
BR(x)

|(−∆)1/4u(t)|2dx, (2.90)

for the local energy and introduce:

ε(R) = ε(R;u, T ) := sup
x∈S1,t∈[0,T ]

ER(u;x, t) (2.91)

In analogy to Lemma 3.6 in Struwe [89], we have the following energy estimate:

Lemma 2.1.3.12. There exists a constant C > 0 such that for every u : [0, T ] × S1 → Sn−1 in
H1([0, T ] × S1) ∩ L∞([0, T ]; Ḣ1/2(S1)) solving the half-harmonic flow equation (2.17) and satisfying
the energy decrease property as in Lemma 2.1.3.3, any 0 < R < 1/2 and (t, x0) ∈ [0, T ] × S1, the
following estimate holds:

ER(u;x0, t) ≤ E2R(u;x0, 0) + C

(
t

R2
E(u0) +

√
t

R

√
ε(2R)E(u0)

)
≤ E2R(u;x0, 0) + C

(
t

R2
+

√
t

R

)
E(u0), (2.92)

where E(u0) = E1/2(u0). In the second inequality, we used the trivial estimate between the local energy
and the global one under the energy decay.

The proof is as in Struwe [89].

Proof. Letting ϕ be any smooth, compactly supported, time-independent function on B2R(x0), such
that ϕ = 1 on BR(x0) and 0 ≤ ϕ ≤ 1, |∇ϕ| . 1/R (see our choice in the proof of the previous Lemma).
We now test (2.17) with utϕ

2 and observe that ut · u = 0, as u maps to Sn−1. Therefore, we find:

0 =

∫ t

0

∫
S1

|ut|2ϕ2dxds+

∫ t

0

∫
S1

(−∆)1/2u · utϕ2dxds
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=

∫ t

0

∫
S1

|ut|2ϕ2dxds+

∫ t

0

∫
S1

(−∆)1/4u · (−∆)1/4
(
utϕ

2
)
dxds (2.93)

We observe that for smooth f :

(−∆)1/4
(
fϕ2

)
(x) = (−∆)1/4f(x)ϕ(x)2 + P.V.

∫
S1

f(y)
ϕ(x)2 − ϕ(y)2

|x− y|3/2
dy, (2.94)

and therefore:∫
S1

(−∆)1/4u · (−∆)1/4
(
fϕ2

)
dx =

∫
S1

(−∆)1/4u · (−∆)1/4f · ϕ2dx

+

∫
S1

(−∆)1/4u · P.V.
∫
S1

f(y)
ϕ(x)2 − ϕ(y)2

|x− y|3/2
dydx (2.95)

by approximation, the same holds true for L2-functions like ut, and thus:∫ t

0

∫
S1

|ut|2ϕ2dxds+ ER(u;x0, t)− E2R(u;x0, 0)

≤
∫ t

0

∫
S1

|ut|2ϕ2dxds+

∫ t

0

∫
S1

1

2

d

dt

(
|(−∆)1/4u|2ϕ2

)
dxds

≤
∣∣∣∣∫ t

0

∫
S1

(−∆)1/4u · P.V.
∫
S1

ut(y)
ϕ(x)2 − ϕ(y)2

|x− y|3/2
dydxds

∣∣∣∣
.

1

R

∣∣∣ ∫ t

0

∫
S1

(−∆)1/4u · P.V.
∫
S1

ut(y)ϕ(y)
1

|x− y|1/2
dydxds

∣∣∣
+

1

R

∣∣∣ ∫ t

0

∫
S1

(−∆)1/4u · P.V.
∫
S1

ut(y)ϕ(x)
1

|x− y|1/2
dydxds

∣∣∣, (2.96)

where we used the estimate for the gradient of ϕ in the last line and ϕ(x)2 − ϕ(y)2 = (ϕ(x) +
ϕ(y))(ϕ(x)− ϕ(y)). Using Hölder’s inequality, the RHS may be bounded by, up to a constant:

√
t

R

√
E1/2(u0)

(∫ t

0

∫
S1

|ut|2ϕ2dxdt

)1/2

+

√
t

R

√
ε(2R)E1/2(u0),

the latter summand following from (the first summand may be estimated analogously):

1

R

∣∣∣ ∫ t

0

∫
S1

(−∆)1/4u · P.V.
∫
S1

ut(y)ϕ(x)
1

|x− y|1/2
dydxds

∣∣∣
.

1

R

∣∣∣ ∫ t

0

∫
S1

∫
S1

|(−∆)1/4u(x)|2ϕ(x)2 1

|x− y|1/2
dydxds ·

∣∣∣1/2∣∣∣ ∫ t

0

∫
S1

∫
S1

|ut(y)|2 1

|x− y|1/2
dydxds

∣∣∣1/2
.

1

R

∣∣∣ ∫ t

0

∫
B2R(x0)

|(−∆)1/4u|2ϕ2dxds ·
∣∣∣1/2∣∣∣ ∫ t

0

∫
S1

|ut|2dxds
∣∣∣1/2

.

√
t

R

√
ε(2R)E(u0), (2.97)

where the second factor can be estimated as in Lemma 3.4 of Struwe [89], see also the monotone energy
decay estimate for solutions of the half-harmonic flow. Therefore, the result follows after absorption
in an obvious manner.
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Having these tools available renders us able to establish the results (of course slightly adapted
to our current situation) in Lemma 3.7, 3.8 and 3.10 of Struwe [89] and thus establish uniform Lp-
estimates for the RHS of the fractional gradient flow (2.17) under restrictions on the local energy,
global energy, R and T and independent of u. Let us state the appropriate adaptions to our current
situation:

Lemma 2.1.3.13. The following generalisations of the results in [89] hold true:

1. Lemma 3.7 in [89]: There exists ε1 > 0 such that for any u ∈ H1([0, T ]×S1)∩L∞([0, T ];H1/2(S1))
solving (2.17) and any R < 1/2, there holds:∫ T

0

∫
S1

|∇u|2dxdt ≤ CE(u0)

(
1 +

T

R3

)
, (2.98)

with C independent of u, T,R, provided ε(R) < ε1. Here, u(0, ·) = u0 is the initial value.

2. Lemma 3.8, Remark 3.9 in [89]: For any numbers ε, τ, E0 > 0, and if u0 is smooth also τ = 0,
and R1 < 1/2, there is a δ > 0 such that for any u, satisfying the conditions as in 1., solving
(2.17) and any I ⊂ [τ, T ] with measure |I| < δ, there holds:∫

I

∫
S1

|(−∆)1/4u|2dxdt < ε, (2.99)

provided ε(R1) < ε1, E(u0) ≤ E0.

3. Lemma 3.10, Remark 3.11 in [89]: Let u be, in addition to the assumptions in 1., a C2([τ, T ]×
S1)-solution to (2.17), then, for every 1 ≤ p < +∞, there exists a Lp([τ, T ] × S1)-bound on
ut + (−∆)1/2u with a constant only depending on E(u0), τ, T and R, provided ε(R) < ε1. Here,
τ > 0 in general and τ ≥ 0 in case u0 is smooth.

For example, Lemma 3.7 in Struwe [89] follows by using (−∆)1/2u instead of ∆u and applying
the estimates in Lemma 2.1.3.11. Lemma 3.8 relies on choosing subsequences which can equally
well be chosen for (−∆)1/4u and (−∆)1/2u, compactness remains valid and the energy estimate in
Lemma2.1.3.12 replaces local energy estimate used in Struwe [89]. Naturally, Remark 3.9 also carries
over, as the uniform absolute continuity is guaranteed by Lemma 3.8. Lastly, arguing as in Struwe
[89] Lemma 3.10, using twice differentiable solutions of the half-harmonic flow, we may differentiate
with respect to t and test against ut to deduce precisely the same estimates for the Lp-norm of the
RHS independent of u, i.e. only depending on the analogous terms as in Lemma 3.10 of Struwe [89].

This also leads to higher order estimates following the bootstrap techniques above and using the
result [46, Theorem 3.1], meaning that we may establish regularity up to time T . Extending as in
Struwe [89] by restarting the flow at T and using approximating sequences as in Lemma 2.1.3.10
then show regularity of solutions with arbitrary initial datum by uniform convergence on sets with t
strictly bounded from below (Remark 3.11 applies to the case of regular initial datum, so in this case
smoothness is also given at t = 0). We emphasise that if we choose the initial energy sufficiently small,
the localised energy ER will satisfy the necessary inequalities for all times, meaning global smooth
existence is justified.

We highlight at this point that the argument presented provides an alternative existence argument
for the fractional harmonic gradient flow with values in Sn−1. Moreover, the techniques introduced
can be used in order to study finite blow-up times and in the future investigate the types of blow-ups
that can occur in finite time.
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2.1.3.4 Convergence

Another important question is whether or not the solution u of the fractional harmonic gradient flow
converges as t→ +∞, or rather for specific subsequences tk → +∞. The considerations are completely
analogous to Struwe [91], [89].

Theorem 2.1.3.4. Let u ∈ L2(R+;H1/2(S1)) and ut ∈ L2(R+;L2(S1)) be a solution of the fractional
harmonic gradient flow (2.17) with values in Sn−1 ⊂ Rn and with initial data u0. Assume that:

‖(−∆)1/4u(t)‖L2 ≤ ‖(−∆)1/4u0‖L2 ≤ ε, ∀t ∈ R+,

for ε > 0 sufficiently small. Then, for a suitably chosen subsequence tk → +∞, the sequence of maps
(u(tk, ·))k∈N ⊂ H1(S1;Sn−1) converges weakly in H1(S1) to a 1/2-harmonic map in Sn−1.

The proof proceeds completely analogous to the one for Theorem 6.6 in Struwe [91].

Proof. By the considerations in the proof of Proposition 2.1.3.1, we know that for ε > 0 sufficiently
small, we have for almost every t:

‖∇u(t)‖L2(S1) . ‖∂tu(t)‖L2(S1) + 1 (2.100)

As in [91], this implies the following:∫ t+1

t

∫
S1

|∇u|2dxdt .
∫ t+1

t

∫
S1

|ut|2dxdt+ 1 . ‖ut‖L2(R+×S1) + 1, (2.101)

for all t ∈ [0,∞[. Observe that the right handside of the estimate is bounded independently of t. It is
also clear that:

lim
t→+∞

∫ t+1

t

∫
S1

|ut|2dxdt = 0, (2.102)

due to ut ∈ L2(R+ × S1) = L2(R+;L2(S1)).

The observations in (2.101) and (2.102) show that we may choose a subsequence tk → ∞, such
that:

u(tk)→ u∞ in H1(S1) weakly,

and ut(tk)→ 0 strongly in L2. In fact, we may at first choose tk such that L2-convergence is satisfied
and such that (2.100) holds for all elements in the sequence. Then extracting another subsequence,
weak convergence in H1(S1) is immediate due to the boundedness in (2.100). In addition, up to
extracting another subsequence, the convergence also holds everywhere pointwise and thus:

u∞(x) ∈ Sn−1 for almost every x ∈ S1

Let now ϕ ∈ C∞(S1) and test the equation (2.17) at the time tk with ϕ which shows:∫
S1

(
ut(tk) + (−∆)1/2u(tk)

)
ϕdx

=

∫
S1

ut(tk)ϕdx+

∫
S1

∫
S1

d1/2 (u(tk)) (x, y)d1/2ϕ(x, y)
dydx

|x− y|

=

∫
S1

∫
S1

|d1/2 (u(tk)) (x, y)|2u(x)ϕ(x)
dydx

|x− y|
, (2.103)
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and since we know by ut(tk)→ 0 in L2(S1) strongly and u(tk)→ u∞ in H1(S1) weakly, the left hand
side converges for tk →∞ to: ∫

S1

(−∆)1/2u∞ϕdx

On the other hand, the right handside does converge as well. Namely, observe that due to the
compactness of H1(S1) ↪→ H1/2(S1) and Hölder’s inequality, we have:∫

S1

∫
S1

d1/2 (u(tk)− u∞) (x, y)d1/2u(tk)(x, y)u(x)ϕ(x)
dydx

|x− y|
→ 0, as tk →∞

Similarily, we may see:∫
S1

∫
S1

d1/2 (u(tk)− u∞) (x, y)d1/2u∞(x, y)u(x)ϕ(x)
dydx

|x− y|
→ 0, as tk →∞

So we merely have to consider:∫
S1

∫
S1

|d1/2u∞(x, y)|2 (u(x)− u∞(x))ϕ(x)
dydx

|x− y|
,

which converges to 0 as well, which is an immediate consequence of dominated convergence and the
boundedness of u, u∞. Thus we have:∫

S1

∫
S1

|d1/2u(x, y)|2u(x)ϕ(x)
dydx

|x− y|

→
∫
S1

∫
S1

|d1/2u∞(x, y)|2u∞(x)ϕ(x)
dydx

|x− y|
(2.104)

So, we find the following by passing to the limit tk →∞:∫
S1

(−∆)1/2u∞ϕdx =

∫
S1

u∞|d1/2u∞|2ϕdx, (2.105)

which is equivalent to:
(−∆)1/2u∞ ⊥ Tu∞N

Therefore, u∞ is actually 1/2-harmonic.

One may even say more. By convergence, we may deduce:

‖(−∆)1/2u∞‖L2 ≤ ‖(−∆)1/2u0‖L2 ≤ ε,

meaning an energy bound for the limit function. If ε > 0 is sufficiently small, we may deduce:

u∞ is a constant map

This assertion follows by lower energy bounds for 1/2-harmonic maps, see for example Sire-Wei-Zheng
[84] and the references presented therein.
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2.1.4 Appendix A: Alternative Conclusion of Theorem 2.1.3.2: Estimate (2.27)

2.1.4.1 Preliminary Discussion

The goal of this first appendix is to provide an alternative proof of the final estimate (2.27) by using
direct methods rather than Theorem 2.1.2.1 on S1, see also Appendix B. We define the stereographic
projection Π : S1 \ {−i} → R as follows:

Π(cos(α) + i sin(α)) :=
cos(α)

1 + sin(α)
, ∀α ∈ R, α 6= −π

2
+ 2πZ

Let us state the following result found in Da Lio [15] as Proposition 1.1:

Proposition 2.1.4.1. Let u : R→ Rn and v := u ◦Π : S1 \ {−i} → Rn. Then we have:

(−∆)
1/2
S1 v(eiθ) =

(−∆)
1/2
R u(Π(eiθ))

1 + sin(θ)
, (2.106)

and where we observe:

Π′(θ) =
1

1 + sin(θ)
(2.107)

This hints at a connection between the 1/2-Laplacian on S1 and the one on R. We would like to
exploit this relationship using the stereographic projection in order to apply the result in Schikorra-
Wang [79], namely Theorem 2.1.2.1 on R, directly as needed in our proof above. Our starting point
is the following identity which was part of an earlier argument, where we now denote by Π(x0) = x
and v := u ◦Π−1.

Proposition 2.1.4.2. We have the following identity for u, v, x, x0 as previously introduced:∫
R

|v(x)− v(y)|2

|x− y|2
dy =

∫
S1

|u(x0)− u(y)|2

|x0 − y|2
dy · (1 + sin(x0)) (2.108)

Proof. After a change of variables and obvious estimates, we arrive at:∫
R

|v(x)− v(y)|2

|x− y|2
dy =

∫
S1

|v(Π(x0))− v(Π(y))|2

4 sin
(x0−y

2

)2 4 sin
(x0−y

2

)2
|Π(x0)−Π(y)|2

1

1 + sin(y)
dy (2.109)

Thus, the fractional gradient norm over R is bounded for v. Let us note:

|Π(x0)−Π(y)| = | cos(x0) + cos(x0) sin(y)− cos(y)− cos(y) sin(x0)|
(1 + sin(x0))(1 + sin(y))

=
| cos(x0)− cos(y) + sin(y − x0)|

(1 + sin(x0))(1 + sin(y))

=
| − 2 sin

(y+x0

2

)
sin
(x0−y

2

)
+ 2 sin

(y−x0

2

)
cos
(y−x0

2

)
|

(1 + sin(x0))(1 + sin(y))

=
|2 sin

(y+x0

2

)
sin
(y−x0

2

)
+ 2 sin

(y−x0

2

)
cos
(y−x0

2

)
|

(1 + sin(x0))(1 + sin(y))

= 2
| sin

(y−x0

2

)
|

(1 + sin(x0))(1 + sin(y))

∣∣∣∣sin(y + x0

2

)
+ cos

(
y − x0

2

)∣∣∣∣
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= 2
| sin

(y−x0

2

)
|

(1 + sin(x0))(1 + sin(y))
· 2
∣∣∣sin(y

2
+
π

4

)
sin
(x0

2
+
π

4

)∣∣∣ (2.110)

Therefore:

4 sin
(x0−y

2

)2
|Π(x0)−Π(y)|2

1

1 + sin(y))
=

(1 + sin(y))(1 + sin(x0))2

4
∣∣sin (y2 + π

4

)
sin
(
x0
2 + π

4

)∣∣2
=

1 + sin(y)

2
∣∣sin (y2 + π

4

)∣∣2 · (1 + sin(x0))2

2
∣∣sin (x0

2 + π
4

)∣∣2 (2.111)

This is already sufficient to conclude the proof by combining (2.109), (2.110) and (2.111). Indeed, it
can be obtained by observing that:

1 + sin(y)

2
∣∣sin (y2 + π

4

)∣∣2 = 1,

by using the half-angle formula that:∫
R

|v(x)− v(y)|2

|x− y|2
dy =

∫
S1

|u(x0)− u(y)|2

|x0 − y|2
dy · (1 + sin(x0))2

2
∣∣sin (x0

2 + π
4

)∣∣2
=

∫
S1

|u(x0)− u(y)|2

|x0 − y|2
dy · (1 + sin(x0)) (2.112)

and thus providing the desired connecting identity between R and S1.

However, this immediately yields that changing domains by virtue of the stereographic projection
is not sufficiently well-behaved for the fractional gradient to preserve arbitrary fractional norms, as
the L4-norm does not transform as required and thus obstructing an equivalence between L4 on the
circle and on R. The obstruction is visible in the remaining factor 1 + sin(x0)) of Proposition 2.1.4.2.
Therefore, further ideas are necessary.

A different approach involves periodically extending the function on S1 to a function U with a
cut-off after a finite number of periods, a technique explored afterwards. Let us present the main ideas
informally first: This extension procedure allows us to have an immediate equivalence of the L4-norms
at the beginning of (2.27) and the corresponding one for U with the distance function changed suitably.
The argument in (2.27) then carries on as specified on R. The (−∆)1/2U norm can be easily estimated
by using the Riesz transform to go over to the classical weak derivative which can be estimated by
the corresponding quantity on S1. It thus remains to connect the L2-norm of (−∆)1/4U with the one
of u. This is done in the same way as connecting the L4-norms due to the immediate estimates for
|d1/2u|2. This then finishes the proof of (2.27) and therefore also of Lemma 2.1.3.2.

As a final comment on the previous result, let us mention that naturally, by combining the results
for periodic distributions in Schmeisser-Triebel [80] with the ideas in Schikorra-Wang [79], we could
obtain the very same identifications as there, thus providing the first inequality in (2.27) immediately
for free. This is the very same argument as we already mentioned in section 2 and explored in Appendix
B. It then suffices to apply Lemma 2.1.3.1 to conclude.
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2.1.4.2 Estimate for Fractional Gradients using Periodic Extension

Let us first take u ∈ H1/2(S1) and extend it periodically to R and denote this extension by U . Next,
we choose any ϕ ∈ C∞c ([−3π, 3π]) and define:

V := U · ϕ

We may assume that ϕ = 1 on [−2π, 2π] and ϕ = 0 for x ∈ R\] − 5
2π,

5
2π[. We notice that for every

x ∈ [−π, π]:

|d1/2V |2(x) =

∫
R

|V (x)− V (y)|2

|x− y|2
dy

≥
∫

[x−π,x+π]

|V (x)− V (y)|2

|x− y|2
dy

≥ C
∫
S1

|u(x)− u(y)|2

|x− y|2
dy

= C|d1/2u|2(x) (2.113)

Observe that we exchanged the distance function on the real line for the one on the circle which
are equivalent on the interval we consider with constants independent of x. Notice that the cut-off
function ϕ has been chosen in such a way that the argument works. Therefore, we may deduce:∫

S1

|d1/2u|4(x)dx ≤ C
∫
R
|d1/2V |4(x)dx

Assuming even that u ∈ H1(S1), it is clear that V ∈ H1(R) and because of H1(S1) ⊂ H1/2(S1), the
estimate for the L4-norm applies to this situation. We may therefore deduce from the Ladyzhenskaya-
type estimate in Lemma 2.1.3.1 and the equivalent characterisation of the norm in Schikorra-Wang
[79], see Theorem 2.1.2.1 for R:∫

R
|d1/2V |4(x)dx ∼ ‖(−∆)1/4V ‖4L4 ≤ C‖(−∆)1/4V ‖2L2 · ‖(−∆)1/2V ‖2L2 ≤ C ′‖(−∆)1/4V ‖2L2 · ‖∇V ‖2L2

Notice that the equivalence at the beginning of the estimate is due to Schikorra-Wang [79]. We observe
that:

∇V = ∇U · ϕ+ U · ∇ϕ,

therefore the H1-norm of V may be estimated by the H1-norm of u:

‖∇V ‖2L2 ≤ C‖u‖2H1(S1)

On the other hand, we may deduce that:

‖(−∆)1/4V ‖2L2 ≤ C
∫
R

∫
R

|V (x)− V (y)|2

|x− y|2
dxdy ≤ C ′‖u‖H1/2(S1),

where the second inequality is easily established by direct means using the cut-off ϕ. Namely, if we
write I := [−3π, 3π]:∫

R

∫
R

|V (x)− V (y)|2

|x− y|2
dxdy =

∫
I

∫
I

|V (x)− V (y)|2

|x− y|2
dxdy + 2

∫
I

∫
Ic

|V (x)|2

|x− y|2
dydx
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.
∫
I

∫
I

|U(x)− U(y)|2

|x− y|2
dydx+

∫
I

∫
I
|U(y)|2‖∇ϕ‖∞dydx+

∫
I
|V (x)|2dx

. ‖U‖H1/2(I), (2.114)

where we used that the integral of 1/|x − y|2 in the second summand of the first line is taken over a
domain |x− y| > δ > 0 thanks to the cut-off ensuring that x lying in a strict subset of I is necessary
for |V (x)|/|x− y|2 6= 0. We thus need to establish a connection between the norm of U and the one of
u. For the L2-norms, such a relationship is obvious. Regarding the H1/2-seminorm, this follows rather
easily as well by means of a direct comparison and using the decrease of 1/|x− y|2 and comparing it
to the periodic distance on S1. The claim is thus established.

Let us now observe that in the beginning of these calculations, we could have assumed that
−
∫
S1 udx = 0 or, alternatively, used u−û(0) instead of u, simply because of d1/2u annihilating constants.

Notice that:
‖u− û(0)‖H1/2(S1) ≤ C‖u− û(0)‖Ḣ1/2(S1) = C‖u‖Ḣ1/2(S1)

So we arrive at the following estimate by combining all these considerations (using similar ones for
H1 versus Ḣ1) for u− û(0):∫

S1

|d1/2u|4(x)dx =

∫
S1

|d1/2(u− û(0))|4(x)dx ≤ C̃‖u‖2
Ḣ1/2(S1)

· ‖u‖2
Ḣ1(S1)

(2.115)

This is precisely the inequality used in the proof of improved regularity in the proof of uniqueness
and/or the proof of improved regularity.

2.1.5 Appendix B: Further useful Results

2.1.5.1 Wente-type result for Fractional Gradients on the Circle: Lemma 2.1.2.2

Let us assume that F ∈ L2
od(S

1 × S1) and g ∈ H1/2(S1). Moreover, we assume that:

div1/2 F = 0,

i.e. that: ∫
S1

∫
S1

F (x, y)d1/2ϕ(x, y)
dxdy

|x− y|
= 0, ∀ϕ ∈ C∞(S1)

Our goal is to show that the following holds:

∀ϕ ∈ C∞(S1) :

∣∣∣∣∫
S1

F · d1/2g(x)ϕ(x)dx

∣∣∣∣ ≤ C‖ϕ‖Ḣ1/2 ,

with:
C . ‖F‖L2

od
‖g‖Ḣ1/2

This implies that F · d1/2g ∈ H−1/2(S1) which would in turn enable us to solve equations like:

(−∆)1/2u = F · d1/2g − c,

where c =
∫
S1 F · d1/2g(x)dx for some u ∈ H1/2(S1) with appropriate estimates. This is the kind

of fractional Wente-type estimate we would like to use. To prove this, we observe that by using the
stereographic projection Π as in Proposition 2.1.4.1, we then have for:

F ′ : R× R→ R, F ′(x, y) = F (Π−1(x),Π−1(y)), g′ : R→ R, g′(x) = g(Π−1(x))
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We observe the following for ϕ ∈ C∞(S1) compactly supported in S1\{−i} and the previously studied

factor h(z) = 1+sin(z)

2|sin ( z2 +π
4 )|2

= 1 and thus also for:

h̃(x) :=
1

h(Π−1(x))
= 1,

which we may use to obtain the following chain of equations following the computations in the proof
of Proposition 2.1.4.2, especially (2.111) to rewrite the quotient of the distance functions on R and
S1, and a change of variables:∫
S1

∫
S1

F (z, w)
g(z)− g(w)

|z − w|1/2
ϕ(z)

dzdw

|z − w|

=

∫
R

∫
R
F ′(x, y)

g′(x)− g′(y)

|x− y|1/2
ϕ(π−1(x))

8
∣∣∣sin (Π−1(x)

2 + π
4

)∣∣∣3 · 8 ∣∣∣sin (Π−1(y)
2 + π

4

)∣∣∣3
(1 + sin(Π−1(x)))(1 + sin(Π−1(y)))


1/2

dxdy

|x− y|

=

∫
R

∫
R
F̃ (x, y)

g′(x)− g′(y)

|x− y|1/2
ϕ(Π−1(x))

dxdy

|x− y|
, (2.116)

(see below for the definition of F̃ ) and we observe that h̃ = 1 on R and that:

∫
R

∫
R

(
2

∣∣∣∣sin (Π−1(x)

2
+
π

4

)∣∣∣∣1/2 ∣∣∣∣sin (Π−1(y)

2
+
π

4

)∣∣∣∣1/2 · F ′(x, y)

)2
dxdy

|x− y|

=

∫
R

∫
R

4

∣∣∣∣sin (Π−1(x)

2
+
π

4

)∣∣∣∣ ∣∣∣∣sin (Π−1(y)

2
+
π

4

)∣∣∣∣ · |F ′(x, y)|2 dxdy

|x− y|

=

∫
S1

∫
S1

|F (z, w)|2 dzdw

|z − w|
, (2.117)

so we observe that if F ∈ L2
od(S

1 × S1), then the same holds true for

F̃ := 2

∣∣∣∣sin (Π−1(x)

2
+
π

4

)∣∣∣∣1/2 ∣∣∣∣sin (Π−1(y)

2
+
π

4

)∣∣∣∣1/2 · F ′(x, y)

for the domain R instead of S1. This is the ideal starting point for a generalisation of Theorem 2.1
in Mazowiecka-Schikorra [57], as we have now found the substitute for F on the real line. Next, we
observe that we have for any constant C ∈ R:∫

S1

∫
S1

F (z, w)
g(z)− g(w)

|z − w|1/2
ϕ(z)

dzdw

|z − w|
=

∫
S1

∫
S1

F (z, w)(g(z)− C)
ϕ(z)− ϕ(y)

|z − w|1/2
dzdw

|z − w|

=

∫
R

∫
R
F̃ (x, y)(g′(x)− C)d1/2ϕ(Π−1(x),Π−1(y))

dxdy

|x− y|

by using div1/2 F = 0. If ϕ = 1, we may even notice (observe that the compact support is not relevant

to the computations above) that then div1/2(F̃ (x, y)) = 0. Therefore, the arguments in the proof of

Theorem 2.1 become immediately applicable to F̃ and g′. Hence, this leads us to the realisation:

F̃ · d1/2g
′ ∈ H1(R),
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with the Wente-type estimate found in the preliminary section as well as in Mazowiecka-Schikorra
[57]. Observing that Ḣ1/2(R) continuously embeds into BMO(R), we therefore find that F̃ · d1/2g

′ ∈
H−1/2(R). Pulling now back to S1, we may obtain use for smooth compactly supported ϕ on S1\{−i}:∫

S1

ϕ(z)F · d1/2g(z)dz =

∫
S1

∫
S1

ϕ(z)F (z, w)
g(z)− g(w)

|z − w|1/2
dzdw

|z − w|

=

∫
R

∫
R
F̃ (x, y)

g′(x)− g′(y)

|x− y|1/2
ϕ(Π−1(x))

dxdy

|x− y|
, (2.118)

The estimate on the circle may thus be obtained from the one on the real line, at least for smooth
compactly supported functions on the complement of a point, since the very same argument works
with respect to the stereographic projection with respect to any point on the circle.

To deduce the result on the entire circle, i.e. F · d1/2g ∈ H−1/2(S1), we split any smooth function
using a fixed partition of unity into two parts supported each on a compact subset of the complement
of a point, the points for example being the north and south pole, and apply the estimate from the
real line to each of these parts, using stereographic projections with respect to two different points.
Observe that the Gagliardo seminorn and the L2-norm of the parts are controlled by the original
(semi-)norm of the smooth function. Therefore, we obtain the desired Wente-type estimate.

To close this argument, let us observe that for a suitable c ∈ R (given by the integral of F · d1/2g
over the circle), we can thus obtain the following estimate:∣∣∣∣∫

S1

(F · d1/2g(z)− c)ϕ(z)dz

∣∣∣∣ ≤ C‖F‖L2
od
‖g‖H1/2‖ϕ‖Ḣ1/2

This is clear by going over to Fourier coefficients on the circle. This can be rephrased as:

‖F · d1/2g − c‖H−1/2 ≤ C‖F‖L2
od
‖g‖H1/2 (2.119)

2.1.5.2 Version of Theorem 2.1.2.1 on S1

In this section, we shall prove the following:

Theorem 2.1.5.1. Let s ∈ (0, 1), p, q ∈]1,∞[ and f ∈ Lp(R). Then, if p > nq
n+sq , we also have the

inclusion Ḟ sp,q(S
1) ⊂ Ẇ s,(p,q)(S1) together with an estimate:

‖f‖Ẇ s,(p,q)(S1) . ‖f‖Ḟ sp,q(S1)

The constant depends on s, p, q, n.

This is in fact the only part of Theorem 2.1.2.1 we use throughout the current paper. The proof
proceeds as in Schikorra-Wang [79], see in particular the fourth section in this reference.

Proof. First, we notice that the following result, Lemma 4.4 in Schikorra-Wang [79], continues to hold
true:
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Lemma 2.1.5.1. Let k ∈ Z, j ∈ N and fj be the j-th Littlewood-Paley projection of f a periodic
distribution on R (or equivalently an distribution on S1):

fj(x) :=
∑
k∈Z

ϕj(k)f̂(k)eikx,

where ϕj are as in the definition of the Triebel-Lizorkin spaces in section 2. Assume that x, y ∈ R
together with |x− y| ∼ 2−k. Then for every r > 0, we have:

|fj(x)− fj(y)| . 2j−k(1 + 2j−k)n/r (M |fj |r(x))1/r (2.120)

|fj(y)| . (1 + 2j−k)n/r (M |fj |r(x))1/r (2.121)

where Mg denotes the Littlewood-Paley maximal function and the constants only depend on r.

The proof is exactly the same as in Schikorra-Wang [79], only referring to Schmeisser-Triebel [80]
Proposition 3.3.5 and Theorem 3.3.5 instead of the results for Rn. Observe that only j > 0 need to
be considered due to the discrete nature of Fourier coefficients.

Having Lemma 2.1.5.1 available, we can argue analogous to Schikorra-Wang [79]. Let us observe
that:

‖f‖p
Ẇ s,(p,q)(S1)

=

∫
S1

(∫
S1

∣∣∑
j∈N fj(x)− fj(y)

∣∣q
|x− y|1+sq

dy

)p/q
dx

.
∫ π

−π

∑
k∈Z

2k(1+sq)

∫
Ak(x)

∣∣∑
j

fj(x)− fj(y)
∣∣qdy

p/q

dx, (2.122)

where Ak(x) := {y|2−k ≤ |x−y| < 2−k+1}. Notice that we replaced the distance function on the circle
S1 by the one on R and chose the integration domain appropriately to still estimate the expression
‖f‖p

Ẇ s,(p,q)(S1)
.

As in Schikorra-Wang [79], let us introduce:

∫ π

−π

∑
k∈Z

2k(1+sq)

∫
Ak(x)

∣∣∑
j

fj(x)− fj(y)
∣∣qdy

p/q

dx . R1 +R2 +R3, (2.123)

where:

R1 :=

∫ π

−π

∑
k∈Z

2k(1+sq)

∫
Ak(x)

∑
j≤k

∣∣fj(x)− fj(y)
∣∣q

dy

p/q

dx (2.124)

R2 :=

∫ π

−π

∑
k∈Z

2k(1+sq)

∫
Ak(x)

∑
j>k

∣∣fj(x)
∣∣q

dy

p/q

dx (2.125)

R3 :=

∫ π

−π

∑
k∈Z

2k(1+sq)

∫
Ak(x)

∑
j>k

∣∣fj(y)
∣∣q

dy

p/q

dx (2.126)
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The estimate for each contribution now proceeds as in Schikorra-Wang [79]: For example, R1 can be
dealt with by noticing that for some s > ε > 0∑

j≤k

∣∣fj(x)− fj(y)
∣∣q

=

∑
j≤k

2jε2−jε
∣∣fj(x)− fj(y)

∣∣q

.

∑
j≤k

2jε

q

sup
j≤k

2−jεq|fj(x)− fj(y)|q

. 2kεq
∑
j≤k

2−jεq|fj(x)− fj(y)|q (2.127)

Using now Lemma 2.1.5.1, we arrive at the following identity completely analogous to Schikorra-Wang
[79]:

|fj(x)− fj(y)| ≤ C(r)2j−k (M |fj |r(x))1/r , ∀y ∈ Ak(x), ∀j ≤ k, (2.128)

for some constant C(r) > 0 depending only on r > 0. Combining (2.127) and (2.128), we find:

R1 .
∫ π

−π

∑
k∈Z

2k(1+sq)

∫
Ak(x)

2kεq
∑
j≤k

2−jεq
∣∣fj(x)− fj(y)

∣∣qdy
p/q

dx

.
∫ π

−π

∑
k∈Z

2k(1+sq)

∫
Ak(x)

2kεq
∑
j≤k

2−jεqC(r)q2(j−k)q (M |fj |r(x))q/r dy

p/q

dx

.
∫ π

−π

∑
k∈Z

2k(1+sq)2−k2kεq
∑
j≤k

2−jεq2(j−k)q (M |fj |r(x))q/r

p/q

dx

.
∫ π

−π

∑
j>0

2−jεq (M |fj |r(x))q/r 2jq
∑
k≥j

2k(s−1+ε)q

p/q

dx

.
∫ π

−π

(
2jsq (M |fj |r(x))q/r

)p/q
dx, (2.129)

where we use ε > 0 suffciently small, such that s+ ε < 1. Applying Proposition 3.2.4 in Schmeisser-
Triebel [80], i.e. the maximal function estimate for Lplq-functions on S1, we thus deduce by the very
definition of fj and the Triebel-Lizorkin norm:

R1 . ‖f‖Ḟ sp,q
The other contributions R2 and R3 may also be deduced completely analogous to Schikorra-Wang
[79], but using the corresponding results for S1 as found in Schmeisser-Triebel [80]. We thus may
conclude.

2.2 The General Case: Arbitrary Closed Target Manifolds [103]

Now, we would like to extend the results from the previous section to arbitrary target manifolds. To
achieve this, we have to overcome various technicalities which we were able to avoid in the spherical
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case. For instance, there is no longer a simple characterisation in terms of the distance function or an
arbitrary global smooth function, which imposes difficulties in the choice of operators one considers
when solving the problem for short times. The arguments remain mostly similar to the ones in the
section before, but we have to be more careful at times.

2.2.1 Introduction

The goal of this paper is to etend the results obtained in the author’s previous work [102], where the
half-harmonic gradient flow with values in Sn−1 was studied. More precisely, the following result was
proven:

Theorem 2.2.1.1. Let u0 ∈ H1/2(S1;Sn−1) be any initial data. There exists ε > 0, such that if:

‖(−∆)1/4u0‖L2(S1) ≤ ε,

then there exists a unique energy class solution u : R+ × S1 → Sn−1 ⊂ Rn of the weak fractional
harmonic gradient flow:

ut + (−∆)1/2u = u|d1/2u|2,
satisfying u(0, ·) = u0 in the sense u(t, ·) → u0 in L2, as t → 0. Moreover, the solution fulfills the
energy decay estimate:

‖(−∆)1/4u(t)‖L2(S1) ≤ ‖(−∆)1/4u0‖L2(S1).

In fact, u ∈ C∞(]0,∞[×S1) and for an appropriate subsequence tk →∞, the sequence u(tk) converges
weakly in H1(S1) to a point.

Let us briefly recall the definition of harmonic and fractional harmonic maps. Harmonic maps are
the critical points of the following Dirichlet energy which is given for all maps u : M → N ⊂ Rn in
H1(M ;N) by:

E(u) :=
1

2

∫
M
gαβ(x)γij(u(x))

∂ui

∂xα
(x)

∂uj

∂xβ
(x)dx,

where (M, g), (N, γ) smooth Riemannian manifolds, u = (u1, . . . , un) and employing Einstein’s sum-
mation convention. In case M = Ω ⊂ Rm and N ⊂ Rn are isometrically embedded in Rm and Rn and
equipped with the Riemannian metrics induced by the standard scalar product, this reduces to:

E(u) =
1

2

∫
Ω
|∇u|2dx

One naturally is lead to the extension of the definition above to fractional harmonic maps. Namely,
we say that a map u : S1 → N ⊂ Rn is weakly 1/2-harmonic, if it is a critical point of the following
energy:

E1/2(u) :=
1

2

∫
S1

|(−∆)1/4u|2dx, (2.130)

with respect to variations in the following set:

H1/2(S1;N) :=
{
v ∈ H1/2(S1;Rn)

∣∣ u(x) ∈ N, for a.e. x ∈ S1
}

Namely, the criticality condition means that for every Φ ∈ Ḣ1/2(S1;Rn) ∩ L∞(S1), in particular all
smooth Φ ∈ C∞(S1;Rn), we have:

d

dt
E1/2 (π(u+ tΦ))

∣∣∣
t=0

= 0, (2.131)
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where π is the orthogonal closest-point projection to N , which is defined in a sufficiently small neigh-
bourhood of N and smooth due to N being smooth. As we shall see, this condition is equivalent
to:

dπ(u)(−∆)1/2u = 0 in D′(S1), (2.132)

which is sometimes also stated informally in the following form, observing that dπ(x) is the orthogonal
projection to TxN for every x ∈ N :

(−∆)1/2u ⊥ TuN

It is clear that, in order to study the regularity of 1/2-harmonic maps, the first step lies in the refor-
mulation of (2.132). Naturally, corresponding definitions for R instead of S1 are possible and due to
the conformal invariance, the theory of half-harmonic maps on S1 and R are equivalent by virtue of
composing with the (conformal) stereographic projection. Such equations were first studied in Da Lio-
Rivière [21] and questions regarding regularity, bubbling and general properties of such maps have been
adressed in the literature, see Da Lio [16]; Schikorra [76]; Da Lio-Schikorra [28], [27]; Da Lio-Pigati [20].

In this paper, we will study the associated evolution problem with the energy (2.130) for arbitrary
closed manifolds N ⊂ Rn. We shall see that this equation could be phrased as:

ut + (−∆)1/2u = (Id− dπ(u))(−∆)1/2u, (2.133)

or:

ut + (−∆)1/2u = d1/2u · d1/2

(
dπ⊥(u)

)
+ div1/2

(
Aiu(du, du)(x, y)

|x− y|1/2
dπ⊥(u(y))ij

)
, (2.134)

for u being a function assuming values a.e. in N with appropriate initial condition u(0) = u0 with
values in N . Other types of reformulations are possible and will appear later on. Similar problems
in the local setup have been studied in Struwe [89], [90] for the evolution problems associated with
the harmonic map equation and found existence in an appropriate sense. However, the case of weak
solutions was resolved by Rivière [68] in the case of small energy with values in spheres by means of
uniqueness and Freire [35] later on in general.

As in [102], we will focus here on the case of small energy for solutions in the weakest sense and
study a class of general solutions for arbitrary energy much like in Struwe [89]. Let us mention here
that a weak solution (see also Schikorra-Sire-Wang [77]) of the half-harmonic gradient flow is a function
u ∈ H1([0,+∞[;L2(S1;N)) ∩ L∞([0,+∞[;H1/2(S1;N)) such that∫ ∞

0

∫
S1

∂tu(t, x) · ϕ(t, x)dxdt+

∫ ∞
0

∫
S1

d1/2u(t, x) · d1/2ϕ(t, x)dxdt = 0, (2.135)

for all ϕ sufficiently nice functions with ϕ(0, ·) = 0 and ϕ(t, x) ∈ Tu(t,x)N in all points (t, x) ∈
[0,+∞[×S1. The restriction on the values of ϕ can be alleviated, but is omitted in order not to
obscure the definition (see (2.170) and the following computations for details on the precise right hand
side in case of general ϕ). We shall now prove:

Theorem 2.2.1.2. Let u0 ∈ H1/2(S1;N) be any initial datum and N be any closed manifold. There
exists ε > 0, such that if:

‖(−∆)1/4u0‖L2(S1) ≤ ε, (2.136)
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then there exists a unique energy class solution u : R+ × S1 → N ⊂ Rn of the weak fractional
harmonic gradient flow (2.133), (2.134) satisfying u(0, ·) = u0 in the sense u(t, ·) → u0 in L2, as
t→ 0. Moreover, the solution fulfills the energy decay estimate:

‖(−∆)1/4u(t)‖L2(S1) ≤ ‖(−∆)1/4u0‖L2(S1). (2.137)

In fact, u ∈ C∞(]0,∞[×S1) and for an appropriate subsequence tk → ∞, the sequence u(tk) con-
verges weakly in H1(S1) to a point. Without the small energy assumption, a unique solution u ∈
C∞(]0, T [×S1) ∩H1([0, T ]× S1;N) with non-increasing energy exists up to some time T that can be
bounded from below by the initial energy ‖(−∆)1/4u0‖L2(S1).

We would like to emphasise here that this result is new to our knowledge. It should especially
be noticed that while some existence results for weak solutions were known before (see Schikorra-
Sire-Wang [77]), the question remained open for non-homogeneous closed target manifolds. In our
discussion, there is no need to restrict to particularly symmetric target manifolds, the arguments are
completely general.

It would be interesting to study the behaviour of solutions to the half-harmonic gradient flow with
initial datum with high energy and see what happens. In particular, it would be worth investigating
blow-ups of the solution in finite time. If no blow-ups exist, then one may argue as in Struwe [89]
to extend solutions to arbitrary times, i.e. global smooth existence would be proven for all initial
data, with uniqueness of the solution among all that have non-increasing energy. Another intriguing
issue pertains to study the bubbling behaviour, as was initiated in Sire-Wei-Zheng [84] for bubbling
at t = +∞ for the target space S1 using a parabolic inner-outer gluing scheme well-known from other
parabolic PDEs. In this paper, the authors also conjecture that the half-harmonic gradient flow does
not blow-up in finite time, an intriguing conjecture that, to the autor’s knowledge, has yet to be
verified or disproven.

The key techniques employed in the current paper are similar to those encountered in [102].
Nonetheless, let us briefly sketch the general procedure in the proof of uniqueness and existence
for Theorem 2.2.1.2. Firstly, existence is obtained following an argument involving the inverse func-
tion theorem in Banach spaces. We use the Fredholm properties of the linearisation of the non-linear
operator associated with the half-harmonic gradient flow to prove local existence for sufficiently nice
boundary data and then show general local existence by the techniques found in Struwe [89], estab-
lishing uniform estimates and using suitable approximating sequences. The most interesting point in
the argument involves a bootstrap argument based on commutator estimates from Da Lio-Pigati [20]
and regularity results for the fractional heat flow as seen, for example, in Hieber-Prüss [46]. A crucial
step is the investigation of the kind of fractional heat equations solved by the difference between a
candidate for a solution of the half harmonic gradient flow and its projection onto N , which ultimately
allows us to prove that the candidate u indeed assumes values in N , which is a-priori unclear due to
the general nature of the arguments involved.

Secondly, uniqueness follows similar to Struwe [89], using ideas and reformulations from Mazowiecka-
Schikorra [57] based on (2.134) and arguments based on Rivière [68] to treat the energy class case
with small energy by some compensation phenomenon. In fact, the slight gain in integrability that is
obtained heavily relies on the emergence of an anti-symmetric potential after suitably rewriting the
the system and may be quantified as, for instance, in Da Lio-Pigati [20]. We refer to Proposition
2.2.4.1 for some details and the Appendix. The desirable properties of anti-symmetric properties have
first been observed in Rivière [70] and since been used also in the context of fractional harmonic maps
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(Da Lio-Rivière [21]) and the outlined argument is completely in line with the results in there. Lastly,
the convergence result is an immediate adaption of Struwe [89], as has previously been seen in [102]
for the case N = Sn−1.

The paper is organised as follows: In Section 2, we discuss and introduce some of the key notions
for our later arguments. Section 3 starts our investigation of the fractional harmonic gradient flow in
the case of N being a closed, orientable hypersurface. The formula we find is reminiscent of the one in
Mazowiecka-Schikorra [57] and [102] and emphasises the increased technical difficulty of dealing with
general N . In Section 4, we turn to arbitrary closed target manifolds N and first investigate different
formulations of the fractional harmonic gradient flow in Section 4.1. These turn out to be useful under
different circumstances and the equivalence of all of these forms is ensured for smooth solutions. Then,
we prove uniqueness of solutions under varying assumptions in Sections 4.2 by following Struwe [89]
and Rivière [68]. Uniqueness among strong solutions, i.e. solutions which are in H1

loc(R+ × S1), of
the half-harmonic gradient flow is a consequence of estimating the L2-norm of the difference between
two solutions with the same initial value, while uniqueness in the class of weak solutions relies on
slightly better integrability as established in the Appendix. Next, in Section 4.3, we deal with local
existence for smooth boundary data using ideas similar to Hamilton [43] and use estimates as in
Struwe [89] to deduce local existence and global existence for small initial energy as in [102]. Indeed,
the differences in the proofs in [102] and the current paper are rather technical, as the technique relies
on general properties of the non-linearity (quadratic growth in an appropriate sense, orthogonality to
the tangent space of N , etc.), as would be expected from a reasonable approach to the problem at
hand. Convergence results as t → ∞ are discussed in Section 4.4. The appendices complement the
presentation.

2.2.2 Preliminaries

Before we enter our discussion of the main result of this paper, we recall some notions from non-local
analysis. In particular, we present the definition of the Triebel-Lizorkin spaces on the unit circle, give
an equivalent characterisation under some technical assumptions as in Prats-Saksman [65] and define
the fractional gradient and fractional divergence that will appear later on, together with some useful
identities.

2.2.2.1 Fractional Laplacian and Triebel-Lizorkin Spaces

In this section, we recall the definition of the Triebel-Lizorkin spaces on the unit circle S1 ⊂ R2

as well as some of the most relevant properties of the fractional Laplacian, at least for our purposes.
The current presentation follows the one in Prats-Saksman [65], Prats [64] and Schmeisser-Triebel [80].

We may define a natural metric on S1 stemming from the identification S1 ' R/2πZ, providing a
useful formula for the metric on the universal covering of S1. The natural distance function given by:

|x− y|2 = |eix − eiy|2 = |ei(x−y) − 1|2,

which can be rewritten as:

|x− y| = 2

∣∣∣∣sin(x− y2

)∣∣∣∣ . (2.138)



81

We shall implicitly use this metric, whenever we are working over S1, without emphasizing this fact
further. Next, we define for any f : S1 → R:

Ds,q(f)(x) :=

(∫
S1

|f(x)− f(y)|q

|x− y|sq
dy

|x− y|

)1/q

,

for all 1 ≤ q < ∞ and 0 < s < 1. This results in the following definition as seen previously in
Prats-Saksman [65]:

‖f‖Ẇ s,(p,q)(S1) := ‖Ds,q(f)(x)‖Lp(S1),

for every 1 ≤ p ≤ ∞. If p = q, these spaces correspond to the usual homogeneous Gagliardo-Sobolev
spaces Ẇ s,p(S1). The operator Ds,q and its main properties are studied in Prats-Saksman [65] and
the references therein.

As per usual, one denotes by D′(S1) the collection of distributions on S1 and sometimes denote,
for notational convenience, by D(S1) the space C∞(S1) of smooth functions (the collection of test
functions). f̂(k) will always denote the k-th Fourier coefficient of f , for all f ∈ D′(S1) and k ∈ Z:

f̂(k) :=
1

2π
〈f, e−ikx〉 =

1

2π
f
(
e−ikx

)
, ∀k ∈ Z

Completely analogous to the situation on Rn, the Triebel-Lizorkin spaces for S1, denoted by F sp,q(S
1),

are defined for all s ∈ R, p, q ∈ [1,∞[ by the following identity:

F sp,q(S
1) :=

{
f ∈ D′(S1)

∣∣ ‖f‖F sp,q < +∞
}

Here we employ the norm defined below, analogous to the construction of function spaces on Rn:

‖f‖F sp,q :=

∥∥∥∥∥
∥∥∥∥∥
(∑
k∈Z

2jsϕj(k)f̂(k)eikx

)
j∈N

∥∥∥∥∥
lq

∥∥∥∥∥
Lp(S1)

, (2.139)

for an appropriate partition of unity (ϕj)j∈N consisting of smooth, compactly supported functions on
R satisfying:

suppϕ0 ⊂ B2(0), suppϕj ⊂ {x ∈ R | 2j−1 ≤ |x| ≤ 2j+1},∀j ≥ 1

as well as the boundedness property:

∀k ∈ N : sup
j∈N

2jk‖Dkϕj‖L∞ . 1

Such a family of functions can be easily constructed by the usual methods for Littlewood-Paley decom-
positions involving scalings. The Triebel-Lizorkin spaces on S1, and more generally on the n-torus,
possess a theory analogous to the classical case of function spaces on Rn, see Schmeisser-Triebel [80],
Chapter 3. In particular, Sobolev embeddings continue to hold ([80, Section 3.5.5]), identifications
with classical spaces such as Lp(S1) ([80, Section 3.5.4]) and duality results ([80, Section 3.5.6]). We
shall use the properties of these spaces throughout this paper and shall refer to the given reference for
details. The homogeneous spaces is now defined by omitting the Fourier coefficient of 0th-order and
adapting the notions accordingly.

In our later considerations, it will be most convenient to be able to work with norms different from,
but equivalent to (2.139). The reason lies in the technical nature of the norm (2.139) which we shall
not see explicitely emerge from the structure of the fractional gradient flow, but rather a different
incarnation. More precisely, in Prats-Saksman [65], the authors prove the following result:
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Theorem 2.2.2.1. Let s ∈ (0, 1), p, q ∈]1,∞[ and f ∈ Lp(Rn). Then:

(i) We know Ẇ s,(p,q)(Rn) ⊂ Ḟ sp,q(Rn) together with:

‖f‖Ḟ sp,q(Rn) . ‖f‖Ẇ s,(p,q)(Rn) (2.140)

(ii) If p > nq
n+sq , then we also have the converse inclusion together with:

‖f‖Ẇ s,(p,q)(Rn) . ‖f‖Ḟ sp,q(Rn) (2.141)

The constants depend on s, p, q, n.

We mention that the spaces introduced before easily generalize to Rn with the obvious modifica-
tions. Thus, the result makes sense over this domain.

As seen in Prats-Saksman [65] and by using the properties in Schmeisser-Triebel [80], Triebel [97]
for periodic functions, we can similarily discover the following equivalence with Triebel-Lizorkin spaces
for all 1 < q <∞ and 1 < p <∞:

Ẇ s,(p,q)(S1) = Ḟ sp,q(S
1), (2.142)

with equivalence of the corresponding seminorms, provided p > q
1+sq . For a proof of a part of the

result above in the case S1, we refer to the Appendix in [102]. If s = 1/2 and q = 2, then p > 1

is the requirement in Theorem 2.2.2.1 for the equality of Ḟ
1/2
p,2 and Ẇ 1/2,(p,2) to hold. Moreover, if

q = 2, an ubiquitous situation throughout this paper, the result surely applies for all p ≥ 2. It should
be observed that while Ḟ sp,2(S1) ⊂ Ẇ s,p(S1) = Ẇ s,(p,p)(S1) for p ≥ 2, there does not hold equality
except for p = 2. The reader is reminded of the difference between the Bessel potential spaces and the
Gagliardo-Sobolev spaces, which is more or less the underlying statement of this inclusion. We will
generally omit mentioning the domain, if it is clear from the context.

On S1, the fractional s-Laplacian is defined as a Fourier multiplier operating on Fourier series:

̂(−∆)sf(k) = |k|2sf̂(k),

for every k ∈ Z and all 0 < s. On the other hand, for 0 < s ≤ 1, this operator can be defined by a
singular integral as well:

(−∆)sf(x) = C(s) · P.V.
∫
S1

f(x)− f(y)

|x− y|1+2s
dy,

where C(s) > 0 denotes some constant depending on s. By the Fourier multiplier properties, fractional
Laplacians interact in a natural way with Triebel-Lizorkin spaces Ḟ sp,q(S

1), as is usual for this type of
function spaces. This means that it induces an isomorphism:

(−∆)s : Ḟ t+2s
p,q → Ḟ tp,q,

for all p, q ∈ (1,∞) and t, t+ 2s ∈ R, see [80, Section 3.6.3] and the proof of the analogous statement
in the case Rn.

In analogy, the s-Laplacian can be defined on R as a Fourier multiplier using the Fourier transform
rather than the Fourier series and leads again to an object which can also be characterised by a similar
principal value. We omit the details, as the formulas are virtually the same as for the circle, see for
example Garofalo [37] for an overview of different aspects of the fractional Laplacian.
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2.2.2.2 Fractional Gradients and Divergences

For our later use, we summarise and collect some of the ideas in Mazowiecka-Schikorra [57]. Namely,
we are most interested in the fractional gradient and fractional divergence and we recapitulate some
of the notions, as was already done in [102].

We denote by Mod(R × R) the set of all measurable functions f : R × R → R with respect to
the measure dxdy

|x−y| . One can make this definition equally well on S1 by exchanging the domain R for

the S1 and using the metric previously mentioned. Whenever a definition/property applies for both
domains, we shall sometimes denote this space by Mod.

For a measurable function f : R→ R or f : S1 → R, we define the fractional s-gradient as follows:

dsf(x, y) =
f(x)− f(y)

|x− y|s
∈Mod,

for all 0 ≤ s < 1. The corresponding s-divergence is then introduced by means of duality. It should
be clear, but is often useful to know that:

dsf(y, x) = −dsf(x, y)

As stated above, by duality, for F ∈ Mod(R× R) or F ∈ Mod(S
1 × S1), we are consequently able to

define for every ϕ smooth and compactly supported on R or just smooth on S1 in the latter case:

divs F (ϕ) :=

∫ ∫
F (x, y)dsϕ(x, y)

dxdy

|x− y|

This expression is hence defined merely in a distributional sense, i.e. by its duality relation with ds.
For later use, we generally denote for F,G ∈Mod over R or S1:

F ·G(x) :=

∫
F (x, y)G(x, y)

dy

|x− y|

As an obvious special case, if F = G we also write:

F · F (x) = |F |2(x)⇒ |F |(x) :=
√
F · F (x)

One should immediately notice the relationship between the previously defined norms on W s,(p,q)(S1).
Indeed, we have:

‖|dsf |‖Lp(S1) = ‖f‖Ẇ s,(p,2)(S1).

This provides a powerful characterisation of Triebel-Lizorkin spaces Ḟ sp,q(S
1) in terms of the fractional

gradients ds, under certain special technical conditions on s, p, q.

It is also possible to prove up to constants which we shall ignore, as they have no effect on the
results:

(−∆)sf = divs dsf,

which is particularily useful for the weak formulation of PDEs involving non-local operators. This
equation is to be understood in the following sense:

Cs

∫
dsf · dsg(x)dx =

∫
(−∆)sf · gdx =

∫
(−∆)s/2f · (−∆)s/2gdx,
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for the domains S1 and R. Lastly, the following identity, sometimes referred to as fractional Leibniz’
rule, is often useful:

ds (fg) (x, y) = dsf(x, y)g(x) + f(y)dsg(x, y). (2.143)

This identity can be verified by directly inserting the definition. Another type of Leibniz rule is
summarised in the following formula:

(−∆)1/2(fg) = (−∆)1/2f · g + f(−∆)1/2g − d1/2f · d1/2g, (2.144)

which again can be verified by directly inserting definitions. This formula also accounts for the com-
mutator behaviour. Therefore, the fractional gradient may be used to account for the error in the
Leibniz rule for the fractional Laplacian and specifies the order of the error.

In general, one defines Lpod(S
1×S1) or Lpod(R×R) as the set of all measurable functions, such that

the following norm is finite:

‖F‖Lpod :=

(∫ ∫
|F (x, y)|p dydx

|x− y|

)1/p

,

for 1 ≤ p < ∞. Obviously, L∞od(S
1 × S1) and L∞od(R × R) are then to be introduced in the usual

manner. These spaces are, in some sense, related to the spaces W s,(p,q).

2.2.3 The Fractional Harmonic Gradient Flow with Values in an orientable
Hypersurface

Before we turn our attention to the case of a general target manifold, we dedicate some time to
the uniqueness under improved regularity for the special case of an embedded hypersurface which is
orientable and closed. This case exhibits similar properties as in the case of the n− 1-sphere while es-
sentially containing all features encountered in the general case. Moreover, the harmonic map equation
possesses a slightly simpler form than in the general case, rendering this special case more tractable.
However, the main reason to consider this special case lies in the emergence of all phenomena which
we shall encounter in the general case, in particular the inclusion of a fractional divergence term, and
thus providing a toy example which will simplify our treatment of the case of a general target manifold.

Indeed, one of the main differences between the sphere Sn−1 and N a hypersurface will be that
the latter is described by a non-local PDE for the fractional harmonic flow which involves a fractional
divergence. The techniques used here can then be rather easily adapted to the more general framework,
as all estimates used are in some sense independent of the restrictions on N . The remaining properties
contained in Theorem 2.2.1.2, i.e. (local) existence as well as the convergence as t → +∞, shall be
proven in the next section for all N at the same time.

2.2.3.1 The Euler-Lagrange Equation of the Half-Harmonic Map

Let us consider N ⊂ Rn a closed hypersurface, i.e. an orientable, compact submanifold of dimension
n − 1 without boundary. An important example is of course N = Sn−1. Under these circumstances,
there exists a smooth unit normal field ν over N which, using the tubular neighbourhood theorem
and some cut-off-function, can be extended to a smooth vector field ν̃ on all of Rn, such that ν = ν̃
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on N and that ν is a unit vectorfield in a neighbourhood of N .

Our goal is now to rewrite the 1/2-harmonic map equation for maps with values in N . Following the
computations in [102], one may find along the same lines a formulation for the 1/2-harmonic gradient
flow. First, we recall from the introduction that a map u : S1 → N ⊂ Rn is called 1/2-harmonic, if it
is a critical point of the fractional 1/2-Dirichlet energy:

E(u) :=
1

2

∫
S1

|(−∆)1/4u|2dx,

with respect to variations in H1/2(S1;N). By compactness of N , we know that any element in this
function space is almost everywhere bounded:

H1/2(S1;N) ⊂ L∞(S1)

Let now u(t) be a variation in the set of functions introduced in the introduction, such that u(0) = u
is a critical point of the fractional energy E. We may use the tubular neighbourhood theorem to
construct u(t) = π(u + tϕ) for some ϕ ∈ C∞(S1). Here, we used π to denote the projection onto N
which is well-defined and smooth on a sufficently small neighbourhood and thus for t small enough.
This means:

u′(0) :=
d

dt
u(t)

∣∣
t=0

= dπ(u)ϕ

Then, we have for a critical point u of E:

0 =
d

dt
E(u(t))

∣∣
t=0

=
d

dt

(
1

2

∫
S1

|(−∆)1/4u(t)|2dx
) ∣∣∣

t=0

=

∫
S1

(−∆)1/4u · (−∆)1/4u′(0)dx

=

∫
S1

(−∆)1/2u · dπ(u)ϕdx, (2.145)

which, thanks to dπ being an orthogonal projection onto the tangent space TuN , can be rephrased as:

(−∆)1/2u ⊥ TuN (2.146)

This computation holds even for N which are merely closed, there is no need to assume for example
codimension 1. This condition becomes however useful, if we would like to find an explicit formula for
the harmonic map equation like in the local case, see Struwe [89], or as we have seen for N = Sn−1 in
Mazowiecka-Schikorra [57] or [102]. Namely, we know that:

(−∆)1/2u = λ · ν(u),

where λ is a scalar and depends on the point on S1 inserted into u. Equivalently:

λ = (−∆)1/2u · ν(u)

Take ψ to be any smooth, scalar-valued function on S1. We may then compute, by using the fractional
Leibniz rule (2.143):∫

S1

λ · ψdx =

∫
S1

(−∆)1/2u · ψν(u)dx



86

=

∫
S1

d1/2u(x, y) · d1/2 (ψν(u)) (x, y)
dxdy

|x− y|

=

∫
S1

d1/2u(x, y) ·
(
d1/2 (ν ◦ u) (x, y)ψ(x) + d1/2ψ(x, y)ν(u(y))

) dxdy

|x− y|

=

∫
S1

d1/2u(x, y) ·
(
d1/2 (ν ◦ u) (x, y)ψ(x) + d1/2ψ(x, y)

ν(u(x)) + ν(u(y))

2

)
dxdy

|x− y|
,

(2.147)

where we used a change of variables (i.e. exchanging x with y and vice versa) to justify the last
equation. Let us observe that we therefore have:

λ = d1/2u · d1/2 (ν ◦ u) + div1/2

(
d1/2u(x, y)

ν(u(x)) + ν(u(y))

2

)
(2.148)

We emphasise that the operator div1/2 is defined precisely as the dual of the fractional gradient d1/2,
so that the identity in fact holds true. Let us observe that the first summand is actually hiding a
quadratic structure similar to the one in the case N = Sn−1 (see [102]) or the local case. Namely, we
observe that by the fundamental theorem of calculus:

d1/2 (ν ◦ u) (x, y) =
ν(u(x))− ν(u(y))

|x− y|1/2

=
1

|x− y|1/2

∫ 1

0
dν̃ (u(y) + s (u(x)− u(y))) (u(x)− u(y)) ds

=

∫ 1

0
dν̃ (u(y) + s (u(x)− u(y))) ds · d1/2u(x, y)

=: Ãu(x, y)d1/2u(x, y), (2.149)

where we notice the similarity of Ãu in a certain sense with the term appearing in the local case. We
notice that Ãu is bounded, therefore giving the estimate:∣∣d1/2u · Ãud1/2u(x, y)

∣∣ ≤ ‖Ãu‖L∞ |d1/2u|2

2.2.3.2 Toy Example: Uniqueness under Improved Regularity

We now turn to the gradient flow associated with the fractional harmonic map with values in N ⊂ Rn.
Therefore, as in the case N = Sn−1 treated in [102], let us assume that u, v are two solutions to
the fractional gradient flow taking a.e. values in the closed, orientable hypersurface N ⊂ Rn and we
suppose the following regularity conditions hold:

u, v ∈ L∞(R+;H1/2(S1)) ∩ L2
loc(R+;H1(S1)); ut, vt ∈ L2(R+;L2(S1))), (2.150)

In addition, they satisfy the gradient flow associated with the 1/2-harmonic map as described below
(see the discussion in [102] and the previous subsection for a justification of this equation):

wt + (−∆)1/2w = d1/2w · Ãwd1/2w · ν(w) + div1/2

(
d1/2w(x, y)

ν(w(x)) + ν(w(y))

2

)
· ν(w), (2.151)

for both w = u and w = v, together with the boundary condition u(0, ·) = v(0, ·) = u0 ∈ H1/2(S1;N).
It is intuitively clear that the same arguments as in the proof of Theorem 3.2 in [102] should be
applicable to the current situation to deduce an analogous uniqueness result, as long as we assume
the same kind of regularity for the solution as there. Indeed, we shall prove:
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Theorem 2.2.3.1. If u, v both solve (2.151) with the same initial datum u0 ∈ H1/2(S1;N) and we
assume that:

‖(−∆)1/4u(t)‖L2(S1), ‖(−∆)1/4v(t)‖L2(S1) ≤ ‖(−∆)1/4u0‖L2(S1), ∀t ∈ R+,

then we have:
u = v µ-a.e.

The strategy of the proof is analogous to the one for N = Sn−1, cf. [102]. The main changes
mostly consist of finding suitable decompositions of the different contributions for the situation at
hand, in particular the divergence term. We therefore focus on providing the key estimates needed for
the proof and refer to our previous work for the remaining details:

Proof. The main idea is to study the non-local PDE solved by the difference between u and v. There-
fore, we are led to define:

w := u− v,

and observe that:
w(0, ·) = u(0, ·)− v(0, ·) = 0.

We find that w solves the following PDE by linearity of derivatives and the fractional Laplacians:

wt + (−∆)1/2w = ut + (−∆)1/2u− vt − (−∆)1/2v

= R1 +R2, (2.152)

where:

R1 := d1/2u · Ãud1/2u · ν(u)− d1/2v · Ãvd1/2v · ν(v) (2.153)

R2 := div1/2

(
d1/2u

ν(u(x)) + ν(u(y))

2

)
ν(u)− div1/2

(
d1/2v

ν(v(x)) + ν(v(y))

2

)
ν(v) (2.154)

Naturally, we would like to estimate R1 and R2 in a similar way as we have done for the n− 1-sphere.
We treat both contributions individually:

Claim: We have the following estimate:

|R1|(x) .
(
|d1/2u|(x) + |d1/2v|(x)

)
|d1/2w|(x) +

∫
S1

(|w(x)|+ |w(y)|)
|d1/2v(x, y)|2

|x− y|
dy

Proof of Claim: We observe that by using the fundamental theorem of calculus, we can deal
with the fractional gradients of ν(u), ν(v), i.e. the additional term Ãu, Ãv. Namely, we have:

R1 = d1/2u · Ãud1/2u− d1/2v · Ãvd1/2v

=
(
d1/2u · Ãud1/2u− d1/2v · Ãud1/2v

)
+ d1/2v ·

(
Ãu − Ãv

)
d1/2v

=: R1,1 +R1,2 (2.155)

For R1,1, we proceed by using the fundamental theorem of calculus:

R1,1 =

∫ 1

0

d

ds

(
d1/2 ((1− s)v + su) · Ãud1/2 ((1− s)v + su)

)
ds
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=

∫ 1

0

d

ds

(∫
S1

d1/2 ((1− s)v + su) (x, y) · Ãu(x, y)d1/2 ((1− s)v + su) (x, y)
dy

|x− y|

)
ds

.
∫ 1

0

∫
S1

|d1/2 ((1− s)v + su) (x, y)| · |Ãu(x, y)| · |d1/2 (u− v) (x, y)| dy

|x− y|
ds

.
∫ 1

0

∣∣d1/2 (v + s(u− v))
∣∣ (x)

∣∣d1/2w
∣∣ (x)ds

.
(
|d1/2u|(x) + |d1/2v|(x)

)
· |d1/2w|(x) (2.156)

This contribution can be dealt with just as in the case N = Sn−1 after we test against w itself, see
[102]. Concerning R1,2, we may use:

Ãu(x, y)− Ãv(x, y)

=

∫ 1

0
dν̃ (u(y) + s (u(x)− u(y))) ds−

∫ 1

0
dν̃ (v(y) + s (v(x)− v(y))) ds

=

∫ 1

0

d

dt

(∫ 1

0
dν̃ (v(y) + tw(y) + s ((v(x) + tw(x)− v(y)− tw(y))) ds

)
dt

=

∫ 1

0

∫ 1

0
d(dν̃) ((1− s)(v(y) + tw(y)) + s(v(x) + tw(x))) · ((1− s)w(y) + sw(x)) dsdt (2.157)

This concludes the proof of the claim.

Now we may obtain an estimate as in the case N = Sn−1 by testing against w and:

wi(y)wj(x) ≤ wi(y)2 + wj(x)2

2
≤ |w|

2(y) + |w|2(x)

2
,

which enables us, together with the symmetry of the emerging integrals in x, y and thus exchanging
the order of integrals in x and y, to arrive at an estimate reminiscent of the first term on the right
hand side of equation (20) in [102].

It remains to consider R2. This term does not possess an immediate analogue in the case N = Sn−1,
thus it seems to require some additional work. Fortunately, the ideas that were involved in the
estimation of R1 (together with using the duality definition of div1/2 and Leibniz’ rule for fractional
gradients as in Section 2) may be expanded upon to reach a suitable estimates. Let us first notice
that testing against w yields for νu(x, y) := (ν(u(x)) + ν(u(y)))/2:∫

S1

R2wdx =

∫
S1

∫
S1

d1/2ud1/2 (ν(u)w) νu(x, y)− d1/2vd1/2 (ν(v)w) νv(x, y)
dxdy

|x− y|
(2.158)

To conclude, we have to estimate this expression appropriately. We see:

d1/2ud1/2 (ν(u)w) νu(x, y)− d1/2vd1/2 (ν(v)w) νv(x, y)

= d1/2ud1/2 (ν(u)w) νu(x, y)− d1/2ud1/2 (ν(v)w) νu(x, y)

+ d1/2ud1/2 (ν(v)w) νu(x, y)− d1/2vd1/2 (ν(v)w) νu(x, y)

+ d1/2vd1/2 (ν(v)w) νu(x, y)− d1/2vd1/2 (ν(v)w) νv(x, y)

=: R2,1 +R2,2 +R2,3 (2.159)
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More precisely, we have that:

R2,1 = d1/2ud1/2 ((ν(u)− ν(v))w) νu(x, y),

and:
R2,2 = d1/2wd1/2 (ν(v)w) νu(x, y),

and finally:
R2,3 = d1/2vd1/2 (ν(v)w) (νu(x, y)− νv(x, y))

We shall use the fractional Leibniz’ rule as already seen in Section 2, see (2.143):

d1/2 (fw) (x, y) = f(x)
w(x)− w(y)

|x− y|1/2
+ w(y)

f(x)− f(y)

|x− y|1/2
,

which leads us to:

d1/2 ((ν(u)− ν(v))w) (x, y) = (ν(u(x))− ν(v(x))) d1/2w(x, y) + d1/2 (ν(u)− ν(v))w(y)

So we may estimate R2,1 for example as follows:∣∣∣∣∫
S1

R2,1dx

∣∣∣∣ ≤ ∫
S1

|d1/2u|(x)|d1/2w|(x)|ν(u(x))− ν(v(x))|dx

+

∫
S1

|d1/2u|(y)
∣∣d1/2 (ν(u)− ν(v))

∣∣ (y)|w|dy

.
∫
S1

|d1/2u|(x)|d1/2w|(x)|w|dx, (2.160)

by using again the smoothness of ν̃ and renaming the variable of integration. This is a term that can
be treated as before.

The remaining summands R2,2 and R2,3 are a bit more delicate to deal with, mainly because we
have to use another kind of estimate in our proceedings. Let us start with R2,2 and observe the
following: We shall denote by π the smooth closest point projection defined in a neighbourhood of
N and extended to all of Rn by using a cut-off function (compare with the construction in the next
section for some more details). We have for all x ∈ S1, using Einstein’s summation convention and
u = (u1, . . . , un) and similarily for v and w:

ν(v(x))iwi(x) = ν(v(x))i(ui(x)− vi(x))

= ν(v(x))i (∂jπ(v(x))i(uj(x)− vj(x)))

+ ν(v(x))i

(∫ 1

0

∫ 1

0
t∂kjπ(v(x) + tsw(x))i(uj(x)− vj(x))(uk(x)− vk(x))dsdt

)
= ν(v(x))i

(∫ 1

0

∫ 1

0
t∂kjπ(v(x) + tsw(x))i(uj(x)− vj(x))(uk(x)− vk(x))dsdt

)
=: Du,v

jk (x)(uj(x)− vj(x))(uk(x)− vk(x)) = Du,v
j,k (x)wj(x)wk(x) (2.161)

by using Taylor expansion around the point v(x). Observe that we exploited the fact that dπ(v(x))
maps to the tangent space Tv(x)N of N at v(x), which immediately shows:

ν(v(x))dπ(v(x))w(x) = 0,
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as ν(v(x)) is orthogonal to the projected vector dπ(v(x))w(x). If we insert this into R2,2 instead of
ν(v)w, we see by using d0w = d0u− d0v, boundedness of u, v and therefore also of w, and estimating
Duv
jk and its fractional gradient using the smoothness of π:∣∣∣∣∫

S1

R2,2dx

∣∣∣∣ . ∫
S1

|d1/2w|(x)|w|
(
|d1/2u|(x) + |d1/2v|(x)

)
dx (2.162)

In fact, we used implicitly a decomposition of the following form:

d1/2 (ν(v)w) (x, y) = d1/2

(
Du,v
j,kw

jwk
)

(x, y)

= d1/2D
u,v
j,k (x, y) · wj(x)wk(x)

+Du,v
j,k (y) · d1/2w

j(x, y) · wk(x)

+Du,v
j,k (y)wj(y) · d1/2w

k(x, y), (2.163)

which can then be dealt with similar to the term R1 and R1,2. Note that |d1/2w|(x) and |d1/2D
u,v
j,k |(x)

can both be bounded by |d1/2u|(x) + |d1/2v|(x) and that ‖w‖L∞ < +∞, as N is compact and u, v
both assume values a.e. in N . Similarily, it is clear that Du,v

j,k is bounded, due to the regularity of the
extended closest-point-projection π.

To arrive at a similar estimate for R2,3, we notice the following by using the formula above for
ν(v)w and exchanging the labels x, y at some point:∣∣∣∣∫

S1

R2,3dx

∣∣∣∣ . ∫
S1

(|d1/2u|(x) + |d1/2v|(x))|d1/2w|(x)|w|+ (|d1/2u|(x) + |d1/2v|(x))2(x)|w|2dx (2.164)

Comparing this with the estimates in the case N = Sn−1, we see that we may now proceed as in
the proof there, since the main estimate in equation (23) of [102] can now be generalized and the
remainder of the proof is of general nature and does not rely on any particular structure of Sn−1.
To be more precise, the main point now is to apply Cauchy-Schwarz in order to deduce estimates for
the L2-norm of w at fixed times and absorbing all these terms, after maximizing over a small enough
time interval, in the left side. The absorption relies on a fractional Ladyzenskaya-type estimate and
the characterisation of Triebel-Lizorkin norms by fractional gradients. As a result, this concludes the
proof of Theorem 2.2.3.1.

Naturally, the proof of uniqueness also continues to work for a variety of non-linearities which
are in some sense quadratic in the fractional gradient and sufficiently smooth by precisely the same
arguments. Moreover, as we have seen in the case of general hypersurfaces, certain perturbation terms
are allowed to appear without obstructing the argument, namely some kinds of divergence terms.
Therefore, it is expected that analogous results hold for fractional harmonic flows with values in arbi-
trary closed smooth manifolds by means virtue of a suitable quadratic structure similar to the local
case, where it is intimately connected to the curvature of the manifold. In fact, there is an explicit
formula for the half-harmonic map given in Mazowiecka-Schikorra [57] which we shall exploit in the
next section. There, we shall also present the missing argument for the improvement in regularity
needed to conclude the proof of uniqueness in the energy class for solutions with small 1/2-energy.

To conclude this section, let us, for completeness’ sake, mention the following: The choice of
equation (2.151) is natural for orientable hypersurfaces, due to the existence of a unit normal vector
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field ν. Nevertheless, one could omit the use of such a vector field by using that the non-linearity in
the 1/2-harmonic map equation could be phrased as:

(−∆)1/2u(x)

= (Id− dπ(u)(x)) (−∆)1/2u(x)

= P.V.

∫
S1

u(x)− u(y)

|x− y|2
dy − dπ(u)(x)P.V.

∫
S1

u(x)− u(y)

|x− y|2
dy

= P.V.

∫
S1

u(x)− u(y)− dπ(u)(x) (u(x)− u(y))

|x− y|2
dy

= P.V.

∫
S1

∫ 1

0

∫ 1

0
(s− 1)d(dπ)(u(x) + (st− t)(u(x)− u(y)))dsdtd1/2u(x, y)d1/2u(x, y)

dy

|x− y|

=:

∫
S1

P (x, y)d1/2u(x, y)d1/2u(x, y)
dy

|x− y|
, (2.165)

where we denote again by π also an extension by cut-off of the closest point projection and use
π(u(x)) = u(x) for u being a solution to the 1/2-harmonic map equation in N . The map P is defined
appropriately:

P (x, y) :=

∫ 1

0

∫ 1

0
(s− 1)d(dπ)(u(x) + (st− t)(u(x)− u(y)))dsdt,

and one sees that it is clearly bounded. Observe that (2.165) includes an implicit quadratic form
summing over the components of d1/2u. The equation follows by using Taylor-type expansions. It is
clear that we could immeidately estimate (2.165) directly in the same way as R1 in the proof above
and obtain uniqueness this way. Moreover, it is easily seen that the gradient flow equation with the
non-linearity in (2.165) and (2.151) actually are equivalent for sufficiently regular solutions. Lastly,
this formulation also gives a closer connection with the case N = Sn−1 as we have previously seen in
[102].

2.2.4 Fractional Harmonic Gradient Flow with Values in a General Manifold

After having treated the case of orientable, closed hypersurfaces in some detail, we perform analogous
investigations to resolve the general case and finally also discuss existence and convergence of solutions
to the fractional harmonic gradient flow. In our computations and simplifications of the half-harmonic
map equation, we follow Mazowiecka-Schikorra [57], where the half-harmonic map equation was already
stated as well as treated and some of its features were already highlighted. We enhance the exposition
given there by analysing certain estimates in more detail, leading to the uniqueness result under
improved regularity following the process outlined in the introduction and seen in the previous section.
To prove that energy class solutions actually possess slightly better regularity properties than assumed
under some smallness condition on the energy which is uniform in time, one proceeds similar to the
one for Sn−1. The major difference lies in the use of Morrey estimates in the case p = 2 following Da
Lio-Pigati [20], as we would like to deduce slightly better integrability and then apply the techniques
in Rivière [68] for arbitrary integrability of the fractional gradient. This change of method should
however not obscure the fact that the regularity gain once more stems from the hidden structure of an
anti-symmetric potential within the forumlation of the half-harmonic gradient flow. The discussion
of local existence and convergence on the other hand is very similar to [102], once we fix the right
formulation for the 1/2-harmonic gradient flow.
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2.2.4.1 Half-Harmonic Map Equation for general Target Manifolds

Preliminaries Before we begin our analysis of the fractional harmonic gradient flow, we want to
study the 1/2-harmonic map equation and its features. Throughout this chapter, we assume that
N ⊂ Rn is a closed and smooth manifold, in particular it is compact and without a boundary. Let
us denote by Bδ(N) the δ-neighbourhood of N , i.e. the collection of all points in Rn at a distance
< δ from N . This definition obviously makes sense for any δ > 0. By standard theory of smooth
manifolds, i.e. the tubular neighbourhood theorem, we know that the closest point projection is a
well-defined and smooth map:

π : Bδ(N)→ N,

for sufficiently small δ > 0, such that:

‖π(x)− x‖ = inf
y∈N
‖x− y‖, ∀x ∈ Bδ(N)

One can show that the differential of π at any point x ∈ N is actually the orthogonal projection onto
the tangent space of N at x. The orthogonality of the projection means that the following holds:

∀x ∈ N : dπ(x)2 = dπ(x) = dπ(x)T

Let ϕ ∈ C∞c (Rn) be a smooth, compactly supported function, such that suppϕ ⊂ Bδ(N) and assume
that:

ϕ(x) = 1, ∀x ∈ Bδ/2(N)

Then we may extend π to a map π̃ : Rn → Rn by the following formula:

π̃(x) = ϕ(x) · π(x), ∀x ∈ Bδ(N),

as well as π̃(x) = 0 for every x /∈ Bδ(N). This map is clearly well-defined and smooth. It agrees with
π on the set Bδ/2(N), but has the advantage of being defined globally, rendering certain definitions
and computations easier later on. By abuse of notation, we shall from now on refer to π̃ as π to keep
the notation as simple as possible. It should be noticed at this point that the set of fixed points of π̃
consists of N and a set Ñ with positive distance from N due to the definition of the extension of the
closest point projection.

We recall that a function u ∈ H1/2(S1;N) is called weakly 1/2-harmonic, if and only if:

(−∆)1/2u ⊥ TuN ⇔ dπ(u)(−∆)1/2u = 0, (2.166)

see Da Lio-Rivière [21], Mazowiecka-Schikorra [57] and the references therein. This can be easily
verified, as 1/2-harmonic maps are precisely the critical points in H1/2(S1;N) of the energy:

E(u) :=
1

2

∫
S1

|(−∆)1/4u|2dx

Arguing as for hypersurfaces shows that the orthogonality relation above is another way to phrase
this relation. Computing the Euler-Lagrange equation using a variation of the form:

u(t) := π(u+ tϕ),
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for ϕ ∈ C∞(S1) and t small enough, such that u + tϕ ∈ Bδ/2(N), i.e. such that π maps u + tϕ

to a point on N a.e. and thus to conclude u(t) ∈ H1/2(S1;N). By criticality, the Euler-Langrange
equation can be computed using differentiation of E(u(t)) with respect to t at t = 0:

d

dt

(
1

2

∫
S1

|(−∆)1/4u(t)|2
) ∣∣∣

t=0
=

∫
S1

(−∆)1/4u · (−∆)1/4

(
d

dt
u(t)

∣∣∣
t=0

)
dx

=

∫
S1

(−∆)1/2u · dπ(u)ϕdx

=

∫
S1

∫
S1

d1/2u(x, y)d1/2 (dπ(u)ϕ) (x, y)
dydx

|x− y|
, (2.167)

which is precisely how we understand (2.166). The product of the vectors is naturally understood as
a scalar product in the usual sense.

For later use, we shall sometimes write dπ⊥(u) for the following:

dπ⊥(u) := Id− dπ(u) (2.168)

One should observe that for every x ∈ N , the differential dπ⊥(p) is actually another orthogonal
projection, meaning:

dπ⊥(x)T = dπ⊥(x) = dπ⊥(x)2

This can be easily deduced from the corresponding identities for dπ(x).

Rewriting the Half-Harmonic Map Equation (2.166) Our first goal lies in the simplification
of the half-harmonic map equation (2.166), similar considerations then apply to the 1/2-harmonic
gradient flow which is defined by the equation:

ut + (−∆)1/2u ⊥ TuN, ∀(t, x) ∈ R+ × S1,

see also [102] for the case N = Sn−1. Therefore, working merely with the 1/2-harmonic map equation
instead of the associated flow is for brevity’s sake.

In fact, we would like to write the fractional harmonic map equation in a similar form as in the case
of N = Sn−1 or even the case of closed, orientable hypersurfaces, since this form seems appropriate
for the proof of a Regularity Lemma similar to Lemma 3.4 in [102] and Rivière [68]. In addition,
such considerations are useful when studying uniqueness under improved regularity assumptions, as
we have seen both for N = Sn−1 and N being a closed, orientable hypersurface. Indeed, we rewrote
the half-harmonic map equation in both cases in such a way that enabled us to estimate certain
summands more easily and reveal a quadratic structure in the non-local PDE. The computations we
make are precisely the ones found Mazowiecka-Schikorra [57], we merely rewrite certain terms in a
manner more appropriate for our purposes and provide more general estimates than the ones found
in Mazowiecka-Schikorra [57].

Our goal is to establish the following slightly informal proposition:
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Proposition 2.2.4.1. Let u : R≥0 × S1 → N be a solution to the half-harmonic gradient flow. Then
the half-harmonic gradient flow can be rewritten as:

ut + (−∆)1/2u = Ωu · d1/2u+Ru,u1 +Ru,u2 +Ru,u3 , (2.169)

where Ωu is anti-symmetric and all terms and operators on the righthand side depend on u. Moreover,
the terms Ru,u1 , Ru,u2 and Ru,u3 satisfy estimates like:

|Rv,w1 (ϕ)| . ‖ϕ‖
Ḟ

1/2

p′,2
‖v‖

Ḟ
1/2
2,2

‖w‖
Ḟ

1/2
p,2

,

for all appropriate v, w, ϕ and p ≥ 2.

The terms involved in the result above will be introduced step-by-step below.

First of, let ϕ ∈ C∞(S1). Then we know by using the fractional version of Leibniz’ rule as seen
for example in (2.143) with s = 1/2:∫

S1

d1/2u · d1/2ϕdx =

∫
S1

d1/2u · d1/2 (dπ(u)ϕ) dx+

∫
S1

d1/2u · d1/2

(
dπ⊥(u)ϕ

)
dx

=

∫
S1

d1/2u · d1/2

(
dπ⊥(u)ϕ

)
dx

=

∫
S1

∫
S1

d1/2u(x, y)d1/2(dπ⊥(u))(x, y)
dy

|x− y|
ϕ(x)dx

+

∫
S1

∫
S1

d1/2u(x, y)dπ⊥(u(y))d1/2ϕ(x, y)
dydx

|x− y|
(2.170)

This is the computation for the half-harmonic map, for the associated gradient flow, it would be
analogous since:∫

S1

ut · ϕdx+

∫
S1

d1/2u · d1/2ϕdx

=

∫
S1

ut · dπ(u)ϕdx+

∫
S1

d1/2u · d1/2 (dπ(u)ϕ) dx+

∫
S1

d1/2u · d1/2

(
dπ⊥(u)ϕ

)
dx

=

∫
S1

d1/2u · d1/2

(
dπ⊥(u)ϕ

)
dx, (2.171)

and the remaining steps being now analogous, by noticing ut ∈ TuN . Observe also that we used
(2.166) in the second step of (2.170) for u half-harmonic. We shall refer to the second summand as
R1(ϕ):

R1(ϕ) :=

∫
S1

∫
S1

d1/2u(x, y)dπ⊥(u(y))d1/2ϕ(x, y)
dydx

|x− y|
The goal is to treat R1 as a perturbation of a ”main order term”, which we consider to be the
remaining one in (2.170). To achieve this, we need the following Lemma that was already stated in
Mazowiecka-Schikorra [57]:
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Lemma 2.2.4.1. Let x, y ∈ S1 and u ∈ H1/2(S1;N). Then the following holds for all x, y ∈ S1 such
that u(x), u(y) ∈ N :

u(x)− u(y) = dπ(u(y)) (u(x)− u(y)) +

∫ 1

0

∫ 1

0
td (dπ) ((1− ts)u(y) + tsu(x)) (u(x)− u(y))2dsdt

More precisely, for i = 1, . . . , n, we have for the i-th component of u = (u1, . . . , un):

ui(x)− ui(y) = dπ(u(y))ij(uj(x)− uj(y))

+

∫ 1

0

∫ 1

0
t∂kjπi ((1− ts)u(y) + tsu(x)) (uj(x)− uj(y))(uk(x)− uk(y))dsdt,

adopting Einstein’s summation convention.

Similar identities and/or estimates already appeared in Da Lio-Pigati [20], Mazowiecka-Schikorra
[57]. We shall define the following quantity based on Lemma 2.2.4.1:

Au(dv, dw)(x, y) :=

∫ 1

0

∫ 1

0
td (dπ) ((1− ts)u(y) + tsu(x)) (v(x)− v(y))(w(x)− w(y))dsdt (2.172)

This simplifies the result above considerably. In fact, we could restate Lemma 2.2.4.1 as:

ui(x)− ui(y) = dπ(u(y))ij(uj(x)− uj(y)) +Aiu(du, du)(x, y),

We emphasise that this is one of the main points why we would like to consider π as a map defined on
all of Rn. This way, we may insert any value into the function, meaning that even if (1−ts)u(y)+tsu(x)
is not necessarily in N or even close enough for the closest point projection to be well-defined, the
extension of the projection and thus the formula above remain defined everywhere. The proof is
an immediate and standard application of Taylor’s formula and/or repeated applications of the fun-
damental theorem of calculus and therefore omitted. We refer to Mazowiecka-Schikorra [57] for details.

Using the orthogonality of the projections dπ and dπ⊥, we may deduce (again using Einstein’s
summation convention):

R1(ϕ) =

∫
S1

∫
S1

ui(x)− ui(y)

|x− y|1/2
dπ⊥(u(y))ijd1/2ϕj(x, y)

dydx

|x− y|

=

∫
S1

∫
S1

dπ(u(y))ik(uk(x)− uk(y))

|x− y|1/2
dπ⊥(u(y))ijd1/2ϕj(x, y)

dydx

|x− y|

+

∫
S1

∫
S1

Aiu(du, du)(x, y)

|x− y|1/2
dπ⊥(u(y))ijd1/2ϕj(x, y)

dydx

|x− y|

=

∫
S1

∫
S1

Aiu(du, du)(x, y)

|x− y|1/2
dπ⊥(u(y))ijd1/2ϕj(x, y)

dydx

|x− y|
, (2.173)

since:
dπ(u(y))ikdπ

⊥(u(y))ij = 0, ∀k, j,
due to orthogonality of the projection and dπ⊥ = Id− dπ. We observe that the formula above for R1

could also be stated as:

R1 = div1/2

(
Aiu(du, du)(x, y)

|x− y|1/2
dπ⊥(u(y))ij

)
This combined with the computations in (2.170) show us that the fractional harmonic map equation
can actually be rephrased as:
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Lemma 2.2.4.2. Assume that u ∈ H1/2(S1;N) is a half-harmonic map. Then u solves the following
non-local PDE:

(−∆)1/2u = d1/2u · d1/2

(
dπ⊥(u)

)
+ div1/2

(
Aiu(du, du)(x, y)

|x− y|1/2
dπ⊥(u(y))ij

)
(2.174)

The proof is an immediate consequence of our computations above.

Comparing this with the previously investigated case of orientable, closed hypersurfaces and keep-
ing (2.148) in mind, we notice the immediate similarities between the two equations. Indeed, this will
be a crucial point in reducing our computations to establish uniqueness under improved regularity
and obtaining the result basically for free from what we have already done.

We may prove the following estimates:

Lemma 2.2.4.3. Let ϕ ∈ Ḟ 1/2
p′,2(S1) for 1/p+1/p′ = 1 and p ≥ 2 finite. Then, for all v ∈ Ḟ 1/2

2,2 (S1), w ∈
Ḟ

1/2
p,2 (S1), we have:

|Rv,w1 (ϕ)| :=
∣∣∣∣∫
S1

∫
S1

Aiu(dv, dw)(x, y)

|x− y|1/2
dπ⊥(u(y))ijd1/2ϕj(x, y)

dydx

|x− y|

∣∣∣∣ . ‖ϕ‖Ḟ 1/2

p′,2
‖v‖

Ḟ
1/2
2,2

‖w‖
Ḟ

1/2
p,2

(2.175)

In addition, for v, w ∈ Ḟ 1/2
4,2 (S1), we have:∫

S1

∫
S1

Aiu(dv, dw)(x, y)

|x− y|1/2
dπ⊥(u(y))ijd1/2ϕj(x, y)

dydx

|x− y|

=

∫
S1

∫
S1

Aiu(dv, dw)(x, y)dπ⊥(u(y))ij −Aiu(dv, dw)(y, x)dπ⊥(u(x))ij
dy

|x− y|2
ϕj(x)dx,

and as a result Rv,w1 ∈ L2(S1) with:

‖R1‖L2 . ‖v‖
Ḟ

1/2
4,2

‖w‖
Ḟ

1/2
4,2

(2.176)

Proof. The first estimate follows by letting 0 < s < 1 and observing:∣∣∣ ∫
S1

∫
S1

Aiu(dv, dw)(x, y)

|x− y|1/2
dπ⊥(u(y))ijd1/2ϕ(x, y)

dydx

|x− y|

∣∣∣
.

∣∣∣∣∫
S1

∫
S1

|dsv(x, y)||d1/2−sw(x, y)||d1/2ϕ(x, y)| dydx
|x− y|

∣∣∣∣
. ‖v‖Ẇ s,(1/s,4)‖w‖Ẇ 1/2−s,(p/(1−sp),4)‖ϕ‖Ẇ 1/2,(p′,2) , (2.177)

where we used the triangle inequality and Hölder’s inequality. If we can choose s in a way, such that:

p

1− sp
>

4

3− 4s
,
1

s
>

4

1 + 4s
,

we may use the identification mentioned in the preliminary section. One notices that the latter
inequality is trivially true, while the first one reduces to:

p ≥ 2 >
4

3
,
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which again holds trivially. So the choice of s ∈ (0, 1/2) is immaterial here (we just need to ensure that
we do not divide by 0 or have negative Hölder exponents). Indeed these conditions lead to 0 < s < 1/p,
which clearly allows for a choice of s. Consequently, we may identify:

Ẇ s,(1/s,4) = Ḟ s1/s,4, Ẇ 1/2−s,(p/(1−sp),4) = Ḟ
1/2−s
p/(1−sp),4, Ẇ 1/2,(p′,2) = Ḟ

1/2
p′,2 ,

and the norms are equivalent, as mentioned in the preliminary section, see Prats-Saksman [65]. By
using Sobolev embeddings for Triebel-Lizorkin spaces, this shows:

‖v‖Ḟ s
1/s,4
. ‖v‖Ḟ s

1/s,2
. ‖v‖

Ḟ
1/2
2,2

,

as well as:
‖w‖

Ḟ
1/2−s
p/(1−sp),4

. ‖w‖
Ḟ

1/2−s
p/(1−sp),2

. ‖w‖
Ḟ

1/2
p,2

.

Combining these inequalities with the estimate in (2.177), we find the desired result:∣∣∣ ∫
S1

∫
S1

Aiu(dv, dw)(x, y)

|x− y|1/2
dπ⊥(u(y))ijd1/2ϕ(x, y)

dydx

|x− y|

∣∣∣ . ‖ϕ‖
Ḟ

1/2

p′,2
‖v‖

Ḟ
1/2
2,2

‖w‖
Ḟ

1/2
p,2

For the second identity mentioned above, one observes that the equality mentioned holds by a simple
change of role between x and y. The estimate is then obtained by noticing:∣∣∣ ∫

S1

∫
S1

Aiu(dv, dw)(x, y)dπ⊥(u(y))ij −Aiu(dv, dw)(y, x)dπ⊥(u(x))ij
dy

|x− y|2
ϕj(x)dx

∣∣∣
.
∫
S1

∫
S1

|d1/2v(x, y)||d1/2w(x, y)| dy

|x− y|
|ϕj(x)|dx

.
∫
S1

|d1/2v|(x)|d1/2w|(x)
dy

|x− y|
|ϕj(x)|dx

. ‖|d1/2v|(x)‖L4‖|d1/2w|(x)‖L4‖ϕ‖L2

. ‖v‖
Ḟ

1/2
4,2

‖w‖
Ḟ

1/2
4,2

‖ϕ‖L2 , (2.178)

by applying Hölder’s inequality twice as well as boundedness of dπ and consequently for dπ⊥. Observe
that we used once more the equivalent characterisation of the Triebel-Lizorkin norm in the case
q = 2, s = 1/2.

The formulation in (2.174) of the fractional harmonic map equation will already suffice for proving
uniqueness under improved regularity assumptions.

We shall continue similar to Mazowiecka-Schikorra [57] and further explore simplifications of the
leading term, i.e. the term:∫

S1

∫
S1

d1/2ui(x, y)d1/2(dπ⊥(u))ij(x, y)
dy

|x− y|
ϕj(x)dx =

∫
S1

d1/2ui · d1/2(dπ⊥(u))ij(x)ϕj(x)dx

Our main goal is to unveil an anti-symmetric potential, i.e. show that the half-harmonic map equation
could be rephrased as:
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Claim: There exists a remainder R̃u depending on u with good estimates to be established later,
such that the half-harmonic map equation can be restated as:

(−∆)1/2u = Ω · d1/2u+ R̃u, (2.179)

where Ω ∈ L2
od(S

1 × S1; so(n)) is an anti-symmetric potential.

Proof of Claim: Applying our previous computations and the formulation in (2.174), we have
made the first steps and already are aware of estimates for R1. It remains to further simplify the other
term in (2.174) to find an anti-symmetric potential. Using Lemma 2.2.4.1, we may replace d1/2u(x, y)
by the following expression:∫

S1

d1/2ui(x, y)d1/2(dπ⊥(u))ij(x, y)
dy

|x− y|

=

∫
S1

d1/2

(
dπ⊥(u)

)
ij

(x, y)dπik(u(y))d1/2uk(x, y)
dy

|x− y|

+

∫
S1

d1/2

(
dπ⊥(u)

)
ij

(x, y)Aiu(du, du)(x, y)
dy

|x− y|3/2

The second summand is defined to be:

R2(x) :=

∫
S1

d1/2

(
π⊥(u)

)
ij

(x, y)Aiu(du, du)(x, y)
dy

|x− y|3/2
(2.180)

The first summand may be rewritten one last time to obtain:∫
S1

d1/2

(
π⊥(u)

)
ij

(x, y)dπik(u(y))d1/2uk(x, y)
dy

|x− y|
= Ωjk · d1/2uk +R3, (2.181)

where:

Ωjk(x, y) := dπ(u(y))ikd1/2

(
dπ⊥(u)

)
ij

(x, y)− dπ(u(y))ijd1/2

(
dπ⊥(u)

)
ik

(x, y), ∀j, k, (2.182)

as well as:

R3(x) :=

∫
S1

dπ(u(y))ijd1/2

(
dπ⊥(u)

)
ik

(x, y)d1/2uk(x, y)
dy

|x− y|

=

∫
S1

dπ(u(y))ijdπ
⊥(u(x))ikd1/2uk(x, y)

dy

|x− y|3/2

= −
∫
S1

d1/2 (dπ(u))ij (x, y)dπ⊥(u(x))ikd1/2uk(x, y)
dy

|x− y|
, (2.183)

simply because of orthogonality of the projections. We highlight that Ω = −ΩT , i.e. we have found
an anti-symmetric potential similar to the case N = Sn−1. We will sometimes write Ωu to empha-
sise the dependence on u. This also suggests that an increase in integrability should be obtainable
in the critical case of the non-local PDE, i.e. for u ∈ H1/2(S1). This ends the proof of the Claim.

We close this preliminary examination of the half-harmonic map equation by summarising these
computations in the following equivalent equation for fractional harmonic maps:

(−∆)1/2u = Ω · d1/2u+R1 +R2 +R3, (2.184)

where we use the definitions (2.173), (2.180), (2.183) as well as (2.182). This is exactly the form we
have previously mentioned in the Claim above. Let us remark that the following holds:
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Lemma 2.2.4.4. Let v ∈ Ḟ 1/2
p,2 (S1), w ∈ Ḟ 1/2

2,2 (S1) with p > 2. Then:

‖Rv,w2 ‖
L

2p
2+p
. ‖u‖

Ḟ
1/2
2,2

‖v‖
Ḟ

1/2
p,2

‖w‖
Ḟ

1/2
2,2

,

and if v, w ∈ Ḟ 1/2
4,2

‖Rv,w2 ‖L2 . ‖u‖
Ḟ

1/2
2,2

‖v‖
Ḟ

1/2
4,2

‖w‖
Ḟ

1/2
4,2

,

where:

Rv,w2 :=

∫
S1

d1/2

(
π⊥(u)

)
ij

(x, y)Aiu(dv, dw)(x, y)
dy

|x− y|3/2
Similar estimates can be obtained for R3 by using a variant of Lemma 2.2.4.1.

The proof is similar to the one in Lemma 2.2.4.3. One notices that by Sobolev embeddings for

Triebel-Lizorkin spaces Ḟ
1/2
p′,2(S1) ⊂ L

2p
p−2 (S1), we may deduce that:

Rv,w2 , Rv,w3 ∈ Ḟ−1/2
p,2 (S1),

with estimates analogous to the ones in Lemma 2.2.4.4.

Proof. We see:

|Rv,w2 (x)| .
∫
S1

|dsu(x, y)||dsw(x, y)||d1−2sv(x, y)| dy

|x− y|
,

and therefore, by using Hölder’s inequality:

‖Rv,w2 ‖
L

2p
p+2
. ‖u‖Ẇ s,(1/s,3)‖w‖Ẇ s,(1/s,3)‖v‖Ẇ 1−2s,(2p/(p+2−4sp),3)

. ‖u‖
Ḟ

1/2
2,2

‖w‖
Ḟ

1/2
2,2

‖v‖
Ḟ

1/2
p,2

, (2.185)

where we used Sobolev embeddings for Triebel-Lizorkin spaces in the last step. We emphasise that
changing between the spaces Ẇ s,(p,q) and Ḟ sp,q is possible by Prats-Saksman [65], see Theorem 2.2.2.1
and the comment afterwards in section 2, due to:

1

s
>

3

1 + 3s
,

2p

p+ 2− 4ps
>

3

4− 6s
,

of which the first inequality is trivially true and the latter reduces to:

8p− 12sp > 3p+ 6− 12ps⇒ p >
6

5
,

which is trivially true for all s because p ≥ 2. So one merely has to take care that the Hölder
exponents remain in (1,+∞), which is easily ensured as in Lemma 2.2.4.3. The second estimate is
obtained along the same lines, merely changing Triebel-Lizorkin spaces. The estimates for R3 follow
from similar considerations by using Lemma 2.2.4.1, but this time by expanding around u(x) instead
of u(y) which only requires minor modifications. Thus we are done.

As in [102], we may also find the corresponding fractional harmonic gradient flow to be therefore:

ut + (−∆)1/2u = d1/2u · d1/2

(
dπ⊥(u)

)
+ div1/2

(
Aiu(du, du)(x, y)

|x− y|1/2
dπ⊥(u(y))ij

)
(2.186)

= Ωu · d1/2u+R1 +R2 +R3, (2.187)

where the latter equation uses the expressions for Ωu, R1, R2, R3 introduced above in (2.182), (2.175),
(2.180), (2.183).
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Other useful Formulations for the Fractional Harmonic Gradient Flow In the proof of
existence of local solutions to the fractional harmonic gradient flow, we shall make use of a slightly
different formulation for the 1/2-harmonic gradient flow. Therefore, we list already here several equiv-
alent (at least for sufficiently regular u) formulations of the main equation (2.186):

The most basic formulation of the gradient flow we are studying is:

ut + (−∆)1/2u ⊥ TuN,

which characterises solutions of the gradient flow with values in N a.e.. This can be rewritten as:

ut + (−∆)1/2u = (−∆)1/2π(u)− dπ(u)(−∆)1/2u, (2.188)

where we use for u ∈ N almost everywhere:

(−∆)1/2π(u)− dπ(u)(−∆)1/2u = (−∆)1/2u− dπ(u)(−∆)1/2u

= (Id− dπ(u)) (−∆)1/2u

= dπ⊥(u)(−∆)1/2u ⊥ TuN, (2.189)

which is in fact the same as dπ⊥(u)(ut + (∆)1/2u), since ut ∈ TuN a.e.. A key advantage of this
formulation is that we may encode the condition u ∈ N a.e. directly inside the equation, see the proof
of local existence of solutions below. A major drawback on the other hand is that this formulation
obscures the compensation phenomena at hand. Lastly, there also exists a formulation analogous to
(2.165) by using arguments analogous to the ones needed to prove Lemma 2.2.4.1. This leads to:

ut + (−∆)1/2u =

n∑
k,l=1

P.V.

∫
S1

P kl(u(x), u(y))d1/2uk(x, y)d1/2ul(x, y)
dy

|x− y|
, (2.190)

where P kl = (P kl1 , . . . , P
kl
n ) with:

P klj (u(x), u(y))(uk(x)− uk(y))(ul(x)− ul(y))

=

n∑
k=1

n∑
l=1

∫ 1

0

∫ 1

0
(t− 1)∂klπj((s− st)u(y) + (1 + st− s)u(x))(uk(x)− uk(y))(ul(x)− ul(y))dsdt.

(2.191)

One observes the immediate similarity with (2.165) as well as the quadratic structure of the RHS
of this formulation. This formulation is again useful in proving uniqueness and regularity, but the
connection to the formulation in [102] for N = Sn−1 is less apparent than with (2.186).

2.2.4.2 Uniqueness of Solutions to the 1/2-Harmonic Gradient Flow

We discuss now the uniqueness of solutions to the 1/2-harmonic gradient flow. Our approach is similar
to the one in [102]. Thus, we first discuss uniqueness in a class of functions which have more regularity
than strictly required to make sense of solutions and follow the approach in Struwe [91] to establish
uniqueness for such ”strong solutions”. Then, we expand this result to arbitrary energy class solution,
i.e. the class of functions with minimal regularity for the fractional gradient flow to make sense, by
using techniques similar to Rivière [68] to squeeze some more integrability out of solutions with small
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energy. In fact, we will rely on the techniques in Da Lio-Pigati [20] which will turn out to be important
to establish a slight gain in regularity by means of compensation phenomena tied to the emergence of
an antisymmetric potential (notice that the appearance of such a potential from a slightly different
point of view is already hinted at in Section 4.1 and in Mazowiecka-Schikorra [57]).

Uniqueness under Improved Regularity Assumptions We are now able to turn to the study
of the gradient flow associated with the fractional harmonic map with values in N ⊂ Rn being a
general closed manifold. As previously in the case of a closed orientable hypersurface, let us assume
that u, v are two solutions to the fractional harmonic gradient flow taking a.e. values in a general
closed N ⊂ Rn. Clearly, this implies boundedness of u, v due to the compactness of N . As before in
Section 3, we assume that the following regularity conditions hold:

u, v ∈ L∞(R+;H1/2(S1)); ut, vt ∈ L2(R+;L2(S1)); u, v ∈ L2
loc(R+;H1(S1)), (2.192)

In addition, they satisfy the gradient flow associated with the 1/2-harmonic map as described below:

wt + (−∆)1/2w = d1/2w · d1/2

(
dπ⊥(w)

)
+ div1/2

(
Aiw(dw, dw)(x, y)

|x− y|1/2
dπ⊥(w(y))ij

)
, (2.193)

for both w = u and w = v, together with the boundary condition u(0, ·) = v(0, ·) = u0 ∈ H1/2(S1).
We mention that, as we have seen in the previous subsection, the right hand side of (2.193) is precisely
the non-linearity associated with the fractional harmonic map equation for functions taking values in
N . The equation (2.193) could be derived along the same lines, cf. [102].
Let us present the main uniqueness statement in analogy to Theorem 2.2.3.1:

Theorem 2.2.4.1. If u, v both solve (2.193) with the same initial datum u0 ∈ H1/2(S1;N) and we
assume that:

‖(−∆)1/4u(t)‖L2(S1), ‖(−∆)1/4v(t)‖L2(S1) ≤ ‖(−∆)1/4u0‖L2(S1), ∀t ∈ R+,

then we have:
u = v

The proof is actually going to proceed analogous to the case of closed orientable hypersurfaces.
We will provide some of the details below and the proof naturally extends to the case of solutions u, v
defined only on a subinterval [0, T ] ⊂ R+.

Proof. First, we observe that since dπ⊥ = Id− dπ, we know:

d1/2

(
dπ⊥(u)

)
(x, y) = −d1/2 (dπ(u)) (x, y),

and we therefore would like to estimate the following:

dπ(u(x))− dπ(u(y)) =

∫ 1

0
d (dπ) ((1− s)u(y) + su(x)) ds · (u(x)− u(y)), (2.194)

using Taylor expansion and understanding the differential d(dπ) as previously in Lemma 2.2.4.1. If
we define:

Bu(x, y) :=

∫ 1

0
d (dπ) ((1− s)u(y) + su(x)) ds,
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which is clearly bounded thanks to the smoothness of π and its definition as an extension, we may
rewrite:

d1/2u · d1/2

(
dπ⊥(u)

)
= −d1/2u ·Bu(x, y)d1/2u,

which renders the fractional harmonic flow equation virtually the same as previously in the case of N
being an orientable closed hypersurface:

ut + (−∆)1/2u = −d1/2u ·Bu(x, y)d1/2u+ div1/2

(
Aiu(du, du)(x, y)

|x− y|1/2
dπ⊥(u(y))ij

)
,

and completely analogous for v.

We may now use a decomposition as in (2.152). The first remainder involving Bu(x, y) can be
estimated analogous to (2.155) by obvious modifications of the estimates provided there. The second
remainder, i.e. the fractional divergence, has a similar form to (2.158) and may be decomposed as in
(2.159):

Aiu(du, du)(x, y)

|x− y|1/2
dπ⊥(u(y))ijd1/2w −

Aiv(dv, dv)(x, y)

|x− y|1/2
dπ⊥(v(y))ijd1/2w

=
Aiu(du, du)(x, y)

|x− y|1/2
dπ⊥(u(y))ijd1/2w −

Aiv(du, du)(x, y)

|x− y|1/2
dπ⊥(u(y))ijd1/2w

+
Aiv(du, du)(x, y)

|x− y|1/2
dπ⊥(u(y))ijd1/2w −

Aiv(du, du)(x, y)

|x− y|1/2
dπ⊥(v(y))ijd1/2w

+
Aiv(du, du)(x, y)

|x− y|1/2
dπ⊥(v(y))ijd1/2w −

Aiv(dv, du)(x, y)

|x− y|1/2
dπ⊥(v(y))ijd1/2w

+
Aiv(dv, du)(x, y)

|x− y|1/2
dπ⊥(v(y))ijd1/2w −

Aiv(dv, dv)(x, y)

|x− y|1/2
dπ⊥(v(y))ijd1/2w (2.195)

One may now estimate these terms as in the case N a hypersurface summand by summand. For
example, in the first summand we may estimate the difference between Au and Av by |w(x)|+ |w(y)|
and estimate one of the d0u by its L∞-bound to arrive at an estimate of the form:∣∣∣ ∫

S1

∫
S1

Aiu(du, du)(x, y)

|x− y|1/2
dπ⊥(u(y))ijd1/2w(x, y)− Aiv(du, du)(x, y)

|x− y|1/2
dπ⊥(u(y))ijd1/2w(x, y)dxdy

∣∣∣
.
∫
S1

|d1/2u|(x)|d1/2w|(x)|w(x)|dx

Observe that we have to exchange labels x, y at some point. The other terms can be estimated in a
similar manner.

The estimates are therefore obtained completely analogous to the case N a hypersurface, applying
Young’s and Hölder’s inequality, leading to an estimate for w = u− v of the following form:

1

2
‖w(T )‖L2(S1) +

1

2

∫ T

0
‖(−∆)1/4w(t)‖L2(S1)dt

≤ C̃
(∫ T

0

∫
S1

|w|4dxdt
)1/2

·
(∫ T

0

∫
S1

(
|d1/2u|+ |d1/2v|

)4
dxdt

)1/2

(2.196)
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which can then be treated as in N = Sn−1 in order to conclude uniqueness by an iteration argument,
we refer to [102] for the details. The estimates invoked are independent of Sn−1 and rely on general
properties of u provided by (2.192), therefore generalising to our current situation.

Naturally, as in the case of N being a hypersurface, one may also use the formulation in (2.190)
to deduce uniqueness, see also Section 3 for some more details. The proof proceeds analogously and
is omitted.

Small Initial Energy: Regularity Lemma in the Case p > 2 To deduce uniqueness of frac-
tional gradient flow in energy class under some additional assumption, we have to establish some
higher regularity for energy class solutions of the fractional gradient flow. In the case of the n − 1-
sphere, we managed to achieve slightly better regularity properties of the solution by using Wente-type
estimates from Mazowiecka-Schikorra [57] and the invertibility of certain operators as in Rivière [68].
In the general case, we will also prove an existence and uniqueness result for a modified operator
under higher integrability, which will then be useful to establish the higher regularity needed. In a
second step, we shall show that higher integrability actually holds for solutions in H1/2(S1) by means
of compensation-compactness as in Da Lio-Pigati [20], completing the proof.

A key Lemma is the following:

Lemma 2.2.4.5. Let u ∈ H1/2(S1) and f ∈ L2(S1) and assume that u solves:

(−∆)1/2u = d1/2u · d1/2

(
dπ⊥(u)

)
+ div1/2

(
Aiu(du, du)(x, y)

|x− y|1/2
dπ⊥(u(y))ij

)
+ f, (2.197)

Then, if there exists a p > 2, such that (up to adding a constant):

u ∈ Ḟ 1/2
p,2 ,

then we immediately conclude:

u ∈ Ḟ 1/2
q,2 (S1), ∀q ≥ 2.

The proof relies on the techniques in Rivière [68] and using the remainders and their associated es-
timates established earlier, see Lemma 2.2.4.3 and 2.2.4.4. One should observe that (2.193)is naturally
of the form (2.197) for almost every fixed time t ∈ R+. This is apparent by chosing f = −∂tu.

Proof. First, we write:
(−∆)1/2u = Ω · d1/2u+R1 +R2 +R3 + f,

where Ω, R1, R2, R3 are all as previously introduced in this chapter, see (2.182) as well as (2.173),
(2.180), (2.183). We may approximate Ω by a smooth Ω̃ vanishing in a neighbourhood of the diagonal
and lying in L2

od(S
1 × S1) and u by a smooth function ũ in H1/2(S1), the norms of the differences

being arbitrarily small in the respective spaces:

‖Ω− Ω̃‖L2
od
, ‖u− ũ‖H1/2 < ε,

for ε > 0 to be determined later. Then, we may rewrite this equation as:

(−∆)1/2u+ (Ω̃− Ω) · d1/2u+Rũ−u,u1 +Rũ−u,u2 +Rũ−u,u2
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= Ω̃ · d1/2u+Rũ,u1 +Rũ,u2 +Rũ,u3 + f (2.198)

As forN = Sn−1, we may restrict our attention to the case of vanishing Fourier coefficients by removing
the averages (i.e. 0-th order Fourier coefficients) associated with each summand individually in (2.197).
This means, in order to render the fractional Laplacian invertible, we consider v = u− û(0) instead of
v = u below and remove averages for the contributions R1, R2, R3 and Ω · d1/2v. Let us observe that:

v 7→(−∆)−1/2
(

(−∆)1/2v + (Ω̃− Ω) · d1/2v +Rũ−u,v1 +Rũ−u,v2 +Rũ−u,v3

)
= v + (−∆)−1/2

(
(Ω̃− Ω) · d1/2v

)
+ (−∆)−1/2

(
Rũ−u,v1 +Rũ−u,v2 +Rũ−u,v3

)
(2.199)

defines an invertible mapping from Ḟ
1/2
p,2 to itself, if we assume that Ω̃ and ũ are sufficiently good

approximations. Use the estimates in Lemma 2.2.4.3 and 2.2.4.4 as well as the estimate:

‖(Ω̃− Ω) · d1/2v‖
L

2p
p+2
. ‖Ω− Ω̃‖L2

od
‖v‖

Ḟ
1/2
p,2

,

and the continuity of the embedding L
2p
p+2 (S1) ↪→ Ḟ

−1/2
p,2 (S1) to deduce that the maps are sufficiently

small in operatornorm, rendering (2.199) a small perturbation of the identity map and therefore
invertible itself. One may also observe that the RHS of (2.198) lies in Lq(S1) for any q < 2 (using

smoothness of the approximating terms), which is in the dual of Ḟ
−1/2
p,2 thanks to Sobolev embeddings.

This implies that there exists a unique solution v ∈ Ḟ 1/2
p,2 :

v + (−∆)−1/2
(

(Ω̃− Ω) · d1/2v +Rũ−u,v1 +Rũ−u,v2 +Rũ−u,v2

)
= (−∆)−1/2

(
Ω̃ · d1/2u+Rũ,u1 +Rũ,u2 +Rũ,u3 + f

)
(2.200)

This shows that if u ∈ Ḟ 1/2
p,2 (S1) for some p > 2, it also lies in this space for any q ≥ 2 by existence

and uniqueness of solutions to the equation above due to the invertibility of the map and the natural

inclusions Ḟ
1/2
p,2 ↪→ Ḟ

1/2
q,2 for every p ≥ q, keeping in mind that the RHS of (2.200) is independent of v.

This concludes the proof of Lemma 2.2.4.5.

Small Initial Energy: Regularity Lemma in the Case p = 2 The missing step in order to be
able to apply Lemma 2.2.4.5 to our energy class solution of the fractional harmonic gradient flow at
a fixed time is provided by the following:

Lemma 2.2.4.6. Let u ∈ H1/2(S1)∩L∞(S1) and f ∈ L2(S1) and assume that u solves the non-local
PDE:

(−∆)1/2u = d1/2u · d1/2

(
dπ⊥(u)

)
+ div1/2

(
Aiu(du, du)(x, y)

|x− y|1/2
dπ⊥(u(y))ij

)
+ f,

Then there exists p > 2, such that:

u ∈ Ḟ 1/2
p,2 (S1).

Combining Lemma 2.2.4.5 and 2.2.4.6 yields the following corollary:
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Corollary 2.2.4.1. Let u ∈ H1/2(S1) ∩ L∞(S1) and f ∈ L2(S1) and assume that u solves:

(−∆)1/2u = d1/2u · d1/2

(
dπ⊥(u)

)
+ div1/2

(
Aiu(du, du)(x, y)

|x− y|1/2
dπ⊥(u(y))ij

)
+ f,

Then we know:
u ∈ Ḟ 1/2

p,2 (S1), ∀p ≥ 2.

We observe that this corollary is essentially the analogue of [103, Lemma 3.4] in the case N = Sn−1

and thus should suffice in order to conclude our investigation into the uniqueness of the fractional
harmonic gradient flow with small initial energy. Indeed, we shall show that the same arguments, like
proving a uniform bound for the H1-norm of u(t) at fixed times, carry over in the next subsection.
For the proof of this result, we refer to the Appendix of the current section, as it is an adaption of
the work in Da Lio-Pigati [20] which is not of particular interest on its own. It relies on commutator
estimates that essentially quantify the gain of integrability precisely and allow for a Morrey bootstrap

argument in order to arrive at increased integrability and, as a result, show that u ∈ Ḟ
1/2
p,2 (S1) for

some p > 2. Thus, we shall continue with the uniqueness result for weak solutions with small initial
energy.

Small Initial Energy: Application of the Regularity Lemmas We are finally able to apply
the results from the previous subsections to the case of an energy class solution u of the 1/2-harmonic
gradient flow with values in N ⊂ Rn a closed manifold. The steps are completely analogous to the
case N = Sn−1 and Rivière [68], cf. [102]. To be precise, we shall:

1. Conclude that for fixed times t, we have u(t) ∈ H1(S1) by Corollary 2.2.4.1

2. Apply a fractional Ladyzhenskaya-type estimate, i.e.:

‖v‖L4 ≤ C‖v‖1/2
L2 ‖v‖

1/2

H1/2 , ∀v ∈ H1/2(S1), (2.201)

analogous to [102] and smallness of the energy (together with non-increasing energy) to obtain
a uniform estimate for ‖u(t)‖H1 for almost all times t ∈ [0,+∞[

3. Conclude that u is actually a strong solution and therefore, the previous uniqueness result applies

We will be proving the following as the main result, which we have already mentioned in the intro-
ductionas part of Theorem 2.2.1.2:

Theorem 2.2.4.2. Let u : R+×S1 → N ⊂ Rn, N a closed and smooth manifold, be a solution of the
weak fractional harmonic gradient flow (2.193) with initial datum u0 ∈ H1/2(S1;N) and satisfying the
following regularity assumptions:

u ∈ L∞(R+;H1/2(S1)); ut ∈ L2(R+;L2(S1))

Then there exists ε > 0, such that among all such u satisfying the smallness condition:

‖(−∆)1/4u(t)‖L2(S1) ≤ ε, ∀t ∈ R+,

the solution to the fractional harmonic gradient flow (2.193) with initial datum u0 is unique.
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In particular, if we assume that the 1/2-energy:

E1/2(u(t)) :=
1

2
‖(−∆)1/4u(t)‖2L2(S1),

is non-increasing in time, as motivated in the case N = Sn−1 by [103, Lemma 3.3], the smallness
condition could be rephrased as:

‖(−∆)1/4u0‖L2(S1) ≤ ε

An important first step in the proof of Theorem 2.2.4.2 is the following:

Proposition 2.2.4.2. Let u : R+ × S1 → N ⊂ Rn satisfy the following regularity assumptions:

u ∈ L∞(R+;H1/2(S1)); ut ∈ L2(R+;L2(S1))

Moreover, assume u solves the half-harmonic gradient flow equation (2.193). Then for almost every
time t > 0, we have:

u(t) ∈ H1(S1)

The proof is more or less an immediate application of Corollary 2.2.4.1, once we observe that
u ∈ N for almost every (t, x) ∈ R+ × S1 implies u(t) ∈ L∞(S1) for almost every time t.

Proof. First, by noticing that we may apply Corollary 2.2.4.1 with p = 4, we notice that u(t) ∈ H1(S1)
for almost every t ∈ R, since the RHS of the rephrasing of the fractional harmonic flow (2.202) below
is in L2 and the Riesz potential preserves the L2-norm. Indeed, we see for a fixed time t:

(−∆)1/2u(t) = d1/2u · d1/2

(
dπ⊥(u)

)
+ div1/2

(
Aiu(du, du)(x, y)

|x− y|1/2
dπ⊥(u(y))ij

)
− ∂tu(t) (2.202)

Use the remainder estimates in Lemma 2.2.4.3 and the bounds on Bu(x, y) to find that the first two
summands lie in L2(S1), see (2.176) and the estimate in Theorem 2.2.2.1 for S1 with p = 4, q = 2, s =
1/2 for the first summand in (2.202). Hence, by standard elliptic estimates for the fractional Laplacian
or simply observing that with R being the Riesz transform, we have:

∇u(t) = R
(
d1/2u · d1/2

(
dπ⊥(u)

)
+ div1/2

(
Aiu(du, du)(x, y)

|x− y|1/2
dπ⊥(u(y))ij

)
− ∂tu(t)

)
, (2.203)

and R being a continuous operator on L2(S1), we are led to the following estimate:

‖u(t)‖2H1(S1) ≤ C
(
‖u(t)‖2L2 + ‖|d1/2u(t)|2‖2L2 + ‖∂tu(t)‖2L2

)
≤ C

(
1 + ‖|d1/2u(t)|2‖2L2 + ‖∂tu(t)‖2L2

)
, (2.204)

where we used u(t) ∈ N almost everywhere for almost every time t to bound the L2-norm of u(t) by
an L∞-bound depending only on N . To provide some more details, the first two summands on the
RHS of the equation (2.202) may be estimated by the L2-norm of |d1/2u|2(x), see Lemma 2.2.4.3 in the

second case with u = v = w and the treatment of uniqueness for a rephrasing of d1/2u · d1/2

(
dπ⊥(u)

)
in terms of Bu(x, y) which is bounded. We highlight that:

‖|d1/2u(t)|2‖2L2 ∼ ‖u(t)‖2
Ḟ

1/2
4,2

,

by Theorem 2.2.2.1, which together with Corollary 2.2.4.1 in the case p = 4 allows us to conclude that
u(t) ∈ H1(S1).
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The remainder of the proof of Theorem 2.2.4.2 is now contained in the following Lemma:

Lemma 2.2.4.7. Let u be as in Theorem 2.2.4.2. If ε > 0 is sufficiently small, then for almost all
t ∈ [0,+∞[:

‖u(t)‖H1(S1) . 1 + ‖∂tu(t)‖L2(S1),

with a constant independent of u and t. This implies u ∈ L2
loc(R+;H1(S1)) and thus proves Theorem

2.2.4.2.

Proof. It is clear that thanks to the (local) L2-integrability with respect to time, it thus remains to
study the following contribution:

‖|d1/2u(t)|2‖2L2 = ‖u(t)‖4
Ẇ 1/2,(4,2) ∼ ‖u(t)‖4

Ḟ
1/2
4,2

∼ ‖(−∆)1/4u(t)‖4L4 (2.205)

Using the same ideas as in the proof of the uniqueness statement for N = Sn−1 (see [102]), we may
estimate this using fractional Ladyzhenskaya-type estimate (2.201) (obtained by some cut-off function
applied to the periodic extension of u or using [103, Lemma 3.1] and Theorem 2.2.2.1) for v = (−∆)1/4u
by:

‖|d1/2u(t)|2‖2L2 ≤ C ′‖u(t)‖2
Ḣ1/2‖u(t)‖2

Ḣ1

We recall that the homogeneous norm may be used by means of a perturbation-argument using
constants as in the case N = Sn−1. Therefore, we have the energy term appearing as for N = Sn−1

and provided it is smaller than some ε > 0, we find:

‖|d1/2u(t)|2‖2L2 ≤ C ′‖(−∆)1/4u(t)‖2L2‖u(t)‖2H1 ≤ C ′ε · ‖u(t)‖2H1 ,

where ε > 0 is an a priori energy estimate as in Rivière [68]. If ε > 0 is sufficiently small, we may
absorb this term in the left hand side of (2.204) to arrive at:

(1− CC ′ε) · ‖u(t)‖2H1(S1) ≤ C̃
(
1 + ‖∂tu(t)‖2L2

)
⇒ ‖u(t)‖H1(S1) ≤

C̃

1− C ′Cε
(
1 + ‖∂tu(t)‖2L2

)
,

which thus yields an estimate for the H1-norm, if, for example, 0 < ε ≤ 1/(2C ′C). We observe that
hence, by the integrability properties of ∂tu and the constant function:

u ∈ L2
loc(R+;H1(S1)) (2.206)

This allows us to employ Theorem 2.2.4.1, as the local regularity of the derivative is now apparent.
This proves precisely the result in Theorem 2.2.4.2 which is also stated in the introduction of the
paper and thus concludes our investigation of the fractional harmonic gradient flow with small initial
energy.

2.2.4.3 Existence and Regularity of Solutions

It remains to establish that solutions of the fractional harmonic gradient flow exist and are smooth,
at least locally, and even globally smooth, provided the initial energy is sufficiently small. The ideas
behind the proof are mostly the same as in [102], once we have rewritten the fractional harmonic gra-
dient flow in a slightly different way. It should be noted that the existence result we prove is extending
the one in Schikorra-Sire-Wang [77] which only deals with certain closed manifolds N that possess
nice symmetry properties. The result in its generality presented here is, to the author’s knowledge,
new.

Before entering the proof, let us quickly recap the steps that we shall take in analogy to [102]:
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1. Define the half-harmonic gradient flow operator and compute its linearisation which is a Fredholm
operator

2. Show that the kernel of the linearisation is trivial by first showing that any element of the kernel
is smooth and then applying a maximum principle for the fractional heat equation

3. Establish local existence for smooth boundary data using the injectivity of the linearisation and
the Fredholm properties by using the Inverse Function Theorem

4. Deduce general local existence and global existence in the case of small initial energy by providing
uniform estimates for solutions that allow us to approximate the boundary values and show that
the corresponding solutions converge then to a solution of the half-harmonic gradient flow

An Equivalent Reformulation of the Main Equation A key step in [102] in order to derive
local existence lies in the application of the Inverse Function Theorem in Banach spaces to argue
along the lines of Hamilton [43]. As one can see in the author’s previous work [102], the property that
the solution assumes values only in Sn−1 is merely proven after establishing existence and therefore
crucially relies on the fact that u ∈ N is ensured by the 1/2-harmonic gradient flow, provided the
initial datum takes values in N . It is thus reasonable to expect that we shall treat the target space
after establishing local existence. Nevertheless, the choice of formulation of the fractional harmonic
gradient flow we study will be of great importance when it comes to verifying u ∈ N a.e.. As a result,
we first would like to think about the right kind of equation to study.

First, in [102] we used the following sequence of equivalent characterisations:

u(t, x) ∈ Sn−1 ⇔ |u(t, x)|2 = 1⇔ |u(t, x)|2 − 1 = 0

Unfortunately, quite such a simple characterisation is not available for general N . However, if we let
π : Rn → Rn be the extended version of the closest point projection, see Section 4.1, we may see for
u at least continuous and u(0) = u0 smooth with values in N :

u(t, x) ∈ N ⇔ π(u(t, x)) = u(t, x)⇔ |u(t, x)− π(u(t, x))|2 = 0,

for all (t, x) ∈ [0,∞[×S1. The key observation is that due to the continuity and the fact that π(x) = x
only on N and possibly on a subset of the complement of a sufficiently small neighbourhood of N ,
the identity π(u(t, x)) = u(t, x) for all (t, x) actually necessitates u(t, x) ∈ N , as u(0, x) ∈ N for all
x ∈ S1. The minimal regularity imposed by assuming u is continuous actually prevents u from ever
leaving N , since the set of fixed points of π is a disconnected union of N and a second set disjoint from
N . To summarise, if we start with u(0, ·) ∈ N and we know that u remains in the set of fixed points
of π and is continuous, then due to the disconnectedness of the fixed point set, we auutomatically get
π(u(t, x)) = u(t, x) for all t, x. Thus, even though the extension π is not canonical, the condition:

|u(t, x)− π(u(t, x))|2 = 0, ∀(t, x) ∈ [0,∞[×S1,

is the analogue we are looking for to the function |u|2 − 1 in the case N = Sn−1.

Now, we would like to think about the fractional heat-type equation solved by |u − π(u)|2. This
will provide us crucial information about the ”correct” choice of non-linearity to study in connection
with the 1/2-harmonic gradient flow. So we are interested in computing:

∂t
(
|u− π(u)|2

)
+ (−∆)1/2

(
|u− π(u)|2

)
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For now, we assume that u is actually smooth to justify our calculations. Then:

∂t
(
|u− π(u)|2

)
= 2 (ut − dπ(u)ut) · (u− π(u))

Completely analogous to the computations for local existence and regularity in [102], we have:

(−∆)1/2
(
|u− π(u)|2

)
= 2(−∆)1/2 (u− π(u)) · (u− π(u))− |d1/2 (u− π(u)) |2

Therefore:

∂t
(
|u− π(u)|2

)
+ (−∆)1/2

(
|u− π(u)|2

)
= 2 (ut − dπ(u)ut) · (u− π(u)) + 2(−∆)1/2 (u− π(u)) · (u− π(u))− |d1/2 (u− π(u)) |2

= 2 (Id− dπ(u))
(
ut + (−∆)1/2u

)
· (u− π(u))

+ 2
(
dπ(u)(−∆)1/2u− (−∆)1/2(π(u))

)
· (u− π(u))− |d1/2 (u− π(u)) |2

= 2(Id− dπ(u))r(u) · (u− π(u)) + 2
(
dπ(u)(−∆)1/2u− (−∆)1/2(π(u))

)
· (u− π(u))

− |d1/2 (u− π(u)) |2, (2.207)

where we write:
ut + (−∆)1/2u = r(u), (2.208)

with r the non-linearity depending on u we are trying to find. We emphasise here that so far, we
have only used simple manipulations and r(u) is a quantity we still need to choose in such a way that
(2.208) is a reformulation of the half-harmonic gradient flow.

Thinking about (2.207), one might be led to consider the following non-linearity:

r(u) := C(dπ(u), u), (2.209)

where we define:
C(a, b) := R(a∇b)− a(−∆)1/2b (2.210)

In particular, for the expression relevant to our further computations this implies:

C(dπ(u), u) = R (dπ(u)∇u)− dπ(u)R(∇u) = (−∆)1/2(π(u))− dπ(u)(−∆)1/2u (2.211)

Here, we denote by R the Riesz-Hilbert transform on S1. Naturally, (2.210) extends to vector-valued
or matrix-valued maps in the natural way. Additionally the operator is already studied in Da Lio-
Pigati [20] and one of the results there, which easily translates to S1 by the same arguments, is the
following:

Proposition 2.2.4.3 (Lemma E.2, [20]). Assume that a ∈ F sp,2(S1), b ∈ F 1
q,2(S1) with s > 1/p, 1 <

p, q <∞. Then, for any γ > 1/p, we have the following estimate:

‖C(a, b)‖F s−γq,2 (S1) . ‖a‖F sp,2(S1)‖b‖F 1
q,2(S1)
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The proof only relies on the characterisations of the Bessel-Sobolev spaces and the use of Littlewood-
Paley decompositions, both of which continue to hold on S1 by Schmeisser-Triebel [80] and our dis-
cussion in Section 2. We thus refer to Da Lio-Pigati [20] for the proof.

Observe that Proposition 2.2.4.3 actually also hints at nice bootstrapping estimates available for
C(a, b) and therefore, solutions of (2.208) can be expected to be smooth, provided the initial datum
is smooth as well, compare this with the ideas in [102]. However, for the moment, we would like to
explore how this choice of r(u) affects the computation in (2.207) by using the form (2.211):

∂t
(
|u− π(u)|2

)
+ (−∆)1/2

(
|u− π(u)|2

)
= 2(Id− dπ(u))r(u) · (u− π(u)) + 2

(
dπ(u)(−∆)1/2u− (−∆)1/2(π(u))

)
· (u− π(u))− |d1/2 (u− π(u)) |2

= 2(Id− dπ(u))
(

(−∆)1/2(π(u))− dπ(u)(−∆)1/2u
)
· (u− π(u))

+ 2
(
dπ(u)(−∆)1/2u− (−∆)1/2 (π(u))

)
· (u− π(u))− |d1/2 (u− π(u)) |2

= −2dπ(u)
(

(−∆)1/2(π(u))− dπ(u)(−∆)1/2u
)
· (u− π(u))− |d1/2(u− π(u))|2

= 2 (dπ(π(u))− dπ(u))
(

(−∆)1/2(π(u))− dπ(u)(−∆)1/2u
)
· (u− π(u))− |d1/2(u− π(u))|2, (2.212)

where in the last line, we used that u− π(u) is orthogonal to Tπ(u)N and thus:

dπ(π(u))(u− π(u)) = 0.

Applying the fact that dπ(π(u)) is an orthogonal projection and therefore symmetric, we may deduce
the equality above in (2.212). Using now Lipschitz-continuity of π and its derivatives as well as
smoothness, we may therefore show:

∂t
(
|u− π(u)|2

)
+ (−∆)1/2

(
|u− π(u)|2

)
≤ C · |u− π(u)|2, (2.213)

where C is a constant depending on u. We expand a bit on this step in the next subsection when
determining the kernel of the linearisation of the operator induced by the fractional harmonic gradient
flow. Since u− π(u) = 0 at time t = 0, we may therefore invoke a maximum principle inspired by the
one in Hamilton [43] just like in [102] to deduce:

|u− π(u)|2 = 0, ∀(t, x) ∈ [0,∞[×S1,

and consequently:
u(t, x) ∈ N, ∀(t, x) ∈ [0,∞[×S1

We notice that this precisely proves the required condition on the values of u. Additionally, the argu-
ment works equally well on [0, T ]× S1, thus it applies also to local solutions of (2.208) in time. This
observation will be crucial, as it will allow us to forget about the condition on the values at first and
focus on the analytic aspects of the PDE.

Local Regularity Similar to [102], we shall prove the following result dealing with local regularity
of solutions:
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Proposition 2.2.4.4. Let u0 ∈ C∞(S1;N). Then there exists a T > 0, possibly depending on u0,
and a smooth map u ∈ C∞([0, T ]× S1) solving the following non-local PDE:

ut + (−∆)1/2u = (−∆)1/2π(u)− dπ(u)(−∆)1/2u, (2.214)

and satisfying u(0, ·) = u0. Additionally, by the result in the previous subsection:

u(t, x) ∈ N, ∀(t, x) ∈ [0, T ]× S1,

and, as a result, (2.214) becomes the half-harmonic gradient flow equation (2.193).

The last observation is due to the fact that if u ∈ N , then dπ(u) is the projection onto the tangent
space TuN and π(u) = u, i.e.:

(−∆)1/2π(u)− dπ(u)(−∆)1/2u = (−∆)1/2u− dπ(u)(−∆)1/2u = (Id− dπ(u))(−∆)1/2u,

which implies that the RHS of (2.214) is actually orthogonal to TuN . This is pecisely the meaning of
(2.193), see also the computation in Section 3.1, Section 4.1 and [103, Section 3.1].

Proof of Proposition 2.2.4.4. The proof actually goes along the very same lines as the proof of Proposi-
tion 3.2 in [102], using the local Inversion Theorem for Banach spaces and slightly better integrability
combined with a bootstrap procedure which now uses Proposition 2.2.4.3 instead of the Lemma proven
in [102].

Step 1: Setup
As seen in [102] by Fourier representation, we may find ũ solving the fractional heat equation:

ũt + (−∆)1/2ũ = 0, ũ(0, ·) = u0

By the same argument using an explicit formula for ũ, we know that ũ is actually smooth, as u0 is
smooth. Let us now define the following map for 1 < p <∞:

H : W 1,p
0 ([0, T ]× S1)→ Lp([0, T ]× S1)

H(v) := (ũ+ v)t + (−∆)1/2 (ũ+ v)− C(dπ(ũ+ v), ũ+ v) (2.215)

Here, u ∈W 1,p
0 ([0, T ]×S1) ⊂W 1,p([0, T ]×S1) denotes the subspace of functions in W 1,p([0, T ]×S1)

with u(0, ·) = 0. We observe that if H(ũ + v) is vanishing on some subinterval [0, T0] ⊂ [0, T ], then
ũ + v is actually a local solution to the half-harmonic gradient flow (2.214). Therefore, it suffices to
establish the existence of v with this property. To achieve this, as in [102], we will show that H maps
a sufficiently small neighbourhood of the zero function to an open neighbourhood of H(ũ) and then
choose f ∈ Lp([0, T ] × S1) such that f equals 0 on an interval [0, T0] and agreeing with H(ũ) on the
remainder of [0, T ]. Choosing T0 sufficiently small, f then lies in the image of H and thus a function
v with the desired properties exists.

Step 2: Fredholm Property of the Linearisation
To follow the program outlined above, we would like to invoke the inverse function theorem for

Banach spaces. Let us observe that H is Frèchet-differentiable and:

dH(0)h = ht + (−∆)1/2h− C (d (dπ) (ũ)h, ũ)− C (dπ(ũ), h)
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If we are able to show that dH(0) is invertible, then the inverse function theorem would apply and we
may argue as previously stated. Using Theorem 3.1 in Hieber-Prüss [46], we deduce that:

h 7→ ht + (−∆)1/2h,

on the function space above is actually invertible. Therefore, if we can establish that the remaining
summand:

h 7→ C (d (dπ) (ũ)h, ũ) + C (dπ(ũ), h) , (2.216)

is compact, then dH(0) would be Fredholm and thus:

dH(0) is invertible ⇔ dH(0) is injective

Indeed, one may observe that (by using ∇(ab) = ∇a · b+ a · ∇b and the definition of R):

C(a, b) = (−∆)1/2a · b−R (∇a · b)− 2d1/2a · d1/2b,

which shows that the second summand in (2.216) is a compact map. Indeed, we have:

C(a, b) = R(a∇b)− a(−∆)1/2b

= R(∇(ab))−R(∇a · b)− a(−∆)1/2b

= (−∆)1/2(ab)− (−∆)1/2a · b− a(−∆)1/2b−R(∇a · b) + (−∆)1/2a · b
= −2d1/2a · d1/2b−R(∇a · b) + (−∆)1/2a · b, (2.217)

where we used in the last equality the singular integral formulations of the fractional Laplacian.
Reordering now provides the desired formula. For the first summand in (2.216), we may just use
Proposition 2.2.4.3 and compactness of Sobolev embeddings. In both cases, we may easily deal with
all terms involving ũ by using the smoothness of this function. Thus, the operator dH(0) is Fredholm.
Since dH(0) consists of an invertible operator and a compact one and adding a compact operator does
not affect the Fredholm index, which means that dH(0) has index 0. As a result, invertibility of dH(0)
becomes equivalent to injectivity.

Step 3: Regularity of Elements in the Kernel
Next, we want to investigate the kernel of dH(0) to ultimately show that the linearised operator

dH(0) is injective. We argue by contradiction, i.e., assume that h is such that:

dH(0)h = 0.

Using Proposition 2.2.4.3, we now may deduce that h ∈ C∞([0, T ]×S1). Namely, we observe that the
summand C (dπ(ũ), h) is arbitrarily regular with respect to x by using Proposition 2.2.4.3. Integrability
in Lp follows, as we may uniformly estimate all terms involving ũ due to smoothness. For the second
summand, we may argue analogous to [102]: By Proposition 2.2.4.3, we see:

‖(−∆)s/2−1/4C(d(dπ)(ũ)h, ũ)‖Lp(S1) . ‖d(dπ(ũ))h‖F sp,2(S1)‖∇ũ‖Lp(S1)

. ‖h‖Lp(S1) + ‖(−∆)s/2h‖Lp(S1), (2.218)

where the inequality involves constants depending on ũ, and therefore also:

‖(−∆)s/2−1/4C(d(dπ)(ũ)h, ũ)‖Lp([0,T ]×S1) . ‖h‖Lp([0,T ]×S1) + ‖(−∆)s/2h‖Lp([0,T ]×S1)
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Let us now see the following for any ϕ ∈ C∞([0, T ]× S1) with compact support strictly contained in
[0, T ]× S1. Then we have:∫ T

0

∫
S1

(−∆)s/2h · (−∂t + (−∆)1/2)ϕdxdt

=

∫ T

0

∫
S1

h · (−∂t + (−∆)1/2)(−∆)s/2ϕdxdt

=

∫ T

0

∫
S1

(C(d(dπ)(ũ)h, ũ) + C(dπ(ũ), h)) (−∆)s/2ϕdxdt+

∫
S1

h(0, x)(−∆)s/2ϕ(0, x)

=

∫ T

0

∫
S1

(−∆)s/2 (C(d(dπ)(ũ)h, ũ) + C(dπ(ũ), h))ϕdxdt (2.219)

where we observed that (−∆)s/2ϕ is still compactly supported and smooth as well as the equation
solved by h and the initial condition h(0, ·) = 0. Therefore, (−∆)s/2h solves an inhomogeneous
fractional heat equation with RHS in Lp. Arguing by using the connection of ∂t + (−∆)1/2 with the
Laplacian and using an extension:

h̃(t, x) :=

{
h(t, x), if t ≥ 0

−h(−t, x), if t ≤ 0

by symmetrising of h to times t ∈ [−T, 0] (the resulting map (−∆)s/2h̃ solves a Laplace equation with
RHS in W−1,p in the distributional sense and we may thus argue by elliptic regularity), we find that
(−∆)s/2h ∈ W 1,p

loc ([0, T ] × S1). Notice that as h(0) = 0, the extension h̃ is well-behaved. Arguing
as in [102] using Hieber-Prüss [46], where existence and uniqueness of solutions to the half-harmonic
gradient flow in appropriate Sobolev spaces is implicitly treated, we may thus deduce:

(−∆)s/2h ∈W 1,p([0, T ]× S1), ∀s ∈ [0, 3/4], (2.220)

by using the estimate in Proposition 2.2.4.3 as specified before. The next step is to actually find an
equation solved by ∂xh =: h′. This is achieved by using a slightly modified version of the equation
dH(0)h = 0 using (2.217). Namely, we use:

ht+(−∆)1/2h = C(d(dπ(ũ)h, ũ)−2d1/2 (dπ(ũ)) ·d1/2h−R (∇dπ(ũ) · h)+(−∆)1/2 (dπ(ũ)) ·h (2.221)

If we differentiate both sides with respect to x, this leads to:(
∂t + (−∆)1/2

)
h′ = C((d(dπ(ũ))′ h+ d(dπ(ũ))h′, ũ)

− 2d1/2 (dπ(ũ))′ · d1/2h− 2d1/2 (dπ(ũ)) · d1/2h
′

−R
(
∇ (dπ(ũ))′ · h

)
−R

(
∇dπ(ũ) · h′

)
+ (−∆)1/2 (dπ(ũ))′ · h+ (−∆)1/2 (dπ(ũ)) · h′ (2.222)

A direct computation using (2.220), we thus know that the RHS of the equation lies in Lp([0, T ]×S1).
Arguing as before using distributional solutions for the symmetrisation and the connection to the
Laplacian as well as Hieber-Prüss [46], we deduce:

h′ ∈W 1,p([0, T ]× S1])
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Inserting this into the main equation dH(0)h = 0, we thus find by differentiating with respect to t:

h ∈W 2,p([0, T ]× S1)

By iterating similar to [102] and our computations starting from (2.222) as above and repeating the
same steps for higher and higher derivatives, using the connection to the Laplacian and Theorem 3.1
in Hieber-Prüss [46] repeatedly, this shows:

∀s ∈ R≥0 : (−∆)sh ∈W 1,p([0, T ]× S1)

Using the equation dH(0)h = 0, we may also discover estimates for higher order derivatives in t-
direction. Hence:

h ∈
⋂
k∈N

W k,p([0, T ]× S1) ⊂ C∞([0, T ]× S1)

Therefore, any h in the kernel of dH(0) is actually smooth.

Step 4: Kernel is trivial and thus dH(0) is invertible
It remains to establish that actually h = 0. The trick is as in [102] and the argument presented

actually provides the argument for the missing step to prove (2.213) in Section 4.3.1: We study the
fractional heat-type equation satisfied by |h|2. One finds:

∂t
(
|h|2
)

= 2ht · h, (2.223)

as well as:
(−∆)1/2

(
|h|2
)

= 2(−∆)1/2h · h− |d1/2h|2. (2.224)

Combining (2.223) and (2.224), we find:

∂t
(
|h|2
)

+ (−∆)1/2
(
|h|2
)

= 2ht · h+ 2(−∆)1/2h · h− |d1/2h|2

= 2
(
ht + (−∆)1/2h

)
· h− |d1/2h|2

= 2 (C (d (dπ) (ũ)h, ũ) + C (dπ(ũ), h)) · h− |d1/2h|2 (2.225)

Notice the similarity with (2.213). Our goal is now to estimate the terms involving C in an appropriate
manner. For example, we have:

|C(d(dπ)(ũ)h, ũ)| =
∣∣∣R (d(dπ)(ũ)h · ∇ũ)− d(dπ)(ũ)h · (−∆)1/2ũ

∣∣∣
≤ |R (d(dπ)(ũ)h · ∇ũ)|+ |h| ‖(−∆)1/2ũ‖L∞([0,T ]×S1), (2.226)

which shows that we merely have to estimate the contribution of the Riesz operator. We know that
up to a constant, we have for any x ∈ S1:

R (d(dπ)(ũ)h · ∇ũ) (x)

∼ −P.V.
∫
S1

(d(dπ)(ũ(x))h(x)∇ũ(x)− d(dπ)(ũ(y))h(y)∇ũ(y)) cot

(
x− y

2

)
dy

∼ −P.V.
∫
S1

d(dπ)(ũ(x))h(x)∇ũ(x)− d(dπ)(ũ(y))h(y)∇ũ(y)

|x− y|
cos

(
x− y

2

)
dy
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. |h(x)|‖u‖C2 + |d1/2h|(x)‖d(dπ)(ũ)‖L∞‖∇u‖L∞ , (2.227)

where we used the formula for the distance on the circle |x−y| = 2 sin((x−y)/2). The formula follows
by using the fractional Leibniz rule adapted appropriately here. By analogous computations using
(2.217), we find:

|C(dπ(ũ), h)(x)| . |h(x)|+ |d1/2h|(x) (2.228)

The constants in (2.227) and (2.228) may depend on ũ and on the target manifold N (via the projection
π and its derivatives), but they are independent of h. To summarise, we have found the following:

∂t
(
|h|2
)

+ (−∆)1/2
(
|h|2
)
≤ C̃ũ,N |h|

(
|h(x)|+ |d1/2h|(x)

)
− |d1/2h|2,

where C̃ũ,N > 0 is a constant depending on ũ and N . By using the arithmetic geometric mean
inequality, we may deduce:

C̃ũ,N |h|
(
|h(x)|+ |d1/2h|(x)

)
− |d1/2h|2 ≤ C̃ũ,N |h|2 +

C̃ũ,N
4δ
|h|2 + δ|d1/2h|2 − |d1/2h|2,

and choosing δ = 1, we find:

∂t
(
|h|2
)

+ (−∆)1/2
(
|h|2
)
≤ Ĉũ,N |h|2.

Invoking the maximum principle for the fractional heat flow yields just as in [102] that h must assume
its global extremum on [0, T ]× S1 at time t = 0. However, as h(0) = 0 and |h|2 ≥ 0, this implies:

|h|2 = 0⇒ h = 0,

which finally implies injectivity of dH(0). Therefore, dH(0) is an injective Fredholm operator of index
0, which shows that it is surjective, thus invertible. Local existence of W 1,p-solutions to the equation
(2.214) exist.

It remains to verify smoothness of such a solution u. This follows by a bootstrap argument similar
to the one for h, but taking a bit more care. The key observation is that in each step of the bootstrap
of h, Hölder regularity with sufficiently close α to 1 is sufficient to obtain the desired estimates, i.e.
α > 1/2 and thus p > 4 suffice. Let us for now take p > 8 to make the arguments easier, as we shall
see below any p is possible anyways. Namely, we have at every fixed time:

‖(−∆)s/2−1/16C(dπ(u), u)‖Lp(S1) . ‖dπ(u)‖F sp,2(S1)‖∇u‖Lp(S1)

. ‖u‖C0,α(S1)‖u‖W 1,p(S1), (2.229)

if 1− 1/8 = 7/8 = α > s and by integrating in time-direction:

‖(−∆)s/2−1/16C(dπ(u), u)‖Lp([0,T ]×S1) . ‖u‖C0,α([0,T ]×S1)‖u‖W 1,p([0,T ]×S1) (2.230)

Arguing as for h before by symmetrisation and Hieber-Prüss [46], this shows:

(−∆)t/2u ∈W 1,p([0, T ]× S1),

for all 0 ≤ t < 3/4. Next, we verify that u ∈W 2,p for all 1 < p <∞. This follows from the formulation
(2.214) by rewriting:

(−∆)1/2 (π(u)) (x)− dπ(u(x))(−∆)1/2u(x) = P.V.

∫
S1

π(u(x))− π(u(y))− dπ(u(x))(u(x)− u(y))

|x− y|2
dy
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By using Taylorapproximation, we see for every j ∈ {1, . . . n}:

πj(u(x))− πj(u(y))− dπj(u(x))(u(x)− u(y))

=

∫ 1

0
dπj((1− t)u(y) + u(x))(u(x)− u(y))− dπj(u(x))(u(x)− u(y))dt

=
n∑
k=1

∫ 1

0
(∂kπj((1− t)u(y) + tu(x))− ∂kπj(u(x))) (uk(x)− uk(y))dy

=
n∑
k=1

n∑
l=1

∫ 1

0

∫ 1

0
(t− 1)∂klπj((s− st)u(y) + (1 + st− s)u(x))(uk(x)− uk(y))(ul(x)− ul(y))dsdt

=: P klj (u(x), u(y))(uk(x)− uk(y))(ul(x)− ul(y)) (2.231)

This is precisely the form we alluded to in Section 4.1.3. Therefore:

(−∆)1/2 (π(u)) (x)− dπ(u(x))(−∆)1/2u(x)

=
n∑

k,l=1

P.V.

∫
S1

P kl(u(x), u(y))d1/2uk(x, y)d1/2ul(x, y)
dy

|x− y|
(2.232)

Notice that P jk are bounded and thus the RHS of the flow is actually bounded, since we know u ∈ C0,α

for α > 1/2 and:

∣∣∣(−∆)1/2 (π(u)) (x)− dπ(u(x))(−∆)1/2u(x)
∣∣∣ =

∣∣∣∣∣∣
n∑

k,l=1

P.V.

∫
S1

P kl(u(x), u(y))d1/2uk(x, y)d1/2ul(x, y)
dy

|x− y|

∣∣∣∣∣∣
.
∫
S1

|u(x)− u(y)|2

|x− y|2
dy = |d1/2u|(x)2

. ‖u‖C0,α , (2.233)

where α > 1/2. This implies that u ∈ W 1,p([0, T ] × S1) for all 1 < p < +∞, since the RHS of the
fractional harmonic gradient flow for u is thus bounded and therefore in all Lp-spaces, see Hieber-Prüss
[46].

Our goal is now to establish higher integrability: We may now differentiate this expression with
respect to x to find:

d

dx

(
(−∆)1/2 (π(u)) (t, x)− dπ(u(x))(−∆)1/2u(t, x)

)
=

n∑
k,l=1

P.V.

∫
S1

P kl(u(x), u(y))d1/2u
′
k(x, y)d1/2ul(x, y)

dy

|x− y|

+
n∑

k,l=1

P.V.

∫
S1

P kl(u(x), u(y))d1/2uk(x, y)d1/2u
′
l(x, y)

dy

|x− y|

+

n∑
k,l=1

P.V.

∫
S1

(
dP kl(u(x), u(y))

(
u′(x)
u′(y)

))
d1/2uk(x, y)d1/2ul(x, y)

dy

|x− y|
(2.234)
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It can now he seen, using again Hölder continuity and the previously proven regularity as well as
Sobolev embeddings:

d

dx

(
(−∆)1/2 (π(u)) (t, x)− dπ(u(x))(−∆)1/2u(t, x)

)
∈ Lp([0, T ]× S1).

This now shows:
u ∈W 2,p([0, T ]× S1), (2.235)

by inserting the regularity u′ ∈ W 1,p into the main equation to establish higher regularity in time-
direction. Higher order regularity can now be proven by iteration. The result of Proposition 2.2.4.4
therefore follows.

Let us observe that Proposition 2.2.4.4 actually proves existence of solutions to the fractional
harmonic gradient flow for sufficiently small times for all closed target manifolds N , provided the
initial datum is smooth. This is due to the openness of H(0) being an interior point of the image and
therefore, if we modify H(0) for times t < δ to be 0 and else as H(0), then the resulting map is in the
image and thus for some v, it is the same as H(v). However, this already implies that ũ+ v solve the
half-harmonic gradient flow for times up to t = δ and by the computations in the introduction to this
section, ũ+ v takes values in N .

In the next section shall remove the regularity assumption on the boundary data by following
Struwe [89] as in [102].

Global Regularity by Approximation, Existence as a Byproduct To prove existence and
regularity of solutions in the case of general initial data, we first have to be able to approximate the
boundary data sufficiently well by smooth functions, The following result follows precisely as in [102]
and the proof is therefore omitted:

Lemma 2.2.4.8. Assume N is an arbitrary closed manifold. Let u ∈ H1/2(S1;N). Then there exists
a sequence uk ∈ C∞(S1) ∩H1/2(S1;N) such that:

‖uk − u‖H1/2(S1) → 0, k →∞.

The next lemma proven in [102] continues to hold, as its proof relies on general properties of the
Triebel-Lizorkin spaces on the unit circle, while the target manifold is irrelevant:

Lemma 2.2.4.9. There exist C > 0 not depending on R, u, T , such that for any smooth u on [0, T ]×S1

and 0 < R < 1, the following estimate holds for all x0 ∈ S1:∫ T

0

∫
B 3R

4
(x0)
|(−∆)1/4u|4dxdt ≤ C sup

0≤t≤T

∫
BR(x0)

|(−∆)1/4u(t)|2dx

·

(∫ T

0

∫
BR(x0)

|(−∆)1/2u|2dxdt+
1

R2

∫ T

0

∫
S1

|(−∆)1/4u|2dxdt

)
,

(2.236)
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by density the same result applies for all u ∈ H1([0, T ] × S1), and all boundary terms u0 = u(0, ·) ∈
H1/2(S1), with bounded 1/2-Dirichlet energy. Similarily, we have:∫ T

0

∫
S1

|(−∆)1/4u|4dxdt . sup
0≤t≤T,x∈S1

∫
BR(x)

|(−∆)1/4u(t)|2dx

·
(∫ T

0

∫
S1

|(−∆)1/2u|2dxdt+
1

R3

∫ T

0

∫
S1

|(−∆)1/4u|2dxdt
)
. (2.237)

Furthermore, due to the orthogonality of the RHS of (2.193) with respect to the tangent space
of N , we also may generalise the following lemmas found in [102], as the orthogonality is the only
property used:

Lemma 2.2.4.10. Let u be a sufficiently regular solution of the 1/2-harmonic gradient flow in N as
previously defined with u(0, ·) = u0 taking values in N . Then the following holds for all T ≥ 0:

1

2
‖(−∆)1/4u(T )‖2L2(S1) ≤

1

2
‖(−∆)1/4u0‖2L2(S1)

In fact, the energy T 7→ ‖(−∆)1/4u(T )‖L2(S1) monotonically decreases in T .

As in Struwe [89], we may introduce for 0 < R < 1 and t ∈ [0, T ]:

ER(u;x, t) :=
1

2

∫
BR(x)

|(−∆)1/4u(t)|2dx, (2.238)

for the local energy and also:

ε(R) = ε(R;u, T ) := sup
x∈S1,t∈[0,T ]

ER(u;x, t) (2.239)

The local energy estimate from Struwe [89] and [102] continues to hold by the same proof:

Lemma 2.2.4.11. There exists a constant C > 0 such that for every u : [0, T ]×S1 → N in H1([0, T ]×
S1)∩L∞([0, T ]; Ḣ1/2(S1)), u0 = u(0, ·) ∈ H1/2(S1;N) solving the half-harmonic flow equation (2.193)
and satisfying the energy decrease property as in Lemma 2.2.4.10, any 0 < R < 1/2 and (t, x0) ∈
[0, T ]× S1, the following estimate holds:

ER(u;x0, t) ≤ E2R(u;x0, 0) + C

(
t

R2
E(u0) +

√
t

R

√
ε(2R)E(u0)

)
≤ E2R(u;x0, 0) + C

(
t

R2
+

√
t

R

)
E(u0), (2.240)

where E(u0) = E1/2(u0). In the second inequality, we used the trivial estimate between the local energy
and the global one under the energy decay.

Again, the proof is referred to Lemma 3.17 in [102], there are no real differences as the orthog-
onality of the RHS in (2.193) to the tangent space of N removes the non-linearity in the computations.

It therefore remains to verify the following results as in Struwe [89]:

Lemma 2.2.4.12. The following generalisations of the results in [89] hold true:
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1. Lemma 3.7 in [89]: There exists ε1 > 0 such that for any u ∈ H1([0, T ]×S1)∩L∞([0, T ];H1/2(S1))
solving (2.193) with values in N and any R < 1/2, there holds:∫ T

0

∫
S1

|∇u|2dxdt ≤ CE(u0)

(
1 +

T

R3

)
, (2.241)

with C independent of u, T,R, provided ε(R) < ε1. Here, u(0, ·) = u0 ∈ H1/2(S1;N) is the
initial value.

2. Lemma 3.8, Remark 3.9 in [89]: For any numbers ε, τ, E0 > 0 and R1 < 1/2, there is a δ > 0
such that for any u, satisfying the conditions as in 1., solving (2.193) with values in N and any
I ⊂ [τ, T ] with measure |I| < δ, there holds:∫

I

∫
S1

|(−∆)1/4u|2dxdt < ε, (2.242)

provided ε(R1) < ε1, E(u0) ≤ E0. The same holds with τ = 0, if we consider a sequence un
associated with converging initial data un(0) in H1/2(S1).

3. Lemma 3.10, Remark 3.11 in [89]: Let u be, in addition to the assumptions in 1., a C2([τ, T ]×
S1)-solution to (2.193), then, for every 1 ≤ p < +∞, there exists a Lp([τ, T ] × S1)-bound on
ut + (−∆)1/2u with a constant only depending on E(u0), τ, T and R, provided ε(R) < ε1. Here,
τ > 0 in general and τ ≥ 0 in case u0 is smooth.

The proof is analogous to [89], we merely rely on the quadratic estimate for the non-linearity given
by: ∣∣∣∣∣∣

n∑
k,l=1

P.V.

∫
S1

akl(u(x), u(y))d1/2uk(x, y)d1/2ul(x, y)
dy

|x− y|

∣∣∣∣∣∣ . |d1/2u|2(x)

Therefore, as in [102], we refer to [89], as the proofs are obvious modifications of Struwe’s techniques
and the previously presented bootstrap procedure for solutions to fractional heat-type equations.
Arguing as in Theorem 4.1 in [89], we may also deduce that for sufficiently small energy at time t = 0,
global existence is ensured. Otherwise, blow-ups may occur.

2.2.4.4 Convergence of Solutions as t→ +∞

If we look at the proof of [103, Theorem 3.4], it is clear that the arguments immediately generalises
to the following Theorem by the same proof:

Theorem 2.2.4.3. Let u ∈ L2(R+;H1/2(S1)) and ut ∈ L2(R+;L2(S1)) be a solution of the fractional
harmonic gradient flow (2.193) with values in a closed manifold N ⊂ Rn and with initial data u0 ∈
H1/2(S1;N). Assume that:

‖(−∆)1/4u(t)‖L2 ≤ ‖(−∆)1/4u0‖L2 ≤ ε, ∀t ∈ R+,

for ε > 0 sufficiently small. Then, for a suitably chosen subsequence tk → +∞, the sequence of maps
(u(tk, ·))k∈N ⊂ H1(S1;N) converges weakly in H1(S1) to a 1/2-harmonic map in N .

We refer to the proof in [102] for details. Again, for sufficiently small ε > 0, we may even deduce
that the limit function is a constant map to some point in N .
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2.2.5 Appendix: Morrey Regularity and Increased Integrability as in [20]

In this appendix, we briefly go into some more details of the proof of Lemma 2.2.4.6. We recall that
in the paper, we referred to Da Lio-Pigati [20], in particular Theorem D.7 and Corollary D.8. Let us
expand upon this:

We assume that u solves the following equation:

(−∆)1/2u = d1/2u · d1/2

(
dπ⊥(u)

)
+ div1/2

(
Aiu(du, du)(x, y)

|x− y|1/2
dπ⊥(u(y))ij

)
+ f, (2.243)

then we notice that: ∫
S1

d1/2u · d1/2 (dπ(u)ϕ) dx =

∫
S1

fϕdx,

by arguing as in Section 3.1.2. Therefore, this shows:

dπ(u)(−∆)1/2u = dπ(u)f

We shall sometimes write dπ instead of dπ(u) and dπ⊥ instead of dπ⊥(u), implying the appropriate
functions to be inserted.

If we define w = u ◦Π−1 using the stereographic projection as in Da Lio-Pigati [20], this becomes:

dπ(w)(−∆)1/2w = dπ(w)f̃,

and therefore:
(−∆)1/2w = dπ(w)f̃ + dπ⊥(w)(−∆)1/2w, (2.244)

where:

f̃ =
2

1 + x2
f ◦Π−1.

We let:
v := (−∆)1/4w, (2.245)

and by following precisely the arguments as in Da Lio-Pigati [20] on p.31-32, we find:

(−∆)1/4v = Ω0v + Ω1v + (−∆)1/4
(
dπ⊥v

)
+ 2(−∆)1/4dπ⊥ · dπ⊥v − T (dπ⊥, v) + f̃ (2.246)

Here, Ω0 := dπ⊥(−∆)1/4dπ⊥ − (−∆)1/4dπ⊥dπ⊥,Ω1 := T ∗(dπ⊥, dπ) and T are the same objects as
defined in Da Lio-Pigati [20], in particular T and T ∗ are the following commutators:

T (Q, v) := (−∆)1/4(Qv) + (−∆)1/4Q · v −Q(−∆)1/4v (2.247)

T ∗(P,Q) := (−∆)1/4(PQ)− (−∆)1/4P ·Q− P (−∆)1/4Q, (2.248)

satisfying the estimates due to compensation properties of T, T ∗:

‖T (Q, v)‖H1(R;Rm) . ‖Q‖Ḣ1/2(R;Rm×m)‖v‖L2(R;Rm) (2.249)

‖T ∗(P,Q)‖L2,1(R,Rm×m) . ‖P‖Ḣ1/2(R,Rm×m)‖Q‖Ḣ1/2(R,Rm×m), (2.250)

for P,Q ∈ Ḣ1/2(R;Rm×m) ∩ L∞(R) and v ∈ L2(R;Rm). See Appendix C in Da Lio-Pigati [20] for
further details. Due to the similar structure of the equation, it is not surprising that the following
holds:



121

Theorem 2.2.5.1 (Theorem D.7, [20]). The map v = (−∆)1/4w has (−∆)1/4(dπv),R(−∆)1/4(dπ⊥v) ∈
L1(R) and there exists α > 0, such that:

‖(−∆)1/4(dπv)‖L1(Br(x0)) + ‖R(−∆)1/4(dπ⊥v)‖L1(Br(x0)) . r
α,

for all r > 0 and uniformly in x0 ∈ R.

Proof. The change of gauge argument and localisation estimates work equally well in the case of our
new equation (2.246). Thus, Step 1 carries over word by word. In Step 2, we just need to change the
estimate slightly to account for f̃ . Namely, we replace (−∆)1/4(Qh) in Da Lio-Pigati [20] immediately
by (−∆)1/4w̃0 with w̃0 being the pullback under the stereographic projection of w0 which solves:

(−∆)1/2w0 = Q ◦Π · f,

with Q the gauge from Da Lio-Pigati [20]. The argument proceeds as outlined in section 5 and shows
that (−∆)1/4w̃0 lies in all Lq(R), for 2 ≤ q <∞, by Hardy-Littlewood-Sobolev inequality. Therefore,
we insert (−∆)1/4w̃0, obtaining the same expression as on the bottom of p.32 of Da Lio-Pigati [20]
and by using Hölder’s inequality to estimate:

‖(−∆)1/4w̃0‖L2(Br(x0)) . r
β,

for any β ∈]0, 1/2[ and the estimates on p.33-34 in Da Lio-Pigati [20], one may deduce completely
analogous for some 0 < γ < 1/4:

‖v‖L2,∞(Br(x0)) . r
γ ,

for all r > 0 and x0. Thus, Step 2 of the proof of Theorem D.7 still applies.

The remainder of the proof of Theorem D.7 in Da Lio-Pigati [20] can now be generalized as well.
The application of Adams’ embedding is immediate, the L2-Morrey decay of v can be obtained by
the same trick and due to this, Step 3 holds. Finally, Step 4 and thus the conclusion of the proof of
Theorem 2.2.5.1 follow completely analogous by commutator estimates.

Looking at Corollary D.8 in Da Lio-Pigati [20] and its proof reveals that the local integrability
(−∆)1/4w ∈ Lploc(R) follows immediately by the same arguments as given there. Therefore, the
remainder of the argument in section 5 can be applied and provides the desired gain in integrability.

2.3 Bubbling and Global Weak Existence Theory [104]

To conclude our investigations of the half-harmonic gradient flow, we shall now focus on the behaviour
at points where energy concentrates in finite time. We see that when energy concentrates, a bubble
forms, i.e. after suitable rescalings the maps converge to a half-harmonic map with values in a sphere.
Thus, one also obtains natural bounds on the energy required to accumulate at such points and we
may strengthen the existence results in the previous subsections by gluing together solutions of the
flow. This is the second part of the current section and treats global existence of weak solutions in two
ways: Directly by a variational and limiting argument as well as by a gluing procedure. The former
may even provide an example of a solution with potentially increasing energy, a phenomena known in
the case of the harmonic gradient flow.
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2.3.1 Introduction

Among the most prominent partial differential equations is the harmonic map equation. Its relevance
derives from the way they emerge naturally2 as well as the fact that the associated PDE, especially
in the critical realm (i.e. if the domain is two-dimensional), is related to the creation of power-
ful techniques in the context of regularity theory for PDEs such as Hélein’s moving frames method
(Hélein [45]), an adaptation by Rivière [70] of Uhlenbeck’s Coulomb gauge construction (Uhlenbeck
[98], Wehrheim [100]) and bubbling techniques (Sacks-Uhlenbeck [75]). The harmonic map equation
has later on also inspired the introduction of fractional harmonic maps by Da Lio-Rivière [21], [22].
The corresponding regularity theory for fractional harmonic maps, based on contributions by a vari-
ety of authors including Da Lio-Rivière [22]; Schikorra [76]; Da Lio [16]; Da Lio-Schikorra [27], [28];
Mazowiecka-Schikorra [57], and bubbling analysis (Da Lio [17], Da Lio-Laurain-Rivière [18]) have led
to generalisations of various ideas from the local world, such as Wente/Coifman-Lions-Meyer-Semmes-
type estimates, gauge techniques, Pohozaev identities and many others to the fractional world.

Let us take a step back and recall the main definitions that we shall be using. For the moment, let
us take (M, g), (N, γ) to be arbitrary closed Riemannian manifolds. We mention here that we shall
usually assume N to be isometrically embedded in Rn, a property guaranteed by Nash’s embedding
theorem for sufficiently big n. Using such manifolds, one is naturally led to define the following
Dirichlet energy for maps u : M → N :

E(u) :=
1

2

∫
M
gαβ(x)γij(u(x))

∂ui

∂xα
(x)

∂uj

∂xβ
(x)dx, (2.251)

where we assume for convenience that M,N are embedded submanifolds of the Euclidean space and
use Einstein’s summation convention. Naturality of this definition becomes apparent if one realises
that given M = Tm the m-dimensional torus:

Tm = S1 × . . .× S1︸ ︷︷ ︸
m times

as a domain as well as the target space N = Rn with the corresponding natural, flat Riemannian
metrics, the energy simplifies to the usual Dirichlet energy:

E(u) =
1

2

∫
Tm
|∇u|2dx (2.252)

Critical points of (2.252) satisfy the corresponding Euler-Lagrange equation:

−∆u = 0,

which immediately, by means of elliptic regularity, yields u ∈ C∞(Tm). As a result, it is natural to
wonder what one is able to say about the regularity of critical points of the general energy (2.251).
In some sense (see also Evans [34]), the condition that u takes values in N may be interpreted as a
Lagrange-multiplier, introducing non-linearity into the Euler-Lagrange equation. This immediately
leads us to the first key definition:

2The action induced by the Dirichlet energy in Quantum Field Theory leads to the so-called sigma model, connecting
harmonic maps with instatons. See also Chapter 2.4 in Jost [51].
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Definition 2.3.1.1. A map u ∈ H1(M ;N) is called (weakly) harmonic, if and only if it is a critical
point of the energy function E defined in (2.251) among competitors in H1(M ;N).

Here, we define H1(M ;N) to consist of all functions u ∈ H1(M ;Rn) such that u(x) ∈ N for almost
all x ∈ M . Consequently, the choice of space is appropriate for both the energy functional E as well
as the condition of u assuming values in N . It should be emphasised here that critical points do not
only include (global/local) extrema, but also saddle points.

As usual in variational problems, computing the Euler-Lagrange equation is the first step towards
regularity results and in the case of harmonic maps, one obtains the following sequence of equivalences:

u is (weakly) harmonic ⇔ (−∆)Mu ⊥ TuN in D′(M)

⇔ (−∆)Mu = A(u)(∇u,∇u), (2.253)

where A denotes the second fundamental form of N and ∆M is the Laplace-Beltrami operator of M .
This already highlights the intimate connection of harmonic maps to curvature and geometry of the
manifolds and indeed, existence of harmonic maps may be tied to conditions on the curvature, see
for example Schoen-Yau [82]. A particularily striking feature of the PDE (2.253) is the quadratic
structure inherent to the last equivalence above:

|A(u)(∇u,∇u)| ≤ C|∇u|2,

for some constant C > 0, which immediately singles out the case of M being two-dimensional as
being critical. Unsurprisingly, if u ∈ H1, then the RHS of (2.253) is in L1. In this case, as Calderon-
Zygmund theory does not apply to L1-functions, one merely deduces ∇u ∈ L2,∞, so we have regularity
properties of the same homogeneity as at the start and therefore, standard bootstrapping techniques
are unsuccessful in obtaining higher regularity. What is even worse, there is no general regularity
theory for solutions of similar equations with smooth quadratic non-linearity. This may be seen from
the following scalar PDE for u ∈ H1(B1(0);R), B1(0) denoting here the unit ball in R2:

−∆u = |∇u|2.

In this case, by using v := eu, one may immediately construct counterexamples by using the obser-
vation that the above PDE is equivalent to −∆v = 0 and then considering suitable versions of the
fundamental solution, see Rivière [73, p.32-34] for details.

Fortunately, in the case of the harmonic map equation (2.253), the non-linearity behaves much
better due to its special geometric structure. Namely, by the combined efforts of various authors
including (but not limited to) Béthuel [4], Grüter [41], Hélein [44], Morrey [62], Rivière [70], Shatah
[83] and others over decades, we know nowadays that weakly harmonic maps are always regular. A
common feature among proofs of regularity is the use of compensation results based on properties of
2D-jacobians as summarised by Wente’s estimate, see Wente [101], and later extended to arbitrary
div-curl quantities and determinants by Coifman-Lions-Meyer-Semmes [14] which we state here for
the reader’s convenience:

Proposition 2.3.1.1 ([101]). Let r > 0 be arbitrary, 1 ≤ p < 2 and Br(0) ⊂ R2 be the ball of radius
r around 0. If u ∈W 1,p(Br(0)) and a, b ∈W 1,2(Br(0)) are such that:

−∆u = ∂xa∂yb− ∂xb∂ya, (2.254)

and u has vanishing trace on ∂Br(0), then u is actually continuous and the following estimate holds:

‖u‖L∞ + ‖∇u‖L2,1 + ‖∇2u‖L1 . ‖∇a‖L2‖∇b‖L2 (2.255)
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The reader is reminded that both ∂xa∂yb and ∂xb∂ya individually only lie in L1(Br(0)) (at best
guaranteeing ∇u ∈ L2,∞), but their linear combination ∂xa∂yb− ∂xb∂ya still behaves better and thus
leads to ∇u ∈ L2,1.

A similar result continues to hold for the RHS of (2.254), provided it consists of a product of a
divergence-free and a rotation-free vector field for higher dimensional domains (see Coifman-Lions-
Meyer-Semmes [14]). In fact, the underlying key result is a Hardy-regularity estimate for the RHS3.
One may wonder how this estimate assists us in establishing regularity for equations such as (2.253), as
at first glance the non-linearity in (2.253) appears to have a completely different character. The idea
is that, despite the initial lack of 2D-jacobians in (2.253), by either employing Hélein’s moving frames
[45] or Rivière’s change of gauge approach [70], one may reveal the hidden structure of jacobians in the
harmonic map equation. This is best illustrated in the case M = T2, N = Sn−1, where the harmonic
map equation reads:

−∆u = u|∇u|2. (2.256)

Also in this very special case, there is no 2D-jacobian or div-curl quantity involved in the formulation
at this point. Nevertheless, Shatah ([83]) observed that the equation (2.256) is actually equivalent to
the following conservation laws:

∀i, j ∈ {1, . . . n} : div (ui∇uj − uj∇ui) = 0. (2.257)

Thus, we have (see Section 2.6 in Hélein [45] for regularity also in the more general case of N being
arbitrary):

−∆ui =
∑
j

ui∇uj · ∇uj

=
∑
j

(ui∇uj − uj∇ui) · ∇uj + uj∇ui · ∇uj

=
∑
j

(ui∇uj − uj∇ui) · ∇uj , (2.258)

where in the last line we used the observation that
∑

j uj∇uj = 0, as u takes values in Sn−1 and thus
this may be interpreted as a vector of scalar products between u, which belongs to the normal space
of Sn−1, and partial derivatives of u, which lie in the tangent space of Sn−1 by virtue of u assuming
values in the n−1-sphere. Consequently, it is thus completely clear that

∑
j uj∇uj = 0 holds. Keeping

Shatah’s conservation laws (2.257) in mind, the structure of Wente’s/Coifman-Lions-Meyer-Semmes’
estimate is now uncovered by applying Hodge decompositions to find suitable vector fields for a for-
mulation involving 2D-jacobians. By localising, splitting u into harmonic and zero-boundary value
parts, one may establish a suitable Morrey decrease and this ultimately allows, by virtue of Adams
embedding, to conclude that ∇u ∈ Lploc for some p > 2, the details may be found in Hélein [45]. The
remaining part of the regularity proof is then a bootstrap argument.

A generalisation of the notion of harmonic maps was developed years later by Da Lio and Rivière
in [21] following the spirit above. Let us denote by Hs(S1;Rn) the space of functions, such that:

Hs(S1;Rn) :=
{
u : S1 → Rn measurable

∣∣ ∑
n∈Z

(1 + |n|)2s|û(n)|2 < +∞
}
, (2.259)

3In contrast to L1, the Hardy space H1 is well-behaved with respect to Caldéron-Zygmund operators and thus elliptic
regularity results apply in this case, see Coifman-Lions-Meyer-Semmes [14] and Grafakos [40].



125

where û(n) denotes the n-th Fourier coefficient of u:

û(n) :=
1

2π

∫ 2π

0
u(x)e−inx, ∀n ∈ Z.

The space H1(S1;N) is then defined as the subspace of H1(S1;N), again using Nash’s embedding
theorem, such that u(x) ∈ N for almost every x ∈ S1.

Taking N to be an embedded submanifold of Rn with the induced Riemannian structure, we are
able to introduce the s-Dirichlet energy, s > 0 any positive real number, given by:

Es(u) :=

∫
S1

|(−∆)s/2u|2dx, ∀u ∈ Hs(S1, N),

and in the same step generalise the notion of (weakly) harmonic maps as well:

Definition 2.3.1.2. A map u ∈ Hs(S1;N) is called (weakly) s-harmonic, if and only if it is a critical
point of the energy function Es for variations in the space Hs(S1;N).

The fractional Laplacians (−∆)s/24 may be defined by Fourier multipliers or using principal value
integrals, we refer to Nezza-Palatucci-Valdinocci [63] for some exposition or the next subsection where
both kinds of definitions are introduced. These maps are related to (branched) free-boundary minimal
discs (Da Lio-Rivière [21], Da Lio-Pigati [20]) and singular limits of Ginzburg-Landau approximations
(Millot-Sire [60]), so there are again interesting connections to geometry.

There is no particular reason to use S1 instead of R as the domain and most results are available
in both cases. If s = 1/2, which will interest us particularily, E1/2 is conformally invariant (under
the trace of Möbius transformations) and, as a result, the stereographic projection between R and S1

enables us to switch between R and S1 seemlessly. For the remainder of this paper, we shall restrict
our attention to the case s = 1/2.

As a very simple first case, if N = R, the Euler-Lagrange equation reads:

(−∆)1/2u = 0,

which, similar to the harmonic case, immediately proves regularity5. In general for an arbitrary closed
target manifold N , the Euler-Lagrange equation has a similar formulation as well as structure to
(2.253), namely it becomes:

u is
1

2
-harmonic ⇔ (−∆)1/2u ⊥ TuN in D′(S1) (2.260)

In Da Lio-Rivière [21], the equation above has been rewritten using Three-commutators to reveal
compensation structures inherent to (2.260). In addition, in the case N = Sn−1, we may push the
similarity with (2.256) further by noting the equivalence of (2.260) with:

(−∆)1/2u = u|d1/2u|2, (2.261)

4For instance, in terms of Fourier coefficients:

̂(−∆)su(n) = |n|2sû(n), ∀n ∈ Z.

5This is clear in the case S1 as the domain, as it requires û(n) = 0,∀n 6= 0, hence u must be constant.
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where we use the framework of fractional gradients as introduced in Mazowiecka-Schikorra [57]:

d1/2u(x, y) =
u(x)− u(y)

|x− y|1/2
, |d1/2u|2(x) :=

∫
S1

|d1/2u(x, y)|2 dy

|x− y|
.

In [103], similar formulations with a quadratic non-linearity were obtained. For completeness’ sake, let
us emphasise here that we use the natural distance |x− y| = |eix− eiy| = 2| sin(x−y2 )| on S1 ' R/2πZ.
It should also be stated here that the fractional gradients provide a very natural framework for non-
local operators and relate to the Gagliardo-Sobolev spaces and Bessel-Sobolev potential spaces (see
Chapter 6.1.2 in [40]), see also Prats [64], Prats-Saksman [65].

It is interesting to observe that the key features of (2.253) are also present in (2.260): Both possess
a quadratic RHS (see (2.261) as well as [103] for general N) and are critical equations not allowing for
simple regularity by bootstrap techniques. Indeed, in [103], we even establish a ”curvature-like” formu-
lation similar to (2.261) in general, but the structure is most easily recognizable in the case N = Sn−1.

Regularity properties of half-harmonic maps have been studied extensively and we know that every
critical point of the half-Dirichlet energy is smooth, provided N is smooth as well. The investigation
was started by Da Lio-Rivière [21], [22] and later expanded by other authors, for example in Schikorra
[76] and Mazowiecka-Schikorra [57], the proofs becoming increasingly similar to approach in the case
of the harmonic map equation. In the literature, there are essentially two established approaches
which are in a certain sense two sides of the same medal: Three-term commutators based on improved
regularity of certain linear combinations of terms and non-local Wente/Coifman-Lions-Meyer-Semmes
estimates. For illustration, Three commutator estimates are in some sense various incarnations of
estimates of operators such as:

T : L2(R;Rm)× Ḣ1/2(R;Rm×m)→ Ḣ−1/2(R;Rm),

defined by:
T (v,Q) := (−∆)1/4(Qv)−Q(−∆)1/4v + (−∆)1/4Q · v

It is immediately clear that this operator quantifies the defect of Leibniz’ rule for the 1/4-Laplacian.
For instance, it is proven in Da Lio-Rivière [21] that:

‖T (v,Q)‖Ḣ−1/2 . ‖Q‖Ḣ1/2‖v‖L2

One should keep in mind that a-priori, each summand in T (v,Q) individually does not belong to
Ḣ−1/2.

To draw even more similarities to the harmonic map equation, we focus for now on the non-local
Wente/Coifman-Lions-Meyer-Semmes estimate found in Mazowiecka-Schikorra [57]:

Proposition 2.3.1.2 ([57]). Let s ∈ (0, 1) and p ∈ (1,∞). For F ∈ Lpod(R × R) and g ∈ Ẇ s,p′(R),
where p′ denotes the Hölder dual of p, we assume that divs F = 0. Then F · dsg lies in the Hardy
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space H1(R)6 and we have the estimate:

‖F · dsg‖H1(R) . ‖F‖Lpod(R×R)‖g‖Ẇ s,p′ (R).

The general s-gradient is introduced in analogy to the 1/2-gradient and we say that divs F = 0, if
for all ϕ ∈ C∞c (R): ∫

R

∫
R
F (x, y)dsϕ(x, y)

dydx

|x− y|
= 0.

Lastly, we define:

F · dsg(x) :=

∫
R
F (x, y)dsg(x, y)

dy

|x− y|
.

These notions and results also apply for S1 as a domain and we refer to Mazowiecka-Schikorra [57]
for details. In particular, we have used the following spaces for F : R× R→ R and g : R→ R in the
formulation of Proposition 2.3.1.2:

F ∈ Lpod(R× R)⇔ ‖F‖Lpod(R×R) :=

(∫
R

∫
R
|F (x, y)|p dydx

|x− y|

)1/p

< +∞, (2.262)

and:

g ∈ Ẇ s,p′(R)⇔ ‖g‖Ẇ s,p(R) :=

(∫
R

∫
R

∣∣∣g(x)− g(y)

|x− y|s
∣∣∣p′ dydx|x− y|

)1/p′

< +∞, (2.263)

equipped both with the natural (semi-)norms associated with these spaces. We refer to the paper
Mazowiecka-Schikorra [57] for further details.

Regularity theory for half-harmonic maps is now mostly analogous to the harmonic map case, up
to taking care of tail estimates (i.e. estimates involving an infinite sum of localisations to larger and
larger balls with a smaller and smaller weight, see p.15-19 in Mazowiecka-Schikorra [57] as an example)
emerging due to the non-locality of the equations. In the current paper, we shall just give an outline
in the case N = Sn−1 following the observations and work in Mazowiecka-Schikorra [57]: Shatah-like
fractional conservation laws hold

∀i, j ∈ {1, . . . , n} : div1/2

(
uid1/2uj − ujd1/2ui

)
= 0,

leading to a reformulation of (2.261) as:

(−∆)1/2ui =
∑
j

(
uid1/2uj − ujd1/2ui

)
· d1/2uj +

∑
j

ujd1/2ui · d1/2uj ,

where, in contrast to the harmonic map equation, the last term is now not vanishing as the fractional
gradient is not necessarily tangential to Sn−1. Nevertheless, using π the closest point projection to
the target manifold Sn−1, or in general N , extended suitably and Taylor expansion, we see:

u(x)− u(y) = π(u(x))− π(u(y)) = dπ(u(x)) (u(x)− u(y)) +R(u(x), u(y)),

6The Hardy space H1(R) is the subspace of L1(R)-functions such that:

MΦ(f)(x) := sup
t>0
|Φt ∗ f |(x) ∈ L1(R),

where Φ is a Schwartz function on R with
∫

Φdx = 1 and Φt(x) = 1/t · Φ(x/t). Various other, sometimes simpler
characterisations (for example H1(R) ' F 0

1,2(R)) exist and the relevance of Hardy spaces stem from their ”good”
behaviour with respect to Caldéron-Zygmund operators, especially when compared to L1(R). We refer to [40], Chapter
6.4, for details on the theory of Hardy spaces and their relation to Triebel-Lizorkin spaces.
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with |R(u(x), u(y))| . |u(x) − u(y)|2. Hence, the defect of d1/2u being non-tangential is controlled.
Noting that dπ(u(x)), written as a differential to highlight the emphasis on its interpretation as linear
approximation, is the tangent projection at u(x), we may deduce, as is done in detail in [57, p.15-19],
that the remainder may be considered to be of lower order and thus does not obstruct the argument.
Then, localising and applying Wente/Coifman-Lions-Meyer-Semmes-type estimates, we arrive again
at a Morrey decrease and, by Adams embedding (Adams [1]), at higher integrability and thus Hölder
regularity of half-harmonic maps. Following for instance Da Lio-Pigati [20], one may bootstrap this
information to deduce smoothness of solutions.

The considerations above hopefully convinced the reader of the close connection between 1/2-
harmonic and harmonic maps and their Euler-Lagrange equations, at least in the structure of their
proof and, in some sense, their relation to the geometry of the target manifold. This relation is
something that we exploited in the papers [102], [103] to establish a theory for the half-harmonic
gradient flow in analogy to Struwe [89] and obtain even a weak uniqueness statement in the small
energy realm by extending the techniques introduced in Rivière [68]. Thus, we shall embark on a
short survey of some results pertaining to the harmonic gradient flow before turning to the discussion
of the half-harmonic gradient flow.

To start, let us present the main equation: We consider functions u : [0, T [×M → N , M,N being
isometrically embedded submanifolds of some RK and T ∈ R ∪ {+∞} and would like to solve the
following equation:

∂tu−∆Mu = A(u)(∇u,∇u), (2.264)

for a given initial datum u(0, ·) = u0(·) ∈ H1(M ;N). The relevance of this PDE derives from approx-
imations of stationary points (i.e. harmonic maps) and questions pertaining to the homotopy of maps
like whether any given map in H1(M ;N) is homotopic to a harmonic one (see also Eells-Sampson
[33]). The latter question not being true in general, one may wonder what kind of convergence and
regularity properties are to be expected in finite time as well as when t → +∞. We shall see, also
in the case of the half-harmonic gradient flow, that bubbling may potentially occur and especially in
the harmonic flow, a variety of different types of bubbling (finite time, infinite time, reverse bubbling)
may manifest, see especially the extraordinarily well-suited approach to bubbling using the inner-outer
gluing scheme (Davila-Del Pino-Wei [29]). We recall that, rather informally, a bubble is a harmonic
map which is created by energy concentration in smaller and smaller neighbourhoods of a point after
blow up using rescalings. Outside of the blow up point, the flow will behave nicely and be smooth,
but at the bubbling point itself, energy accumulates and results in the formation of a so-called bubble.
We refer to Struwe [89] for more details.

The harmonic gradient flow was first studied by Eells and Sampson [33] culminating in an existence
result for minimizers of the Dirichlet energy homotopic to any given initial datum, provided that the
target manifold has non-positive sectional curvature. However, the first general result that applies
independent of any geometric properties (such as sectional curvature) was given by Struwe in [89] for
two-dimensional domains and extended to arbitrary domains in Struwe [90]. We state the result here
in a special case, as it may be found for example in Rivière [68]:

Theorem 2.3.1.1 ([89]). Let u0 ∈ H1(T2;Sn−1). Then there exists a solution u ∈ H1(]0,+∞[;L2(T2))
of the harmonic gradient flow:

∂tu−∆u = u|∇u|2 in D′(]0, T [×T2), ∀T > 0, (2.265)
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together with the boundary conditions:

u(0, x) = u0(x), for all x ∈ T2, (2.266)

and satisfying E(u(t, ·)) ≤ E(u0) for all times t ≥ 0. The solution u is regular on ]0,+∞[×T2, except
in a finite number of points (tk, xk), k = 1, . . . ,K, for some K ∈ N. Additionally, u is unique in the
class E ⊂ H1

loc([0,+∞[×T2) which consists precisely of the u ∈ H1
loc([0,+∞[×T2), such that:

∃m ∈ N,∃T0 = 0 < T1 < . . . < Tm <∞ : u ∈ L2([Ti, Ti+1[;W 2,2(T2)),∀i ≤ m− 1 (2.267)

Finally, there exists a constant C > 0 independent of u0, such that:

K ≤ C · E(u0) (2.268)

Theorem 2.3.1.1 immediately addresses existence, regularity and bubbling questions as well as
providing a first uniqueness result (at least for strong solutions, i.e. solutions with sufficient regularity
to make sense of the equation in the L2-sense). Interesting features include the fact that bubbling may
occur (Chang-Ding-Ye [12]), nevertheless no energy is lost in the process. So the energy as a function
of time is continuous and monotone up to the creation of bubbles which account for the jump down
in energy completely. This also guarantees that the amount of bubbles that form is finite, due to the
quantisation of energy associared with bubbling and harmonic maps.

The proof of Theorem 2.3.1.1 relies on testing the equation (2.265) against itself or appropriate
derivatives (testing here referring to integrating the PDE multiplied by the test function). As a first
simple example, let us test (2.265) against ∂tu, i.e. we integrate the equation against ∂tu, in order to
find:∫ T

0

∫
T2

|∂tu|2dxdt+E(u(T ))−E(u0) =

∫ T

0

∫
T2

|∂tu|2dxdt+

∫ T

0

∫
T2

∂t

(
1

2
|∇u|2

)
dxdt = 0, (2.269)

since ∂tu is tangential to Sn−1, while u is perpendicular to the tangent space, it spans the normal
space to Sn−1 ⊂ Rn. This proves for instance that the energy is non-increasing along the harmonic
gradient flow, a property expected as we follow the steepest desecent of the Dirichlet energy. Testing
against ϕ∂tu instead of ∂tu, where ϕ is some cutoff-function leads in a similar way to control of the
localised energy and hence of energy concentration, a crucial tool in establishing estimates in the proof
in Struwe [89]. Testing against −∆u yields control for the second order derivatives:∫ T

0

∫
T2

〈∂tu,−∆u〉dxdt+

∫ T

0

∫
T2

| −∆u|2dxdt

=

∫ T

0

∫
T2

〈u|∇u|2,−∆u〉dxdt

≤ 1

2

∫ T

0

∫
T2

|∇u|4dxdt+
1

2

∫ T

0

∫
T2

| −∆u|2dxdt, (2.270)

which after absorption may be rewritten as:

1

2

∫ T

0

∫
T2

| −∆u|2dxdt ≤
∫ T

0

∫
T2

|∇u|4dxdt+

∫ T

0

d

dt

(
1

2

∫
T2

|∇u|2
)
dt

≤
∫ T

0

∫
T2

|∇u|4dxdt+ E(u0). (2.271)
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The L4-norm may be estimated as in Struwe [89] using Ladyzhenskaya’s estimate (Ladyzhenskaya
[52]). As a result, allows for uniform estimates in terms of the initial energy and the energy con-
centration. The latter, i.e. concentration of energy, is controlled by the inequalities obtained by
testing against ϕ∂tu as we mentioned above, which allows us to reduce this dependence to an es-
timate based on the energy distribution at time 0. So ultimately, by an approximation process as
well as the uniform estimates established just as in Struwe [89] along the lines sketched above (as
well as testing against further suitably chosen functions), one obtains existence of solutions for arbi-
trary initial values in H1(T2;Sn−1). The rigorous treatment of the estimates is referred to Struwe [89].

There are several natural questions to ask from here: Firstly, one may wonder if bubbling in
finite time is actually possible. This question is answered by Chang, Ding, Ye [12] by using explicit
solutions in the corotational setting. They construct subsolutions blowing up in finite time and prove
that appropriate boundary conditions exist to transfer the blow up to a solution of the harmonic map
flow.

Another question pertains to whether the energy decay is necessary as an assumption. Indeed it is,
without this no uniqueness statement is possible. For instance, in Topping [94], other kinds of blow ups
violating the monotone decay of energy are constructed by using so-called reverse bubbling and prove
existence of ”non-physical” solutions. Furthermore, various types of blow ups may be considered using
the inner-outer gluing scheme, studied by Davila, del Pino and Wei [29] and various other authors.
It should be stated that a kind of non-uniqueness phenomena can already be observed for the linear
heat equation in Rn (for example in John [49]) where we need some decay at ∞ to ensure uniqueness,
so these kinds of issues are not unexpected.

Lastly, it is natural to inquire whether uniqueness also holds among weak solutions/energy class
solutions. One may show that this is true, at least for solutions with non-increasing energy and has
been shown by Rivière [68] and Freire [35]. Rivière’s argument works for the small energy regime and
for the target manifold Sn−1 and employs an ingenious absorption argument that allows to deduce
that the solution is actually a solution in the strong sense. The key result in such an approach may
be stated as follows:

Lemma 2.3.1.1 ([68]). Let u ∈ H1(T2;Sn−1) and f ∈ L2(T2;Rn) and assume that u solves the
following non-linear quadratic PDE:

−∆u = u|∇u|2 + f (2.272)

Then u ∈ H2(T2;Sn−1).

It should be noted that Lemma 2.3.1.1 gives the maximal amount of regularity one may expect
from a general u solving such an equation. In the context of the harmonic gradient flow, it may be
applied (for almost every fixed time t > 0) to:

−∆u(t) = u(t)|∇u(t)|2 − ∂tu(t).

This equation actually holds for almost every time, provided u ∈ H1(T2;Sn−1) is a weak solution, as
can be seen from standard arguments. Thus, we deduce that for all such times u(t) ∈ H2(T2;Sn−1).
However, this does not suffice to prove uniqueness, as we need an L2-bound on the H2-norms when
integrated over time. This follows however immediately by using a version of Ladyzhenskaya’s estimate
(Ladyzhenskaya [52]):

‖∇u(t)‖L4 . ‖∇u(t)‖L2‖∇u(t)‖H1 . E(u0)‖u(t)‖H2 ,
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so we arrive at, by using elliptic regularity as well as |u(t)| = 1 almost everywhere:

‖u(t)‖H2 . ‖u(t)‖L2 +
∥∥∥u(t)|∇u(t)|2 − ∂tu(t)

∥∥∥
L2
. 1 + E(u0)‖u(t)‖H2 + ‖∂tu(t)‖L2 , (2.273)

so if E(u0) is sufficiently small, the H2-norm on the RHS of (2.273) may be absorbed in the LHS of
(2.273) to deduce:

‖u(t)‖H2 . 1 + ‖∂tu(t)‖L2 ,

and by integrating over time intervals, the desired local integrability follows and allows for the appli-
cation of Theorem 2.3.1.1 to conclude.

The proof of Lemma 2.3.1.1 may be found in Rivière [68] or [102] for the half-harmonic gradient
flow where a natural analogue holds. Indeed, the techniques discussed so far naturally generalise to
the framework of the half-harmonic gradient flow. The motivation to study this gradient flow stems
once more from approximation of solutions to the half-harmonic map equation as well as the interest
in expanding ideas from the local world to the fractional one. This is what the author has done in
[102] for the case of the target manifold being a sphere and in [103] for the target manifold being
any closed, isometrically embedded N . Since we shall restrict our considerations later on to the case
N = Sn−1 anyways, let us focus on this special case, where the equation takes the form:

∂tu+ (−∆)1/2u = u|d1/2u|2

The most natural formulation of the half-harmonic gradient flow equation in N is phrased as:

∂tu+ (−∆)1/2u ⊥ TuN in D′([0, T [×S1)

First, one may wonder what was known about the half-harmonic gradient flow before [102]. In
Schikorra-Sire-Wang [77], the authors had already constructed solutions to the gradient flow of various
non-local energies of similar type as the 1/2-Dirichlet energy by a discretisation procedure. Unfor-
tunately, the result was limited to target spaces with inherent symmetry such as the sphere due to
the limits taken. In a different paper Sire-Wei-Zheng [84], the bubbling as t → +∞ was investigated
by adapting the inner-outer gluing scheme well-known in the case of the harmonic map flow to the
non-local framework, establishing that bubbling is possible for N = S1 at time t = +∞. The authors
of Sire-Wei-Zheng [84] further conjectured that bubbling may actually only occur asymptotically, so
no finite time bubbling is possible due to dimensional peculiarities of R and S1. The conjecture is,
according to our best knowledge, still open and under investigation.

Let us now turn to the main result as found in [102] that answered some of the questions about
the half-harmonic gradient flow:

Theorem 2.3.1.2 ([102]). Let u0 ∈ H1/2(S1;Sn−1) be any initial data. There exists ε > 0, such that
if:

E1/2(u0) ≤ ε, (2.274)

then there exists a unique energy class solution u : R+ × S1 → Sn−1 ⊂ Rn of the weak fractional
harmonic gradient flow:

∂tu+ (−∆)1/2u = u|d1/2u|2, (2.275)

satisfying u(0, ·) = u0 in the sense u(t, ·) → u0 in L2, as t → 0. Moreover, the solution fulfills the
energy decay estimate:

E1/2(u(t)) ≤ E1/2(u(s)) ≤ E1/2(u0), ∀t ≥ s ∈ [0,+∞[.



132

In fact, u ∈ C∞(]0,∞[×S1) and for an appropriate subsequence tk →∞, the sequence u(tk) converges
weakly in H1(S1) to a point.

If u0 has arbitrary energy, then we still get the existence of a solution to (2.275) on some time inter-
val [0, T [, where T = T (u0) > 0 depends on the initial datum. There exists a similar characterisation
of T (u0) as in Struwe [89], namely saying that T (u0) is the first time such that:

lim sup
t→T

ε(R;u, t) ≥ ε1, ∀R ∈]0,
1

2
[, (2.276)

where:

ε(R;u, T ) := sup
x∈S1,t∈[0,T ]

ER(u;x, t) = sup
x∈S1,t∈[0,T ]

1

2

∫
BR(x)

|(−∆)1/4u(t)|2dx, (2.277)

measures concentration of energy and ε1 > 0 is a quantity appearing in the proof of the result and is
independent of u0, R, T .

The latter half of Theorem 2.3.1.2 is implicit in [102] due to the nature of the local existence
proof. As already hinted at earlier, the entire result continues to hold true if we use an arbitrary N
instead of Sn−1. As the proof of this result is similar in spirit, but different in various technical and
computational aspects from Struwe [89], we do not go into the details of the proof, but we just present
some of the basic steps as in the case of the harmonic gradient flow to indicate key similarities and
differences: The main idea is, as for the harmonic gradient flow, that testing (2.275) against u and its
derivatives again yields the desired control of energy concentration and higher regularity estimates.
As a result, one may deduce existence and regularity similar to Struwe [89], once we have a sufficient
local existence theory for smooth u0. Once more, as a first example of the testing-technique used,
testing (2.275) against ∂tu enables us to deduce that:∫ T

0

∫
S1

|∂tu|2dxdt+ E1/2(u(T ))− E1/2(u0)

=

∫ T

0

∫
S1

|∂tu|2dxdt+

∫ T

0

∫
S1

∂t

(
1

2
|(−∆)1/4u|2

)
dxdt = 0, (2.278)

again using the fact that ∂tu ∈ TuSn−1 ⊥ u, leading to monotonicity for smooth solutions of (2.275). If
we were to test against ϕ∂tu instead of ∂tu, local energy control and thus estimates on the concentration
of energy in points of S1 is obtainable (some technicalities due to the non-locality of (−∆)1/4 require
attention in this step). To have uniform estimates, we remember that in the case of the harmonic
gradient flow we tested against −∆u, so it is natural to expect (and this of course holds) that a similar
control can be derived by testing against (−∆)1/2u for the half-harmonic gradient flow:∫ T

0

∫
S1

〈∂tu, (−∆)1/2u〉dxdt+

∫ T

0

∫
S1

|(−∆)1/2u|2dxdt

=

∫ T

0

∫
S1

〈u|d1/2u|2, (−∆)1/2u〉dxdt

≤ 1

2

∫ T

0

∫
S1

|d1/2u|4dxdt+
1

2

∫ T

0

∫
S1

|(−∆)1/2u|2dxdt, (2.279)

and from here, one argues by employing a fractional version of Ladyzhenskaya’s inequality as well as
absorbing suitable terms on the RHS into the LHS of the inequality above. The uniform estimates
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in terms of initial energy and the concentration of energy are obtained by testing with further maps
derived from u in much the same way, see [102], [103]. Thus, once we are able to establish existence
of solutions to the half-harmonic gradient flow for small times and regular boundary data, we may
deduce the general existence and regularity result by approximation completely analogous to Struwe
[89] building on the uniform estimates that are obtained in this way.

This leads us to consider the half-harmonic gradient flow for smooth boundary data u0. Local
existence for the half-harmonic gradient flow in this case can be obtained by studying the following
operator:

H : W 1,p([0, T ]× S1)→ Lp([0, T ]× S1), H(u) := ut + (−∆)1/2u− u|d1/2u|2, (2.280)

for p > 2. Notice that for solutions u of the half-harmonic gradient flow, we of course have H(u) = 0.
Applying the inverse function theorem to H, therefore investigating invertibility of the linearisation
DH(v) for some suitable extension v of u0, allows us to deduce that solutions with arbitrary pre-
scribed smooth boundary data do exist (at least for times t ∈ [0, δ0] with δ0 > 0 sufficiently small
and depending on u0). Later on in the current paper, we shall provide an alternative proof of the
local existence result for the half-harmonic gradient flow in [103, Prop. 3.2] based on a fixed-point
argument involving Banach’s fixed point theorem that again allows us to show existence for a short
period of time by different means (a previously unpublished, yet unsurprising approach).

Lastly, we shall turn to the uniqueness of solutions to the half-harmonic gradient flow in the energy
class: The argument in Rivière [68] generalises thanks to the following Lemma which is a fractional
version of Lemma 2.3.1.1:

Lemma 2.3.1.2 ([102]). Let f ∈ L2(S1;Rn) and assume that u ∈ H1/2(S1;Sn−1) solves the following
equation:

(−∆)1/2u = u|d1/2u|2 + f. (2.281)

Then, we have the following improved regularity property:

u ∈ H1(S1;Sn−1).

The proof of uniqueness for weak solutions with sufficiently small energy now follows as before
in the local case by absorption and employing a fractional Ladyzhenskaya-type estimate that may
be proven by means of Fourier coefficients and Sobolev embeddings. Namely, one obtains as in the
outline of the proof of Lemma 2.3.1.1:

(−∆)1/2u(t) = u(t)|d1/2u(t)|2 − ∂tu(t),

for almost every fixed time t > 0, so that by applying Lemma 2.3.1.2:

u(t) ∈ H1(S1), (2.282)

for almost every t. As a result, we have by using the definition of the H1-norm:

‖u(t)‖2H1 . ‖u(t)‖2L2 + ‖(−∆)1/2u(t)‖2L2

. 1 + ‖|d1/2u(t)|2‖2L2 + ‖∂tu(t)‖2L2

. 1 + ‖(−∆)1/4u(t)‖L2‖
(
‖(−∆)1/4u(t)‖L2 + ‖(−∆)1/2u(t)‖L2

)
+ ‖∂tu(t)‖2L2
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. 1 + ‖(−∆)1/4u(t)‖2L2 + ‖(−∆)1/4u(t)‖L2‖u(t)‖2H1 + ‖∂tu(t)‖L2

. 1 + E1/2(u0)2 + E1/2(u0)‖u(t)‖L2 + ‖∂tu(t)‖L2 . (2.283)

Details on the individual estimates may be found in [102], in particular the fractional Ladyzhenskaya-
type estimate in line 3 of (2.283). From here on, the considerations become the same as in the proof of
Lemma 2.3.1.1, by absorbing the H1-norm on the RHS of the equation (2.283) into the LHS, provided
E1/2(u0) is sufficiently small. Integrating both sides of (2.283) in time yields the desired regularity
properties to apply the uniqueness result in Theorem 2.3.1.2.

For completeness’ sake, we would like to mention that in a later work Hyder-Segatti-Sire-Wang
[47], the authors consider an alternative version of the half-harmonic heat flow not based on the L2-
gradient flow, but rather on ideas similar to the connection noticed by Caffarelli and Silvestre [11]
between fractional Laplacians and Dirichlet-to-Neumann and reading:

(∂t −∆)1/2u ⊥ TuN,

which allows for a monotonicity formula. Such a formula is unknown in the case of the flow (2.275).
It is obvious that both flows allow for the same stationary solutions, namely half-harmonic maps, but
the approaches are independent. Additionally, the authors of [47] establish regularity outside of a
lower dimensional set, but not answering questions relating to the uniqueness of such solutions.

In our current work, we will use the characterisation (2.276) above in order to state and prove
results regarding bubbling. In fact, we shall show that at most finitely many points exist where
bubbles form. By observing that the bubbles are non-constant half-harmonic maps, we may further
show that there must localise a quantum of the 1/2-Dirichlet energy which gets removed from the
flow. To summarise, we shall obtain the following new result:

Theorem 2.3.1.3. Let u be a solution as in Theorem 2.3.1.2 and let x0 ∈ S1 be a point, such that:

lim sup
t→T

∫
BR(x0)

|(−∆)1/4u|2dx ≥ ε1, ∀R > 0, (2.284)

where ε1 > 0 is as in [103, Lemma 4.10]. Then there exists a half-harmonic map v : R→ Sn−1, such
that:

um → v weakly in H1(R) and strongly in H1/2(R), (2.285)

where um is a suitable rescaling and translation of u.

Therefore, by using such considerations, we may conclude that the solution constructed in [103]
may be extended by L2-continuity and will be smooth except for finitely many times 0 < T1 < . . . <
Tl < +∞, which may be characterised by concentration identities as in Theorem 2.3.1.2:

Theorem 2.3.1.4. Let u0 ∈ H1/2(S1;Sn−1), then there exists a weak solution of (2.275) with non-
increasing 1/2-Dirichlet energy:

u : [0,+∞[× S1 → N,

with u ∈ L∞([0,+∞[;H1/2(S1;Sn−1))∩H1([0,+∞[;L2(S1;Sn−1)) such that, except for finitely many
times 0 < T1 < . . . < Tl < Tl+1 := +∞, the function u is smooth:

u ∈ C∞(]Tk, Tk+1[;Sn−1), ∀k = 1, . . . l.
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Moreover, we may bound the number l = l(u0) as follows:

l(u0) ≤ E(u0)

ε0
,

where ε0 > 0 is the minimum amount of 1/2-energy a non-constant, half-harmonic map with values
in Sn−1 must possess.

Of course, both of the results for Sn−1 carry over to the general manifold case N without major
changes.

In a future paper, we will investigate the smoothness at the critical times outside of bubbling
points. This issue is quite delicate due to the non-local nature of the equation at hand and thus
requires more care than in Struwe [89] where suitable localisations are immediately available. Fur-
thermore, the question whether bubbling may even occur remains open and under investigation as
well, see also p.3 in Sire-Wei-Zheng [84] for a conjecture in this direction. Additionally, the global
existence result in Theorem 2.3.1.4 is still new in the case of arbitrary target manifolds, as previous
papers such as Schikorra-Sire-Wang [77] have either only dealt with special target manifolds or with
solutions for a possibly short amount of time as in the author’s previous work. Finally, the author is
aware of current research Struwe [93] concerning the half-harmonic gradient flow based on techniques
involving harmonic extensions and, once more, arguments similar to Struwe [89]. Thus, alternative
approaches to the problem at hand may be possible.

The structure of the paper is as follows: In Section 2.3.2, we will quickly recall the necessary notions
used throughout the paper, in particular fractional gradients and divergences, Triebel-Lizorkin spaces
on S1 and the fractional Laplacian. In the following Section 2.3.3, we provide proofs and statements
for properties of the half-harmonic gradient flow. In particular, in Section 2.3.3.1, we provide an
alternative proof of local existence of solutions based on a fixed point argument. Afterwards, we
investigate bubbling in finite time in Section 2.3.3.3, studying the concentration of energy, resulting
in a proof of Theorem 2.3.1.3. Lastly, Section 2.3.3.4 deals with extensions and other ideas to find
global solutions to our main PDE, proving Theorem 2.3.1.4.

2.3.2 Preliminaries

In this brief preliminary section, we shall introduce some of the most important notions used through-
out. In particular, we discuss Triebel-Lizorkin spaces on S1, provide a short summary of fractional
gradient and fractional divergences based on Mazowiecka-Schikorra [57] and finally recall some of the
main results associated with the fractional heat flow. Most of the results are discussed in more detail
in [102] and the references provided therein.

2.3.2.1 Triebel-Lizorkin Spaces on the Unit Circle and Fractional Laplacians

Firstly, we shall discuss Triebel-Lizorkin spaces on the unit circle S1 ⊂ R2 and recall some of the most
important properties of and formulas for the fractional Laplacian. Much of the current presentation
is due to Prats [64], Prats-Saksman [65] and Schmeisser-Triebel [80]. Throughout, we shall use the
distance:

|x− y| = 2| sin
(
x− y

2

)
,
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for all x, y ∈ S1 ' R mod 2πZ.

We define for any f : S1 → R the following quantity based on the fractional gradients dsf(x, y) =
f(x)−f(y)
|x−y|s :

Ds,q(f)(x) :=

(∫
S1

|dsf(x, y)|q dy

|x− y|

)1/q

, (2.286)

for all 1 ≤ q < ∞ and 0 < s < 1. We refer to the next subsection for some details on the fractional
gradient dsf . Then:

‖f‖Ẇ s,(p,q)(S1) := ‖Ds,q(f)(x)‖Lp(S1), (2.287)

for every 1 ≤ p ≤ ∞. If p = q, these spaces correspond to the usual homogeneous Gagliardo-Sobolev
spaces Ẇ s,p(S1), see Prats [64], Prats-Saksman [65].

Furthermore, we shall denote as per usual by D′(S1) the set of all distributions on S1 and occa-
sionally use D(S1) as an alternative notation for the space C∞(S1). Finally, f̂(k) shall always be the
k-th Fourier coefficient of f , for all f ∈ D′(S1). It is formally defined by:

f̂(k) :=
1

2π
〈f, e−ikx〉 =

1

2π
f
(
e−ikx

)
, ∀k ∈ Z (2.288)

In Schmeisser-Triebel [80], it is shown that one may define Triebel-Lizorkin spaces for S1, denoted by
F sp,q(S

1), completely analogous to the usual space F sp,q(Rn) for any parameters s ∈ R and p, q ∈ [1,∞[:

F sp,q(S
1) :=

{
f ∈ D′(S1)

∣∣ ‖f‖F sp,q < +∞
}

(2.289)

The norm is defined by:

‖f‖F sp,q :=

∥∥∥∥∥
∥∥∥∥∥
(∑
k∈Z

2jsϕj(k)f̂(k)eikx

)
j∈N

∥∥∥∥∥
lq

∥∥∥∥∥
Lp(S1)

, (2.290)

for a suitable partition of unity (ϕj)j∈N consisting of smooth, compactly supported functions on R
with the properties:

suppϕ0 ⊂ B2(0), suppϕj ⊂ {x ∈ R | 2j−1 ≤ |x| ≤ 2j+1},∀j ≥ 1

as well as:
∀k ∈ N : sup

j∈N
2jk‖Dkϕj‖L∞ . 1

One may develop, as for example seen in [80, Chapter 3], a complete theory of Triebel-Lizorkin spaces
on S1 and more generally on the n-torus Tn by following the techniques of these spaces on Rn. We
refer for further details to Schmeisser-Triebel [80], but for now it suffices to be aware that all tools
and results for Triebel-Lizorkin spaces F sp,q(Rn) are also available for F sp,q(Tn).

It turns out that the fractional gradients are exceptionally useful in studying non-local problems.
As an example, the following result found in Prats-Saksman [65] is key to many of our arguments,
allowing us to restrict our considerations to fractional gradients rather than fractional Laplacians:

Theorem 2.3.2.1 (Theorem 1.2, [65]). Let s ∈ (0, 1), p, q ∈]1,∞[ and f ∈ Lp(R). Then:
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(i) We know Ẇ s,(p,q)(Rn) ⊂ Ḟ sp,q(Rn) together with:

‖f‖Ḟ sp,q(Rn) . ‖f‖Ẇ s,(p,q)(Rn). (2.291)

(ii) If p > nq
n+sq , then we also have the converse inclusion together with:

‖f‖Ẇ s,(p,q)(Rn) . ‖f‖Ḟ sp,q(Rn). (2.292)

The constants depend on s, p, q, n.

By using the properties in Schmeisser-Triebel [80] for periodic functions and employing Theorem
2.3.2.1, we can arrive at the following equivalence with Triebel-Lizorkin spaces for all 1 < q <∞ and
1 < p <∞:

Ẇ s,(p,q)(S1) = Ḟ sp,q(S
1), (2.293)

with equivalence of the corresponding seminorms, provided p > q
1+sq . As a simple, but important

special case, let us observe that if s = 1/2 and q = 2, then p > 1 is the requirement in Theorem

2.3.2.1 for the equality of Ḟ
1/2
p,2 and Ẇ 1/2,(p,2) to hold. Some more details and a proof of one direction

of Theorem 2.3.2.1 can be found in the appendix of [102].

Finally, we would like to briefly address the fractional Laplacian. The simplest definition is based
on the Fourier multiplier properties of the Laplacian itself, leading ultimately to the following definition
for the fractional s-Laplacian on Fourier series on S1:

̂(−∆)sf(k) = |k|2sf̂(k), (2.294)

for every k ∈ Z and all 0 < s < 1. There is an alternative formulation as a Cauchy principal value,
which actually leads to the same operator and is often useful:

(−∆)1/2f(x) = C · P.V.
∫
S1

f(x)− f(y)

|x− y|2
dy, (2.295)

where C > 0 denotes a suitable constant. Similar formulas with less explicit kernels exist for 0 < s < 1,
these are omitted for accessibility of the presentation. Additionally, it is of course possible to define
the fractional Laplacians also on Rn, leading again to two different characterisations (as a Fourier
multiplier and Cauchy principal value) with the same type of formulas. The details are thus omitted.

An essential property of function spaces is their behaviour under Fourier multipliers, for example
extending results such as Mikhlin’s multiplier theorem for Lp-spaces. As the fractional Laplacian is
obviously a Fourier multiplier operator, one expects characterisations of the spaces F sp,q(S

1) based on
these operators, compare with the Bessel potentials. Indeed, one easily sees (Schmeisser-Triebel [80]):

(−∆)s : Ḟ t+2s
p,q → Ḟ tp,q,

for all p, q ∈ (1,∞) and t, t+ 2s ∈ R. This should not be surprising and follows along the same lines
as in the case of Triebel-Lizorkin spaces on Rn. Observe the use of Ḟ sp,q(S

1) rather than F sp,q(S
1)

indicating the use of homogeneous Triebel-Lizorkin spaces, which are again defined as usual, see also
Schmeisser-Triebel [80].
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2.3.2.2 Fractional Gradients and Divergences

Next, we would like to discuss in some depth the notion of fractional gradient and its derivatives,
like the fractional divergence and certain weighted Lp-spaces. The presentation greatly draws from
Mazowiecka-Schikorra [57] and is a shortened version of [102]:

One may introduceMod(R×R) as the set of all measurable functions f : R×R→ R with respect
to the weighted Lebesgue measure dxdy

|x−y| . In complete analogy, we do the same for S1 instead of R
as the domain, denoting this space by Mod if both R or S1 are possible as domains. Naturally, the
associated Lp-spaces, denoted Lpod are of interest and the defining (semi-)norms are given by:

‖F‖Lpod :=

(∫ ∫
|F (x, y)|p dydx

|x− y|

)1/p

, (2.296)

for 1 ≤ p < ∞. The space L∞od(S
1 × S1) and L∞od(R× R) as the sets of essentially bounded functions

with the essential supremum as the (semi-)norm. Later on, the following quantity, defined in terms of
F,G ∈Mod, will be useful:

F ·G(x) :=

∫
F (x, y)G(x, y)

dy

|x− y|
(2.297)

In the special case F = G, this becomes:

F · F (x) = |F |2(x), |F |(x) :=
√
F · F (x) (2.298)

Of course, this shows:

‖F‖2L2
od

=

∫
|F |2(x)dx

Let us finally turn to the definition of fractional gradients: For a measurable function f : R → R
or f : S1 → R, we define for 0 ≤ s < 1 the fractional s-gradient by:

dsf(x, y) =
f(x)− f(y)

|x− y|s
∈Mod,

and the corresponding s-divergence by means of duality, i.e. for F ∈Mod:

〈divs F,ϕ〉 =

∫ ∫
F (x, y)dsϕ(x, y)

dydx

|x− y|
, ∀ϕ ∈ C∞c (R) or C∞(S1) (2.299)

It is obvious that:
dsf(y, x) = −dsf(x, y)

Also, a version of Leibniz’ rule holds true:

ds (fg) (x, y) = dsf(x, y)g(x) + f(y)dsg(x, y)

Naturally, divs F is only well-defined in a distributional sense.

Using the notions introduced for functions F ∈ Lpod and as we have already stated in the subsection
before, we do now have:

‖|dsf |(·)‖Lp(S1) = ‖f‖Ẇ s,(p,2)(S1), (2.300)
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We refer to Theorem 2.3.2.1 for the significance of this. Finally, the fractional Laplacian also has a place
in the setting of fractional gradients and divergences, behaving much as expected from ∆ = div ◦∇:

(−∆)sf = Cs divs dsf, (2.301)

for some constant Cs > 0 depending on s. Equation (2.301) has to be read as follows for g a smooth
test function:

Cs

∫
dsf · dsg(x)dx =

∫
(−∆)sf · gdx =

∫
(−∆)s/2f · (−∆)s/2gdx

A key result to establish, for instance, regularity of fractional harmonic maps or the uniqueness of
weak solutions to the half-harmonic gradient flow with small initial energy is the following Wente-type
estimate:

Lemma 2.3.2.1 (Theorem 2.1, [57]). Let s ∈ (0, 1) and p ∈ (1,∞). For F ∈ Lpod(R × R) and

g ∈ Ẇ s,p′(R), where p′ denotes the Hölder dual of p, we assume that divs F = 0. Then F · dsg lies in
the Hardy space H1(R) and we have the estimate:

‖F · dsg‖H1(R) . ‖F‖Lpod(R×R) · ‖g‖Ẇ s,p′ (R). (2.302)

In the case where s = 1/2 and p = p′ = 2, we may immediately deduce F · dsg ∈ H−1/2(R)
following the Sobolev embedding Ḣ1/2(R) ↪→ BMO(R) with analogous estimates. Naturally, the
result also remains valid in the case of the domain being S1:

Lemma 2.3.2.2. For F ∈ L2
od(S

1 × S1) and g ∈ Ḣ1/2(S1), we assume that div1/2 F = 0. Then

F · d1/2g lies in the space H−1/2(S1) and we have the estimate:

‖F · d1/2g‖H−1/2(S1) . ‖F‖L2
od(S1×S1) · ‖g‖Ḣ1/2(S1). (2.303)

We refer to [102] for some details of the proof.

2.3.2.3 Fractional Heat Flow

The presentation of this subsection follows Garofalo [37] and we refer to it and the references men-
tioned therein for details.

A natural PDE to consider is the fractional heat flow equation derived from the operator ∂t+(−∆)s.
One may be motivated by the ubiquity of the heat equation in general mathematics or by the interest
in the fractional harmonic gradient flow, whose linearisation is closely connected to this equation. Of
course, semi-group theory provides a suitable theoretical framework to discuss questions of existence,
regularity and uniqueness of such solutions. For our purpose, it will be sufficient to introduce the heat
kernel (at least in the special case s = 1/2) and discuss some of its basic properties.

A natural approach to solve the equation for the fundamental solution of the homogeneous equa-
tion:

∂tu+ (−∆)su = 0, u(0, x) = δ0(x),

on [0,∞[×R would be to apply a spatial Fourier transform, leading to the following equation for the
Fourier transform:

∂tû(t, ξ) + |ξ|2sû(t, ξ) = 0
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Solving this ODE for fixed ξ leads us to:

û(t, ξ) = e−|ξ|
2st · δ̂0(ξ) = e−|ξ|

2st (2.304)

The fundamental solution is thus the Fourier inverse of this expression and in the case s = 1/2, the
following explicit formula exists:

u(t, x) = C · t

t2 + x2
, (2.305)

C being a suitable constant. A fundamental solution on S1 may be constructed by periodic extension,
so we discover an analogous kind of heat kernel. It should be noted that outside of (t, x) = (0, 0), the
heat kernel is smooth, thus implying the smoothing property already well-known from the standard
heat flow.

The fractional heat semigroup may be used for various things, such as a formula for the fractional
Laplacians by subordination, see Garofalo [37]. We are more interested in the immediate regularity
properties. By using Duhamel’s principle, one may indeed solve the problem:

∂tv(t, x) + (−∆)sv(t, x) = f(t, x), ∀(t, x) ∈]0,∞[× S1 (2.306)

v(0, x) = g(x), ∀x ∈ S1 (2.307)

Regularity may be obtained either by semigroup theory or, if s = 1/2, using the ellipticity of ∂t +
(−∆)1/2 which is contained in:(

∂t − (−∆)1/2
)(

∂t + (−∆)1/2
)

=
(
∂t + (−∆)1/2

)(
∂t − (−∆)1/2

)
= ∂2

t + ∂2
x

Therefore, if s = 1/2, an Lp-theory with estimates as expected does exist, see also Hieber-Prüss [46]
and the discussion in [102] on the regularity of local solutions.

2.3.3 Half-Harmonic Gradient Flow

In this section, we go into some depth regarding some specific aspects of the proof of Theorem 2.3.1.2.
To be precise, we shall supply the reader with an alternative proof to the local existence result for
smooth u0 given in [102], [103] for some brief interval of time based on Banach’s fixed point theorem,
present a detailed account of the proof of Lemma 2.3.1.2, since this argument is beautiful and provides
potential insight into the way Hodge decomposition may be substituted in the non-local case. The
way to conclude from this uniqueness for weak solutions follows by using similar arguments as in
the introduction and we refer to [102] for the details. Following this, we shall then discuss bubbling
processes based on concentration estimates in localised Gagliardo seminorms and rescaled versions of
the solution. The approach is quite similar to Struwe [89], however the non-locality renders quite a
few steps more difficult and requires us to refine some estimates we have previously established in
[102, Lemma 3.11-3.12]. Only after having this estimate available are we in a position to address
boundedness of suitable rescalings of the solution to the half-harmonic gradient flow. To conclude this
section, we discuss global existence of solutions by using two distinct approaches, one producing a
solution based on Theorem 2.3.1.2 with non-increasing energy, while the other proves existence based
on variational arguments, but does not immediately exhibit monotonicity of energy.
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2.3.3.1 A Local Existence and Regularity Result

In this first subsection, our goal is to prove the following:

Proposition 2.3.3.1. Let u0 ∈ C∞(S1;Sn−1). Then there exists a solution u : [0, T ]×S1 → Sn−1 with
u(0, ·) = u0 of the equation (2.275) which is smooth on some time interval [0, T ], where T = T (u0).

This result was already proven in [102] by introducing an appropriate solution operator H (see
(2.280)) and applying the inverse function theorem. The key observations were that firstly, the lin-
earisation of H at any smooth function is indeed Fredholm with index 0 and thus injectivity and
invertibility become equivalent. Secondly, an argument based on maximum principles shows that
smooth elements in the kernel of the linearisation are always trivial. Bootstrapping to deduce suffi-
cient regularity then bridges the gap between the two observations and amounts to the existence result
stated as Proposition 2.3.3.1.

Here, we will take a slightly different approach and substitute the use of Fredholm theory by
employing a standard argument based on Banach’s fixed point theorem. For the remainder of this
section, we shall denote by:

W 1,p
u0

([0, T ]× S1) :=
{
u ∈W 1,p([0, T ]× S1) ∈

∣∣u(0, ·) = u0

}
,

where u0 ∈ C∞(S1;Sn−1) is a given boundary value. Indeed, we shall prove:

Lemma 2.3.3.1. Let u0 ∈ C∞(S1;Sn−1) and p > 4. Then the map:

S : W 1,p
u0

([0, T ]× S1)→W 1,p
u0

([0, T ]× S1), (2.308)

mapping u ∈W 1,p
u0 ([0, T ]×S1) to the unique solution S(u) ∈W 1,p

u0 ([0, T ]×S1) of the following system:

∂tS(u) + (−∆)1/2S(u) = u|d1/2u|2, ∀(t, x) ∈ [0, T ]× S1 (2.309)

S(u)(0, x) = u0(x), ∀x ∈ S1 (2.310)

Given R > 0 sufficiently big and T > 0 sufficiently small, then S is a contraction of the closed ball of
radius R around u0, denoted BR(u0), onto itself and thus possesses a fixed point.

We remark at this point that by then employing the same kind of bootstrap procedure as in [103],
we immediately deduce that the fixed point is smooth, thus Proposition 2.3.3.1 holds, once we have
established Lemma 2.3.3.1. The reader should notice that we tacitly omit any assumption ensuring
u(t, x) ∈ Sn−1 for (t, x) ∈ [0, T ] × S1. This is no oversight, but relates to the fact that by employing
the maximum principle for parabolic equations immediately proves this from the equation (2.275), see
the proof of Proposition 3.12 in [102].

Proof. First, one should observe that u|d1/2u|2 ∈ L∞([0, T ] × S1) ⊂ Lp([0, T ] × S1). This follows by
Sobolev embeddings into Hölder spaces and the compactness of the domain. Therefore, the operator
S is actually well-defined.

By abuse of notation, we denote by u0 also its extension to [0, T ] × S1 which is independent of
time. Let us consider the following for arbitrary u, v ∈W 1,p

u0 ([0, T ]× S1):

‖S(u)− S(v)‖W 1,p . ‖u|d1/2u|2 − v|d1/2v|2‖Lp
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. ‖u− v‖Lp‖u‖2C1/2 + ‖v‖L∞‖|d1/2(u− v)|‖Lp (‖u‖C1/2 + ‖v‖C1/2)

. T 1/p‖u− v‖L∞‖u‖W 1,p + ‖v‖W 1,p · T 1/p‖u− v‖C1/2 · (‖u‖W 1,p + ‖v‖W 1,p)

. (R+ ‖u0‖W 1,p)2 · T 1/p · ‖u− v‖W 1,p , (2.311)

where we emphasise that all estimates have no further dependence on T . This may be seen by mirror-
extensions and applying the Sobolev embeddings on potentially larger sets. Thus, we may conclude,
provided R is given:

S is a contraction, if T is sufficently small.

Thus, it remains to be seen that provided R > 0 is sufficiently large, then for every u ∈ BR(u0), we
also have:

S(u) ∈ BR(u0)

To see this, we have to consider the difference:

d := ‖u0 − S(u0)‖W 1,p

We define for now R = 2d and then choose T > 0 so small, that the Lipschitz constant in (2.311) is
1/2. Let us notice that for any u ∈ BR(0), we have:

‖u0 − S(u)‖W 1,p ≤ ‖u0 − S(u0)‖W 1,p + ‖S(u0)− S(u)‖W 1,p

≤ R

2
+

1

2
‖u0 − u‖W 1,p

≤ R

2
+
R

2
= R, (2.312)

thus:
S(u) ∈ BR(u0).

This now concludes the proof of Lemma 2.3.3.1, as W 1,p
u0 ([0, T ] × S1) is a complete metric space due

to the continuity of the trace operator.

2.3.3.2 Uniqueness: Lemma 2.3.1.2

In this short section, we shall explain the proof of Lemma 2.3.1.2 which can be seen as Rivière’s
Lemma ([68]). Recall that we are interested in solutions u ∈ H1/2(S1;Sn−1) of an equation of the
form:

(−∆)1/2u = u|d1/2u|2 + f, (2.313)

where f ∈ L2(S1;Rn). We observe the following (using Einstein’s summation convention):

〈div1/2

(
uid1/2uj − ujd1/2ui

)
, ϕ〉D′(S1)

= 〈uid1/2uj − ujd1/2ui, d1/2ϕ〉L2
od(S1×S1)

=

∫
S1

∫
S1

ui(x)
(uj(x)− uj(y))(ϕ(x)− ϕ(y)

|x− y|2
− uj(x)

(ui(x)− ui(y))(ϕ(x)− ϕ(y)

|x− y|2
dydx

=

∫
S1

∫
S1

d1/2uj(x, y)
(
d1/2(uiϕ)(x, y)− d1/2ui(x, y)ϕ(y)

) dydx

|x− y|

−
∫
S1

∫
S1

d1/2ui(x, y)
(
d1/2(ujϕ)(x, y)− d1/2uj(x, y)ϕ(y)

) dydx

|x− y|
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=

∫
S1

∫
S1

d1/2ui(x, y)d1/2(ujϕ)(x, y)− d1/2uj(x, y)d1/2(uiϕ)(x, y)
dydx

|x− y|

=

∫
S1

ui(x)|d1/2u|2(x) · uj(x)ϕ(x)− uj(x)|d1/2u|2(x) · ui(x)ϕ(x)− fi(x)uj(x)ϕ(x) + fj(x)ui(x)ϕ(x)dx

=

∫
S1

(ui(x)fj(x)− uj(x)fi(x))ϕ(x)dx, (2.314)

which reveals, in analogy to Rivière [68]:

∀i, j ∈ {1, . . . , n} : div1/2

(
uid1/2uj − ujd1/2ui

)
= uifj − ujfi (2.315)

One may solve now for i, j as above the equation:

(−∆)1/2ψij = uifj − ujfi,

for ψij ∈ H1(S1). Observe that we may choose these in such a way that ψij = −ψji. Then it becomes
clear:

div1/2

(
uid1/2uj − ujd1/2ui − d1/2ψij

)
= 0

Thus, defining Ωij := uid1/2uj − ujd1/2ui − d1/2ψij , we find:

(−∆)1/2u = Ω · d1/2u+ T (u) + d1/2ψ · d1/2u+ f (2.316)

Here, T (u) is the remainder as already found in Mazowiecka-Schikorra [57] and [102]: It is given by
T (u) = (T 1(u), . . . , Tn(u)) and

∀i ∈ {1, . . . , n} : T i(u) :=
1

2

n∑
k=1

∫
S1

d1/2ui(x, y)|d1/4uk(x, y)|2 dy

|x− y|

One may generalise this remainder as follows:

T i(u, v, w) :=
1

2

n∑
k=1

∫
S1

d1/2ui(x, y)d1/4vk(x, y)d1/4wk(x, y)
dy

|x− y|
,

such that T (u) = T (u, u, u). This term has good integrability properties, see the proof of Lemma 3.8
in [102]. To simplify, let us notice that ψ ∈ H1(S1) ↪→ W 1/2,p(S1) by Sobolev embeddings for every
p < +∞ and thus, using Prats [64]:

d1/2ψ · d1/2u ∈ Lq(S1), ∀1 ≤ q < 2,

since |d1/2u| ∈ L2(S1) by u ∈ H1/2(S1). Thus, (2.316) can be rephrased as:

(−∆)1/2u = Ω · d1/2u+ T (u, u, u) + f̃, (2.317)

where f̃ := f + d1/2ψ · d1/2u ∈ Lq(S1) for all 1 ≤ q < 2.

The key idea in Rivière [68] is now the following: We try to approximate Ω by a smooth Ω̃ with
vanishing 1/2-divergence, such that:

‖Ω− Ω̃‖L2
od
≤ ε,
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for ε > 0 small. Similarily, we approximate u by a smooth ũ in H1/2(S1). Then (2.317) leads us to:

(−∆)1/2u−
(

Ω− Ω̃
)
·d1/2u−T (u, u− ũ, u− ũ) = Ω̃ ·d1/2u+T (u, u, ũ)+T (u, ũ, u− ũ)+ f̃ =: f̂ (2.318)

Since div1/2(Ω− Ω̃) = 0, we notice that we are in the realm of the fractional Wente-type estimate in

Proposition 2.3.1.2. Namely, if v ∈ Ḟ 1/2
p,2 (S1) for some p > 2, then we have by Hölder’s inequality:∥∥∥(Ω− Ω̃

)
· d1/2v

∥∥∥
L

2p
p+2
. ‖Ω− Ω̃‖L2

od
‖v‖

Ḟ
1/2
p,2

≤ ε · ‖v‖
Ḟ

1/2
p,2

Since F
1/2
p′,2(S1) ↪→ L

2p′
2−p′ for p′ the Hölder conjugate of p by Sobolev embedding, the inequality above

immediately yields: ∥∥∥(Ω− Ω̃
)
· d1/2v

∥∥∥
F
−1/2
p,2

. ε · ‖v‖
Ḟ

1/2
p,2

In the case p = 2, i.e. v ∈ Ḟ 1/2
2,2 (S1) = Ḣ1/2(S1), then by Proposition 2.3.1.2 we get immediately:∥∥∥(Ω− Ω̃

)
· d1/2u

∥∥∥ . ‖Ω− Ω̃‖L2
od
‖v‖Ḣ1/2 ≤ ε · ‖v‖Ḣ1/2

In an analogous manner, the estimates in the preliminary section show us:

‖T (v, u− ũ, u− ũ)‖
Ḟ
−1/2
p,2

. ‖u− ũ‖2
H1/2‖v‖Ḟ 1/2

p,2

≤ ε2 · ‖v‖
Ḟ

1/2
p,2

,

for all p ≥ 2. This shows us that the operator:

τ : v 7→ v − (−∆)−1/2
((

Ω− Ω̃
)
· d1/2v + T (v, u− ũ, u− ũ)

)
,

actually defines an invertible operator (one has to be slightly careful at this point and restrict to v

having vanishing mean), for any p ≥ 2, from Ḟ
1/2
p,2 (S1) to itself, provided ε > 0 is sufficiently small.

Keeping the RHS of (2.318) in mind, it is immediate that it lies in Lq for all 1 ≤ q < 2 by estimates
from the previous subsection. Thus:

(−∆)−1/2
(

Ω̃ · d1/2u+ T (u, u, ũ) + T (u, ũ, u− ũ) + f̃
)
∈ Ḟ 1

q,2(S1) ↪→ Ḟ
1/2
2q

2−q ,2
(S1),

for again all q ∈ [1, 2[.

The conclusion of Lemma 2.3.1.2 follows now by noticing that τ(v) = (−∆)−1/2f̂ does possess

a solution v ∈ Ḟ
1/2
p,2 (S1) by invertibility for each fixed p ≥ 2, provided ε > 0 is sufficiently small.

Observing that due to compactness of S1, we have:

Ḟ
1/2
p,2 (S1) ⊂ Ḟ 1/2

2,2 (S1) = H1/2(S1),

by choosing ε > 0 so small, that invertibility holds for p = 2 and some p > 2, we conclude that the

solution v ∈ Ḟ
1/2
p,2 (S1) must also lie in H1/2(S1). Since u ∈ H1/2(S1) is already a solution and by

invertibility actually the unique one, we deduce:

v = u⇒ u ∈ Ḟ 1/2
p,2 (S1)
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As p > 2 was arbitrary up to possibly choosing better approximations for even smaller ε > 0, we find:

u ∈ Ḟ 1/2
p,2 (S1), ∀p ∈ [1,+∞[

Taking p = 4, we deduce:
|d1/2u|2 ∈ L2(S1), (2.319)

which combined with |u| = 1 almost everywhere and (2.313), we thus conclude:

(−∆)1/2u = u|d1/2u|2 + f ∈ L2(S1)⇒ u ∈ H1/2(S1;Sn−1),

which is the required conclusion.

All that remains to do is to justify the approximation of Ω and u. Since the latter is standard
and does not require any further interesting considerations, it is omitted here. The former, however,
requires some care. Thus, let ε > 0 be arbitrary and we shall consider the following approximation:

Ωδ := Ω · 1Dδ ,

where:
∀δ > 0 : Dδ := {(x, y) ∈ S1 × S1||x− y| ≥ δ}

So Dδ omits a neighbourhood of the diagonal. It is clear by Lebesgue’s dominated convergence, that:

Ωδ → Ω, as δ → 0, (2.320)

in the space L2
od(S

1 × S1). Thus, take δ so small that:

‖Ω− Ωδ‖L2
od
<
ε

2
(2.321)

Now, we may argue by convolution by a suitable smooth kernel to replace Ωδ by a smooth function,
again denoted Ωδ, which vanishes close to the diagonal {x = y}. This is again standard and thus
omitted.

The final obstacle to overcome is to adapt Ωδ ∈ C∞(S1 × S1) in such a way that:

div1/2 Ωδ = 0

To achieve this, we shall solve the following problem:

(−∆)1/2hδ = div1/2 Ωδ,

i.e. solving the weak equation:

〈(−∆)1/2hδ, ϕ〉 =

∫
S1

∫
S1

d1/2hδ(x, y)d1/2ϕ(x, y)
dydx

|x− y|
=

∫
S1

∫
S1

Ωδ(x, y)d1/2ϕ(x, y)
dydx

|x− y|
, ∀ϕ ∈ C∞(S1).

Existence of such a solution is immediate, as in the case of Ωδ, one may define the divergence directly
as a smooth function. One may immediately notice that since Ωδ ∈ L2

od, we have:

(−∆)1/2hδ ∈ H−1/2(S1)⇒ hδ ∈ H1/2(S1),
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together with the estimate:

‖hδ‖2Ḣ1/2 =

∫
S1

|d1/2hδ|2dx

=

∫
S1

(Ωδ(x, y)− Ω(x, y)) d1/2hδ(x, y)
dydx

|x− y|
. ‖Ωδ − Ω‖L2

od
‖hδ‖Ḣ1/2 , (2.322)

ultimately proving:

‖hδ‖Ḣ1/2 . ‖Ωδ − Ω‖L2
od
≤ ε

2
,

where we used in the computation above that div1/2 Ω = 0. Therefore, by choosing δ > 0 sufficiently
small, we have:

‖Ωδ − d1/2hδ − Ω‖L2
od
. ε, (2.323)

as well as:
div1/2

(
Ωδ − d1/2hδ

)
= div1/2 Ωδ − (−∆)1/2hδ = 0. (2.324)

It should be emphasised that (−∆)1/2 = div1/2 ◦d1/2 in complete analogy to ∆ = div ◦∇. This is
precisely the desired approximation and thus concludes the proof of Lemma 2.3.1.2.

2.3.3.3 Bubbling-Analysis and Concentration of Energy

In the current section, we will first study the concentration of energy in greater detail and with more
precise estimates. Two main results shall be obtained: Firstly, we shall improve the following Lemma
3.16 in [102]:

Lemma 2.3.3.2 (Lemma 3.16 in [102]). There exist C > 0 not depending on R, u, T , such that for
any smooth u on [0, T ]× S1 and 0 < R < 1, the following estimate holds for all x0 ∈ S1:∫ T

0

∫
B 3R

4
(x0)
|(−∆)1/4u|4dxdt ≤ C sup

0≤t≤T

∫
BR(x0)

|(−∆)1/4u(t)|2dx

·

(∫ T

0

∫
BR(x0)

|(−∆)1/2u|2dxdt+
1

R2

∫ T

0

∫
S1

|(−∆)1/4u|2dxdt

)
,

(2.325)

by density the same result applies for all u ∈ H1([0, T ] × S1), and all boundary terms u0 = u(0, ·) ∈
H1/2(S1), with bounded 1/2-Dirichlet energy. Similarily, we have:∫ T

0

∫
S1

|(−∆)1/4u|4dxdt . sup
0≤t≤T,x∈S1

∫
BR(x)

|(−∆)1/4u(t)|2dx

·
(∫ T

0

∫
S1

|(−∆)1/2u|2dxdt+
1

R3

∫ T

0

∫
S1

|(−∆)1/4u|2dxdt
)
. (2.326)

The improvement will be in the order of power of R that occurs and this is indeed crucial for a
non-local rescaling argument to work, for instance giving an improved exponent in Lemma 2.3.3.4.
Namely, we shall show that R−3 may be replaced by R−2 which allows for suitable rescaling and a
blow-up procedure. Secondly, we will connect the condition (2.276) to an analogous condition for
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the localised energy in balls, sacrificing potentially focus by allowing for ”larger” balls in which the
localised Gagliardo-seminorms are bounded from below. Observe that due to the non-local nature of
the 1/4-Laplacian, ε(R;u, t) takes into account not only value of u(t, x) in a ball, but on the entire S1.
However, contributions ”far away” are not as important (these are dealt with by enlarging the balls
under consideration) and thus we may restrict our attention to the local Gagliardo seminorms on balls.

An Improved Version of Lemma 3.16 in [102] In this brief subsection, we shall argue why the
following refinement of Lemma 3.16 in [102] holds true:

Lemma 2.3.3.3. There exist C > 0 not depending on R, u, T , such that for any smooth u on [0, T ]×S1

and 0 < R < 1/2, the following estimate holds for all x0 ∈ S1:∫ T

0

∫
B 3R

4
(x0)
|(−∆)1/4u|4dxdt ≤ C sup

0≤t≤T

∫
BR(x0)

|(−∆)1/4u(t)|2dx

·

(∫ T

0

∫
BR(x0)

|(−∆)1/2u|2dxdt+
1

R2

∫ T

0

∫
S1

|(−∆)1/4u|2dxdt

)
,

(2.327)

by density the same result applies for all u ∈ H1([0, T ] × S1), and all boundary terms u0 = u(0, ·) ∈
H1/2(S1), with bounded 1/2-Dirichlet energy. Similarily, we have:∫ T

0

∫
S1

|(−∆)1/4u|4dxdt . sup
0≤t≤T,x∈S1

∫
BR(x)

|(−∆)1/4u(t)|2dx

·
(∫ T

0

∫
S1

|(−∆)1/2u|2dxdt+
1

R2

∫ T

0

∫
S1

|(−∆)1/4u|2dxdt
)
. (2.328)

Proof. The key observation lies in the following estimate: In [102] and [103], we used the rather crude
estimate: ∫ T

0

∫
S1

∣∣∣P.V. ∫
S1

(−∆)1/4u(y)
ϕ(x)− ϕ(y)

|x− y|3/2
dy
∣∣∣2dxdt

.
∫ T

0

∫
S1

|(−∆)1/4u(y)|2 1

|x− y|1/2
dy ·

∫
S1

|ϕ(x)− ϕ(y)|2

|x− y|5/2
dydxdt (2.329)

.
1

R2

∫ T

0

∫
S1

|(−∆)1/4u(y)|2dydt, (2.330)

where ϕ is a cut-off function on some subset BR(x0), x0 ∈ S1. In [102] and [103], we then obtained
(2.326) by summing for a suitable covering by balls with finite-intersection property the terms (2.330).
Instead of using (2.330), we will now use (2.329) and obtain a more precise estimate. For each fixed
value x ∈ S1 (observe that if we are able to obtain a bound independent of x, one may argue as in
(2.330) to finish), we have then a sum:

∑
j∈I

|ϕj(x)− ϕj(y)|2

|x− y|5/2
,
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which we want to estimate in order to establish (2.328) using (2.329) and summation over a suitable
covering. Here, ϕj are the corresponding cut-offs to a suitable covering, i.e. they are supported in
balls of radius R (ϕj being equal to 1 on the ball with same center and radius 3/4R) with the property
that every point is contained in at most 3 of these balls. In fact, the covering should be as in [102],
taking balls of radius R around 8π

3R points which are evenly distributed along the circle and observe
that such a covering immediately has the finite intersection property (indeed, any given point lies in
at most 3 such balls). Now, if ϕj(x) 6= 0, we use the estimate:

|ϕj(x)− ϕj(y)|2

|x− y|5/2
≤ ‖∇ϕ‖2L∞

1

|x− y|1/2
.

1

R2
· 1

|x− y|1/2

Notice that ϕ(x) 6= 0 only holds true for finitely many j (due to the choice of balls above, recalling
that ϕj(x) 6= 0 only if x lies inside the associated ball), this number being independent of R, so by
integrating over S1 and exploiting the integrability of 1/|x − y|1/2 on S1 in y, we deduce that the
contribution of these terms may be bounded by 1/R2.

Next, we have to consider all terms with ϕj(x) = 0. By choice of the covering by balls with equal
radius and equally spaced along the circle, see [102], it is clear that then:

|x− y| ≥ δR,

for some δ > 0 independent of R. Indeed, the cover may be chosen in such a way that for δ > 0
small and independent of R, we have that for x ∈ S1, BδR(x) lies in one of the balls of the covering.
Then only finitely many have non-empty intersection with this ball around x and thus all others must
satisfy

|x− y| ≥ δR,
for y in the remaining balls. Taking next the ball which gets closest to x among all with empty
intersection with BδR(x), we have that again only finitely many have non-empty intersection with this
one, namely a maximum of 3 again, all others satisfy

|x− y| ≥
(
δ +

3

4

)
R,

for y these balls. The reason for this lies in the fact that provided there is no intersection with a
ball Bj , then the midpoint Mj of Bj must have at least one midpoint of a different ball between x
and Mj . So the distance must be larger by 3R/4 than the distance for the closest point of the ball
with midpoint in between. Iterating such an argument, see also Figure 2.3.17, and observing that the
number of intersecting balls may be controlled independent of R, we arrive at the estimate ultimately
required. Thus, by integration of these summands, we obtain a sum of the form:∑

j∈N0

1

R3/2
· 2(

3j
4 + δ

)3/2
.

1

R3/2
.

1

R2
, ∀R ∈]0, 1/2[

7The points labelled are the midpoints, the coloured arrows give the size of balls and x is marked purple. It is clear
that x lies in the balls around M0,M1,M2. These are treated as in the case ϕ0(x) 6= 0. Every point y in the ball around
M3 has now a fixed distance in terms of slightly less than R from x at least, say δR as in the proof. For the ball around
M4, the minimum distance is increased by a step between midpoints, i.e. 3R/4. The same holds for M5, etc.. Naturally,
the same argument may be done for going over to M−1,M−2, . . ., ultimately giving the result in the proof. Reducing
the overlap of balls leads to better estimates. Moreover, the estimates may be made uniform in x which is done in the
proof (the argument just requires one to treat all balls that contain one point of the ball around M0 with the first case,
leading to 5 balls being covered by this case, while the others are still treated precisely the same way as outlined.
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M−1 M0 M1 M2 M3 M4
x

d(x,BR(M3)) = δR

d(x,BR(M4)) = 3
4R+ δR

d(M3,M4) = 3
4R

Radius of balls: R

Figure 2.3.1: Sketch of the splitting of points with varying distances as in the Proof of Lemma 2.3.3.3.

Indeed, observe that the covering may be chosen in such a way that at each point, at most 3 of the balls
intersect. Noting that we may select balls and describe the distance between x and the corresponding
balls in terms of (j+δ)R, the statement becomes apparent. Then by integrating 1/|x−y|5/2 explicitly,
we obtain the sum above. Combining both contributions, we get the improved estimate (2.328) by
arguing as in [103].

Such a result also allows for a slightly more refined version of Lemma 3.19 in [102]:

Lemma 2.3.3.4. There exists ε1 > 0 such that for any u ∈ H1([0, T ] × S1) ∩ L∞([0, T ];H1/2(S1))
solving:

∂tu+ (−∆)1/2u ⊥ TuN in D′([0, T ]× S1)

with values in N and any R < 1/2, there holds:∫ T

0

∫
S1

|∇u|2dxdt ≤ CE(u0)

(
1 +

T

R2

)
, (2.331)

with C independent of u, T,R, provided ε(R) < ε1. Here, u(0, ·) = u0 ∈ H1/2(S1;N) is the initial
value.

The proof is as in [103] or Struwe [89], the only change lies in the application of Lemma 2.3.3.3
instead of Lemma 3.16 in [102]. This improved version will be crucial in the blow-up procedure, as
it will enable us to deduce that the H1-energy is bounded and thus leads to a good solution after
extracting a weakly convergent subsequence, since we have now an appropriate scaling-behaviour of
time and space variable.

Lower Bound for Local Gagliardo Seminorms Next, we would like to establish a connection
between the concentration condition (2.276) at blow-up points and the Gagliardo-seminorms at the
same points. The intuition behind the estimate is that whenever 1/2-Dirichlet energy concentrates
close to a point, then also the localised Gagliardo seminorm around the same point should concentrate,
just as it is the case for the harmonic gradient flow in some sense (the statement is however tautological
in this case, as the energy is already local). Due to the non-local nature, however, contributions from
further away may still be significant, forcing us to include a bigger domain in the estimate of the
seminorm than in the 1/2-energy to avoid concentration in ”neck regions” that we would otherwise
not account for. The key connection is the following:
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Proposition 2.3.3.2. Let ε > 0 be given and N sufficiently large depending on ε. Assume that
u ∈ H1/2(S1) with |u| ≤ 1 and such that:∫

BR(x0)
|(−∆)1/4u|2dx ≥ ε,

for some R < 2−N−1. Then there is a δ > 0 depending only on n and ε, such that:∫
B

2NR
(x0)

∫
B

2NR
(x0)

|u(x)− u(y)|2

|x− y|2
dydx ≥ δ.

In the proof, we shall clarify the necessary requirement for N . Also, the same proof continues to
hold for arbitrary bounded u with δ depending also on ‖u‖L∞ .

Proof. Firstly, we observe that the independence of R and x0 of δ may be obtained by rescaling and
rotations, possibly after using stereographic projection. So we do not have to worry about such de-
pendencies.

Let us argue by contradiction: Assume the statement was wrong, then there exists a sequence
un ∈ H1/2(S1) of bounded functions, such that:∫

BR(x0)
|(−∆)1/4un|2dx ≥ ε;

∫
B

2NR
(x0)

∫
B

2NR
(x0)

|un(x)− un(y)|2

|x− y|2
dydx <

1

n

In particular, we have (up to modifying the un by a constant and extracting a subsequence):

un → 0 in H1/2(B2NR(x0))

We emphasise that here, we use the Gagliardo-Sobolev norm on the ball. As seen in Nezza-Palatucci-
Valdinoci [63], we may extend the un ∈ H1/2(B2NR(x0)) to vn ∈ H1/2(S1) which are still bounded by
a common multiple of 1 and such that:

‖vn‖H1/2(S1) . ‖un‖H1/2(B
2NR

(x0)) → 0,

which also shows:

lim
n→∞

∫
S1

|(−∆)1/4vn|2dx = 0.

Thus, to arrive at a contradiction, we just need to show:

lim inf
n→∞

∫
BR(x0)

|(−∆)1/4(un − vn)|2dx < ε

This can be easily obtained by observing (due to un = vn on B2NR(x0)):∫
BR(x0)

|(−∆)1/4(un − vn)|2dx

≤
∫
BR(x0)

(∫
B

2NR
(x0)c

|un(y)− vn(y)|
|x− y|3/2

dy

)2

dx
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.
∫
BR(x0)

(∫
B

2NR
(x0)c

1

|x− y|3/2
dy

)2

dx

≤
∫
BR(x0)

1

|x∓ 2NR|
dx

. | log
(
1− 2−N

)
| . 2−N < ε, (2.332)

providedN was chosen sufficiently large at the beginning, depending on ε. Thus the required statement
follows, as this contradicts our assumptions and thus provides the desired contradiction.

The key feature of Proposition 2.3.3.2 lies in the fact that it connects the localised (but still non-
local) Gagliardo-seminorms to the concentration of energy. The power of 2 that appears is due to the
non-linearity and ensures that ”not too much” energy is lost by restricting to balls. Ensuring that
energy is stored in balls of sufficiently small radius is crucial to obtain half-harmonic maps in the limit.

Bubbling-Analysis Having proved Lemma 2.3.3.3 as well as Proposition 2.3.3.2, we are now able
to study the bubbling process in points where energy accumulates. The analysis is inspired by Struwe
[89], but has to take care of the non-local behaviour associated with the fractional Laplacian:

Theorem 2.3.3.1. Let u be a solution as in Theorem 2.3.1.2 and let x0 ∈ S1 be a point, such that:

lim sup
t→T

∫
BR(x0)

|(−∆)1/4u|2dx ≥ ε1, ∀R > 0, (2.333)

where ε1 > 0 is as in [103, Lemma 4.10]. Then there exists a half-harmonic map v : R→ Sn−1, such
that:

un → v weakly in H1(R) and strongly in H1/2(R), (2.334)

where un is a suitable rescaling and translation of u.

As stated in the introduction, an analogous result holds for any closed N instead of Sn−1 as target
manifold, up to some technical changes in the formulas. Additionally, we highlight that (2.276) implies
(2.333) at a suitable point by choosing subsequences. Therefore, Theorem 2.3.3.1 actually concerns
the behaviour of functions at the critical time in Theorem 2.3.1.2. It should be noted that the number
of points x0 satisfying (2.333) is finite due to the limited amount of energy available, so these points
may not accumulate.

Proof. Let us argue along the lines of [89, Theorem 4.3]. The key idea is to rescale u on subintervals
of [0, T [ and apply the results in Lemma 2.3.3.3 and Proposition 2.3.3.2 to deduce convergence. Let
us always assume that N is chosen large enough to allow for ε = ε1/2 in Proposition 2.3.3.2 and take
δ > 0 to be the associated lower bound for the Gagliardo seminorms.

We now define rescalings as follows: For each R > 0, we have:

ϕR : R→ S1 ' R/Z ' [−π;π[, (2.335)

with the properties:

ϕR(x) = R2x, ∀x ∈ [−2N

R
,
2N

R
]; |ϕ′R(x)| ≤ R2,



152

and:
lim

x→±∞
ϕR(x) = ±π.

The existence of such a function is clear.

By (2.333) and choosing points (tn, xn) ∈ [0, T [×S1 as in Struwe [89] with tn → T, xn → x0 and
such that:

ERn(u(tn, ·), xn) = ε1 = sup
0<t≤tn,x∈Br(x0)

ERn(u(t, ·), x),

where Rn → 0 and r > 0 is chosen small enough that no other point with the property (2.333) is
contained in Br(x0). We shall now define:

un : [−γ, 0]× R→ Sn−1, un(t, x) := u(tn +R2
nt, xn + ϕRn(x)) (2.336)

Here, γ > 0 (using Lemma 2.3.3.4) is chosen in such a way to ensure:

E2Rn(u(t);xn) ≥ ε1/2, ∀t ∈ [tn − γR2
n, tn].

See also Lemma 4.9 in [103] for a justification of this fact and compare this with Struwe [89]. To
define xn +ϕRn(x), we may use the periodicity of u in the space-variable. The key properties of these
functions are their boundedness properties. For example, we have:∫ 0

−γ

∫
R
|∇un(t, x)|2dxdt

=
1

R2
n

∫ tn

tn−γR2
n

∫
S1

|∇u(s, y)|2|ϕ′Rn(ϕ−1
Rn

(y))|2|(ϕ−1
Rn

)′(y)|dyds

=
1

R2
n

∫ tn

tn−γR2
n

∫
S1

|∇u(s, y)|2|ϕ′Rn(ϕ−1
Rn

(y))|dyds

≤
∫ tn

tn−γR2
n

∫
S1

|∇u(s, y)|2dyds . E(u0), (2.337)

where we used Lemma 2.3.3.4 as well as the choice of points (tn, xn) as above. Notice that the chain
rule is employed at one point to simplify the expression. Similarily:∫ 0

−γ

∫
B

2N/Rn
(0)
|∂tun(t, x)|2dxdt

= R2
n

∫ tn

tn−γR2
n

∫
B

2NRn
(xn)
|∂tu(s, y)|2|(ϕ−1

Rn
)′(y)|dydt

=

∫ tn

tn−γR2
n

∫
B

2NRn
(xn)
|∂tu(s, y)|2dydt

≤
∫ tn

tn−γR2
n

∫
S1

|∂tu(s, y)|2dydt . E(u0) (2.338)

One may now extract convergent subsequences. Thus, we end up with sequences un(τn, ·) which
converge weakly in H1(S1) and strongly in H1/2(R) to v ∈ H1(R). Choosing the subsequence to be
pointwise convergent a.e., we may even deduce:

v ∈ Sn−1 a.e.
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Furthermore, Proposition 2.3.3.2 shows, thanks to the concentration of energy, that:

δ ≤
∫
B

2NRn
(xn)

∫
B

2NRn
(xn)

|u(t, x)− u(t, y)|2

|x− y|2
dydx,

for all t ∈ [tn − γR2
n, tn]. This also shows:

δ ≤
∫
B

2N/Rn
(xn)

∫
B

2N/Rn
(xn)

|un(τn, x)− un(τn, y)|2

|x− y|2
dydx

Thus, by passing to the limit as n→∞:

E1/2(v) ≥ δ > 0,

and so v may not be constant. It remains to check that v is actually half-harmonic. This is however
an immediate consequence of the original equation:

∂tu+ (−∆)1/2u = u|d1/2u|2

Namely, since for τn, we have:
∂tu(τn)→ 0,

as n → ∞ in L2
loc(R), it remains to prove convergence of the other terms. Namely, we have for any

ϕ ∈ C∞c (R): ∫
R

∫
R
d1/2v(x, y)d1/2ϕ(x, y)

dydx

|x− y|

= lim
n→∞

∫
R

∫
R
d1/2un(τn)(x, y)d1/2ϕ(x, y)

dydx

|x− y|

= lim
n→∞

∫
B

2N/Rn

∫
B

2N/Rn

d1/2un(τn)(x, y)d1/2ϕ(x, y)
dydx

|x− y|

= lim
n→∞

∫
B

2NRn
(xn)

∫
B

2NRn
(xn)

d1/2u(τn)(x, y)d1/2

(
ϕ ◦ ϕ−1

Rn

)
(x, y)

dydx

|x− y|

= lim
n→∞

∫
S1

∫
S1

d1/2u(τn)(x, y)d1/2

(
ϕ ◦ ϕ−1

Rn

)
(x, y)

dydx

|x− y|

= lim
n→∞

(∫
S1

−∂tu · ϕ ◦ ϕ−1
Rn
dx+

∫
S1

u(τn)|d1/2u(τn)|2 · ϕ ◦ ϕ−1
Rn
dx

)
= lim

n→∞

∫
S1

u(τn)|d1/2u(τn)|2 · ϕ ◦ ϕ−1
Rn
dx

= lim
n→∞

∫
B

2NRn
(xn)

u(τn)

∫
B

2NRn
(xn)
|d1/2u(τn)(x, y)|2 dy

|x− y|
· ϕ ◦ ϕ−1

Rn
dx

= lim
n→∞

∫
B

2N/Rn
(xn)

un(τn)

∫
B

2N/Rn
(xn)
|d1/2un(τn)(x, y)|2 dy

|x− y|
· ϕdx

=

∫
R
v|d1/2v|2ϕ, (2.339)
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which is the desired equation. Notice that throughout the computations, we used several times that
appropriate terms may be omitted due to the boundedness of un(τn) and v, leading to omissions of
parts of the domain of integration, switching between the distance function on S1 and R and similar
terms. A crucial observation is that ϕ is supported on a subdomain of B2N/Rn for Rn sufficiently
small, so the estimates have good bounds everywhere, if n goes to ∞. So we are done, since v solves
the half-harmonic map equation and thus is actually smooth, see Da Lio-Pigati [20]. In particular, v
may be regarded as a 1/2-harmonic map after composition with the stereographic projection.

2.3.3.4 Existence of Global Solutions

Finally, we have all the necessary tools at our disposal to tackle the global existence problem in full
generality. The main idea will be that one is easily able to extend solutions on a finite time-interval by
using convergence properties as t goes to the critical time. A direct argument shows that the extension
by gluing a solution at the critical time for appropriate initial data will give a global solution after at
most finitely many such extensions.

Proof by ”Gluing” Let us show that we may extend a solution u : [0, T [×S1 → Sn−1 to be a
weak solution on a slightly bigger time interval. This may be done by first observing that due to the
monotone decay of energy:

E1/2(u(t)) ≤ E1/2(u0) < +∞ (2.340)

Therefore, we may deduce that for an appropriate sequence u(tn) → v ∈ H1/2(S1) with tn → T .
Moreover, since u ∈ H1([0, T [;L2(S1)), we must have convergence:

lim
t→T

u(t) = v in L2(S1), (2.341)

due to a standard continuity argument:

‖u(t)− u(t0)‖2L2 ≤
∫ t

t0

‖∂tu(s)‖2L2ds→ 0, as t, t0 → T

This also shows uniqueness of v independent of any choice of sequence tn → T which results in the
desired L2-convergence.

Next, we want to estimate the 1/2-energy of v. To do this, let us assume that there is just one
bubbling point x0 at time T (the general case follows analogously, losing energy in finitely many
points). Then we have, using a limit to avoid the concentration at the point x0:

E1/2(v) =

∫
S1

∫
S1

|v(x)− v(y)|2

|x− y|2
dydx

= lim
r→0

∫
S1\Br(x0)

∫
S1\Br(x0)

|v(x)− v(y)|2

|x− y|2
dydx

= lim
r→0

lim inf
n→∞

∫
S1\Br(x0)

∫
S1\Br(x0)

|u(tn, x)− u(tn, y)|2

|x− y|2
dydx

≤ lim inf
n→∞

E1/2(un)− ε0 = lim
t→T

E1/2(u(t))− ε0, (2.342)

where ε0 denotes a quantum of energy that is concentrated close to x0. Indeed, by omitting a neigh-
bourhood of x0, the energy accumulated in this point is not excluded in the limit and therefore leads
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to a loss of energy (energy which is ultimately recovered in the form of a bubble). As ε0 is independent
of u and T , we deduce that bubbling may only occur in finitely many points, as the 1/2-energy is
decreasing and bounded from below by 0. Thus, we do not have to worry about accumulations of
blow-up points.

One concludes now by extending the solution u after T by the main existence result in [103], Theo-
rem 2.3.1.2. The fact that we have obtained a weak solution is easily verified by a direct computation
based on the L2-convergence of u(t) as t → T , thus establishing the desired global existence result.
Indeed, we assume that u : [0,+∞[×S1 → Sn−1 bubbles at time T = 1, the general case with finitely
many times in which bubbling occur follows completely analogously. Let ϕ ∈ C∞c (]0,∞[×S1), since
we know that the equation holds true for sufficiently small times. Then we have:∫ ∞

0

∫
S1

∂tu · ϕdxdt+

∫ ∞
0

∫
S1

(−∆)1/2u · ϕdxdt

= −
∫ ∞

0

∫
S1

u · ∂tϕdxdt+

∫ ∞
0

∫
S1

(−∆)1/4u · (−∆)1/4ϕdxdt

= −
∫ 1

0

∫
S1

u · ∂tϕdxdt+

∫ 1

0

∫
S1

(−∆)1/4u · (−∆)1/4ϕdxdt

−
∫ ∞

1

∫
S1

u · ∂tϕdxdt+

∫ ∞
1

∫
S1

(−∆)1/4u · (−∆)1/4ϕdxdt

=

∫ 1

0

∫
S1

∂tu · ϕdxdt+

∫ 1

0

∫
S1

(−∆)1/4u · (−∆)1/4ϕdxdt−
∫
S1

u(1, x)ϕ(1, x)dx

+

∫ ∞
1

∫
S1

∂tu · ϕdxdt+

∫ ∞
1

∫
S1

(−∆)1/4u · (−∆)1/4ϕdxdt+

∫
S1

u(1, x)ϕ(1, x)dx

=

∫ 1

0
u|d1/2u|2ϕdxdt−

∫
S1

u(1, x)ϕ(1, x)dx+

∫
S1

u(1, x)ϕ(1, x)dx+

∫ ∞
1

u|d1/2u|2ϕdxdt

=

∫ ∞
0

u|d1/2u|2ϕdxdt, (2.343)

which proves the fact that u extended as explained yields a global weak solution. The first line equation
is just the distributional formulation, later on we use integration by parts on [0, t̃] and taking limits
t̃→ T . Naturally, similar limits are taken for [t̃,∞[. Observe that the boundary terms at time T = 1
appear due to the previous discussion of convergence in L2 and by the boundary value properties of
the extension, see Theorem 2.3.1.2. We highlight that u(1, x) is defined for the extended solution to
be that limit of the u(t, x) in L2 and weak limit in H1/2, as t→ 1, see (2.341). Iterating this procedure
finitely many times provides therefore a global weak solution.

In conclusion, we have the following, since the argument only superficially relies on N = Sn−1:

Theorem 2.3.3.2. Let u0 ∈ H1/2(S1;N), then there exists a weak solution with non-increasing 1/2-
Dirichlet energy:

u : [0,+∞[× S1 → N,

with u ∈ L∞([0,+∞[;H1/2(S1)) ∩H1([0,+∞[;L2(S1)) such that, except for finitely many times 0 <
T1 < . . . < Tn < Tn+1 := +∞, the function u is smooth:

u ∈ C∞(]Tk, Tk+1[;N), ∀k = 1, . . . n.
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Moreover, we may bound the number n = n(u0) as follows:

n(u0) ≤ E(u0)

ε0
,

where ε0 > 0 is the minimum amount of 1/2-energy a non-constant, half-harmonic map with values
in N must possess.

A first uniqueness statement may also be derived from the results in [103]. However, it should be
noted that uniqueness among energy class solution (weak solutions) cannot be proven by our previous
arguments and thus requires further investigations. Finally, the existence of finite time bubbling is
still unresolved, so the result above provides potentially a suitable regularity statement at bubbling
points to help understand obstructions for bubbling or build examples in future work.

Proof by Variational Arguments In this section, we derive an alternative proof of the global weak
existence of solutions to the half-harmonic gradient flow using techniques from Calculus of Variations
similar to Audrito [2]. This approach does lead to existence of solutions, however, it leaves open many
questions regarding the properties of the solution, most importantly regarding monotonicity of the
1/2-Dirichlet energy. In particular, if the solutions constructed do not have monotonically decaying
energy, then the solution provides an example of non-uniqueness of solutions to the half-harmonic map
equation.

The definition of the energy follows Audrito [2]. Let ε > 0 be any positive real number. We define
the following space of functions for s ∈]0, 1[ and 1 < p < +∞:

Vs,p := H1([0,+∞[;L2(S1;Rn)) ∩ L2
loc([0,+∞[;W s,p(S1;Rn)),

and use this definition to introduce for any u0 ∈W s,p(S1;N), where N is a closed submanifold in Rn:

Us,p(u0) :=
{
u ∈ Vs,p

∣∣ u(t, x) ∈ N a.e., u(0) = u0

}
(2.344)

Comparing with Schikorra-Sire-Wang [77], the space (2.344) actually coincides with space in which
the solutions constructed there exist. Moreover, we define the following family of energies:

Es,pε (u) :=

∫ +∞

0

∫
S1

e−t/ε
(
ε · |∂tu(t, x)|2 +

2

p
·
∫
S1

∣∣∣∣u(t, x)− u(t, y)

|x− y|s

∣∣∣∣p dy

|x− y|

)
dxdt, (2.345)

for any u ∈ Us,p(u0). One notices that the energy is indeed well-defined and finite in this case. An
obvious member of Us,p(u0) is the following map:

u(t, x) := u0(x),

and this shows:

inf
u∈Us,p(u0)

Es,pε (u) ≤ 2Es,p(u0) ·
∫ ∞

0
e−t/εdt = 2ε · Es,p(u0), (2.346)

where we use the definition of Es,p as in Schikorra-Sire-Wang [77]. Thus, we immeidately see that if
(uε)ε∈]0,1[ is a sequence of minimizers, then the energies will become arbitrarily small. Additionally,
existence of minimizers can easily be proven by the direct method.
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Defining v(t, x) := u(εt, x), we see:

Es,pε (u) =

∫ +∞

0

∫
S1

e−t/ε
(
ε · |∂tu(t, x)|2 +

2

p
·
∫
S1

∣∣∣∣u(t, x)− u(t, y)

|x− y|s

∣∣∣∣p dy

|x− y|

)
dxdt

=

∫ +∞

0

∫
S1

εe−s
(
ε · |∂tu(εs, x)|2 +

2

p
·
∫
S1

∣∣∣∣u(εs, x)− u(εs, y)

|x− y|s

∣∣∣∣p dy

|x− y|

)
dxds

=

∫ +∞

0

∫
S1

e−s
(
|∂tv(s, x)|2 +

2ε

p
·
∫
S1

∣∣∣∣v(s, x)− v(s, y)

|x− y|s

∣∣∣∣p dy

|x− y|

)
dxds

=: J s,pε (v) (2.347)

Notice that v still lies in Us,p(u0) and that by computation above, we know that minimising Eε and
minimising Jε is equivalent respecting the reparametrisation in time.

Let us now compute the Euler-Lagrange equation for Es,pε :

Lemma 2.3.3.5. The Euler-Lagrange equation for minimisers u ∈ Us,p(u0) of Es,pε can be stated as:

− ε∂2
t u(t, x) + ∂tu(t, x) + divs

(
|dsu(t, x, y)|p−2dsu(t, x, y)

)
⊥ TuN, in D′(]0,+∞[×S1) (2.348)

Proof. We take the competitors:
uδ(t, x) := π(u+ δϕ),

where δ ∈ R and ϕ ∈ C∞c (]0,∞[×S1;Rn). Moreover, π denotes the closest point projection onto N .

If u is a minimizer, then:

0 =
d

dδ
Es,pε (uδ)

∣∣∣
δ=0

Using the explicit formula (2.345) for the energy (observe that uδ lies in the correct space for every
δ ∈ R sufficiently small), one can differentiate immediately (we use d0u(t, x, y) = u(t, x) − u(t, y) to
simplify the terms):

0 =

∫ +∞

0

∫
S1

e−t/ε
(

2ε∂tu · ∂t (dπ(u)ϕ) + 2

∫
S1

|u(t, x)− u(t, y)|p−2

|x− y|1+sp
d0u(t, x, y) · d0 (dπ(u)ϕ) (t, x, y)dy

)
dxdt

If we choose ψ(t, x) = e−t/εϕ(t, x), then:

0 =

∫ +∞

0

∫
S1

ε∂tu·∂t (dπ(u)ψ)+∂tu·dπ(u)ψ+

∫
S1

|u(t, x)− u(t, y)|p−2

|x− y|1+sp
d0u(t, x, y)·d0 (dπ(u)ψ) (t, x, y)dydxdt

So the Euler-Lagrange equation is equivalent to:

−ε∂2
t u(t, x) + ∂tu(t, x) + divs

(
|dsu(t, x, y)|p−2dsu(t, x, y)

)
⊥ TuN, in D′(]0,+∞[×S1),

i.e. up to the term involving the second derivative in time direction we recognise the fractional
harmonic gradient flow. This proves (2.348).

In particular, if s = 1/2, p = 2, we find the same equation as in [103], up to the second order
derivative in t. This is also the case we shall restrict our attention to for now (writing Jε instead

of J 1/2,2
ε ), the general case for arbitrary fractional harmonic flows may be treated in a completely
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analogous way, also extending the existence result in Schikorra-Sire-Wang [77] in a wider setting.

The ideas to complete the proof then are very similar to Audrito [2]. Namely, one may define
completely analogously:

I(t) :=

∫
S1

|∂tv(t, x)|2dx (2.349)

R(t) := ε ·
∫
S1

|d1/2v(t)|(x)2dx (2.350)

E(t) := et
∫ ∞
t

e−s (I(s) +R(s)) ds (2.351)

It is easily observed that for miniizers v, we have I,R ∈ L1
loc([0,∞[) and e−s(I(s)+R(s)) ∈ L1([0,∞[).

Additionally, E ∈W 1,1
loc (]0,∞[) ∩ C0([0,∞[) as well as:

E′ = E − I −R in D′(]0,∞[)

The proof of the following lemma is an immediate adaption of the technique in Audrito [2]:

Lemma 2.3.3.6. Assume v is a minimizer of Jε. Then:

E′(t) = −2I(t), in D′(]0,∞[) (2.352)

The proof relies on suitable choices of reparametrisations in time for v and then using minimality
of v. Ultimately, this allows us to show:

Lemma 2.3.3.7. For v a minimizer of Jε, we have:∫ ∞
0
|∂tv(t, x)|2dxdt ≤ Cε, (2.353)

as well as for any t ≥ 0: ∫ t+1

t

∫
S1

|d1/2u|2(t, x)dxdt ≤ C, (2.354)

for some constant C > 0, depending on u0, but not ε or v.

Proof. E(t) is necessarily non-increasing due to I(t) ≥ 0, therefore:

E(t) ≤ E(0) = Jε(v),∀t ≥ 0

Additionally, for any given t, we know:∫ t

0
I(s)ds =

1

2

∫ t

0
E′(s)ds =

1

2
(E(0)− E(t)) ≤ 1

2
E(0) ≤ C

2
ε,

by using (2.346). Letting t→∞ proves (2.353) by using (2.349).

The remaining part of the proof requires us to use (2.350) as well as:∫ t+1

t
R(s)ds = et+1

∫ t+1

t
e−sR(s)ds
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≤ et+1

∫ t+1

t
e−s (I(s) +R(s)) ds (2.355)

≤ e · E(t) ≤ Ce · ε, (2.356)

again relying on (2.346) and the bound on E(t) established above.

Thus, to obtain a solution of the half-harmonic gradient flow (which follows thanks to (2.348) after
letting ε → 0), one now just has to rescale the minimizer v back to u and use the following uniform
bounds to extract weakly convergent subsequences. Thus, we are done, as we may extract further
subsequences converging almost surely pointwise, ensuring that the limiting function assumes values
only in N .



3 Compensation Phenomena [25], [26]

3.1 Improved Regularity Estimate à la Bourgain-Brezis [25]

We will now study a Bourgain-Brezis-type inequality that allows us to bound the L2-norm of func-
tions on Tn, provided that suitable fractional Laplacians and their Riesz transforms all belong to
Ḣ−n/2(Tn) + L1(Tn). Surprisingly, such a compensation result is closely connected to a characterisa-
tion of Bergmann spaces, the spaces of holomorphic functions on the disc equipped with the L2-norm,
similar to Hardy spaces. To establish the desired estimate, we define suitable operators in terms of
fractional Laplacians and Riesz transforms and employ the emergence of a convolution operator which
actually is bounded and thus has better regularity properties than a-priori expected.

3.1.1 Introduction

In his pioneering work [67], Riesz studied fine properties of the so-called Hardy spaces Hp(D), which
are the spaces of holomorphic functions 1 f : D→ C such that

sup
0<r<1

∫ 2π

0
|f(reiθ)|pdθ < +∞ (3.1)

for p > 0. Under condition (3.1), it is known that f(eiθ) exists and

lim
r→1−

∫ 2π

0
|f(reiθ)− f(eiθ)|pdθ = 0 as well as lim

r→1−
f(reiθ) = f(eiθ), (3.2)

for almost every θ, (see e.g. Section 4 [67]). For f ∈ Hp(D), one defines ‖f‖Hp(D) := ‖f‖Lp(S1).
We can independently consider holomorphic functions in L2(D) which corresponds to the well-

known Bergman space A2(D) 2, see e.g Duren-Schuster [32].
The connection between Hardy spaces and the Bergman space A2(D) is given by the embedding

H1(D) ↪→ A2(D) together with the estimate

‖f‖L2(D) ≤ C‖f‖H1(D) := ‖f‖L1(S1). (3.3)

In the case limr→1− ‖f(reiθ)‖H−1/2(S1) < +∞, then, by definition, the following inequality holds as
well:

‖f‖L2(D) ≤ C‖f‖H−1/2(S1) := lim
r→1−

‖f(reiθ)‖H−1/2(S1). (3.4)

In this note, we prove the following combination of (3.3) and (3.4):

1In 1915 Hardy observed that if f is holomorphic in D then r 7→M(r) =
∫ 2π

0
|f(reiθ)|pdθ is a nondcreasing function.

2We recall that A2(D) := {f : D→ C : f holomorphic and ‖f‖L2(D) < +∞}
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Theorem 3.1.1.1. Let f : D → C be an analytic function. Then f belongs to the Bergman space
A2(D) if and only if

‖f‖L1+H−1/2(S1) := lim sup
r→1−

‖f(reiθ)‖L1+H−1/2(S1) < +∞.

Moreover, it holds
‖f‖L2(D) ≤ C‖f‖L1+H−1/2(S1). (3.5)

Lastly, in section 3.1.7, we provide a proof of the inequalities (3.3) and (3.4).
This type of inequalities takes its roots in the pioneering work [8], where Bourgain and Brezis

proved the following striking result:

Theorem 3.1.1.2 (Lemma 1 in [8]). Let u be a 2π-periodic function in Rn such that
∫
Rn u dx = 0,

and let ∇u = f +g, where f ∈ Ẇ−1, n
n−1 (Rn)3 and g ∈ L1(Rn) are 2π-periodic vector-valued functions.

Then
‖u‖

L
n
n−1
≤ c

(
‖f‖

Ẇ
−1, n

n−1
+ ‖g‖L1

)
. (3.6)

By duality, this implies the following corollary:

Corollary 3.1.1.1 (Theorem 1 in [8]). For every 2π-periodic function h ∈ Ln(Rn) with
∫
Rn h = 0,

there exists a 2π-periodic v ∈ Ẇ 1,n ∩ L∞(Rn) satisfying

div v = h in Rn

and
‖v‖L∞ + ‖v‖Ẇ 1,n ≤ C(n)‖h‖Ln . (3.7)

One of the main result of this note is a fractional type Bourgain-Brezis inequality on the circle S1

and on Tn. More precisely, we have the following:

Theorem 3.1.1.3. Let u ∈ D′(S1) be such that (−∆)
1
4u,R(−∆)

1
4u ∈ Ḣ−

1
2 (S1) + L1(S1).4 Then

u− −
∫
S1 u ∈ L2

∗(S
1) and the following estimate holds true:∥∥∥∥u−−∫

S1

u

∥∥∥∥
L2

≤ C
(
‖(−∆)1/4u‖Ḣ−1/2(S1)+L1(S1) + ‖R(−∆)1/4u‖Ḣ−1/2(S1)+L1(S1)

)
, (3.8)

for some C > 0 independent of u.

Theorem 3.1.1.4. Let u ∈ D′(Tn) be complex-valued and such that:

(−∆)
n
4 u,Rj(−∆)

n
4 u ∈ (L1 + Ḣ−

n
2 )(Tn), ∀j ∈ {1, . . . n}.

Then we have u− −
∫
Tn udx ∈ L

2
∗(Tn) with

∥∥∥u−−∫
Tn
udx

∥∥∥
L2
≤ C

‖(−∆)n/4u‖L1+Ḣ−n/2(Tn) +

n∑
j=1

‖Rj(−∆)n/4u‖L1+Ḣ−n/2(Tn)

 , (3.9)

for some C > 0 independent of u.
3For 1 < p < +∞, we will denote by Ẇ 1,p(Rn) the homogeneous Sobolev space defined as the space of f ∈ L1

loc(Rn)

such that ∇f ∈ Lp(Rn) and by Ẇ−1,p′(Rn) the corresponding dual space (p′ is the conjugate of p). Every function

f ∈ Ẇ−1,p′(Rn) can be represented as f =
∑n
i=1 ∂xif

j with f j ∈ Lp
′
(Rn).

4We denote by R and Rj the Riesz transform respectively on S1 and with respect to the xj variable on Tn, for
j ∈ {1, . . . , n} and by Ḣ−

n
2 (Tn) the space of f ∈ D′(S1) such that f = (−∆)n/4g, with g ∈ L2(Tn). Recall that

L2
∗(S

1) := {u ∈ L2(S1) : −
∫
S1 u = 0}.



162

The second main result is the equivalence between Theorems 3.1.1.1 and 3.1.1.3, establishing the
connection between fractional Bourgain-Brezis inequalities and Bergman spaces. It would be interest-
ing to investigate a similar connection in dimensions n ≥ 2.

We would like to add some comments about Bourgain-Brezis’ inequality (3.6). The inequality
(3.6) in its general form is of interest in the study of the PDE div Y = f for f ∈ Ln∗ (Tn), where
for finite p ≥ 1, Lp∗(Tn) denotes the Banach subspace of Lp-functions with vanishing mean over the
torus. Precisely, they found that Y can be chosen to be continuous and in Ẇ 1,n(Tn), a result which
is non-trivial due to the fact that Ẇ 1,n(Tn) does not continuously embed into L∞(Tn). The key
ingredient in the proof is a duality argument based on an estimate similar to (3.6) and some general
results from functional analysis regarding closedness properties of the image space. This motivates the
general interest in inequalities of the same type, as improved regularity results in limit cases can be
invaluable. Indeed, later, such estimates have been considered and extended in different directions. In
[9], Bourgain and Brezis showed how Theorem 1 in [8] is closely connected to a remarkable property
concerning differential forms with coefficients in the critical Sobolev space W 1,n(Tn) and they got
new regularity results for the Hodge decomposition. In [58], Maz’ya extended the inequality (3.6) on
the Sobolev space H1−n

2 (Rn) leading to a different existence result for the PDE div Y = f . Finally
in [61], Mironescu unified in 2 dimensions the two different approaches in Bourgain-Brezis [8] and in
Maz’ya [58] by a PDE-approach consisting in using elementary properties of fundamental solutions of
the biharmonic operator. In Da Lio-Rivière [23], the first two authors of the current paper provide
an alternative proof of (3.6) in 2 dimensions without assuming the periodicity of the function u. The
proof is related to some compensation phenomena observed first in Delort [30] in the analysis of 2-
dimensional perfect incompressible fluids and then also applied by Rivière in [72] in the analysis of
isothermic surfaces. For an overview of the results in the literature regarding variations of Theorem
3.1.1.2 and Corollary 3.1.1.1, we refer for instance to very interesting paper by Van Schaftingen [99].

As seen in Da Lio-Rivière [23], the inequality (3.6) also represents the first key ingredient in the
study of the regularity of L2(D,Rn) solutions u to a linear elliptic system of the following form

div (S∇u) =
n∑
j=1

div (Sij ∇uj) =
n∑
j=1

2∑
α=1

∂

∂xα

(
Siju

j
xα

)
= 0, (3.10)

where S is a W 1,2(D) symmetric n× n matrix, such that S2 = idn.
We would like to mention some results on Riesz potentials showing that the 1-dimensional case

plays a particular role in the L1-estimates for Riesz potentials. More precisely, one can deduce from
the results in Stein-Weiss [86] that for all 0 < α < 1, we have:

‖Iαu‖
L

1
1−α
≤ C(‖Ru‖L1 + ‖u‖L1), (3.11)

for all u in the Hardy space H1(R). It follows in particular that:

‖u‖
L

1
1−α
≤ C(‖R(−∆)α/2u‖L1 + ‖(−∆)α/2u‖L1).

In Schikorra-Spector-Van Schaftingen [78], the authors show that if N ≥ 2 and 0 < α < N , then there
is a constant C = C(α,N) > 0 such that

‖Iαu‖
L

N
N−α

≤ C‖Ru‖L1 (3.12)
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for all u ∈ C∞c (RN ), such that Ru ∈ L1(RN ). The estimate (3.12) is however false in 1-D, as seen in
Schikorra-Spector-Van Schaftingen [78].

The inequality (3.8) generalizes the inequality (3.11) in the case α = 1/2 and the counter-example
in Schikorra-Spector-Van Schaftingen [78] for the estimate (3.12) in 1-D shows that the estimate (3.8)
is in some sense optimal.

We finally point out that it may be interesting to investigate a possible generalization of Theorem
3.1.1.4 in the framework of nonlocal operators on differential forms as it has been done in Bourgain-
Brezis [9].

The paper is organized as follows: In section 3.1.2.1, we recall the definitions of the fractional
Laplacian on the unit circle and on the torus. In section 3.1.3, we provide two distinct proofs of
Theorem 3.1.1.3. In section 3.1.4, we establish the equivalence of Theorem 3.1.1.1 and Theorem 3.1.1.3.
In section 3.1.5, we provide a short introduction of Clifford algebras and we extend the fractional
Bourgain-Brezis inequality using Clifford algebras to the n-dimensional torus Tn. In section 3.1.6, we
prove existence results for certain fractional PDE-operators in the same spirit as Corollary 3.1.1.1. In
section 3.1.7, we provide a proof of the inequalities (3.3) and (3.4) for the reader’s convenience.

3.1.2 Preliminaries

3.1.2.1 Fractional Laplacian on the unit circle and on the torus

Before we enter the discussion and the proofs of the main results, let us recall a few notions essential
in our later arguments. We mainly focus on fractional Laplacians, fractional Sobolev.

Throughout this note, we shall denote by Tn the torus of dimension n ∈ N. This means:

Tn = S1 × . . .× S1︸ ︷︷ ︸
n times

= Rn/(2πZ)n (3.13)

where S1 = R/2πZ. We denote by D(Tn) := C∞(Tn) the Fréchet space of smooth functions on Tn
and by D′(Tn) its topological dual. The natural duality paring is denoted by 〈·, ·〉.

For u ∈ D′(Tn) and m ∈ Zn, we define the Fourier coefficients of u as follows:

û(m) :=
1

(2π)n

∫
Tn
u(x)e−i〈m,x〉dx =

〈
u, e−i〈m,·〉

〉
. (3.14)

The Fourier coefficients completely determine u as a distribution on Tn and convergence in the sense of
distributions obviously implies convergence of the Fourier coefficients. Notice that, for all u ∈ D′(Tn),
there exists some N > 0 such that |û(m)| . (1 + |m|)N . Moreover, we recall that v ∈ C∞(Tn) if and
only if the Fourier coefficients v̂(m) have rapid decay, i.e. supm(1 + |m|)N |v̂(m)| <∞ for all N > 0.

Given s ∈ R, we define the non-homogeneous and homogeneous Sobolev spaces respectively by

Hs(Tn) :=

{
v ∈ D′(Tn) : ‖v‖2Hs :=

∑
k∈Zn

(1 + |k|2)s |v̂(k)|2 <∞

}
,

and

Ḣs(Tn) :=

{
v ∈ D′(Tn) : ‖v‖2

Ḣs :=
∑
k∈Zn

|k|2s |v̂(k)|2 <∞

}
,

where D′(Tn) is again the space of distributions on Tn. Notice that if s = 0, we have L2(Tn) = H0(Tn)
and L2

∗(Tn) ' Ḣ0(Tn).
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An important family of operators throughout our considerations are the so-called fractional Lapla-
cians. Let s > 0 be real, then we define for u : Tn → C smooth the s-Laplacian of u by the following
multiplier property:

̂(−∆)su(m) = |m|2sû(m), ∀m ∈ Zn. (3.15)

Clearly, this definition can immediately be extended to the spaces Hs(Tn) or even D′(Tn) as a multi-
plier operator on Fourier coefficients, possibly defining merely a distribution on Tn. Finally, we recall
the definition of the j-Riesz transform on Tn as a multiplier operator:

Rju(x) =
∑
m∈Zn

i
mj

|m|
û(m)ei〈m,x〉, ∀x ∈ Tn. (3.16)

In particular, in the case n = 1, we have:

Ru(x) =
∑
m∈Z

i sign(m)û(m)eim·x, ∀x ∈ S1. (3.17)

3.1.3 Fractional Bourgain-Brezis inequality on the unit circle S1

In this section, we provide two distinct proofs of Theorem 3.1.1.3. The first proof is in the spirit of
the one presented in Bourgain-Brezis [8], while the second one is inspired by that in Da Lio-Rivière
[23] and is based on some particular compensation phenomena. We assume for simplicity that u is
real valued (the proof for complex-valued function is completely analogous, see Remark 3.1.3.1).

First, we would like to observe that if u ∈ C∞(S1), then by definition:∥∥∥∥u−−∫
S1

u

∥∥∥∥
L2

≤ C‖(−∆)1/4u‖Ḣ−1/2(S1). (3.18)

On the other hand, as we have already observed in the introduction, we also have5:∥∥∥∥u−−∫
S1

u

∥∥∥∥
L2(S1)

≤ C
(
‖(−∆)1/4u‖L1(S1) + ‖R(−∆)1/4u‖L1(S1)

)
' ‖(−∆)1/4u‖H1(S1) (3.19)

3.1.3.1 A first proof of Theorem 3.1.1.3

Let us suppose that u ∈ C∞(S1), −
∫
S1 u = 0. We assume for simplicity that u is real-valued, see Remark

3.1.3.1 for the complex-valued case. The proof below follows the main arguments of the original proof
by Bourgain and Brezis. We write: 

(−∆)1/4u = f1 + g1

R(−∆)1/4u = f2 + g2

(3.20)

where f1, f2 ∈ Ḣ−1/2(S1), g1, g2 ∈ L1(S1). We set u =
∑

n∈Z∗ une
inθ. Since u is real-valued, it holds

ūn = u−n. We see: ∑
n∈Z∗

|un|2 =
∑
n∈Z∗

|n|1/2un
u−n

|n|1/2
=
∑
n∈Z∗

f1
n + g1

n

|n|1/2
u−n, (3.21)

5Actually, an even sharper inequality than (3.19) holds true with L2(S1) being replaced by the smaller Lorentz space
L2,1(S1).
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∑
n∈Z∗

f1
n u−n

|n|1/2
≤

[∑
n∈Z∗

|f1
n|2

|n|

]1/2 [∑
n∈Z∗

|un|2
]1/2

, (3.22)

∑
n∈Z∗

g1
n u−n

|n|1/2
=

∑
n>0

g1
n u−n

|n|1/2
+
∑
n<0

g1
n u−n

|n|1/2
. (3.23)

Observe that by definition of the Riesz transform:

R(−∆)1/4u = i

[
−
∑
n<0

|n|1/2uneinθ +
∑
n>0

|n|1/2uneinθ
]
. (3.24)

Therefore:

un =


f2
n+g2

n

−i|n|1/2 if n < 0

f2
n+g2

n

i|n|1/2 if n > 0

(3.25)

By combining (3.23) and (3.25), we obtain:

∑
n∈Z∗

g1
n u−n

|n|1/2
=

∑
n>0

g1
n

f2
−n + g2

−n
−i|n|

+
∑
n<0

g1
n

f2
−n + g2

−n
i|n|

. (3.26)

Let us estimate the different parts of the sum (3.26) individually:

1. We first estimate∑
n∈Z∗

sign(n)
g1
n f

2
−n
|n|

=
∑
n∈Z∗

sign(n)
|n|1/2un − f1

n

|n|1/2
f2
−n
|n|1/2

≤

(∑
n∈Z∗

|un|2
)1/2(∑

n∈Z∗

|f2
n|2

|n|

)1/2

+

(∑
n∈Z∗

|f1
n|2

|n|

)1/2(∑
n∈Z∗

|f2
n|2

|n|

)1/2

≤ ‖u‖L2‖f2‖Ḣ−1/2 + ‖f1‖Ḣ−1/2‖f2‖Ḣ−1/2 . (3.27)

2. It remains to estimate ∑
n∈Z∗

sign(n)
g1
n g

2
−n

i|n|
.

For this purpose, we consider the following operator:

A : L1(S1)× L1(S1) → C, (g1, g2) 7→
∑
n∈Z∗

sign(n)
g1
n g

2
−n

i|n|
.

Claim 1. The operator A is continuous, i.e. we have the following estimate:

|A(g1, g2)| ≤ C‖g1‖L1‖g2‖L1 . (3.28)
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Proof of Claim 1. It is sufficient to prove the claim in the case where g1 and g2 are arbitrary
Dirac-delta measures.6 Therefore, we consider g1 =

∑
i∈I λiδai and g2 =

∑
j∈J µjδbj . We have

‖g1‖M(S1) =
∑

i∈I |λi|, ‖g2‖M(S1) =
∑

j∈J |µj |. By bilinearity, we deduce:

|A(g1, g2)| = |A(
∑
i∈I

λiδai ,
∑
j∈J

µjδbj )|

≤
∑

i∈I,j∈J
|λi||µj ||A(δai , δbj )|

≤ sup
(a,b)∈S1×S1

|A(δa, δb)|
∑
i∈I
|λi|

∑
j∈J
|µj |

= sup
(a,b)∈S1×S1

|A(δa, δb)|‖g1‖M(S1)|‖g2‖M(S1). (3.29)

If sup(a,b)∈S1×S1 |A(δa, δb)| < +∞, then the claim holds for linear combinations of Dirac measures. By

a density argument, we get claim 1 for arbitrary g1, g2 ∈ L1(S1). Hence, claim 1 is a consequence of
the following:
Claim 2. sup(a,b)∈S1×S1 |A(δa, δb)| < +∞.

Proof of Claim 2. For g1 = δa and g2 = δb , we have g1
n = eina and g2

n = einb. In this case, we
observe:

A(δa, δb) =
∑
n∈Z∗

sign(n)
g1
ng

2
−n

i|n|

=
∑
n∈Z∗

sign(n)
ein(a−b)

i|n|
= 2

∑
n>0

sin(n(a− b))
n

< +∞.7 (3.30)

This proves claim 2 and from (3.30), we can deduce claim 1 as well.

By combining (3.21)-(3.29) we get

‖u‖2L2 . ‖u‖L2

(
‖f1‖Ḣ−1/2 + ‖f2‖Ḣ−1/2

)
+ ‖f1‖Ḣ−1/2‖f2‖Ḣ−1/2 + C‖g1‖L1‖g2‖L1

.
1

2
‖u‖2L2 +

1

2

(
‖f1‖2

Ḣ−1/2 + ‖f2‖2
Ḣ−1/2

)
+ ‖f1‖Ḣ−1/2‖f2‖Ḣ−1/2 + C‖g1‖L1‖g2‖L1

.
1

2
‖u‖2L2 +

(
‖f1‖2

Ḣ−1/2 + ‖f2‖2
Ḣ−1/2

)
+

1

2

(
‖g1‖2L1 + ‖g2‖2L1

)
. (3.31)

This estimate permits us to conclude the proof of Theorem 3.1.1.3. Since f1, f2, g1, g2 were arbitrary,
one can deduce (3.8). In the general case where u ∈ D′(S1), one argues by approximation (see section
3.1.3.2 for further details). �

6We recall that the linear span of Dirac measures is dense in the space of Radon measuresM(S1) equipped with the
weak-* topology.

7The value of such a series is deduced from the Fourier series of f(x) = x
2π

for 0 < x < 2π and f(x+ 2π) = f(x).
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3.1.3.2 A second proof of Theorem 3.1.1.3

As in the first proof, we will show the following: Let u ∈ D′(S1) be such that:

(−∆)
1
4u = f1 + g1 (3.32)

R(−∆)
1
4u = f2 + g2, (3.33)

where f1, f2 ∈ Ḣ−
1
2 (S1) and g1, g2 ∈ L1(S1). Under these conditions, we prove:

u−
∫
S1

udx ∈ L2
∗(S

1) =

{
u ∈ L2(S1) : −

∫
S1

u = 0

}
, (3.34)

together with the following estimate:∥∥∥u− ∫
S1

udx
∥∥∥
L2
≤ C

(
‖f1‖

Ḣ−
1
2

+ ‖f2‖
Ḣ−

1
2

+ ‖g1‖L1 + ‖g2‖L1

)
, (3.35)

where C > 0 is independent of f1, f2, g1, g2 and u. We may assume for simplicity that u is real-valued
(see Remark 3.1.3.1 for the complex-valued case).

Firstly, observe that it suffices to consider the case:∫
S1

udx = 2π · û(0) = 0, (3.36)

by merely changing u by a constant. Similarly, by the conditions in (3.32) and (3.33), we see that
fj , gj have vanishing integral over S1 and consequently vanishing Fourier coefficient for n = 0.8 For
now, let us assume that u, fj , gj are all smooth on S1. The general case can be dealt with using
convolution with an appropriate smoothing kernel and approximation arguments as specified at the
end of the proof.

First, let us define the following operators on D′(S1):

Dv := (−∆)
1
4
(
Id+R

)
v (3.37)

Dv := (−∆)
1
4
(
Id−R

)
v, (3.38)

for every v ∈ D′(S1). Consequently, using (3.32) and (3.33), we have:

Du = f1 + f2 + g1 + g2 = f + g (3.39)

Du = f1 − f2 + g1 − g2 = f̃ + g̃. (3.40)

Let us calculate the Fourier multipliers associated with D,D. For every n ∈ Z, we have:

F
(
Dv
)
(n) = |n|

1
2 (1 + i sign(n))v̂(n) (3.41)

F
(
Dv
)
(n) = |n|

1
2 (1− i sign(n))v̂(n) (3.42)

8It would be possible to treat fj , gj with non-vanishing integral, i.e. treat the case (−∆)1/4u,R(−∆)1/4u ∈ L1 +

H−1/2(S1) by reducing to vanishing Fourier coefficient at n = 0: We have by the conditions f̂j(0) = −ĝj(0). Note that

|ĝj(0)| . ‖gj‖L1 . Note that ‖fj‖2H−1/2 ' |f̂j(0)|2 + ‖f̃j‖2Ḣ−1/2 , where f̃j denotes the corrected fj with vanishing 0th
Fourier coefficient. Thus, we could reduce to the case of vanishing integral.
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Claim 1: Given f ∈ Ḣ−1/2(S1), there is a real-valued function F ∈ L2
∗(S

1)9, such that DF = f .
Proof of the Claim 1 In order to solve DF = f , we should have:

F̂ (n) =
1

1 + i sign(n)

f̂(n)√
|n|
, if n 6= 0 (3.43)

Using the fact that the L2-norm of F can be characterized in terms of the l2-norm of the Fourier
coefficients, we obtain:

‖F‖2L2 =
∑
n6=0

1

|1 + i sign(n)|2
|f̂(n)|2

|n|

≤
∑
n6=0

|f̂(n)|2

|n|

= ‖f‖2
Ḣ−

1
2
, (3.44)

where we used the definition of the Ḣ−
1
2 -norm. Observe that a converse inequality could be obtained

along the same lines.

Next, by defining ũ := u− F , we observe that due to (3.39):

Dũ = g. (3.45)

Let now w ∈ D′(S1) real-valued be such that Dw = ũ and ŵ(0) = 0. Once more, existence of such a
distribution w is easily deduced using Fourier coefficients. We would like to emphasise at this point
that due to the assumed smoothness of u, fj , gj , w is smooth as well, as is F .

By (3.45), we thus notice:
D2w = g. (3.46)

Going over to Fourier coefficients, we see that for every n ∈ Z∗:

F
(
D2w

)
(n) = (1 + i sign(n))2|n|ŵ(n) = 2i sign(n)|n|ŵ(n) = 2inŵ(n) = ĝ(n), (3.47)

or by rearranging:

ŵ(n) = − i
2

ĝ(n)

n
. (3.48)

Next, we are going to find a suitable distribution K with coefficients K̂(n) = − i
2n , in order to express

w as a convolution of g with K. To this end, let us consider the function k : [−π, π]→ R defined by:

k(x) =

{
x+ π, if x < 0

x− π, if x > 0
(3.49)

By slight abuse of notation, let us identify k with its 2π-periodic extension, therefore k : S1 → R.
We calculate the Fourier coefficients of k: If n = 0, it is obvious due to anti-symmetry that k̂(0) = 0.
Otherwise, we have n 6= 0 and so by using integration by parts:

k̂(n) =
1

2π

∫ π

−π
k(x)e−inxdx

9The observation that F may be chosen real-valued is due to F̂ (−n) = F̂ (n) for all n.
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=
1

2π

(∫ 0

−π
(x+ π)e−inxdx+

∫ π

0
(x− π)e−inxdx

)
=

1

2π

∫ π

0
(π − x)einx − (π − x)e−inxdx

=
i

π

∫ π

0
(π − x) sin(nx)dx

=
i

n
− i

π

∫ π

0

cos(nx)

n
dx =

i

n
. (3.50)

Consequently, observe that K = −1
2k precisely yields the desired distribution. Let us notice that K

is therefore bounded and measurable on S1, thanks to the explicit formula for k.

Using (3.48) and the convolution formula for Fourier coefficients, namely:

f̂ ∗ g(n) = 2πf̂(n)ĝ(n), ∀n ∈ Z, (3.51)

it is clear that:

w =
1

2π
K ∗ g. (3.52)

From (3.52), we obtain by using Young’s inequality on S1:

‖w‖L∞ ≤
1

2π
‖K‖L∞‖g‖L1 =

1

4
‖g‖L1 . (3.53)

To conclude the first part of the proof, let us observe the following10:∫
S1

(u− F )2dx =

∫
S1

Dw(u− F )dx

'
∑
n∈Z

D̂w(n)û− F (−n)

=
∑
n∈Z
|n|

1
2 (1 + i sign(n))ŵ(n)û− F (−n)

=
∑
n∈Z

ŵ(n) · |n|
1
2 (1− i sign(−n))û− F (−n)

'
∫
S1

wD(u− F )dx

=

∫
S1

wDudx−
∫
S1

wDFdx

=

∫
S1

wg̃dx+

∫
S1

wf̃dx−
∫
S1

wDFdx (3.54)

where we used the Fourier representation of the distribution u − F to justify the second equation.
Observe that this enables us to estimate:∣∣∣ ∫

S1

wg̃dx
∣∣∣ ≤ ‖w‖L∞‖g̃‖L1 ≤

1

4

(
‖g1‖L1 + ‖g2‖L1

)2
, (3.55)

10This will actually be the first and only point in the proof where we use the fact that u is real-valued in a meaningful
way. See Remark 3.1.3.1 for an extension to complex-valued distributions.
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and: ∣∣∣ ∫
S1

wDFdx
∣∣∣ ≤ ‖w‖

Ḣ
1
2
‖DF‖

Ḣ−
1
2
≤ C‖u− F‖L2‖f‖

Ḣ−
1
2
. (3.56)

The remaining summand may be estimated completely analogous to (3.56). Notice that we used the
explicit definition of the norms of Sobolev spaces with negative exponents and the Fourier multipliers
to obtain (3.56), see (3.44) for the main ideas. Using (3.55) and (3.56) yields:

‖u− F‖2L2 ≤
1

4

(
‖g1‖L1 + ‖g2‖L1

)2
+ 2C‖u− F‖L2‖f‖

Ḣ−
1
2

≤ 1

4

(
‖g1‖L1 + ‖g2‖L1

)2
+

1

2
‖u− F‖2L2 +

4C2

2
‖f‖2

Ḣ−
1
2
, (3.57)

using the arithmetic-geometric mean inequality. Note that the factor 2C is due to estimate (3.56) also
applying to the integral of wf̃ . By absorbing the L2-norm of u− F , we arrive at:

‖u− F‖2L2 ≤
1

2

(
‖g1‖L1 + ‖g2‖L1

)2
+ 4C2‖f‖2

Ḣ−
1
2

≤ max{1

2
, 4C2}

(
‖g1‖L1 + ‖g2‖L1 + ‖f1‖

Ḣ−
1
2

+ ‖f2‖
Ḣ−

1
2

)2
. (3.58)

Consequently, by estimating the L2-norm of F by the Ḣ−
1
2 -norm of f1, f2 using (3.44), we immediately

conclude:
‖u‖L2 ≤ C̃

(
‖g1‖L1 + ‖g2‖L1 + ‖f1‖

Ḣ−
1
2

+ ‖f2‖
Ḣ−

1
2

)
. (3.59)

The constant C̃ > 0 appearing in the estimate is independent of u, fj , gj .

Now, for a general distribution u ∈ D′(S1) with û(0) = 0, let us observe that if we convolute u
with a smooth function ϕ, the resulting distribution ϕ ∗ u will be a smooth function as well (in the
sense of regular distributions). By a direct computation, (3.32) and (3.33) will continue to hold true
if we replace u, fj , gj by their corresponding convolutions with ϕ. This is an immediate consequence

of the fact that the operators (−∆)
1
4 ,R are Fourier multipliers as well as the linearity of convolutions.

Choosing ϕ to be supported on arbitrarily small neighbourhoods of the neutral element in S1 (i.e.
an approximation of the identity ϕε) ensures that the convolutions of ϕ with fj , gj converge in the
respective norms as we collapse the support of ϕ (i.e. let the parameter ε in ϕε tend to 0) and the
approximations of u converge in the distributional sense. As a result, we obtain uniform bounds in
the respective spaces. This results in an uniform L2-bound for u convoluted with ϕε independent of
ε, which can be seen to imply u ∈ L2

∗(S
1) by using a weak-L2-convergent subsequence. The estimate

follows by the lower semi-continuity of the norm. This concludes our proof. �

Remark 3.1.3.1. Before we enter the discussion of applications and later a generalisation of Theorem
3.1.1.3, let us quickly discuss the assumption that u is real-valued. In fact, this is merely used at a
single point in the proof, namely in (3.54). However, if we proceed similar to the proof of the generalised
result in section 3.1.5, i.e. we use:∫

S1

|u− F |2dx =

∫
S1

(u− F ) · u− Fdx =

∫
S1

Dw · u− Fdx ∼
∑
n∈Z

D̂w(n) · û− F (n), (3.60)

we can easily avoid the use of properties of real-valued distributions. The remainder of the proof
follows then completely analogous, i.e. we can remove the assumption of u being real-valued effortlessly.
Indeed, this slight generalization will be key to our applications to Bergman spaces below.
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3.1.4 Fractional Bourgain-Brezis inequality in the Bergman space A2(D)

We start with the Proof of Theorem 3.1.1.1.

Let us consider an analytic function f : D→ C such that lim supr→1− ‖f(reiθ)‖L1+H−1/2(S1) < +∞.
1. Now let us write f(z) =

∑
n≥0 fnz

n and u(eiθ) =
∑

n≥1
fn√
n
einθ. We first observe that f − f(0) =∑

n≥1 fnz
n and if f(eiθ) = g(eiθ) + h(eiθ) with g ∈ L1(S1) and h ∈ H−1/2(S1), then:

f(eiθ)− f(0) = g −−
∫
S1

g + h− ĥ(0).

Note that h − ĥ(0) ∈ Ḣ−1/2(S1) with the norm being controlled by ‖h‖H−1/2(S1). We observe that,
using the explicit definitions of the norm:∥∥∥g −−∫

S1

g
∥∥∥
L1(S1)

+ ‖h− ĥ(0)‖Ḣ−1/2(S1) . ‖g‖L1(S1) + ‖h‖H−1/2(S1)

Therefore, we may conclude by taking the infimum over all such g, h:

‖f − f(0)‖L1+Ḣ−1/2(S1) ≤ C‖f‖L1+H−1/2(S1). (3.61)

Assume therefore first that

f(eiθ)− f(0) =
∑
n≥1

fne
inθ ∈ L1 + Ḣ−1/2(S1).

In this case, we get (−∆)1/4u = f − f(0) ∈ L1 + Ḣ−1/2(S1). Additionally, we observe that since u
contains only positive frequencies, we trivially have R(−∆)1/4u ∈ L1 + Ḣ−1/2(S1) as well with

‖R(−∆)1/4u‖L1+Ḣ−1/2(S1) = ‖(−∆)1/4u‖L1+Ḣ−1/2(S1).

From the inequality (3.8), observing that −
∫
S1 u = 0, we deduce that

‖u‖L2(S1) ≤ C‖(−∆)1/4u‖(L1+Ḣ−1/2)(S1) = C‖f − f(0)‖L1+Ḣ−1/2(S1) ≤ C
′‖f‖L1+H−1/2(S1),

where we used (3.61). Hence
∑

n>0
fn
n e

inθ ∈ H1/2(S1) and g(z) =
∑

n>0
fn
n z

n ∈ H1(D). We have
g′(z) =

∑
n≥0 fn+1z

n ∈ L2(D) and

‖f(z)− f(0)‖L2(D) = ‖zg′(z)‖L2(D)

≤ C‖g‖H1/2(S1) = C‖u‖L2(S1)

≤ C‖f‖L1+H−1/2(S1). (3.62)

The desired estimate follows by the triangle inequality, if we can show:

|f(0)| ≤ C‖f‖L1+H−1/2(S1)

To achieve this, let us decompose f = g + h with g ∈ L1(S1) as well as h ∈ H−1/2(S1). Then we
denote as usual the Fourier coefficients of g, h by gn, hn for all n ∈ Z and define:

G(z) :=
∑
n≥0

gnz
n +

∑
n<0

gnz
|n|, H(z) :=

∑
n≥0

hnz
n +

∑
n<0

hnz
|n|.
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By the summability properties, these define harmonic functions on D having boundary values g, h
respectively. By comparison of the coefficients, we also observe:

f(z) = G(z) +H(z),

in particular for z = 0. Moreover, by the mean value property of harmonic functions over the boundary
of the disc, we can deduce:

|G(0)| . ‖g‖L1(S1).

Using the mean value property over the entire disc, we similarily see by Hölder’s inequality:

|H(0)| . ‖H‖L1(D) . ‖H‖L2(D).

It is easy to verify by a direct computation analogous to the same characterisation of the norm in
A2(D) that:

‖H‖2L2(D) ∼
∑
n∈Z

|hn|2

|n|+ 1
≤ ‖h‖H−1/2(S1).

In conclusion, we have:

|f(0)| ≤ C
(
‖g‖L1(S1) + ‖h‖H−1/2(S1)

)
.

By taking the infimum over g, h such that f = g + h we get

|f(0)| ≤ C‖f‖L1+H−1/2(S1) (3.63)

By combining (3.62) and (3.63), we obtain the desired estimate:

‖f‖L2(D) ≤ C‖f‖L1+H−1/2(S1). (3.64)

2. In the general case when lim supr→1− ‖f(reiθ)‖L1+H−1/2(S1) < +∞, we consider for every 0 < r < 1

the function fr(z) = f(rz) ∈ C∞(B̄(0, 1)). We can apply (3.62) to fr and obtain that

‖fr‖L2(D) ≤ C‖fr‖L1+H−1/2(S1). (3.65)

Since by assumption lim supr→1− ‖f(reiθ)‖L1+H−1/2(S1) < +∞, we deduce that

sup
0<r<1

‖fr‖L2(D) < +∞. (3.66)

The inequality implies that actually f ∈ L2(D) as well as11 and

‖f‖L2(D) ≤ C‖f‖L1+H−1/2(S1). (3.69)
11 Let f(z) =

∑
n≥0 fnz

n We observe that

‖fr‖2L2(D) =

∫ 1

0

∫ 2π

0

|f(ρreiθ)|2ρdθdρ

= 2π

∫ 1

0

∞∑
n=0

|an|2r2nρ2n+1dρ = 2π

∞∑
n=0

|an|2r2n

2n+ 2
. (3.67)

and similarily

‖f‖2L2(D) = 2π

∞∑
n=0

|an|2

2n+ 2
. (3.68)

From (3.66) and extracting a weakly convergent subsequence which by convergence of the Fourier coefficients must have
limit f , it follows that ‖f‖2L2(D) < +∞ and Abel’s Theorem on power series yields that

lim
r→1−

‖fr‖2L2(D) = ‖f‖2L2(D).
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Conversely, let f : D→ C be in A2(D2). We write f(z) =
∑∞

n=0 anz
n. We prove the following:

Claim: lim supr→1− ‖f(reiθ)‖L1+H−1/2(S1) < +∞.

Proof of the claim. We show that lim supr→1− ‖f(reiθ)‖H−1/2(S1) < +∞. For every 0 < r < 1, we

set fr(z) = f(rz) ∈ C∞(B̄(0, 1)). Since f ∈ L2(D), we have

lim sup
r→1−

‖fr‖L2(D) = ‖f‖L2(D). (3.70)

Moreover

‖fr‖2H−1/2(S1)
=
∑
n≥0

|fn|2

1 + n
r2n (3.71)

and ∫
D
|fr|2 = 2π

∫ 1

0

∑
n≥0

|fn|2r2ns2nsds '
∑
n≥0

|fn|2

2n+ 2
r2n

' 1

2

∑
n≥0

|fn|2

n+ 1
r2n ' ‖fr‖H−1/2(S1). (3.72)

By combining (3.70) and (3.72), we get that

lim sup
r→1−

‖fr‖H−1/2(S1) . ‖f‖L2(D) < +∞. (3.73)

We conclude the proof. �

Next we show that Theorem 3.1.1.1 is actually equivalent to Theorem 3.1.1.3.

Proposition 3.1.4.1. Theorem 3.1.1.1 implies Theorem 3.1.1.3. Therefore, they are equivalent.

Proof. We have already seen in the proof of Theorem 3.1.1.1 that Theorem 3.1.1.3 implies the fact
that a holomorphic function with the property that lim supr→1− ‖f(reiθ)‖L1+H−1/2(S1) < +∞ is in

L2(D), namely it belongs to the Bergman space A2(D).
Conversely, let us consider u ∈ C∞(S1) such that (−∆)1/4u,R(−∆)1/4u ∈ L1 + Ḣ−1/2(S1). We

assume that
∫ 2π

0 u(eiθ)dθ = 0. We decompose u = u+ + u−, where

u+ =
∑
n>0

une
inθ, u− =

∑
n<0

une
inθ.

Let us first consider u+. By assumption we have
∑

n≥1 n
1/2une

inθ = 1/2((−∆)1/4u− iR(−∆)1/4u) ∈
L1 + Ḣ−1/2(S1). Let f(z) =

∑
n≥1 n

1/2unz
n be the harmonic extension of v = (−∆)1/4u+ in D. From

Theorem 3.1.1.1, it follows that f+ =
∑

n>0 n
1/2unz

n ∈ L2(D) and

‖f+‖L2(D) ≤ C‖f+‖L1+H−1/2(S1) ≤ ‖(−∆)1/4u+‖L1+Ḣ−1/2(S1).

Switching to the homogeneous Sobolev space is possible, as we have Ḣ−1/2(S1) ⊂ H−1/2(S1) contin-
uously embedded. Since f+(z) =

∑
n>0 n

1/2unz
n ∈ L2(D), it follows that

∑
n>0

un
n1/2 z

n ∈ H1(D) and

therefore
∑

n>0
un
n1/2 e

inθ ∈ Ḣ1/2(S1). Hence u+ ∈ L2(S1) with

‖u+‖L2(S1) ≤ C‖(−∆)1/4u+‖L1+Ḣ−1/2(S1)

≤ C
(
‖(−∆)1/4u‖L1+Ḣ−1/2(S1) + ‖R(−∆)1/4u‖L1+Ḣ−1/2(S1)

)
. (3.74)

The same arguments hold for u−. We conclude the proof. �
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3.1.5 The Bourgain-Brezis Inequality on the Torus Tn,n ≥ 2

In this section, we are going to prove Theorem 3.1.1.4 which generalises the result from Theorem
3.1.1.3 to domains of dimension n ≥ 2. To achieve this while retaining the general structure of the
proof, we first have to determine the right set of conditions and the appropriate domain. Observe that
it is clear, due to the proof for S1 heavily relying on Fourier series, that the natural domain for such
a generalisation is the torus Tn. In investigating generalisations of the proof, we have to focus on two
aspects: Clifford algebras and boundedness of the kernel. In the first part of the proof we introduce
complex Clifford algebras and show how to generalize the argument presented in section 3.1.3.2. The
results and properties of Clifford algebras are due to Gilbert-Murray [38] and Hamilton [42] and are
briefly discussed in section 3.1.5.1 below. In the second part of the proof we show that the kernel used
is actually bounded, following an argument presented in [8, p.405-406]. In the case n = 1, we have
seen that k has an explicit description as a sawtooth function. In higher dimensions, unfortunately,
we are not aware of an explicit formula for the kernel. However, due to some estimates on alternating
sums, we can remedy this lack of explicit representation and derive the crucial properties abstractly.

3.1.5.1 A short introduction to Clifford algebras

The material covered here is due to Gilbert-Murray [38] and Hamilton [42] and we refer to them for
further details on the topics introduced. For the remainder of this subsection, let K ∈ {R,C} denote
a scalar field and V a finite dimensional K-vector space. Let Q : V → K be a map, such that:

1.) For all λ ∈ K and v ∈ V , we have: Q(λv) = λ2 ·Q(v).

2.) The map B(v, w) := 1
2

(
Q(v + w)−Q(v)−Q(w)

)
defines a K-bilinear map on V × V .

Such a Q will be called a quadratic form and the pair (V,Q) a quadratic space. Standard examples
include real vector spaces equipped with scalar products, but not complex vector spaces with scalar
products due to complex anti-linearity in the second argument. Inspired by this example, we say
that a basis e1, . . . , en of a quadratic space (V,Q) is B-orthonormal, if for all j ∈ {1, . . . , n}, we have
|Q(ej)| = 1 as well as:

B(ej , ek) = 0, ∀j 6= k ∈ {1, . . . , n}. (3.75)

Given such a quadratic space (V,Q), we call a pair (A, ν) a Clifford algebra for (V,Q), if the following
holds, see [38, p.8, (2.1)]:

i.) A is an associative algebra with unit 1 and ν : V → A is K-linear and injective.

ii.) A is generated as an algebra by ν(V ) and K · 1.

iii.) For every v ∈ V , we have: ν(v)2 = −Q(v) · 1

An important immediate corollary of the definition is the following commutation relation:

ν(v)ν(w) + ν(w)ν(v) = −2B(v, w) · 1, ∀v, w ∈ V. (3.76)

Thus, pairs of orthogonal vectors with respect to B anti-commute as elements in A. We usually omit
explicitly mentioning ν and therefore identify v with ν(v), which is justified due to ν being injective.
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For the remainder of the section, let us focus on (V,Q) non-degenerate, i.e. for all v ∈ V , there is a
w ∈ V , such that B(v, w) 6= 0. In this case, there actually exists a basis e1, . . . , en, where n = dimK V ,
orthonormal with respect to B and, consequently, such that:

ejek + ekej = ±2δjk · 1, ∀j, k ∈ {1, . . . , n}, (3.77)

(see e.g. Theorem 1.5 in Gilbert-Murray [38]). The signs are determined by the signature of the
quadratic form Q and may vary for different choices j, k. Provided K = C, we may assume that all
signs are the same, see Gilbert-Murray [38].

It can be shown that every Clifford algebra has K-dimension at most 2n. If the dimension is equal
to 2n, the Clifford algebra is called universal.12 An important result in [38, Thm. 2.7] states that
there always exists a universal Clifford algebra for any given quadratic space. Moreover, there exist
explicit descriptions of all universal Clifford algebras up to isomorphisms in terms of matrices, see [38].

To conclude this brief treatment of Clifford algebras, let us provide an explicit example: Let
V = Cn, K = C and define Q as follows:

Q(z1, . . . , zn) :=
n∑
j=1

z2
j , ∀(z1, . . . , zn) ∈ Cn. (3.78)

It is clear that (V,Q) is a non-degenerate quadratic space, as B is the standard scalar product up to
a complex conjugation in the second argument. In this case, the standard basis e1, . . . , en already is
B-orthonormal. Thus, we have:

ejek + ekej = −2δjk · 1, ∀j, k ∈ {1, . . . , n}. (3.79)

The universal Clifford algebra is then spanned by the finite products eα of the basis elements, where
α ⊂ {1, . . . , n} is an ordered subset and we define:

eα =
∏
j∈α

ej

In particular, e∅ = 1 by definition. It can be seen that every complex universal Clifford algebra as-
sociated with a non-degenerate quadratic space of dimension n is isomorphic to this one, see Gilbert-
Murray [38] and the definition of universal Clifford algebra presented there.

Lastly, let us introduce a few definitions from Chapter 1, Section 7 in Gilbert-Murray [38]: We
may identify the universal Clifford algebra A as a vector space with K2n , if dimK V = n. This allows
us to generalize the natural scalar product-induced norm on K2n to the Clifford algebra and we shall
denote this norm by ‖ · ‖. Moreover, there is a notion of conjugation on Clifford algebras defined by:

ej1 . . . ejk := (−1)kQ(ej1) . . . Q(ejk) · ejk . . . ej1 = (−1)
k(k+1)

2 Q(ej1) . . . Q(ejk) · ej1 . . . ejk , (3.80)

see [38, (3.80)], and extending linearily. If K = C, we also conjugate the complex coefficients in the
usual manner, i.e. we extend complex anti-linearily. We highlight the following key property of the
conjugation:

xy = y · x, ∀x, y ∈ A. (3.81)

12This definition is justified, as universal Clifford algebras A have an extension property for linear maps from V to
any Clifford algebra respecting the characteristic multiplication relation in A, see Gilbert-Murray [38].
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This is due to the inversion of factors in (3.80). We emphasise that the definition in (3.80) is precisely
made with the identity below in mind:

ej1 . . . ejk · ej1 . . . ejk = 1. (3.82)

The following property will be useful later as well: Let x ∈ A be given and denote by P0 the linear
projection of an element in the Clifford algebra to the coefficient associated with the neutral element
1. More precisely, P0 : A → K is the following linear map:

P0

(∑
α

xαeα

)
= x∅

We have by a direct computation:

P0(xx) =
∑

α⊂{1,...,n}

xαxα

= ‖x‖2, (3.83)

where we wrote explicitly x =
∑

α⊂{1,...,n} xαeα with xα ∈ K. It suffices to observe that eα · eβ has
non-vanishing contribution in the e∅ = 1-direction, if and only if α = β. The formula then follows.

3.1.5.2 Proof of Theorem 3.1.1.4.

Let us first note that, if we take Tn with n ≥ 2, there are n different Riesz transforms, one for each basis
direction. This suggests that the right conditions should involve some restriction on each of the Riesz
transforms. In addition, considering the symbol of D2, we see that we rely some cancellation property
stemming from the complex nature of i. 13 Therefore, a natural way to obtain a generalisation would
involve Clifford algebras to include sufficiently many anticommuting complex units.

Firstly, it is immediate that the same simplifications as in the case n = 1 apply here. So we may
assume û(0) = 0. Throughout most of this proof, the coefficient m = 0 will be implicitly omitted,
as it will be vanishing for all functions/distributions considered. Moreover, the reduction to smooth
functions applies equally well in this case. Therefore, we may assume without loss of generality that
u, fj , gj are all smooth.

The heart of the argument lies in the correct definition of D and D on Tn. As mentioned in the
introduction of the current section, Clifford algebras and their set of complex units actually provide
the desired framework. Let Cn denote the universal complex Clifford algebra associated with the
quadratic space (Cn, Q), where:

Q(z1, . . . , zn) := −
n∑
j=1

z2
j , ∀(z1, . . . , zn) ∈ Cn. (3.84)

We emphasise that the particular choice of Q is at odds with usual conventions for complex Clifford
algebras, but using our quadratic form, we obtain the appropriate basis commutation relations while
remaining isomorphic to the usual convention. One could reduce to the usual defining quadratic form
by choosing i · ej instead of the standard basis ej throughout our proof. In fact, the main reason why

13This refers to the property i2 = −1 which was key to reduce the multiplier of D2 to a simpler form.
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we decided to use our convention is to use the Riesz operators in their usual form.
Observe that we then have, for the standard basis denoted by e1, . . . , en:

ejek + ekej = 2δjk, ∀j, k ∈ {1, . . . , n}, (3.85)

simply by the definition of Clifford algebras and the quadratic form Q. We define now for any
v ∈ C∞(Tn,C):

Dv = ∆
n
4 (Id+

n∑
j=1

ejRj)v (3.86)

Dv = ∆
n
4 (Id−

n∑
j=1

ejRj)v. (3.87)

We emphasise the similarity with [38, (5.14)] used in the context of Hardy spaces. The crucial
observation for our purposes is the following multiplier property for Fourier series for every m ∈ Zn:

F(Dv)(m) = |m|
n
2
(
1 +

n∑
j=1

ej · i
mj

|m|
)
F(v)(m) (3.88)

F(Dv)(m) = |m|
n
2
(
1−

n∑
j=1

ej · i
mj

|m|
)
F(v)(m), (3.89)

where |m| denotes the Euclidean norm on Zn. We highlight that at this point, we know that Du and
Du are functions in L1 + Ḣ−

n
2 (Tn,Cn). Completely analogous to the proof of Theorem 3.1.1.3, we

may find F ∈ L2 (due to the invertibility of non-zero vectors v ∈ Rn in Cn14). To be precise, observe
that if DF = f , f and g are defined to satisfy Du = f + g by splitting the terms fj , gj in the natural
way, then:

∀m 6= 0 : |m|
n
2
(
1 +

n∑
j=1

ej · i
mj

|m|
)
F̂ (m) = f̂(m), (3.90)

which may be rewritten as:

F̂ (m) =
1

2|m|
n
2

(
1−

n∑
j=1

ej · i
mj

|m|

)
f̂(m), (3.91)

by using the multiplication relations and associativity on Cn. To conclude that F ∈ L2, it suffices to
check summability of the Fourier coefficients:

∑
m∈Zn\{0}

‖F̂ (m)‖2 =
∑
m6=0

∥∥∥ 1

2|m|
n
2

(
1−

n∑
j=1

ej · i
mj

|m|
)
f̂(m)

∥∥∥2

.
∑
m6=0

1

|m|n
‖f̂(m)‖2

14Observe that for real vectors in Rn, we find m2 = |m|2. For general vectors in Cn, this fails, as can be seen in the
counterexample:

(e1 + ie2)2 = 0
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. ‖f‖2
Ḣ−

n
2
< +∞. (3.92)

We mention here that the characterisations for regularity and integrability carry over without prob-
lem, even if we use Clifford algebra-valued functions by verifying componentwise regularity.

Consequently, as in the case n = 1, we may define ũ = u − F and observe that Dũ =: g ∈ L1.
Solving Dw = ũ in the sense of distributions leaves us with D2w = g.

The key point behind the second proof of Theorem 3.1.1.3 lies in the fact, that D2 has an inverse
given by the convolution with a bounded function. By a direct computation, we arrive at the following
expression for the multiplier associated with D2:

F(D2w)(m) = |m|n
(
1 +

n∑
j=1

ej · i
mj

|m|
)2F(w)(m) = 2i · |m|n

( n∑
j=1

ej
mj

|m|
)
F(w)(m), (3.93)

for every m ∈ Zn. Observe that we used the fact that the complex unit i of C commutes with all ej
(as the Clifford algebra is a complex algebra) and that:

(i · ej)2 = i2 · e2
j = i2 = −1. (3.94)

Let us identify m =
∑
mjej , i.e. we consider the vector m ∈ Zn ⊂ Cn as an element in Cn. Therefore,

(3.93) becomes:
F(D2w)(m) = 2i|m|n−1 ·mF(w)(m), ∀m ∈ Zn. (3.95)

As stated before, all vectors Rn ⊂ Cn are invertible due to:

z2 = −Q(z), ∀z ∈ Cn. (3.96)

So, for the real vector m, we have due to m ·m = −Q(m):

m−1 =
m

|m|2
, ∀0 6= m ∈ Zn. (3.97)

This means that D2w = g can be restated as:

F(w)(m) =
1

2i
· m

|m|n+1
F(g)(m), (3.98)

for every 0 6= m ∈ Zn.

For now, let us assume that a bounded function K on the torus exists, such that:

K̂(m) =
1

2i
· m

|m|n+1
, ∀m ∈ Zn \ {0}. (3.99)

In this case, we may check using Fourier coefficients that (keeping in mind that the order of factors
in the convolution matters for products in Clifford algebras):

w =
1

(2π)n
K ∗ g (3.100)
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Thus, we have the following inequality:

‖w‖L∞ . ‖K‖L∞‖g‖L1 . (3.101)

This is an immediate consequence of the definition, Minkowski’s inequality and continuity of the
Clifford multiplication in the Clifford algebra norm.
Moreover, we may deduce:

‖u− F‖2L2 =

∫
Tn
P0

(
(u− F ) · (u− F )

)
dx

= P0

(∫
Tn

(u− F ) · (u− F )dx
)

≤
∥∥∥∫

Tn
(u− F ) · (u− F )dx

∥∥∥
=
∥∥∥∫

Tn
Dw · (u− F )dx

∥∥∥
=
∥∥∥∫

Tn

(∑
m

D̂w(m)e−i〈m,x〉
)
·
(∑

m̃

û− F (m)ei〈m̃,x〉
)
dx
∥∥∥

'
∥∥∥∑

m

D̂w(m) · û− F (m)
∥∥∥

=
∥∥∥∑

m

|m|
n
2

(
1 +

n∑
j=1

ej · i
mj

|m|
)
ŵ(m) · û− F (m)‖

=
∥∥∥∑

m

ŵ(m) · |m|
n
2

(
1 +

n∑
j=1

ej · i
mj

|m|
)
û− F (m)‖

=
∥∥∥∑

m

ŵ(m) · |m|
n
2
(
1−

n∑
j=1

ej · i
mj

|m|
)
û− F (m)‖

=
∥∥∥∑

m

ŵ(m) · ̂D(u− F )(m)‖

'
∥∥∥∫

Tn
w ·D(u− F )dx

∥∥∥. (3.102)

Observe that in the first inequality, we used that the norm squared of u − F actually appears as
the coefficient associated with 1 in the product u− F · (u − F ). In addition, the conjugation in the
ninth line can easily deduced from our definition in the preliminary section of the paper, see (3.80).
The remainder of the argument then follows completely analogous to the 1D-proof, up to the obvious
modifications. Again, simple considerations show that we even have the following inequality:∥∥∥u−−∫

Tn
udx

∥∥∥
L2
.

n∑
j=0

∥∥(−∆)
n
2Rju

∥∥
Ḣ−

n
2 +L1 , (3.103)

where R0 = Id.

To complete the proof in the same way as for Theorem 3.1.1.3, we still need to find a bounded
kernel K satisfying:

K̂(m) =
1

2i
· m

|m|n+1
, ∀0 6= m ∈ Zn. (3.104)
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This is the purpose of the next subsection, so we may conclude the proof of Theorem 3.1.1.4 at this
point. �

3.1.5.3 Boundedness of the Kernel

Lastly, let us find an appropriate kernel. We first notice that due to linearity, symmetry and the
splitting into different directions, it is enough to find a bounded function k, such that:

k̂(m) =
m1

|m|n+1
, ∀0 6= m ∈ Zn. (3.105)

Consequently, we want to study the boundedness of the following conditionally convergent series:

k(x) =
∑

m∈Zn\{0}

m1

|m|n+1
ei〈m,x〉. (3.106)

Let us fix some notation. We usually identify m ∈ Zn with m = (m1, m̃), where m̃ ∈ Zn−1. We will
sometimes use the same notation for x ∈ Rn. Moreover, for any m, we define m′ = (−m1, m̃). This
allows us to immediately see:

k̂(m′) = −k̂(m), ∀m ∈ Zn \ {0}. (3.107)

This observation enables us to rewrite (3.106) as follows:

k(x) = 2i ·
∑
m1>0

∑
m̃∈Zn−1

m1

|m|n+1
sin(m1x1)ei〈m̃,x̃〉. (3.108)

The strategy of the proof is based on [8, p.405-406]. Thus, the main point is to split the sum into

partial sums involving m1 and |m̃| being comparable to some dyadic 2k1 and 2k̃ respectively. Then, we
distinguish k1 ≤ k̃ and k1 ≥ k̃ to conclude. Thus, we consider the following sum derived from (3.108):

|k(x)| ≤
∑
k1≥0

∑
k̃≥0

∣∣∣ ∑
m1∼2k1

∑
|m̃|∼2k̃

m1

|m|n+1
sin(m1x1)ei〈m̃,x̃〉

∣∣∣. (3.109)

Let us mention an uniform estimate for fixed k1, k̃. To achieve this, we distinguish two cases:
k1 ≥ k̃ and k1 < k̃. We shall need the following estimate that can be found in [8, (4.22)]:∣∣∣∑

`∈I
sin(`x)

∣∣∣ . 4k|x| ∧ 1

|x|
, (3.110)

for every k ∈ N, x ∈ S1 and subinterval I ⊂ [2k−1, 2k]. Here, ∧ denotes the minimum of two functions.
Let us provide the argument in a more abstract manner: Consider a finite sum of the form:∑

m1

∑
m̃

am1bm̃cm1,m̃. (3.111)

Observe that the summands in (3.109) inside the absolute value clearly have this form. Let us denote
by Am1 the partial sum of all al up to the m1-th element. In the case of (3.109), this would be a sum
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Figure 3.1.1: Plot of an Approximation of k in Dimension 2

of sin(lx) over an interval with l comparable to 2k1 , hence we may use the bound (3.110). Therefore,
we may rewrite (3.111) as:∑

m1

∑
m̃

am1bm̃cm1,m̃ =
∑
m1

∑
m̃

(Am1 −Am1−1)bm̃cm1,m̃

=
∑
m1

∑
m̃

Am1bm̃(cm1,m̃ − cm1+1,m̃), (3.112)

which, in the case of (3.109), can be estimated using the bound on sums of sinus functions in (3.110),
the boundedness of the bm̃ which are merely ei〈m̃,x̃〉 and finally the estimate:∣∣∣ m1

|m|n+1
− m1 + 1

((m1 + 1)2 + |m̃|2)
n+1

2

∣∣∣ . 1

|m|n+1
. (3.113)

We mention the slight imprecision, as in (3.112), the extremal partial sums Al require further atten-
tion. However, in the case we are considering, similar techniques can be applied (since we no longer
sum over m1) and we omit further details.

Therefore, we arrive at the following estimate:∣∣∣ ∑
m1∼2k1

∑
|m̃|∼2k̃

m1

|m|n+1
sin(m1x1)ei〈m̃,x̃〉

∣∣∣ . 2k1
(
2k1 |x1| ∧

1

2k1 |x1|
)∥∥∥ 1

|m|n+1

∥∥∥
l1(m1∼2k1 ,|m̃|∼2k̃)

(3.114)
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If k1 ≥ k̃, we may simplify (3.109) using (3.114) as follows:

|k(x)| .
∑
k1≥1

2k̃(n−1)2k1
1

2k1(n+1)
· 2k1

(
2k1 |x1| ∧

1

2k1 |x1|
)

≤
∑
k1≥0

2k1 |x1| ∧
1

2k1 |x1|
. C <∞, (3.115)

which can be easily bounded by the definition of the minimum.

If k̃ > k1, we find:∑
k1≥0

∑
k̃≥0

∣∣∣ ∑
m1∼2k1

∑
|m̃|∼2k̃

m1

|m|n+1
sin(m1x1)ei〈m̃,x̃〉

∣∣∣
.
∑
k1

∑
k̃>k1

4k1
(
2k1 |x1| ∧

1

2k1 |x1|
)
· 1

2k1(n+1)

∑
|m̃|∼2k̃

1

(1 + |m̃|2
22k1

)
n+1

2

.
∑
k1≥0

2k1(n−1)4k1

2k1(n+1)

(
2k1 |x1| ∧

1

2k1 |x1|
)

≤
∑
k1≥0

2k1 |x1| ∧
1

2k1 |x1|
≤ C <∞, (3.116)

where we estimated the sum over m̃, k̃ by a dominating integral. This shows that k(x) is actually
bounded and possesses the required Fourier coefficients, hence adding the last ingredient missing in
our proof of Theorem 3.1.1.4.

3.1.6 Existence Result for a certain Fractional PDE

Similar to Bourgain-Brezis [8], the estimates in Theorem 3.1.1.3 and 3.1.1.4 may be used to derive
existence results for a particular differential operator. However, before turning to the PDE itself,
let us briefly provide an alternative formulation of our main theorems for a more general class of
distributions:

Theorem 3.1.6.1. Let u ∈ D′(Tn,Cn) be Cn-valued and assume that:

Du,Du ∈ Ḣ−
n
2 + L1(Tn,Cn). (3.117)

Here, D and D are the operators defined in the proof of Theorem 3.1.1.4. Then u ∈ L2(Tn,Cn) and
we have the following estimate:∥∥∥u− ∫

Tn
udx

∥∥∥
L2
. ‖Du‖

Ḣ−
n
2 +L1 + ‖Du‖

Ḣ−
n
2 +L1 . (3.118)

This result is an immediate corollary of the proof of Theorem 3.1.1.4, as we always work with
Du and Du rather than the Rj(−∆)

n
2 . The possibility to generalise to Clifford algebra-valued dis-

tributions follows directly, as all arguments involved behave well with respect to the Clifford algebra
product. One could also rewrite the estimate by separating the identity operator from the Riesz op-
erators.
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Let us now turn to the existence result. We would like to consider the following problem:

g = (−∆)
n
4 f0 +

n∑
j=1

(−∆)
n
4 R̄jfj , (3.119)

where g ∈ L2
∗(Tn) =

{
u ∈ L2(Tn) : −

∫
Tn u = 0

}
.15 Obviously, the PDE admits solutions f0, . . . , fn in

Ḣ
n
2 (Tn). Again, using Sobolev embeddings, it is also clear that there is a-priori no way to deduce

that the fj may be chosen to be bounded or even continuous. We shall remedy this apparent lack of
regularity:

Corollary 3.1.6.1. Let g ∈ L2
∗(Tn). Then there exist f0, . . . , fn ∈ Ḣ

n
2 ∩ C0(Tn), such that (3.119)

holds.

Proof of Corollary 3.1.6.1. The proof is completely analogous to the one in [8, Proof of Theorem
1]: Let us define the following operator:

T :

n⊕
j=0

Ḣ
n
2 ∩ C0(Tn)→ L2

∗(Tn), T (u0, . . . , un) := (−∆)
n
4 u0 +

n∑
j=1

(−∆)
n
4 R̄juj . (3.120)

It is clear that T is a bounded, linear operator. Moreover, we have that its dual operator is given by:

T ∗ : L2
∗(Tn)→

n⊕
j=0

Ḣ−
n
2 +M(Tn), T ∗(v) :=

(
(−∆)

n
4 v,R1(−∆)

n
4 v, . . . ,Rn(−∆)

n
4 v
)
. (3.121)

Here, M(Tn) denotes the collection of Radon measures on Tn. As in [8, (4.3)], it can be easily seen
(using convolutions) that:

‖ · ‖
Ḣ−

n
2 +M = ‖ · ‖

Ḣ−
n
2 +L1 on Ḣ−

n
2 + L1(Tn). (3.122)

Therefore, we know by (3.103) that:

‖u‖L2 . ‖T ∗u‖⊕
Ḣ−

n
2 +M(Tn)

. (3.123)

This implies that T is surjective (see Theorem 2.20 in Brezis [10]). The open mapping Theorem yields
that there is C > 0 such that BL2

∗(0, C) ⊆ T (BE(0, 1)), where E =
⊕n

j=0 Ḣ
n
2 ∩ C0(Tn). Therefore,

for every g ∈ L2
∗(S

1), there are (f0, . . . , fn) ∈ E such that (−∆)1/4f0 +
∑n

i=1(−∆)1/4R̄jfj = g and

n∑
j=0

‖fj‖Ḣ n
2 ∩L∞ ≤ C‖g‖L2 , (3.124)

for some fixed C > 0. This concludes the proof. �

Using Corollary 3.1.6.1, we may derive the following simple result:

15The conjugate operator R̄j appears due to the duality used in the proof. This ensures, that we can apply the result
in Theorem 3.1.1.4. It is simpel to see that by suitably exchanging Rj by R̄j throughout the proof of Theorem 3.1.1.4,
the same inequality can be obtained for the dual operators and thus yields the same result as in Corollary 3.1.6.1 for the
usual Riesz operators.
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Corollary 3.1.6.2. Let f ∈ Ḣ
n
2 (Tn). Then there exist f0, . . . , fn ∈ Ḣ

n
2 ∩C0(Tn) as well as a smooth

function ϕ ∈ C∞(Tn), such that:

f = ϕ+

n∑
j=0

Rjfj . (3.125)

Proof of Corollary 3.1.6.2. Take g = (−∆)
n
4 f ∈ L2

∗(Tn). By Corollary 3.1.6.1, we see that there
exist f0, . . . , fn ∈ Ḣ

n
2 ∩ C0(Tn), such that (3.119) is satisfied. Therefore, we know:

(−∆)
n
4

(
f −

n∑
j=0

Rjfj
)

= 0. (3.126)

But this implies that the difference lies in the kernel of (−∆)m, where m is the smallest integer larger
or equal than n

4 . Thus the difference is smooth, leading to the desired decomposition. �

3.1.7 Appendix

In this section, we provide for the reader’s convenience a proof of the two inequalities (3.3) and (3.4),
since the authors have not found a precise reference in the literature.

1. Assume first that f(z) =
∑

n≥0 anz
n is an analytic function such that limr→1− ‖f(reiθ)‖L1(S1) <

+∞. Let h ∈ L1(S1) be such that limr→1− ‖f(reiθ) − h‖L1(S1) = 0. We set g(z) =
∑

n≥0
an
n+1z

n+1.

We observe that g′(z) = f(z). From our hypothesis, we have limr→1− ‖g′(reiθ)‖L1(S1) < +∞. Observe

that this implies that limr→1−(‖∂θg(reiθ)‖L1(S1) + ‖∂rg(reiθ)‖L1(S1)) < +∞. Define gr(z) = g(rz) for
0 < r < 1. Since g is harmonic in D, we have

0 =

∫
D

(∆grḡr + gr∆ḡr)dx =

∫
∂D

(∂rgr · ḡr + ∂rḡrgr)dσ − 2

∫
D
|∇gr|2dx

=

∫
∂D

(∂rg · ḡ + ∂rḡg)dσ −
∫
D
|g′r|2dx. (3.127)

We first have (observe that −
∫
S1 gr = 0)

‖gr‖L∞(S1) . ‖∂θgr‖L1(S1) (3.128)

and from (3.127) it follows that

‖fr‖L2(D) ' ‖g′r‖L2(D) . ‖gr‖L∞(S1)‖∂rg‖L1(S1) . ‖g′r‖2L1(S1). (3.129)

We let r → 1 in (3.129) and get
‖f‖L2(D) . ‖h‖L1(S1). (3.130)

2. Assume now that f(z) =
∑

n≥0 anz
n is an analytic function such that:

lim
r→1−

‖f(reiθ)‖H−1/2(S1) < +∞.

Claim. Assume a0 = 0 in the power series above. Then the series
∑

n≥1
|an|2
n < +∞ and

∑
n≥1

|an|2

n
= lim

r→1−
‖f(reiθ)‖2

Ḣ−1/2(S1)
.



185

Proof of the claim. We set A = limr→1− ‖f(reiθ)‖2
H−1/2(S1)

. We observe that:

‖f(reiθ)‖2
Ḣ−1/2(S1)

=
∑
n>0

|an|2r2n

n
.

For every N > 1, we have

A ≥ lim
r→1−

N∑
n=1

|an|2r2n

n
=

N∑
n=1

lim
r→1−

|an|2r2n

n

=
N∑
n=1

|an|2

n
. (3.131)

By letting N → +∞, we get
∑∞

n=1
|an|2
n < +∞ and by Abel’s theorem on power series, we deduce

that the norms converge

lim
r→1−

∑
n>0

|an|2r2n

n
=
∞∑
n=1

|an|2

n
.

Therefore, f(eiθ) ∈ Ḣ−1/2(S1) and limr→1− ‖f(reiθ) − f(eiθ)‖Ḣ−1/2(S1) = 0, by observing that the
convergence holds weakly and the norms converge, which is an equivalent characterisation for conver-
gence with respect to the norm in Hilbert spaces. This proves the claim.

Consider the function gr(z) =
∑

n≥0
an
n+1(rz)n+1. In this case we have gr ∈ Ḣ1/2(S1). We have

r · fr(z) = g′r(z). Since g is harmonic in D we have

‖fr‖L2(D) ' ‖∇gr‖L2(D) . ‖gr‖Ḣ1/2 ≡ ‖fr‖H−1/2 (3.132)

We let r → 1 in (3.132) and get
‖f‖L2(D) . ‖f‖H−1/2(S1). (3.133)

Both inequalities (3.3) and (3.4) have been proved.

3.2 Integrability by Compensation Results for the Dirac Equation
[26]

Building on the work in Da Lio-Rivière [23] that exposed suitable compensation phenomena not
involving antisymmetric potentials, a more general kind of regularity result for Dirac equations is
established by revealing compensation properties that are a-priori hidden. Among the most significant
ideas is the introduction of Clifford algebras which naturally allows one to imitate the step from C
to H as in Da Lio-Rivière [23] that ultimately provided access to a suitable gauge in a compact Lie
group. Due to technical limitations, unfortunately, we will be restricted to domains of dimension ≤ 8
in general, the main points behind this being discussed in the next section.

3.2.1 Introduction

The present paper is a new contribution to the study of linear critical systems with special structures
enjoying integrability by compensation properties.
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In [70], the first author proved the sub-criticality of local a-priori critical Schödinger systems in 2
dimensions of the form

−∆u = Ω · ∇u in D′(B2), (3.134)

where u = (u1, · · · , un) ∈ W 1,2(B2,Rn) and Ω ∈ L2(B2,R2 ⊗ so(n)), (so(n) is the Lie algebra of
antisymmetric n×n matrices). Systems of the form (3.134) are related to concentration compactness
and regularity results of Euler-Lagrange equations of conformal invariant functionals in 2-D, such as
for instance the harmonic map equation.

Following Rivière [70], in a series of works, various critical local and non local systems with
antisymmetric potentials, often related to geometric variational problems, have been singled out as
enjoying compactness properties similar to the ones of (3.134). Successively the following systems
for the corresponding critical regimes16 and where Ω denotes an antisymmetric potential have been
proven to have subcritical behaviour below a threshold of energy

∆2u = ∆(V · ∇u) + div(w∇u) + Ω · ∇u (3.135)

in Lamm-Rivière [53],
−∆v = Ω v (3.136)

in Rivière [71].
In the nonlocal framework, denoting for σ ∈ (0, 1)

(−∆)σu(x) = PV

∫
R

u(x)− u(y)

|x− y|1+2σ
dy ,

similar sub-critical behaviour have been proven to hold for systems of the form respectively

(−∆)1/4v = Ω · v , (3.137)

in Da Lio-Rivière [22] , as well as
(−∆)1/2u = Ω · d1/2(u) , (3.138)

in Mazowiecka-Schikorra [57] where d1/2 is the the half gradient given by

d1/2ϕ(x, y) =
ϕ(x)− ϕ(y)

|x− y|1/2
,

as well as

(−∆)1/4u =

∫
R
K(x, y) u(y)dy , (3.139)

where K(x, y) = −Kt(y, x) (see Da Lio-Rivière [24]).

In all the above examples the antisymmetry (3.137), (3.138) or the anti-self adjoint duality (3.139)
of the potential appearing in the equation are responsible for the regularity of the solutions or for the
stability under weak convergence as in the original work Rivière [70]. Recently in Da Lio-Rivière [23]
the first and the second authors have discovered new integrability by compensation phenomena for
linear systems in 2-D where the antisymmetry is not directly involved. They are systems of the form

div (S∇u) = 0 in D′(R2), (3.140)

16In the function spaces which makes them critical.
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where u ∈ L2(C),Rn) and S ∈ W 1,2(C, Sym(n)) where Sym(n) denotes the set of symmetric n × n-
matrices over R and where the crucial involution assumption is made

S2 = Idn . (3.141)

In the case of 2-D codomains (n = 2) the resolution of (3.140) required a different formulation of the
equation in the form

∂zf = Ω · f in D′(C), (3.142)

where Ω ∈ L2(C, so(2)⊗ C) is given by

Ω =

(
0 β
−β 0

)
, (3.143)

for some β ∈ L2(C,C) and f ∈ L2(C,C2), f̄ = (f̄1, f̄2), and f̄i is the complex conjugate of fi, (see
Proposition III.2 in Da Lio-Rivière [23]). We observe that in this context the Lie Algebra so(2) ⊗ C
does not generate a compact Lie group. This differs completely from all the previously mentioned
results above where the compactness of the underlying Lie Group, SO(n), was the crucial assumption
allowing the construction of suitable gauge transformations à la Uhlenbeck [98] in order to “absorb”
the potential in the left-hand-side of the system.

The main result of Da Lio-Rivière [23] leading to the regularity of solutions to (3.140) for n = 2 is
the following theorem.

Theorem 3.2.1.1 (Theorem III.7 in [23]). Let β ∈ L2(C,C) with

∂x1β2 − ∂x2β1 = 0 .

Let f ∈ L2(C,C× C) be a solution of

∂zf =

(
0 β

−β 0

)
f (3.144)

Then f ∈ Lq
loc(C) for all q <∞. �

We observe that actually the system (3.142) is critical in the sense that if we start with a L2(C)
solution f then from the fact that ∂Lf ∈ L1 we get that f ∈ L2,∞(C) namely we return almost to the
starting point. The new integrability by compensation results discovered in Da Lio-Rivière [23] are
related to Wente’s inequality for 2-D Jacobians.

The purpose of the present work is to extend the integrability by compensation result given by
Theorem 3.2.1.1 to higher dimensions. For this purpose we need to recall the fundamental notions
related to Clifford Algebras:

For every m ≥ 0, we denote by C`m the universal Clifford algebra on Rm (sometimes also denoted
C`(0,m)). C`m is a real associative algebra with identity containing linearly a copy of Rm, such that
for any orthonormal basis (e1, . . . , em) of Rm, it holds

eiej + ejei = −δij ,
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for 1 ≤ i, j ≤ m− 1 and the reduced products eI = ei1 · · · eik , 1 ≤ i1 ≤ · · · ≤ ek ≤ m and e0 = 1 are a
basis for C`m. 17 Any f ∈ C`m can be decomposed as follows:

f =
∑
I

fI eI , where eI = ei0ei1 · · · eik , I = {i0, . . . , ik} , 0 ≤ i1 ≤ · · · ≤ ik ≤ m .

Let σ : C`m → C`m be the unique involutive automorphism such that σ(ei) = −ei for every i =
1, . . . ,m and σ|R = Id. it is called the principal automorphism on C`m in mathematics and grade
involution or grade automorphism in physics18 . For f ∈ C`m we also denote

f̂ := σ(f) .

Observe for instance that by definition

ê0 = e0 , êi = −ei êiej = êiêj = eiej · · ·

We point out that the principal automorphism σ is the only involution which is compatible with the
Clifford Algebra structure19. We will refer for instance to Gilbert-Murray [38] and Hamilton [42] for
a presentation of Clifford Algebras.

Finally for f : Rm → (C`m)2 we consider the Dirac operator ∂Lf defined by

∂Lf = e0 · ∂x0f− e1 · ∂x1f− . . .− em−1 · ∂xm−1f , (3.145)

Our main result in the present work is the following integrability by compensation theorem which is
the 3 and 4 dimensional counterpart of theorem 3.2.1.1

Theorem 3.2.1.2. Let m = 3, 4. β = (β0, · · ·βm−1) ∈W 1,m/2
loc (Rm, spanR{e0, · · · , em−1}) with

∀ i, j = 1 · · ·m− 1 ∂xiβj − ∂xjβi = 0 . (3.146)

17If m = 0, 1, 2 then C`0 ' R, C`1 ' C and C`2 ' H respectively, where

H := {a+ b · i+ c · j + d · k, (a, b, c, d) ∈ R4},

is the algebra of quaternions.
C`3 is a real 8 dimensional space with a basis given by the following paravectors

e0 Scalar

e1, e2, e3 Vectors

e1e2, e2e3, e3e1 Bivectors

e1e2e3 Trivectors

18https://en.wikipedia.org/wiki/Paravector
19In the case m = 1 then the principal automorphism coincides with the complex conjugation: f̂ = f̄ . While in

the case of m = 2 with C`2 ' H the automorphism σ does not coincide with the other involution on H given by the
conjugation operation on quaternions :

1̄ = 1 , ī = −i , j̄ = −j and k̄ = −k

while
1̂ = 1 = e0 , î = −i = e1 , ĵ = −j = e2 , k̂ = k = e1 e2
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Let f ∈ Lm/m−1(Rm, C`m−1 × C`m−1) be a solution of

∂Lf =

(
0 β

−β 0

)
f̂ (3.147)

Then f ∈ Lqloc(R
m, C`m−1 × C`m−1) for all q <∞. �

Remark 3.2.1.1. Observe that the system (3.147) is critical in the sense that the r-h-s is a-priori
only20 in L1

loc which is preventing a direct use of Calderon Zygmund theory. Any direct attempt to

bootstrap is blocked by the fact that ∂−1
L L1

loc ↪→ L
m/m−1,∞
loc (Rm). Which means that a-priori integrability

information on f is lost from the first iteration on. It is only because of its very peculiar structure that,
thanks to some “hidden” compensation, a gain of integrability and local compactness holds. In fact a
quantitative version of the theorem 3.2.1.2 can bee formulated in the form of an ε-regularity. �

Remark 3.2.1.2. Some gain of integrability still holds when instead of assuming (3.146) one assumes
that ∂xiβj − ∂xjβi ∈ L

p
loc(R

m) (m = 3, 4) for some p > 2. �

Remark 3.2.1.3. It would be interesting to study the possibility whether or not theorem 3.2.1.2

continues to hold if instead of assuming β to be in W
1,m/2
loc one would make the milder hypothesis

β ∈ Lmloc. In fact, we are proving theorem 3.2.1.2 under the assumption that β belongs to the Lorentz

space L
(m,2)
loc in which W

1,m/2
loc embeds in m dimensions for m = 3, 4(see Rivière [73]). �

Remark 3.2.1.4. The investigations made by the authors is leading them to the conclusion that the
theorem does not generalise to arbitrary m in a straightforward way and the proofs given below for
the cases m = 3, 4 is very much “dimension depending”. Some results have been obtained by the third
author in dimensions m ≤ 8 in Section 3.3.2.

Similarly to the 2-dimensional case the resolution of Theorem 3.2.1.2 for m = 4 for instance goes
through the canonical inclusion of C`3 into C`4 (i.e. C`4 ' C`3 ⊕C`3 e4) and the introduction of the
new variable g = f1 + f2e4 ∈ C`4. The equation satisfied by g is then21

∂Lg = −(βe4) · g in D′(R4). (3.149)

20Indeed we have W
1,m/2
loc (Rm) ↪→ Lm(Rm)

21In this form the equation identifies to the covariant Dirac equation commonly written as follows

3∑
µ=0

γµ(∂xµ − iAµ)ψ = 0 (3.148)

where γ0 is the 2×2 identity matrix, γµ = −eµ , i = e4, the connection components are given by Aµ = βµ and the group
representing on the spinor space C`4 ' C`3⊕C`3 e4 is the abelian group exp(e4R). With this identification at hand one
could then imagine that, for instance assuming β0 = 0 and ∂x0β = 0 the flatness of the connection A implied by (3.146)
would make the absorption of the r-h-s of (3.149) trivial by multiplying on the left (3.148) by exp(e4ϕ) where dϕ = A.
However we have

∀ l = 1, 2, 3 exp(e4 ϕ)el = el exp(−e4 ϕ)

and this multiplication would then give

∂x0(exp(e4 ϕ)g)−
3∑
i=1

el ∂xi (exp(−e4 ϕ)g)) = 0 ,

which is not easily invertible neither unless in the very particular case where g is known to be independent of x0 (that
we are not assuming a-priori).
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The “absorption” of the right hand side of this equation by the left-hand-side will be achieved through
the construction à la Uhlenbeck of a Coulomb type Gauge in the Lie group whose Lie algebra is given
by

E4 = {e4, e1e4, e2e4, e3e4, e1, e2, e3, e1e2, e1e3, e2e3} .

This Lie group happens to be isomorphic to Spin(5) (see Appendix for a presentation of Spin(m))
and is hence compact which is crucial for the gain of integrability similarly to the seminal work Rivière
[70].

We also would like to stress that the linearized natural Coulomb type condition in the present
framework is given by the Lorenz gauge equation for an electric potential ϕ and magnetic vector
potential A (see (3.212) and (3.213)) :

curl(A) = B
−∂tA−∇ϕ = E

∂tϕ+ div(A) = β0

(3.150)

where B, and E represent respectively the electric and the magnetic fields and are taken in our
case to be B = 0 and E = (β1, β2, β3) while assuming (3.146) and x0 is the time variable.

Finally it is legitimate to ask if the resolution of theorem 3.2.1.2 leads to any new result regarding
solutions in Lm/m−1 of real Elliptic Systems in Divergence form (3.140) involving critical chirality

operator S ∈W 2,m/2
loc (Rm, Sym(m)) with S2 = Idm. We have not been able to establish this connection

so far22.

3.2.2 Bootstrap Test for (3.149) in 4-D

We first start with the dimension m = 4 that looks more natural to us. We consider systems of the
form

∂Lf = βe4 · f . (3.153)

where f = f1 + f2 e4, and f1, f2 : R4 → C`3. The function f assumes values in the Clifford algebra C`4.
In this context ∂L and ∂R denote respectively the the left and right Dirac operator in R4 defined

by

∂Lf := ∂x0f−
3∑
i=1

ei∂xif (3.154)

22Actually in dimension m = 3 L3/2 solutions of

div(S∇u) = 0 in D′(R3) (3.151)

happen to be rather related to a solution of a system of the type:

∂Lf =

(
0 β
−β 0

)
f (3.152)

where f = (f1, f2) ∈ H×H and fi denotes the conjugate of f in H which does not coincide with the involution σ in C`2 ' H
given by the principal automorphism we are considering in (3.147). Up to our knowledge, the question of a possible
higher integrability for L3/2 solutions of systems of the form (3.152) for β ∈ L3 or even in W 1,3/2 as well as the question

of the possible higher integrability for L3/2 solutions of (3.151) with W
2,3/2
loc Involution operator S that would naturally

extend to 3D the theorems in 2 dimension obtained in Da Lio-Rivière [23] are still open.
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∂Rf := ∂x0f−
3∑
i=1

∂xifei. (3.155)

The first main result is the following Theorem which corresponds to a bootstrap test for the
equation (3.153):

Theorem 3.2.2.1. There exists ε0 > 0 such that for every β ∈ L(4,2)(R4, V3) satisfying ‖β‖L(4,2)(R4) ≤
ε0 as well as

∀i, j ∂xiβ
j − ∂xjβi = 0 ,

and where V3 = spanR{e0, e1, e2, e3} and every f ∈ L4/3(R4, C`4) solving

∂Lf = βe4 · f , (3.156)

we have f ≡ 0. �

In order to prove Theorem 3.2.2.1, we first perform the construction of a suitable gauge. This relies
on the use of certain projections to render the emerging gauge equations elliptic and therefore enabling
direct existence and regularity arguments. The arguments are given in the following subsections and we
will make use of a new compensation phenomenon linked to the appearance of Maxwell-type equations
for our changes of gauge.

3.2.2.1 Construction of a Gauge

In order to employ an absorption argument by a change of gauge, we consider the compact Lie algebra
generated by {e4, e1e4, e2e4, e3e4}. Such an algebra is isomorphic to spin(5) and it is given by:

E = spanR{e4, e1e4, e2e4, e3e4, e1, e2, e3, e1e2, e1e3, e2e3}.

We may split
E = E4 ⊕ E6,

where
E4 := spanR{e4, e1e4, e2e4, e3e4},

and
E6 := spanR{e1, e2, e3, e1e2, e1e3, e2e3}.

Note that E6 is also a compact Lie algebra of dimension 6 isomorphic to spin(4). Let us introduce the
following projections:

Π6 : C`4 → E6 (3.157)

Π4 : C`4 → E4 (3.158)

Π3 : C`4 → E3 := spanR{e2e3e4, e3e1e4, e1e2e4} (3.159)

P : E3 → E4, ek+1ek−1e4 7→ eke4, k = 1, 2, 3. (3.160)

In the projection P, we use the indexing in Z/3Z. This means for example that we identify 4 with 1
in (3.160).
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We multiply both sides of the equation (3.156) from the left by q belonging to the compact Lie
group corresponding to the Lie algebra E. Such a Lie group is isomorphic to Spin(5) ' Sp(2)23. We
obtain

q∂Lf = ∂x0(qf)− (∂x0q)f−
3∑
i=1

∂xi(qeif) +
3∑
i=1

∂xiqeif (3.161)

We define the following expression:

D(q) := q−1∂x0q−
3∑
i=1

q−1∂xiqei = q−1∂Rq.

Let us observe that

βe4 = β0 e4 −
3∑
i=1

βi eie4 ∈ E4 (3.162)

D(q) ∈ E3 ⊕ E4 ⊕ E6 ⊕ R · e1e2e3. (3.163)

By combining (3.156), (3.161) and (3.163) we get

∂x0(qf)−
3∑
i=1

∂xi(qeif) = q(β e4 +D(q))f. (3.164)

We notice that (3.164) is a system of 15 equations in 10 unknowns, if we split the PDE according to
the basis in C`4. If we try to directly solve:

β e4 +D(q) = 0,

this will have therefore little to no chance of success. Instead, let us try and approximately solve this
equation.

More precisely, our main goal is to find q ∈ Ẇ 1,4(R4, Spin(5))24 such that D(q) = −βe4 + V(x),
where V is a more regular potential than β, namely V ∈ L(4,1)(R4).

To achieve this, we introduce the following operator:

N : Ẇ 1,4(R4, Spin(5))→W−1,4(R4, E6)× L4(R4, E4)× L4(R4, E3) (3.165)

q 7→

(
Π6

(
3∑
i=0

(∂xi((q)−1∂xiq))

)
,Π4(D(q)),Π3(D(q))

)
We observe that N is an operator from Spin(5)-valued maps, i.e. functions whose range has dimen-
sion 10, to E6 ⊕ E4 ⊕ E3-valued functions, namely functions taking values in a space of dimension
13. Therefore, there is no hope of proving that it is an isomorphism. This suggests that we have to
further reduce dimensionality to arrive at an operator which takes all values sufficiently close to 0.

Indeed, we would like to prove the following result (which, as we stated before, is a-priori impossible
in the generality presented):

23see Thm. 9.11.(iii.) in Gilbert-Murray [38]. The symplectic group, Sp(n) is the subgroup of Gl(n,H), the invertible

n× n quaternionic matrices A satisfying A
t
A = AA

t
= Id.

24Ẇ 1,4(R4, Spin(5)) denotes the space of functions u ∈ L1
loc(R4, Spin(5)) such that ∇u ∈ L4(R4)



193

Lemma 3.2.2.1. There exists ε0 > 0 such that for every β ∈ L4(R4, V3) and ‖β‖L4(R4) ≤ ε0, there

exists q ∈ Ẇ 1,4(R4, Spin(5)) such that

N(q) = (0, βe4, 0). (3.166)

together with an estimate:
‖∇q‖L4 . ‖β‖L4(R4). (3.167)

Unfortunately, this strong form of a gauge is not possible. However, if we allow for an error term
of slightly better integrability, which will suffice for the regularity result we are trying to establish, we
can actually achieve a suitable change of gauge by using a slightly weaker gauge operator.

In order to prove a weaker analogue of Lemma 3.2.2.1, we first consider a different nonlinear
operator:

N : Ẇ 1,4(R4, Spin(5))→W−1,4(R4, E6)× L4(R4, E4) (3.168)

q 7→

(
Π6

(
3∑
i=0

(∂xi((q)−1∂xi(q))

)
, (Π4 + P)(D(q))

)

Observe that

(Π4 + P)(D(q)) = Πe4(D(q)) +
3∑
i=1

(Πeie4 + ΠP(ei+1,ei−1e4))(D(q)) (3.169)

We shall construct a gauge for the nonlinear operator in (3.168):

Lemma 3.2.2.2. There are constants ε0 > 0 and C > 0 such that for any choice of ω ∈W−1,4(R4, E6)
and g ∈ L4(R4, E4) satisfying

‖ω‖W−1,4 ≤ ε0, ‖g‖L4 ≤ ε0 (3.170)

there exists q ∈ Ẇ 1,4(R4, Spin(5)) such that

N (q) = (ω, g) (3.171)

and
‖∇q‖L4 ≤ C(‖ω‖W−1,4 + ‖g‖L4) . (3.172)

In order to prove Lemma 3.2.2.2, we shall need to introduce some notation and establish a few
intermediate results: As in [22, 27], by an approximation argument, it suffices to prove Lemma 3.2.2.2
under the assumption that ω and g are slightly more regular. More precisely, we first prove Lemma
3.2.2.2 in the case ω ∈ (W−1,p ∩W−1,p′)(R4, E6) and g ∈ (Lp ∩ Lp′)(R4, E4) for some fixed 4 < p and
its Hölder-dual p′ = p

p−1 :

For ε > 0, let us now introduce:

Uε :=


(ω, g) ∈ (W−1,p ∩W−1,p′)(R4, E6)× (Lp ∩ Lp′)(R4, E4)

‖ω‖W−1,4 + ‖g‖L4 ≤ ε

 (3.173)
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For constants ε,Θ > 0, let Vε,Θ ⊆ Uε denote the set of pairs (ω, g) for which we have a decomposition
as in (3.171) and which are satisfying the following estimates:

‖∇q‖L4 ≤ Θ(‖ω‖W−1,4 + ‖g‖L4) (3.174)

‖∇q‖p ≤ Θ(‖ω‖W−1,p + ‖g‖Lp) , (3.175)

Uε‖∇q‖p′ ≤ Θ(‖ω‖W−1,p′ + ‖g‖Lp′ ) . (3.176)

That is:

Vε,Θ :=

(ω, g) ∈ Uε :

there exists q ∈ (Ẇ 1,p ∩ Ẇ 1,p′)(R4, Spin(5)), so that

q− I ∈ L4p/3p−4(R4, Spin(5))

and (3.171), (3.174), (3.175), (3.176) hold.


The strategy to prove Lemma 3.2.2.2 follows the one introduced by K. Uhlenbeck in [98] in order to
construct Coulomb gauges in critical dimensions. In fact, Lemma 3.2.2.2 is going to be a consequence of
the following proposition, which will establish our Lemma by using a standard connectedness argument
on suitable spaces.

Proposition 3.2.2.1. There exist Θ > 0 and ε > 0, such that Vε,Θ = Uε. �

Proof of Proposition 3.2.2.1. Proposition 3.2.2.1 will follow, once we have shown the following
four properties:

(i.) Uε is connected.

(ii.) Vε,Θ is nonempty.

(iii.) For any ε,Θ > 0, Vε,Θ is a relatively closed subset of Uε.

(iv.) There exist Θ > 0 and ε > 0, such that Vε,Θ is a relatively open subset of Uε.

Property (i.) is obvious, since Uε is clearly starshaped with center 0 and hence path-connected.
Property (ii.) is also evident, since (0, 0) ∈ Vε,Θ follows by choosing the constant map q = I. Conse-
quently, it remains to verify the latter two:

The closedness property (iii.) follows almost verbatim from those in Da Lio-Rivière [22] and Da
Lio-Schikorra [28]: Assume that (ωn, gn), (ω, g) ∈ Vε,Θ and moreover, (ωn, gn) → (ω, g) and let qn be
as in the definition of Vε,Θ, i.e. N (qn) = (ωn, gn) and satisfying (3.174), (3.175), (3.176). Observe
that ∇qn is bounded in Lp and Lp

′
. Therefore, we can extract weakly converging subsequences with

limit p. Furthermore, we may extract another subsequence of qn − I converging locally in Lq for
some q < 4p

3p−4 we may choose, due to the Ẇ 1,p′-boundedness of qn. The limit q− I satisfies ∇q = p
and q assumes values in Spin(5) a.e.. This can be seen by extracting another subsequence of qn − I
converging a.e. pointwise and using the closedness of Spin(5). Due to the weak lower semi-continuity
of the norms, we immediately obtain that (3.174), (3.175) and (3.176) hold. Finally, observe that, in
the distributional sense, we have the convergence:

Π6

(
3∑
i=0

(∂xi((qn)−1∂xi(qn))

)
→ Π6

(
3∑
i=0

(∂xi((q)−1∂xi(q))

)
,
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as well as
(Π4 + P)(D(qn))→ (Π4 + P)(D(q)).

This shows N (q) = (ω, g) and therefore relative closedness is established. This takes care of (iii.).

Lastly, we verify the openness property (iv.). For this let ω0, g0 be arbitrary in Vε,Θ, for some
ε,Θ > 0 determined later on in an appropriate manner: Let q0 ∈ Ẇ 1,p ∩ Ẇ 1,p′(R4, spin(5)), q0 − I ∈
L4p/3p−4(R4), such that the decomposition (3.171) as well as the estimates (3.174), (3.175) and (3.176)
are satisfied for ω0 and g0.

Let us consider perturbations of q0 of the form q = q0e
u where u ∈ Ẇ 1,p∩Ẇ 1,p′∩L4p/3p−4(R4, spin(5)).

Observe that the exponent p > 4 has been chosen in particular to ensure u ∈ C0 ∩ L∞(R4) and

q0e
u − I ∈ L

4p
3p−4 . Indeed for a Schwartz function u, one has

u(x) = C

∫
R4

∇x|x− y|−2 · ∇u(y) dy ⇒ ‖u‖∞ . ‖∇x|x− y|−2‖L(4/3,∞) ‖∇u‖L(4,1) (3.177)

The generalized Hölder inequality (see Grafakos [39]) yields the required estimate of the Lorentz norm:

‖∇u‖L(4,1) ≤ C ‖∇u‖αLp ‖∇u‖1−αLp′
.

where 4−1 = αp−1 + (1 − α)p′−1. The statement u ∈ L∞, and thus continuity by approximation,

follows due to the density of Schwartz functions in Ẇ 1,p ∩ Ẇ 1,p′ ∩ L
4p

3p−4 . It can be easily seen, that
the argument carries over to domains of arbitrary dimension m, if m < p, as the density result and
the interpolation identity do not critically depend on m = 4 in any significant way. This observation
ensures that the argument presented could be generalised up to this point to higher-dimensional
domains without issues.

Study of the linearized operator The key idea is that we can deduce general global properties
of the gauge operator by considering its differential at the element 0. This is in line with the usual
local inversion theorem, which again reduces local invertibility to a question about invertibility of the
differential which is its local linearisation.

We compute DN (q0) as follows:

DN (q0) =
d

dt
N (q0e

tu)
∣∣∣
t=0

=: Lq0(u),

where u ∈ (Ẇ 1,p ∩ Ẇ 1,p′ ∩ L4p/3p−4)(R4, spin(5)). Let us write this in components:

Lq0(u) = (L6
q0

(u),L4
q0

(u))

where we have:

L6
q0

(u) := Π6

[
∆u +

3∑
i=0

∂xi
(
q−1

0 (∂xiq0)u− uq−1
0 ∂xiq0

)]

L4
q0

(u) := (Π4 + P)[∂x0u−
3∑
i=1

∂xiuei]
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+(Π4 + P)[q−1
0 (∂x0q0)u− uq−1

0 ∂x0q0 −
3∑
j=1

(q−1
0 (∂xjq0)u− uq−1

0 ∂xjq0)ej ]

and for i = 1, 2, 3. First, we investigate the invertibility of Lq0(u) in the special case q0 = I.

Invertibility of LI(u) If q0 = I, we obviously have dq = 0 and as a result, the operator LI(u) =
(L6

I(u),L4
I(u)) has the following simpler form:

L6
I(u) = Π6 [∆u]

L4
I(u) = (Π4 + P)[∂x0u−

3∑
i=1

∂xiuei] (3.178)

The following will suffice to prove existence of solutions and regularity:

Proposition 3.2.2.2. The operator LI(u) is elliptic.

We mention at this point that this will be the only point where we crucially use the dimension of
the domain, as we shall observe the Riemann-Fueter operator on R4 emerging in our computations.

Proof of Proposition 3.2.2.2. We write u = w+ v where w ∈ E6 and v = v0e4 + v1e1e4 + v2e2e4 +
v3e3e4 ∈ E4. We observe that

L6
I(u) = Π6 [∆w + ∆v] = ∆w

L4
I(u) = (Π4 + P)

[
∂x0v −

3∑
i=1

∂xivei

]
We explicitly compute L4

I(u):

(Π4 + P)

[
∂x0v −

3∑
i=1

∂xivei

]
= Πe4

[
∂x0v −

3∑
i=1

∂xivei

]

+

3∑
i=1

(Πeie4 + ΠP[ei+1ei−1e4])

∂x0v −
3∑
j=1

∂xjvej


=

∂x0v
0 −

3∑
j=1

∂xiv
i

 e4 (3.179)

+

3∑
i=1

(
∂x0v

i + ∂xiv
0 − ∂xi+1v

i−1 + ∂xi−1v
i+1
)
eie4.

We can associate to the operator (Π4 + P) the following symbol:

σ(ξ) =


ξ0 −ξ1 −ξ2 −ξ3

ξ1 ξ0 ξ3 −ξ2

ξ2 −ξ3 ξ0 ξ1

ξ3 ξ2 −ξ1 ξ0

 (3.180)
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It can be easily seen that the columns of the symbol form an orthogonal system. Therefore, we know
det(σ(ξ)) = ±(

∑4
i=1 ξ

2
i )2 due to the multilinearity of the determinant coupled with the determinant

of real orthogonal matrices being either 1 or −1. This implies that the symbol is invertible for all
ξ 6= 0 and as a result, the differential operator is elliptic by definition. Due to the connectedness of
R4 \{0} and the continuity of the determinant, we may even conclude that the sign of the determinant
has to be constant and by noticing det(σ((1, 0, 0, 0))) = 1, we deduce det(σ(ξ)) = (

∑4
i=1 ξ

2
i )2 for all ξ.

Combining the ellipticity of the Laplacian with the ellipticity of σ(ξ), we deduce that LI(u) is elliptic
as well. This concludes the proof of Proposition 3.2.2.2. �

We may now prove the following result:

Lemma 3.2.2.3. For any Θ > 0, there exists ε > 0 so that the following holds for any ω0, g0 and q0

satisfying (3.171), (3.174), (3.175), (3.176):
For any ω ∈ (W−1,p ∩ W−1,p′)(R4, E6) and g ∈ (Lp ∩ Lp′)(R4, E4), there exists a unique u ∈

Ẇ 1,p ∩ Ẇ 1,p′ ∩ L4p/3p−4(R4, spin(5)), such that

(ω, g) = Lq0(u)

and for some constant C = C(ω0, g0,Θ) > 0, it holds

‖∇u‖Lp(R4) + ‖∇u‖Lp′ (R4) . ‖ω‖W−1,p(R4) + ‖ω‖W−1,p′ (R4) (3.181)

+‖g‖Lp(R4) + ‖g‖Lp′ (R4).

Proof of Lemma 3.2.2.3.
Claim 1. LI(u) is invertible as a map between the space of functions u ∈ Ẇ 1,p′∩L4p/3p−4(R4, spin(5))
and the space W−1,p′(R4, E6)× Lp′(R4, E4)
Proof of the Claim 1. We have seen that LI(u) is elliptic and therefore a Caldéron-Zygmund
operator. More precisely, let Γ4 denote the fundamental solution of ∆ on R4. Using the decomposition
u = w + v as before, we have:

∆w = ω =⇒ w = Γ4 ∗ ω.

Similarily, we write v = v0e4 + v1e1e4 + v2e2e4 + v3e3e4 and up to replacing e4, e1e4, e2e4 and e3e4 by
the quaternionic basis 1, i, j and k respectively, we see:

(Π4 + P)[∂Rv] = g⇐⇒ DRF
R v = g,

where DRF
R = ∂x0 +∂x1 · i+∂x2 ·j+∂x3 ·k is the quaternionic Riemann-Fueter operator in 4D. Observe

that this emergence crucially limits the dimension of the domains to which this very argument could
be applied. A simple calculation as outlined in the Appendix enables us to see:

D
RF
R DRF

R = ∆,

where D
RF
R = ∂x0 − ∂x1 · i− ∂x2 · j − ∂x3 · k is the conjugate operator. Therefore, we have:

∆v = D
RF
R g.

As a result, we deduce:

v = Γ4 ∗D
RF
R g = D

RF
R g ∗ Γ4 = D

RF
R (g ∗ Γ4) = g ∗DRF

R Γ4.
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We highlight that the change of order in the convolution is made to emphasise explicitly the non-
commutativity of elements in the Clifford algebra. Using standard Caldéron-Zygmund estimates for
the Laplacian, we obtain:

‖∇w‖Lp . ‖ω‖W−1,p′

‖∇v‖Lp . ‖g‖Lp′ .

Consequently, given ω ∈W−1,p′(R4, E6), g ∈ Lp′(R4, E4), there exists a unique u ∈ Ẇ 1,p′∩L4p/3p−4(R4, spin(5))
such that:

LI(u) = (ω, g) .

The elliptic estimates above yield in combination:

‖∇u‖Lp′ . ‖ω‖W−1,p′ + ‖g‖Lp′ .

The claim is therefore proved. �

Estimate for Lq0(u)− LI(u)
To generalize the invertibility to arbitrary q0, let us consider Lq0 as a perturbation of LI. Invertibility is
ensured, if the operators are close enough by the usual perturbation-type argument. Thus, it suffices to
estimate using Hölder’s inequality, boundedness/compactness of the Spin-groups, Sobolev-embeddings
and the L4-estimate for ∇q:

‖q−1
0 (∂xiq0)u− uq−1

0 ∂xiq0‖Lp′ . ‖q
−1
0 ‖L∞‖∇q0‖L4‖u‖L4p/3p−4

. ‖∇q0‖L4‖∇u‖Lp′

. Θε · ‖∇u‖Lp′ .

Using this inequality, we conclude:

‖∂xi
(
q−1

0 (∂xiq0)u− uq−1
0 ∂xiq0

)
‖W−1,p′ ≤ ‖q−1

0 (∂xiq0)u− uq−1
0 ∂xiq0‖Lp′

. Θε · ‖∇u‖Lp′ .

Choosing ε > 0 small enough (depending on Θ), we obtain that Lq0(u) is an invertible map from
Ẇ 1,p′(R4, spin(5)) to W−1,p′(R4, E6)× Lp′(R4, E4).

Claim 2. Assuming now ω ∈ (W−1,p ∩W−1,p′)(R4, E6) as well as g ∈ (Lp ∩ Lp′)(R4, E4), we show
that the unique solution u of (ω, g) = Lq0(u) lies in Ẇ 1,p(R4).
Proof of Claim 2: Firstly, due to ∇u ∈ Lp′ , we know that we may choose u by Sobolev-embeddings
and the density of Schwartz functions in the following way:

u ∈ L4p/3p−4(R4)

We have been using this observation implicitly before. As previously, in order to bootstrap, it suffices
to deduce improved integrability of q−1

0 ∂xlq0u, as this implies improved integrability of ∇u by means of
elliptic estimates. The same estimates immediately apply to uq−1

0 ∂xlq0, meaning that there is no issue
in merely establishing estimates for q−1

0 ∂xlq0u for brevity’s sake. By the considerations in (3.177), it
suffices to show that ∇u ∈ Lq for some q > 4, because then, by interpolation, ∇u ∈ Lp′ ∩ Lq and we
could thus conclude that u ∈ L∞ completely analogous to (3.177) leading to q−1

0 ∂xlq0u ∈ Lp, which
immediately establishes ∇u ∈ Lp. Therefore, Claim 2 would be proven in the process.
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We argue by a bootstrap argument: Assume that u ∈ Lr for some 4 > r ≥ 4p
3p−4 . In this case,

Hölder’s inequality implies:
‖q−1

0 ∂xlq0u‖Lt . ‖∇q0‖Lp‖u‖Lr ,

for 1
t = 1

p + 1
r >

1
p + 1

4 >
1
4 . Observe that 4

3 ≤ t < 4 < p by the inequalities satisfied by r. We conclude
due to the elliptic estimates as in Claim 1 and the identity Lq0(u) = (ω, g):

∇u ∈ Lt.

This implies by Sobolev-embeddings that u ∈ L4t/4−t. Thus, if we define r̃ = 4t
4−t , we observe:

1

r̃
=

1

t
− 1

4
=

1

r
+

1

p
− 1

4
,

which implies that the reciprocal values are decreasing by a constant amount with each iterating step,
due to p > 4. Therefore, after finitely many steps (the number of which depends only on p), we have:

1

r̃
<

1

4
⇒ r̃ > 4

This implies, by the previously outlined argument, that ∇u ∈ Lp(R4, spin(5)), finishing the proof of
Claim 2. Observe that by keeping track of the estimates, we may deduce the Lp-part of the inequality
(3.287). Therefore, the Lemma is proven.

Proof of Proposition 3.2.2.1 continued.
For ε = ε(Θ) > 0 chosen small enough and for any (ω0, g0) ∈ Vε,Θ, the local inversion theorem applied
to Nq0 implies the existence of some δ > 0 (that might depend on (ω0, g0)) such that, for every
(ω, g) ∈ Uε with

‖ω − ω0‖W−1,p(R4) + ‖ω − ω0‖W−1,p′ (R4) < δ (3.182)

‖g− g0‖Lp(R4) + ‖g− g0‖Lp′ (R4) < δ, (3.183)

we surely find q = q0e
u ∈ Ẇ 1,p ∩ Ẇ 1,p′(R4), such that q− I ∈ L4p/3p−4(R4) and (3.171) is satisfied.

It remains to prove the estimates (3.174), (3.175) and (3.176). They will be an immediate conse-
quence of the following lemma, together with sufficiently small chosen ε, δ > 0:

Lemma 3.2.2.4. There exist Θ > 0 and σ > 0, such that, whenever q ∈ Ẇ 1,p ∩ Ẇ 1,p′(R4) with
q− I ∈ L4p/3p−4(R4) satisfying (3.171) is given, and it holds:

‖∇q‖L4(R4) ≤ σ, (3.184)

then the estimates in (3.174), (3.175) and (3.176) hold true as well.

Proof of Lemma 3.2.2.4. Let (ω, g) ∈ Uε satisfy (3.182) and (3.183) and let q = q0e
u ∈ Ẇ 1,p ∩

Ẇ 1,p′(R4), such that q − I ∈ L4p/3p−4(R4) and (3.171) is satisfied. We first consider the following
Hodge decomposition of q−1dq:

q−1dq = dΓq + d∗Yq (3.185)
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where Yq ∈ Ω2(R4), Yq =
∑

0≤i<j≤3 Y
ij
q dxi∧dxj is a differential 2-form and Γq a 0-form, i.e. a function.

We denote d∗Yq =
∑3

i=0 y
i
qdxi

25 for brevity. We may choose Γq and Yq as follows:

Γq = (−∆)−1d∗(q−1dq) (3.186)

Yq = (−∆)−1d(q−1dq) (3.187)

In particular, we then have dYq = 0 and d∗Γq = 0, i.e. exactness and coexactness respectively.
Due to (3.186), it follows that:

(−∆)Π6(Γq) = Π6(−∆Γq) = Π6(d∗(q−1dq)) = −ω. (3.188)

Therefore for every r ∈ [p′, p] we have:

‖Π6(∇Γq)‖Lr . ‖ω‖W−1,r (3.189)

From (3.185), it follows that

−∆Yq = d(q−1dq) = dq−1 ∧ dq. (3.190)

Using (3.190), it follows that ∇Yq ∈ Lr(R4) and due to the compensation result in Lemma 3.2.7.1:

‖∇Yq‖Lr . ‖dq‖L4(R4)‖dq‖Lr(R4) ≤ σ‖dq‖Lr(R4). (3.191)

By inserting (3.185), it follows that (we write D = ∂R for the moment for brevity’s sake):

g = (Π4 + P)D(q) = (Π4 + P)(DΓq)

+ (Π4 + P)(y0
q −

3∑
i=1

yiqei). (3.192)

Therefore:

(Π4 + P)(DΓq) = g− (Π4 + P)(y0
q −

3∑
i=1

yiqei) (3.193)

Observe that dΓq ∈ spin(5), since q−1dq ∈ spin(5). Therefore:

dΓq = (Π4 + Π6)(dΓq).

Hence:

(Π4 + P)(DΠ4(dΓq)) = dg− d(Π4 + P)(y0
q −

3∑
i=1

yiqei) (3.194)

25We recall that d∗ = (−1)n(k−1)+1 ∗ d ∗, ∗ is the Hodge operator. If ξ =
∑

0≤i<j≤3 ξijdxi ∧ dxj then d∗ξ =
−(α0dx0 + α1dx1 + α2dx2 + α3dx3) where:

α0 = ∂x1ξ01 + ∂x2ξ02 + ∂x3ξ03

α1 = −∂x0ξ01 + ∂x2ξ12 + ∂x3ξ13

α2 = −∂x0ξ02 − ∂x1ξ12 + ∂x3ξ23

α3 = −∂x2ξ23 − ∂x1ξ13 − ∂x0ξ03
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− (Π4 + P)(DΠ6(dΓq)) (3.195)

Since the operator (Π4 + P) ◦ D is invertible by the arguments in Claim 1 of the proof of Lemma
3.2.2.3 above, we find:

Π4(dΓq) = ((Π4 + P) ◦D)−1dg

+ ((Π4 + P) ◦D)−1d(Π4 + P)

(
y0
q −

3∑
i=1

yiqei

)
+ ((Π4 + P) ◦D)−1 [(Π4 + P)(DΠ6(dΓq))] . (3.196)

By using (3.196), we get:

‖Π4(dΓq)‖Lr . ‖g‖Lr + ‖d∗Yq‖Lr + ‖ω‖W−1,r

. ‖g‖Lr + σ‖dq‖Lr + ‖ω‖W−1,r (3.197)

Combining (3.185), (3.189) and (3.197), we get the following estimate:

‖dq‖Lr . ‖dΓq‖Lr + ‖d∗Yq‖Lr (3.198)

. ‖Π4(dΓq)‖Lr + ‖Π6(dΓq)‖Lr + ‖d∗Yq‖Lr
≤ C(‖g‖Lr + σ‖dq‖Lr + 2‖ω‖W−1,r + σ‖dq‖Lr). (3.199)

Choosing Θ := C
1−2Cσ , we finally arrive at the desired inequality:

‖dq‖Lr ≤ Θ(‖ω‖W−1,r + ‖g‖Lr).

This concludes the proof of lemma 3.2.2.4. �

End of the proof of Proposition 3.2.2.1
Thanks to Lemma 3.2.2.4, the openness property (iv.) is proven. Proposition 3.2.2.1 is thus estab-
lished.

3.2.2.2 Improved Integrability

We are now going to finish the proof of Theorem 3.2.2.1. Before we start, however, let us briefly recall
the definition of the gauge operator and the conditions: Let f ∈ L4/3(R4) be a solution of

∂x0(qf)−
3∑
i=1

∂xi(qeif) = q (βe4 +D(q)) f. (3.200)

If ‖β‖L(4,2)(R4) ≤ ε (this is the required regularity assumption for our arguments, the corresponding

L4-estimate follows immediately) for some ε > 0 sufficiently small, then there exists q ∈ Ẇ 1,4(R4)
such that

N (q) = (0,−βe4) (3.201)

with
‖∇q‖L4(R4) ≤ Θ‖β‖L4(R4) (3.202)
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This is what we have proven in the last subsection. Here, N denotes the following gauge operator:

N : Ẇ 1,4(R4, Spin(5))→W−1,4(R4, E6)× L4(R4, E4) (3.203)

q 7→

(
Π6

(
3∑
i=0

(∂xi(q
−1∂xiq)

)
, (Π4 + P)(D(q))

)

In order to avoid worrying about signs, we shall from now on work with βe4 instead of −βe4. This
can be achieved by replacing β by −β and does not affect the argument in any meaningful way.
In particular, it follows from (3.201) that:

(Π4 + P)D(q) = βe4. (3.204)

Namely, if β = (β0, β1, β2, β3):

Πe4(D(q)) = β0 (3.205)

(Πeie4 + ΠP(ei+1ei−1e4)(D(q)) = βieie4 (3.206)

An important step in the proof of our regularity result stems from the observation that the solution
of this type of problem can be easily computed directly. This can be exploited to obtain further
information and stronger integrability properties as seen below:

Lemma 3.2.2.5. Under the above assumptions, we have

Π6(D(q)), Πei+1ei−1e4(D(q)) ∈ L(4,1)(R4). (3.207)

We first prove a related result concerning the linearized operator LI. For convenience’s sake, given
u = w + v ∈ E6 ⊕ E4, we set:

Dv := ∂Rv = ∂x0v −
3∑
i=1

∂xivei. (3.208)

The result in Lemma 3.2.2.5 has an infinitesimal analogue for the differential which is in fact the
key element required to prove it:

Lemma 3.2.2.6. Let u = w + v ∈ E6 ⊕ E4 be such that

LI(u) = (∆w,Πe4(Dv), (Πeie4 + ΠP(ei+1ei−1e4)(Dv)) = (0, βe4) (3.209)

Then for all i = 1, 2, 3 we have
Πei+1ei−1e4(Dv) = 0, (3.210)

and therefore:
ΠP(ei+1ei−1e4)(Dv) = 0.

The key idea behind the proof is the use of explicit representations of the solution u.

Proof of Lemma 3.2.2.6.
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We write v = v0e4 + v1e1e4 + v2e2e
4 + v3e3e4 as v = (v0, v′) where v′ = (v1, v2, v3) and similarily

x = (x0, x
′), where x′ = (x1, x2, x3). We observe that Dv can be computed as follows:

Dv = (∂x0v
0 − divx′ v

′)e4 +

3∑
i=1

(∂xiv
0 + ∂x0v

i)eie4 (3.211)

+ (∂x3v
2 − ∂x2v

3)e2e3e4 + (∂x1v
3 − ∂x3v

1)e3e1e4 + (∂x2v
1 − ∂x1v

2)e1e2e4

Therefore, we may express Dv in the following form:

Dv =

 ∂x0v
0 − divx′ v

′

∇x′v0 + ∂x0v
′

− curlx′ v
′

 (3.212)

We want to find the solution v ∈ Ẇ 1,4(R4) of the following system of equations:

Dv =



β0

β1

β2

β3

0
0
0


. (3.213)

1) Assume that β ∈ S(R4). We show the existence of a smooth solution v and look for a-priori esti-
mates.

First of all, we notice that:

∆v0 = ∂x0

(
∂x0v

0
)

+ ∂x1

(
∂x1v

0
)

+ ∂x2

(
∂x2v

0
)

+ ∂x3

(
∂x3v

0
)

= ∂x0

(
∂x0v

0
)

+ divx′ ∇x′v0

= ∂x0

(
β0 + divx′ v

′)+ divx′
(
β′ − ∂x0v

′)
= div β, (3.214)

and thus:

v0(x) := (−∆)−1 (div β) (x) = −
∫
R4

div(β)(y)|x− y|−2dy

Our goal is now to arrive at similar expressions for vj for all j = 1, 2, 3. To achieve this, we observe
that for any such j:

∂x0β
j − ∂xjβ0 = ∂x0

(
∂xjv

0 + ∂x0v
j
)
− ∂xj

(
∂x0v

0 − divx′ v
′)

= ∂2
x0
vj +

∑
k 6=j

∂xj∂xkv
k

= ∂2
x0
vj +

∑
k 6=j

∂xk∂xjv
k

= ∂2
x0
vj +

∑
k 6=j

∂xk∂xkv
j
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= ∆vj , (3.215)

where we used that ∂xjv
k = ∂xkv

j for all j 6= k should hold by the third set of equations in (3.212)
(namely curlx′ v

′ = 0). Thus, we also know:

vj(x) := (−∆)−1
(
∂xjβ

0 − ∂x0β
j
)

(x) = −
∫
R4

(
∂xjβ

0(y)− ∂x0β
j(y)

)
|x− y|−2dy

We observe that v obtained this way clearly satisfies the desired L4-estimate by the usual Calderon-
Zygmund inequality. Consequently, we merely have to verify that this solution does indeed solve the
equation (3.213). Since this is done by direct computations, let us only present the computations in
the case of the second set of equations in (3.212):

∂xjv
0 + ∂x0v

j = −∂xj (Γ ∗ div β) + ∂x0

(
Γ ∗
(
∂xjβ

0 − ∂x0β
j
))

= Γ ∗

−∂xj∂x0β0− ∂2
xjβ

j −
∑
k 6=j

∂xj∂xkβ
k + ∂x0∂xjβ

0 − ∂2
xjβ

j


= Γ ∗

−∆βj −
∑
k 6=j

∂xk

(
∂xjβ

k − ∂xkβ
j
)

= Γ ∗
(
−∆βj

)
= βj , (3.216)

where we denote by Γ the fundamental solution of the Laplacian −∆ in 4D and we used curlx′β
′ = 0.

This computation is valid for any j = 1, 2, 3. This shows that the second set of equations in (3.212)
holds true and the other two sets of equations may be checked completely analogously and are omitted
here.

2) The general case, i.e. the case of β ∈ L4(R4; spanR{e0, e1, e2, e3}) satisfying the vanishing curl con-
dition, can be dealt with by approximation. Notice that any such β can be approximated by Schwartz
functions or smooth, compactly supported functions for which the previous computations hold. Then,
the uniformity of the estimates on the gradient of v leads to the desired conclusion.

A particular special case is when β = ∂Lα for some α ∈ Ẇ 1,(4,2)(R4) real-valued. Keep in mind
that:

∂Lα = ∂x0α− ∂x1α · e1 − ∂x2α · e2 − ∂x3α · e3. (3.217)

In fact, in this case, we may find an even more explicit representation of the solution v. Indeed, by
the vanishing curl assumption on v′, it is natural to look for solutions:

v′ = ∇x′ϕ (3.218)

Inserting this expression into the second set of equations in (3.212), we find:

∇x′v0 + ∂x0∇x′ϕ = −∇x′α,

where we remember that we currently assume β = ∂Lα. This immediately yields:

∇x′
(
v0 + ∂x0ϕ+ α

)
= 0,
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which would be satisfied, if for instance:

v0 + ∂x0ϕ+ α = 0. (3.219)

It remains to check whether the first equation in (3.212) can hold true. Inserting yields:

∂x0v
0 − divx′ v

′ = ∂x0α,

which, by using the identity from (3.219) in the following form:

v0 = −α− ∂x0ϕ,

further reduces to:
− ∂2

x0
ϕ− divx′ ∇x′ϕ = −∆ϕ = 2∂x0α. (3.220)

Therefore:
ϕ := 2(−∆)−1∂x0α,

and v0, v′ can now be computed from (3.218) and (3.219). The desired estimates are evident from our
computations and using that ∇α ∈ L(4,2), i.e. the gradient of α possesses L4-integrability. Notice that
the formula provides the same result as in the previous computation for general β. �

It should be noted that the arguments in the previous section do not make use of the dimension of
the domain being 4 in any meaningful way, besides ensuring that a connection to the gauge operator
N exists. Indeed, the very same arguments could be applied in other dimensions, in particular the
construction of a curl-free solution of a system of PDEs.

Proof of Lemma 3.2.2.5. We argue in different steps:

Step 1. We consider the Hodge decomposition of

q−1dq = dΓq + d∗Yq (3.221)

where Yq ∈ Ω2(R4), Yq =
∑

0≤i<j≤3 Y
ij
q dxi∧dxj is a differential 2-form and Γq is a 0-form or function.

We denote as before d∗Yq =
∑3

i=0 y
i
qdxi. Notice that once again, we can choose Γq and Yq as follows:

Γq = (−∆)−1d∗(q−1dq) (3.222)

Yq = (−∆)−1d(q−1dq) (3.223)

In particular, we have dYq = 0 and d∗Γq = 0, i.e. exactness and coexactness respectively. Moreover
∇Yq,∇Γq ∈ L4(R4).
Due to (3.221), it follows that

−∆Yq = d(q−1dq) = dq−1 ∧ dq
= dq−1q ∧ q−1dq = −(q−1dq ∧ q−1dq)

= −(dΓq + d∗Yq) ∧ (dΓq + d∗Yq) ∈ L4 · L4 ↪→ L2(R4) (3.224)

From (3.224), it follows that ∇2Yq ∈ L2 and by generalized Sobolev embeddings therefore ∇Yq ∈
L(4,2)(R4).
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Since Π6(d∗(q−1dq)) = 0 by the choice of q using (3.201), we deduce from (3.222) that Π6(∆Γq) = 0
and since ∇Γq ∈ L4(R4), this leads us to:

Π6(∇Γq) = 0 (3.225)

Step 2. Next, we have, by using D as in Lemma 3.2.2.6:

βe4 = (Π4 + P)D(q) = (Π4 + P)(DΓq)

+ (Π4 + P)(y0
q −

3∑
i=1

yiqei). (3.226)

Since q−1dq is purely imaginary, namely it is a linear combination of elements in spin(5), and Π6(dΓq) =
0 due to (3.226), we find:

(Π4 + P)(DdΓq) = dβe4 − d(Π4 + P)(y0
q −

3∑
i=1

yiqei) (3.227)

From (3.227) and the invertibility of (Π4 + P) ◦D, it follows that

dΓq = ((Π4 + P) ◦D)−1(dβe4) (3.228)

− ((Π4 + P) ◦D)−1d(Π4 + P)(y0
q −

3∑
i=1

yiqei).

Now we set Ỹq := ((Π4+P)◦D)−1(Π4+P)(y0
q−
∑3

i=1 y
i
qei) and let v be such that (Π4+P)Dv = βe4.

Existence is justified by ellipticity and using the connection to the Riemann-Fueter operator introduced
in the previous subsection. Observe that by elliptic estimates, we have ∇v ∈ L(4,2) since β ∈ L4,2.
This is the key-point where we need that β ∈ L4,2. Therefore ∇Γq ∈ L(4,2) as well with

‖∇Γq‖L(4,2) . ‖∇q‖2L4 + ‖β‖L(4,2) . (3.229)

We estimate:

(dΓq) ∧ (dΓq) = dv ∧ dv + dv ∧ dỸq
+ dỸq ∧ dv + dỸq ∧ dỸq (3.230)

Now observe that all terms are products of functions in L(4,2). Therefore, the product lies in L2,1 by
the Lorentz-Hölder inequality. Similarly, we can easily see that:

−(dΓq + d∗Yq) ∧ (dΓq + d∗Yq) ∈ L2,1(R4),

with
‖dΓq + d∗Yq) ∧ (dΓq + d∗Yq‖L2,1(R4) . (‖∇q‖2L4 + ‖β‖L(4,2))2. (3.231)

From (3.224), (3.229) and (3.231) it follows that ∇Yq ∈ L(4,1) with

‖∇Yq‖L(4,1) . (‖∇q‖2L4 + ‖β‖L(4,2))2,

Step 3. We may write:

D(q) = DΓq + ψq (3.232)
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where ψq ∈ L(4,1)(R4) and
‖ψq‖L(4,1) . (‖∇q‖2L4 + ‖β‖L(4,2))2.

This is simply due to (3.221) and the explicit formula for D(q). It follows by direct evaluation of the
term that

(Π4 + P)D(q) = (Π4 + P)(DΓq) + (Π4 + P)ψq (3.233)

Next, we notice that (Π4 + P)D(q) = βe4 if and only if:

(Π4 + P)(DΓq) = βe4 − (Π4 + P)ψq (3.234)

= (Π4 + P)(βe4)− (Π4 + P)ψq.

We have seen that the linear operator (Π4 + P) ◦D (which in fact corresponds to the differential LI
computed in the previous subsection) is an elliptic operator and if w = ((Π4 + P) ◦ D)−1(βe4) and
ψ̃q = −((Π4 + P) ◦D)−1(Π4 + P)ψq, then by Lemma 3.2.2.6:

Πei+1ei−1e4(Dw) = 0.

From (3.233) and w = Γq − ψ̃q, it follows that

Πei+1ei−1e4(DΓq) = Πei+1ei−1e4(Dψ̃q) ∈ L(4,1)(R4)

with by elliptic estimates:
‖∇ψ̃q‖L(4,1)(R4) . ‖∇Yq‖L(4,1)(R4). (3.235)

It follows now:
Πei+1ei−1e4 (D(q)) ∈ L(4,1)(R4) for all i = 1, 2, 3. (3.236)

This shows the desired improved regularity result.

3.2.2.3 Conclusion of the Bootstrap Test

Let f ∈ L4/3(R4) be a solution of (3.200). By choosing q as with our gauge operator, we find:

∂x0 [qf]−
3∑
i=1

[∂xi(qeif)] = qV (x)f. (3.237)

where V (x) ∈ L(4,1) by our investigation in the previous subsection (V (x) = ψq + Πei+1ei−1e4(DΓq)).
Indeed, observe that this is a consequence of the choice of gauge and the improved integrability we
have established. Furthermore, by the estimate proven before:

‖V (x)‖L(4,1) . (‖∇q‖2L4 + ‖β‖L(4,2))2.

Since From Lemma 3.2.2.1 we can get rid of the power 2 by choosing ε > 0 possibly slightly smaller.
Indeed, we can show using the estimate (3.167) for q:

‖V ‖L(4,1) . ‖β‖L(4,2)
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We set

F =


qf
−qe1f
−qe2f
−qe3f


Our goal is to prove Morrey estimates just like in Da Lio-Rivière [23]. In order to achieve this, we
will use a non-linear Hodge decomposition. The reason behind this is, that Wente’s inequality is no
longer at our disposal and therefore, we need a suitable replacement, see Lemma 3.2.7.1.
Claim 1: There are A,B ∈ Ẇ 1,(4/3,∞)(R4), where B is differential 2-form, such that:

F = dA+ qd∗B (3.238)

Proof of the Claim 1. We argue by induction:

Step 1. We find A0, B0 such that

−∆A0 = −div(F ) (3.239)

−∆B0 = d(q−1F ) (3.240)

Then for k ≥ 1 we solve:

−∆Ak = −d∗(qd∗Bk−1) = ∗(dq ∧ d ∗Bk−1) (3.241)

−∆Bk = −d(q−1) ∧ dAk−1 (3.242)

We set A =
∑∞

i=0Ak and B =
∑∞

i=0Bk. We then have:

−∆A = −d∗(qd∗B)− div(F ) (3.243)

−∆B = −d(q−1) ∧ dAk−1 + d(q−1F ). (3.244)

From (3.243) and (3.244), we deduce the following estimates:

d∗(F − dA− qd∗B) = 0 (3.245)

d(q−1F − d∗B − q−1dA) = 0 (3.246)

From (3.246), it follows there exists a function γ ∈ Ẇ 1,4/3(R4) such that

q−1F − d∗B − q−1dA = dγ. (3.247)

By combining (3.245) and (3.247) we get

d∗(qdγ) = 0 (3.248)

d(qdγ) = dq ∧ dγ (3.249)

‖qdγ‖L(4/3,∞) . ‖dq‖L4‖dγ‖L(4/3,∞) ≤ ε0‖dγ‖L(4/3,∞) (3.250)

Notice that in the last line, we used the compensation result in Lemma 3.2.7.1.
It follows that, if ε > 0 is chosen small enough, dγ = 0 and therefore

F = dA+ qd∗B.
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We conclude the proof the claim 1. �

We continue with the proof of Theorem 3.2.2.1: From (3.238), it follows that

−∆A = qV (x)f + d∗(qd∗B) = qV (x)f + ∗(dq ∧ d ∗B). (3.251)

Then, by using the fundamental solution, we see:

‖∇A‖L(4/3,∞) . ‖ −∆A‖L1 . ‖V ‖L(4,1)‖q f‖L(4/3,∞) + ‖∇q‖L4‖d∗B‖L(4/3,∞)

. ‖β‖L(4,2) ‖f‖L(4/3,∞) + ‖∇q‖L4‖d∗B‖L(4/3,∞)

. ε‖q f‖L(4/3,∞) + ‖β‖L(4,2)‖d∗B‖L(4/3,∞)

. ε(‖q f‖L(4/3,∞) + ‖d∗B‖L(4/3,∞)) (3.252)

Computing ∆B using exactness, we find:

−∆B = d(q−1F ) + d(q−1dA) = d(q−1F ) + dq−1 ∧ dA (3.253)

From (3.253), it follows as above that

‖∇B‖L(4/3,∞) . ‖dq−1‖L4‖∇A‖L(4/3,∞) + ‖qf‖L(4/3,∞) (3.254)

By plugging (3.254) into (3.252), we get for ε > 0 sufficiently small:

‖∇A‖L(4/3,∞) . ε‖qf‖L(4/3,∞) (3.255)

We set d∗B =
∑3

i=0 bidxi. By definition, it holds d∗d∗B =
∑3

i=0 ∂xibi = 0. Moreover, by compari-
son of the entries in F , we observe:

qb0 = qf− ∂x0A

qbi = −q eif− ∂xiA

These can be slightly rearranged to express bj in terms of f:

b0 = f− q−1∂x0A

bi = − eif− q−1∂xiA

Hence, if we solve the equations above for f:

f = b0 + q−1∂x0A = ei(bi + q−1∂xiA) (3.256)

Then it is now clear:

∂xibi = −ei∂xib0 − ei∂xi
(
q−1∂x0A

)
− ∂xi

(
q−1∂xiA

)
.

Using the previously established fact that
∑3

i=0 ∂xibi = 0, we note:

∂x0b0 −
3∑
i=1

ei∂xib0 =

3∑
i=1

∂xi
(
eiq
−1∂x0A+ q−1∂xiA

)
∈W−1,(4/3,∞) (3.257)
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As a result, using ellipticity and the corresponding estimates:

‖b0‖L(4/3,∞) . ‖∇A‖L(4/3,∞)

From (3.256), this estimate easily generalises to all bj . Namely, it follows that

‖bi‖L(4/3,∞) . ‖∇A‖L(4/3,∞) , ∀i = 1, 2, 3.

Consequently, recalling the definition of the bj , we arrive at the desired estimate for d∗B:

‖d∗B‖L(4/3,∞) . ‖∇A‖L(4/3,∞) (3.258)

From (3.238), it finally follows that:

‖qf‖L(4/3,∞) . ‖∇A‖L(4/3,∞) . ε0‖qf‖L(4/3,∞) .

If ε > 0 is chosen small enough, then qf = 0 is an immediate corollary, thus establishing the bootstrap
lemma.

3.2.3 The Proof of the Main Theorem 3.2.1.2 in 4-D

We observe that Theorem 3.2.1.2 follows similar to Theorem 3.2.2.1 by using localization arguments
analogous to Proposition III.4 in Da Lio-Rivière [23]. We provide here a sketch of proof in the 4-D
case, most of the ideas rely on just applying a local change of gauge, modifying the result presented
in the previous subsections by adding zero boundary values whenever necessary:

First, we will briefly explain how to obtain an appropriate version of the non-linear Hodge decom-
position on balls Br(x). For simplicity’s sake, let us assume x = 0, the general case is obtained by

translation. Let for this G be an arbitrary 1-form in W 1, 4
3 (Br(0)) as obtained in the proof. Then, by

classical Hodge decomposition, there exist a function A on Br(0) vanishing along the boundary and a
2-form Ã, such that:

dA+ d∗Ã = G (3.259)

Next, we consider the Hodge decomposition in the same manner of q−1d∗A, again obtaining zero
boundary conditions for the function B̃:

dB̃ + d∗B = q−1d∗Ã (3.260)

Thus, we have:
G = dA+ d∗A = dA+ qd∗B + qdB̃ ⇒ G− dA− qd∗B = qdB̃ (3.261)

We observe that on Br(0):

∆B̃ = d∗dB̃ = d∗
(
q−1d∗Ã

)
= − ∗

(
dq−1 ∧ d(∗Ã)

)
(3.262)

Due to the zero boundary condition, we can therefore deduce by similar arguments as in our compen-
sation result in Lemma 3.2.7.1:

‖∇B‖
L

4
3 (Br(0))

. ‖dq‖L4(Br(0))‖d∗Ã‖L 4
3 (Br(0))

. ε‖G‖
L

4
3 (Br(0))

(3.263)
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So, if ε > 0 is sufficiently small, we can argue by iteration that there exists a solution to the non-linear
Hodge decomposition as in the case of codomains of dimension 2, such that A has boundary value 0.

Now, to deduce local regularity, we merely have to establish slightly improved regularity and
hence Morrey estimates as in Da Lio-Rivière [23], the full regularity as in Theorem 3.2.1.2 follows
by Morrey-bootstrapping going over to possibly smaller balls to obtain uniform powers in the Morrey
estimates. Therefore, let us just point out the differences to Da Lio-Rivière [23] and our considerations
in connection with the bootstrap lemma: Namely, we can estimate A as in the bootstrap lemma, if
we find A,B for a given Br(x). More precisely, due to the boundary conditions, we will find:

‖∇A‖L(4/3,∞)(Br(x)) . ε‖qf‖L(4/3,∞)(Br(x)) + ε‖d∗B‖L(4/3,∞)(Br(x))

. ε‖qf‖L(4/3,∞)(Br(x)) + ε‖∇A‖L(4/3,∞)(Br(x)), (3.264)

by using the same arguments as before and using F = dA + qd∗B. So if ε is sufficiently small, we
arrive at:

‖∇A‖L(4/3,∞)(Br(x)) . ε‖qf‖L(4/3,∞)(Br(x)), (3.265)

Then, it remains to obtain appropriate estimates for d∗B. For this, write d∗B =
∑

j bjdxj and we can
deduce completely analogous to (3.257) in the proof of the bootstrap lemma:

∂Lb0 =
∑
j≥2

∂xjRj ,

where Rj is an expression depending on q and ∇A as already found in the proof of Theorem 3.2.2.1. So
we can now split b0 into a Clifford analytic and thus harmonic part, which can be estimated by means
of Campanato-estimates as in Da Lio-Rivière [23] and the convolution of the RHS in the equation
above with the fundamental solution of ∂L on R4. This second summand can be estimated by usual
estimates for the fundamental solution of the Laplacian. Therefore, we arrive at the desired estimates
for d∗B by completely the same means as in Da Lio-Rivière [23] once we use the link between bj and
b0 established in the bootstrap lemma.

3.2.4 The 3-D Case

Before we briefly discuss the general case, let us provide another example on how to construct an
appropriate gauge operator. More precisely, we shall consider the case of 3D-domains. This will illus-
trate that the result we have obtained will not generalise in an ”easy” manner to arbitrary dimensions
m ≥ 3, but one has to take some care when investigating the gauge operators involved:

Let us consider the following equation:
∂Lf = βe3 · f, (3.266)

where f : R3 → C`3 is in L3/2. Let us assume that

β = β0 + β1e1 + β2e2 ∈ L(3,2)(R3; spanR{e0, e1, e2}),

as well as:
curlx1,x2β = ∂2β

1 − ∂1β
2 = 0. (3.267)

We will sketch the proof of the following Theorem which is along the same lines as the proof of
Theorem 3.2.1.2:
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Theorem 3.2.4.1. Let β = (β0, β1, β2) ∈W 1,2(R3, spanR{e0, e1, e2}) with

∂x2β1 − ∂x1β2 = 0 . (3.268)

Let f ∈ L3/2(R3, C`22) be a solution of

∂Lf =

(
0 β

−β 0

)
f̂ (3.269)

Then f ∈ Lqloc(R
3) for all q <∞. �

It is clear that we may reformulate (3.269) into an equation of the following form:

∂Lg = βe3 · g,

for g = f1 + f2e3. Moreover, there is also the following bootstrap test:

Theorem 3.2.4.2. There exists ε0 > 0 such that for every β ∈ L(3,2)(R3, spanR{e0, e1, e2}) satisfying
‖β‖L(3,2)(R3) ≤ ε0 as well as:

∂2β
1 − ∂1β

2 = 0,

and every f ∈ L3/2(R3, C`3) solving:
∂Lf = βe3 · f , (3.270)

we have f ≡ 0. �

In our current discussion, we focus on Theorem 3.2.4.2, see the discussion in the previous section
regarding the proof of Theorem 3.2.2.1 for a sketch on how to apply Morrey-estimates and the 4D
case treated before.For later convenience, let us introduce the following spaces:

V3 := spanR{e3, e1e3, e2e3} (3.271)

V2 := spanR{e1, e2} (3.272)

V1 := R · e1e2, (3.273)

and denote by Π3,Π2 and Π1 the projections of U3 onto the respective subspaces.
As in Da Lio-Rivière [23] and previously seen in the case of 4-dimensional domains, let us multiply

both sides of (3.266) by a function q : R3 → Spin(4) to reveal a slight gain in integrability after a
change of gauge. We obtain by using Leibniz’ rule:

q∂Lf = ∂x0(qf)− (∂x0q)f−
2∑
i=1

∂xi(qeif) +
2∑
i=1

∂xiqeif (3.274)

We denote by:

D(q) := q−1∂x0q−
2∑
i=1

q−1∂xiqei = q−1∂Rq.

Observe that

βe3 = β0 · e3 −
2∑
i=1

βi · eie3 ∈ V3 (3.275)
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By using (3.274) and rearranging, we get:

∂x0(qf)−
2∑
i=1

∂xi(qeif) = q(β e3 +D(q))f. (3.276)

We notice that in (3.276), the absorption of βe3 by D(q) leads to a system of 8 equations in merely 6
unknowns, which is overdetermined much like in the 4-dimensional case. Therefore, there is generally
no hope of completely absorbing the ”bad term”, however, inspired by our proof in 4D, we hope to
absorb βe3 up to a term of higher integrability as before.

The main aim is to find q ∈ Ẇ 1,3(R3, Spin(4)) such that D(q) = −βe3 + V (x) where V is a more
regular potential than βe3, namely V ∈ L(3,1)(R3). To do this, let us introduce the following non-linear
operator reminiscent of (3.168):

N : Ẇ 1,3(R3, Spin(4))→W−1,3(R3, V2)× L3(R3,U2) (3.277)

q 7→

Π2

(
3∑
i=0

(∂xi(q
−1∂xiq)

)
,−Π3(D(q))e3 + Π1(q−1∂x0q)−

2∑
j=1

Π1(q−1∂xjq)ej


We notice that the first component is analogous to (3.168), while the second component of N looks
more complicated than before. As we shall see later, this definition neatly connects the differential of
N to the Riemann-Fueter operator once again. Indeed, analogous to our previous discussion for R4,
we have the following as a main result:

Lemma 3.2.4.1. There exists ε0 > 0 and C > 0 such that for any choice ω ∈ W−1,3(R3, V2) and
g ∈ L3(R3, C`2) satisfying

‖ω‖W−1,3 ≤ ε0, ‖g‖L3 ≤ ε0, (3.278)

there is q ∈ Ẇ 1,3(R3, Spin(4)) such that

N (q) = (ω, g) (3.279)

as well as
‖∇q‖L3 ≤ C(‖ω‖W−1,3 + ‖g‖L3). (3.280)

The proof essentially proceeds as in Da Lio-Rivière [23] and the case of domains of dimension
4, so let us introduce the analogous simplifications: Again similar to Da Lio-Rivière [22], Da Lio-
Schikorra [27], using an approximation argument similar to the our closedness argument later on, it
suffices to prove Lemma 3.2.4.1 for ω and g slightly more integrable, namely under the assumption
ω ∈ (W−1,p ∩W−1,p′)(R3, V2) and g ∈ (Lp ∩Lp′)(R3,U2) for some 3 < p, p′ = p

p−1 . For the remainder
of our discussion, we fix some 3 < p. Given ε > 0, we again define as previously:

C`ε :=


(ω, g) ∈ (W−1,p ∩W−1,p′)(R2, V2)× (Lp ∩ Lp′)(R3,U2)

‖ω‖W−1,3 + ‖g‖L3 ≤ ε

 (3.281)

For constants ε,Θ > 0, let Vε,Θ ⊆ C`ε be the set where we have the decomposition (3.279) with
the estimates

‖∇q‖L3 ≤ Θ(‖ω‖W−1,3 + ‖g‖L3) (3.282)
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‖∇q‖p ≤ Θ(‖ω‖W−1,p + ‖g‖Lp) , (3.283)

‖∇q‖p′ ≤ Θ(‖ω‖W−1,p′ + ‖g‖Lp′ ) . (3.284)

That is

Vε,Θ :=

ω, g ∈ C`ε :

there exists q ∈ (Ẇ 1,p ∩ Ẇ 1,p′)(R3, Spin(4)), so that

q− I ∈ L3p/2p−3(R3, Spin(4))

and (3.279), (3.282), (3.283), (3.284) hold.


The strategy to prove Lemma 3.2.4.1 is precisely the same as for Lemma 3.2.2.2 and it is a corollary
of the following:

Proposition 3.2.4.1. There exist Θ > 0 and ε > 0, such that Vε,Θ = C`ε. �

Proof of Proposition 3.2.4.1. Proposition 3.2.4.1 follows, once we show the following four properties

(i.) C`ε is connected.

(ii.) Vε,Θ is nonempty.

(iii.) For any ε,Θ > 0, Vε,Θ is a relatively closed subset of C`ε.

(iv.) There exist Θ > 0 and ε > 0 so that Vε,Θ is a relatively open subset of C`ε.

As in Da Lio-Rivière [23], property (i.) and (ii.) are obvious and (iii.) follows as in the case of
4-dimensional domains. For further details, we refer to our discussion of the 4D-case.

It remains to show the openness property (iv.). For this let (ω0, g0) be arbitrary in Vε,Θ. Let
q0 ∈ Ẇ 1,p∩Ẇ 1,p′(R3, Spin(4)), q0−I ∈ L3p/2p−3(R3) so that the decomposition (3.279) as well as the
estimates (3.282), (3.283) and (3.284) are satisfied for ω0 and g0. The idea is to study perturbations
of q0 of the form q = q0e

u, where u ∈ Ẇ 1,p ∩ Ẇ 1,p′(R3, spin(4))∩L3p/2p−3(R3). Completely analogous
to before, the exponent p > 3 has been chosen in particular to ensure p′ < 3 and, as a result,

u ∈ C0 ∩ L∞(R3) and q0e
u − I ∈ L

3p
2p−3 . This follows precisely the same way as in the 4-dimensional

case treated previously, where we mentioned that the main estimate is independent of the dimension
of the underlying space.

Attentive readers know what comes next: We compute the differential DN (q0) as

DN (q0) =
d

dt
N (q0e

tu)
∣∣∣
t=0

=: Lq0(u),

where u ∈ (Ẇ 1,p ∩ Ẇ 1,p′ ∩ L3p/2p−3)(R3, spin(4)). We write

Lq0(u) = (L2
q0

(u),L3
q0

(u))

where

L2
q0

(u) := Π2

∆u +
2∑
j=0

∂xj
(
q−1

0 (∂xjq0)u− uq−1
0 ∂xjq0

)
L3
q0

(u) = −Π3(∂Ru)e3 + ∂RΠ1(u)
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−
2∑
j=0

(−1)δ0jΠ3

(
(q−1

0 ∂xjq0u− uq−1
0 ∂xjq0)ej

)
e3

+
2∑
j=0

(−1)δ0jΠ1(q−1
0 ∂xjq0u− uq−1

0 ∂xjq0)ej

The essential property we will be using is the invertibility of Lq0(u) in the special case q0 = I. If
q0 = I, we have dq0 = 0 and therefore the differential simplifies significantly:

L2
I(u) = Π2 [∆u]

L3
I(u) = −Π3(∂Ru)e3 + ∂RΠ1(u) (3.285)

Proposition 3.2.4.2. The operator LI(u) is elliptic.

Proof of Proposition 3.2.4.2. We write u = w+ v where w ∈ V2 and v = v0e3 + v1e1e3 + v2e2e3 +
v3e1e2 ∈ V1 ⊕ V3. We observe that

L2
I(u) = Π2 [∆w + ∆v] = ∆w

L3
I(u) = −Π3(∂Rv)e3 + ∂RΠ1(v)

Computing L3
I(u) explicitly, we find:

−Π3(∂Ru)e3 + ∂RΠ1(u) = (∂x0v
0 − ∂x1v

1 − ∂x2v
2) + (∂x1v

0 + ∂x0v
1 − ∂x2v

3)e1

+ (∂x2v
0 + ∂x0v

2 + ∂x1v
3)e2 + (∂x2v

1 − ∂x1v
2 + ∂x0v

3)e1e2

= DRF
R (v0 + v1i+ v2j + v3k)

We can associate to this operator the following symbol:

σ(ξ) =


ξ0 −ξ1 −ξ2 0

ξ1 ξ0 0 −ξ2

ξ2 0 ξ0 ξ1

0 ξ2 −ξ1 ξ0

 (3.286)

It is immediately clear that this is now the Riemann-Fueter operator applied to functions depending
only on the first 3 variables. Therefore, one may argue as in 4D that the symbol is everywhere
invertible. In fact, this is an immediate corollary of the computations in 4D. This concludes the proof
of Proposition 3.2.4.2. �

We can prove the following result, which we only state, since the proof is now more or less a copy
of the corresponding result in 4D:

Lemma 3.2.4.2. For any Θ > 0, there exists ε > 0 so that the following holds for any ω0, g0 and q0

as above:
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For any ω ∈ (W−1,p ∩ W−1,p′)(R3, V2) and g ∈ (Lp ∩ Lp′)(R3,U2) there exists a unique u ∈
Ẇ 1,p ∩ Ẇ 1,p′ ∩ L3p/2p−3(R3, spin(4)) so that

(ω, g) = Lq0(u)

and for some constant C = C(ω0, g0,Θ) > 0 it holds

‖∇u‖Lp(R3) + ‖∇u‖Lp′ (R3) . ‖ω‖W−1,p(R3) + ‖ω‖W−1,p′ (R3) (3.287)

+‖g‖Lp(R3) + ‖g‖Lp′ (R3).

Proof of Proposition 3.2.4.1 continued.
For ε = ε(Θ) > 0 chosen small enough and for any (ω0, g0) ∈ Vε,Θ, the local inversion theorem
applied to Nq0 gives the existence of some δ > 0 (that might depend on (ω0, g0)) such that, for every
(ω, g) ∈ C`ε with

‖ω − ω0‖W−1,p(R3) + ‖ω − ω0‖W−1,p′ (R3) < δ (3.288)

‖g− g0‖Lp(R3) + ‖g− g0‖Lp′ (R3) < δ, (3.289)

we find q = q0e
u ∈ Ẇ 1,p ∩ Ẇ 1,p′(R3, Spin(4)), so that q − I ∈ L3p/2p−3(R3) and (3.279) is satisfied.

It remains to prove (3.282), (3.283) and (3.284). This will be implied by the following lemma, whose
proof is again analogous to the 4D-case and therefore omitted:

Lemma 3.2.4.3. There exists Θ > 0 and σ > 0, such that whenever q ∈ Ẇ 1,p ∩ Ẇ 1,p′(R3) with
q− I ∈ L3p/2p−3(R3) satisfying (3.279) and it holds

‖∇q‖L3(R3) ≤ σ, (3.290)

then (3.282), (3.283) and (3.284) hold true as well. �

Thanks to Lemma 3.2.4.3, the openness property (iv.) is proven. Proposition 3.2.4.1, and as a
corollary also Lemma 3.2.4.1, is now established. �

In order to establish the bootstrap lemma and Morrey estimates, one can now proceed completely
analogous to the case of domains of dimension 4. Indeed, the arguments for improved regularity of
the potential carry over immediately and the non-linear Hodge decomposition works equally well in
this case. We refer to our discussion for R4, the modifications should be self-explanatory.

3.2.5 Perspectives for Domains of Dimension 5 ≤m ≤ 8

Finally, let us briefly discuss the possibility to extend the results presented to domains of arbitrary
dimensions ≤ 8. There in fact is a way to generalise the construction of the gauge operator in these
cases and we refer to Section 3.3 for the details and some motivation for the necessity of such a
condition. The key is that in the cases m = 3 and m = 4, the gauge operator relies on the ellipticity
of the Riemann-Fueter operator to show existence and appropriate estimates. For 5 ≤ m ≤ 8, we may
substitute the Riemann-Fueter operator by the octonionic derivative in a suitable sense, which allows
us to conclude in much the same way. This is not very surprising, considering that the Riemann-
Fueter operator is indeed the same as the quaternionic derivative. In some sense, the main property
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we use is the existence of an orthogonal frame which happens to parallelize the sphere, a property
closely linked to the existence of normed division algebras and thus to quaternions and octonions.
In fact, considering the gauge operator we constructed, the existence of an invertible gauge operator
was realised by means of using an elliptic operator of first order whose symbol has columns forming
an orthogonal frame. Since this is only possible for the spheres in dimension 0, 1, 3, 7, we are thus
restricted by our technique to m ≤ 8. If one manages to find a sufficiently nice elliptic, first order
operator having some additional properties to ensure that it is related to the change of gauge as in
(3.165), the range of dimensions m to which our proof applies could be extended.

3.2.6 Appendix A: Riemann-Fueter and Dirac operators

In this appendix, we introduce and define the most important notions that have been used in this note.
We mostly limit ourselves to stating the definitions and main properties and refer to the literature for
further details as well as the corresponding proofs.

The reduction from a system of divergence PDE to a linear one will be greatly simplified by
introducing a family of important first order differential operators, the so-called Dirac operators. In
one of the final sections, we shall consider a variation of the definition here which retains most of the
same properties, but is slightly better behaved with respect to the change of gauge we envision.

3.2.6.1 Riemann-Fueter Operator on H

Let f : H→ H be a quaternion-valued function over H ' R4. The 4D-Riemann-Fueter operator DRF
R

acting from the right is defined by:

DRF
R f :=

(
∂x0f0 − ∂x1f1 − ∂x2f2 − ∂x3f3

)
+
(
∂x0f1 + ∂x1f0 − ∂x2f3 + ∂x3f2

)
i

+
(
∂x0f2 + ∂x1f3 + ∂x2f0 − ∂x3f1

)
j

+
(
∂x0f3 − ∂x1f2 + ∂x2f1 + ∂x3f0

)
k, (3.291)

where f = f0 + f1 · i+ f2 · j + f3 · k, or abbreviated:

DRF
R f = ∂x0f + ∂x1f · i+ ∂x2f · j + ∂x3f · k.

The conjugated differential operator D
RF
R is similarily defined:

D
RF
R f = ∂x0f − ∂x1f · i− ∂x2f · j − ∂x3f · k.

It is easy to see by a direct calculation:

D
RF
R DRF

R f = DRF
R D

RF
R f = ∆f.

This can for instance be proven by considering the symbol σDRFR
of the differential operator DRF

R :

σDRFR
(ξ) =


ξ0 −ξ1 −ξ2 −ξ3

ξ1 ξ0 ξ3 −ξ2

ξ2 −ξ3 ξ0 ξ1

ξ3 ξ2 −ξ1 ξ0

 (3.292)
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We emphasize that the connection between DRF
R and the Laplacian mirrors the same relation between

the complex derivative ∂z and the Laplacian. In particular, we have access to regularity results by
using the Laplacian as an intermediate step. In particular, deriving a fundamental solution is greatly
simplified and many results from complex analysis can be carried over to Riemann-Fueter operators,
see Gilbert-Murray [38]. As a simple example, if DRF

R f = 0, then f is automatically harmonic and
thus smooth.

Naturally, analogous operators DRF
L and D

RF
L using multiplication from the left rather than from

the right can be defined and satisfies similar properties. However, it should be noted, that the two
pairs of operators are not the same due to the non-commutativity of the quaternions. This is in stark
contrast with the situation on C, which is a commutative field, and already hints at possible difficulties
that might arise in our arguments later on.

3.2.6.2 General Dirac Operators on Clifford Algebras

Let now m ∈ N be given and we define for functions f : U ⊂ Rm+1 → C`m the Dirac operator ∂L in
the following way:

∂Lf = ∂x0f − e1 · ∂x1f − . . .− em · ∂mf. (3.293)

We refer to Gilbert-Murray [38] for details on properties of this kind of operator. Once again, we can
easily generalise this definition by changing signs to obtain ∂L or by moving the multiplications to the
other side to arrive at ∂R and ∂R respectively.

By a direct computation, we can easily deduce that:

∂L∂Lf = ∂L∂Lf = ∆f,

extending the connection between the Laplacian and complex differentiation or the Riemann-Fueter
operator to arbitrary Clifford algebras. We emphasise that the Riemann-Fueter operator is not a
special case of the Dirac operators, although they share a lot of common features, see Gilbert-Murray
[38]. In addition, observe the different conventions regarding the signs associated with the partial
derivatives. As earlier, this enables us to easily extend regularity results for the Laplacian to the
Dirac operators.

For completeness’ sake, let us introduce the following notion as in Gilbert-Murray [38]: A function
f is called Clifford-analytic, if ∂Lf = 0. By our previous elaborations, such functions are harmonic and
thus smooth. A theory of such functions in analogy to complex analysis can be built up from scratch,
see Gilbert-Murray [38] as well as the theory of Hardy spaces by using Clifford analytic functions.

3.2.6.3 Spin Groups

An important subset of C`m is the so-called Spin-group: For a fixed m ∈ N, we define:

Spin(m) = {v1 · . . . · v2k | k ∈ N, vj ∈ C`(1)
m ' Rm and ‖vj‖ = 1 for all j} ⊂ C`m

These groups are actually compact Lie groups and provide a natural two-fold covering of so(m). Their
Lie algebras are given by:

spin(m) = C`(2)
m .



219

Observe that dimR Spin(m) = 1
2m(m − 1). In a similar manner, we can introduce the compact Lie

groups Spoin(m), see Gilbert-Murray [38]:

Spoin(m) = {v1 · . . . · vk | k ∈ N, vj ∈ C`(0)
m ⊕ C`(1)

m ' Rm+1 and ‖vj‖ = 1 for all j} ⊂ C`m

This group provides another two-fold covering, this time one for so(m+ 1). As a result, it is easy to
deduce that Spoin(m) ' Spin(m + 1) due to the uniqueness of the universal covering of so(m + 1).
The Lie algebra spoin(m) is given by:

spoin(m) = C`(1)
m ⊕ C`(2)

m ' spin(m+ 1).

As a simple, explicit example, we have:

spin(4) ' spoin(3) ' span{e1, e2, e3, e1e2, e1e3, e2e3}.

In what follows, we will usually denote Spoin(m) in C`m by Spin(m+1) in order to adhere to common
terminology. We refer to Theorems 6.3, 6.8, 6.12, 7.26, 7.27 and 8.10 in Gilbert-Murray [38] for further
details regarding these groups.

3.2.6.4 Hodge Decomposition and Hodge ∗-Operator

Let us briefly recall the Hodge ∗-operator on Rm with respect to the standard basis. On Rm, we use
the standard basis b0, . . . , bm−1 and we have for the standard euclidean inner product:

〈bi, bj〉 = δij , ∀i, j ∈ {0, . . . ,m− 1}.

Denote by b∗0, . . . , b
∗
m−1 the dual basis. Then b∗i1 ∧ . . .∧b

∗
ik

for 0 ≤ k ≤ m and 0 ≤ i1 < . . . < ik ≤ m−1
form a basis for

∧
(Rm)∗. We may now define a scalar product 〈·, ·〉∧(Rm)∗ on

∧
(Rm)∗ by declaring the

collection of all b∗i1 ∧ . . .∧ b
∗
ik

to be an orthonormal basis. The scalar product can also be defined, and
actually is, independent of the choice of orthonormal basis b0, . . . , bm−1, even for arbitrary k-forms as
well as arbitrary Riemannian metrics g, by using local g-orthonormal frames. From now on, we shall
write dxj instead of b∗j , following the usual convention.

The Hodge ∗-operator is then defined for all η, ω k-forms by the following formula:

η ∧ ∗ω = 〈η, ω〉∧Rmµ,

where µ = dx0∧. . .∧dxm−1 is the standard volume form on Rm. Using this operator, we can introduce
the codifferential d∗ of a k-differential form ω on Rm by the following formula:

d∗ω = (−1)m(k−1)+1 ∗ d ∗ ω,

where d denotes the usual exterior derivative on differential forms. The Laplacian of a form ω is then
defined as follows:

−∆ω = (dd∗ + d∗d)ω.

Let us provide a computation of d∗ in the special case m = 4: Assume ω = ω0dx0 + . . .+ ω3dx3 is a
1-form. Direct considerations show that:

d∗ω = − ? d
(
ω0dx1 ∧ dx2 ∧ dx3 −+ . . .− ω3dx0 ∧ dx1 ∧ dx2

)
= − ?

(
∂x0ω

0 + ∂x1ω
1 + ∂x2ω

2 + ∂x3ω
3
)
µ = −

(
∂x0ω

0 + ∂x1ω
1 + ∂x2ω

2 + ∂x3ω
3
)

This formula will be used later. In addition, it can be easily shown that the Laplacian on 0- and
1-forms actually agrees with the usual componentwise Laplacian up to a sign.
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3.2.7 Appendix B: A Result in Integrability by Compensation

Later, we shall make repeated use of the following compensation result:

Lemma 3.2.7.1. Let da ∈ Lm,∞(Rm), db ∈ Lp,r(Rm) for 1 < p < +∞ and 1 ≤ r ≤ +∞. Then, we
have da ∧ db ∈W−1,(p,r)(Rm) together with the following estimate:

‖da ∧ db‖W−1,(p,r) ≤ C‖da‖Lm,∞‖db‖Lp,r , (3.294)

for a constant C > 0.

Proof of Lemma 3.2.7.1.
By density, we may assume a, b ∈ S(Rm), the general case follows by approximation. Let now u be a
solution of the following equation:

∆u = da ∧ db in D′(Rm). (3.295)

We will show that ∇u ∈ Lp as well as:

‖∇u‖Lp ≤ C‖da‖Lm,∞‖db‖Lp , (3.296)

the general case is a direct consequence of real interpolation (consider da fixed to obtain the required
linear operator in the interpolation argument). We distinguish two cases:

Case 1: If p > m
m−1 , we know by the general Hölder inequality:

da ∧ db ∈ Lq,r, (3.297)

where:
1

q
=

1

p
+

1

m
, r = p.

By elliptic regularity, we deduce that u ∈W 2,(q,r) and by Sobolev embeddings:

∇u ∈ Lp,p = Lp,

together with the estimate:

‖∇u‖Lp . ‖u‖W 2,(q,r) . ‖∆u‖Lq,r . ‖da‖Lm,∞‖db‖Lp .

Case 2: If p < m
m−1 , we take b̄ ∈ R such that b − b̄ ∈ Lp∗,p. Here, we denote by p∗ the parameter

determined by:
1

p∗
=

1

p
− 1

m
.

Observe that da ∧ db = d
(
da ∧ (b− b̄)

)
. Hölder’s inequality immediately shows:

da ∧ (b− b̄) ∈ Lq,p, (3.298)

where 1/q = 1/p∗ + 1/m = 1/p. Thus q = p. We therefore conclude:

‖da ∧ db‖W−1,p . ‖da ∧ (b− b̄)‖Lp . ‖da‖Lm,∞‖b− b̄‖Lp∗,p . ‖da‖Lm,∞‖db‖Lp . (3.299)

Thus, we may deduce:
‖∇u‖Lp . ‖da‖Lm,∞‖db‖Lp . (3.300)

This finishes our proof. We emphasize that, in particular, the ”critical” case p = m
m−1 is obtained by

interpolation. �
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3.3 Various Further Directions

In the current section, we shall explore extensions of the results in [26]. In particular, we address the
approach required to treat general codomains by means of introducing suitable matrix Lie groups as
well as how to generalise the previous results to domains of dimension ≤ 8 and why this is optimal for
the technique we use. These are computations not contained in previous submissions or publications.

3.3.1 The Case of Domains of Dimension 4 - General Codomains

Before treating the general case of domains with dimension at most 8, let us provide the discussion
in the exemplary case of domains of dimension 4. The idea behind this is that the main features
associated with the general case become apparent in this special case.

After having dealt with the case of codomains of dimension 2 in [26], we would like to expand the
ideas used to general codomains. This is the goal of the current subsection. An important step in the
proof will be the construction of an appropriate compact Lie group for the change of gauge. Notice
that for C`3, there do no longer exist immediate candidates like the (hyper-)unitary matrices used in
Da Lio-Rivière [23].

First, let us state again the PDE of interest to our discussion:

∂Lf = Ω+ · f + Ω− · f̂, (3.301)

where f ∈ L
4
3 . Ω± are anti-symmetric and assume values in spanR{1, e1, e2, e3}. This is in complete

analogy to Da Lio-Rivière [23]. If we proceed as in Da Lio-Rivière [23], we can basically eliminate Ω+

by a change of gauge using orthogonal matrices. The only point that really differs is the application
of Wente’s inequality which can be replaced by Lemma 3.2.7.1 using the higher intergrability assump-
tion ∇S ∈ L(4,2) which also shows Q ∈ L(4,2) and therefore Ω+ ∈ L(4,2). By a careful examination
of the proof of the change of gauge theorem, we can see that L(4,2)-integrability can be established.
Thus, Ω+ can be dealt with in analogy to Da Lio-Rivière [23] by making use of the stricter regularity
assumptions. One needs to have in mind, however, that dealing with Ω+ introduces

Therefore, the only part of the equation that is relevant to our considerations is the following: We
consider the equation:

∂LF = Γ0 · F, (3.302)

where Γ
T
0 + Γ0 = 0 is as in the paper Da Lio-Rivière [23] a matrix-valued Clifford-antihermitian

function with ‖Γ0‖L(4,2) < ε and f ∈ L
4
3 (R4, C`2k4 ). In fact, Γ0 has the following structure:

Γ0 :=

(
0 −Γe4

Γe4 0

)
(3.303)

Γ is anti-symmetric and given analogous to Da Lio-Rivière [23]. In particular, Γ0 assumes values in:

E4 := span
{
e4, e1e4, e2e4, e3e4

}
For later, we also define:

Ec := span
{

1, e1, e2, e3, e1e2, e1e3, e2e3, e1e2e3, e1e2e4, e1e2e4, e2e3e4, e1e2e3e4

}
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In fact, we shall see that we want Γ0 to have an even more specific form to ensure the increased
regularity argument from the case of codomains of dimension 2 carries over. This means, that our
result only applies to S, such that for example Q = eU , if we use the notation as in the previous
subsections to denote the change of basis as well as the formulas found in Da Lio-Rivière [23].

The main idea is now to proceed as in Da Lio-Rivière [23] and our previous considerations: Let P be
a map defined on Rn assuming values in an appropriate compact Lie group G to be specified in the
next subsection. For the moment, we only know it is a compact matrix subgroup of C`2k×2k

4 with Lie
algebra g. Then we define the following vector-valued function:

G :=


PF
−Pe1F
−Pe2F
−Pe3F

 (3.304)

It then holds:

divG = ∂0

(
PF
)

+ ∂1

(
− Pe1F

)
+ ∂2

(
− Pe2F

)
+ ∂3

(
− Pe3F

)
= ∂RP · F + P · ∂LF
= ∂RP · F + PΓ0 · F

= P
(
P−1∂RP + Γ0

)
F (3.305)

We now try to find a suitable P assuming values in a compact Lie group, such that:

P−1∂RP + Γ0 ∈ L(4,1) (3.306)

In this case, if we have appropriate L(4,1)-estimates, we could argue completely analogous to [26] in
the case of codomains of dimension 2 to show that if ε > 0 was small enough, then G = 0 and thus
F = 0. This is clear, as all ideas used in the non-linear Hodge decomposition as well as the estimates
following it are not dependent on the dimension of the codomain in any meaningful way.

To arrive at the required improvement in regularity, let us introduce the following gauge operator:

N : Ẇ 1,p ∩ Ẇ 1,p′(R4, G)→W−1,p ∩W−1,p′(R4,Πc(g))× Lp ∩ Lp′(R4,Π4(g)) (3.307)

where we impose implicitly some integrability condition on P − Id as in the case of codomains of
dimension 2. The formula for N is the following:

N(P ) :=
(

Πc

( 3∑
j=0

∂j(P
−1∂jP )

)
,ΠSym ◦

(
Π4 + P

)(
P−1∂RP

))
(3.308)

where Π4 denotes the componentwise (i.e. for each matrix entry individually) projection to the
subspace E4 and Πc denotes the componentwise projection onto Ec. By abuse of notation, we shall
also refer to Π4(g) as E4 and to Πc(g) as Ec. ΠSym refers to the projection onto the symmetric part
of the matrices. We shall further explain the operator as well as give a definition of N and provide
some justification for the subspaces used after the next subsection.
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3.3.1.1 Lie Group for a Change of Gauge

The goal of the current subsection is to find a compact Lie group suited for a change of gauge.
Ideally, this group should have a Lie algebra containing Γ0. Since Γ0 is Clifford-antihermitian and
this condition is quite similar to the defining property of the Lie algebra of the unitary groups, the
following definition is intuitively the right way to proceed:

Ũ(n, k) :=
{
P ∈ C`k×kn

∣∣∣ PP T = Id
}
, (3.309)

where P is the componentwise Clifford conjugation. In addition, we define:

U(n, k) :=
{
P ∈ C`k×kn

∣∣∣ PP T = P
T
P = Id

}
(3.310)

We have the following observation:

Lemma 3.3.1.1. The set Ũ(n, k) is a smooth manifold.

It is improbable that the set Ũ(n, k) is actually a Lie group, as P
T
P cannot be determined from

PP
T

= Id in general due to the lack of commutativity of the Clifford multiplication. This means that
it is unclear, whether Ũ(n, k) is closed under inverses, whereas closedness under the natural matrix
product is straighforward. On the other hand, it is easy to see that U(n, k) is a group, but the same
result as in Lemma 3.3.1.1 is not as easy to obtain a-priori.

Proof. It suffices to show that {Id} is a regular value of the map:

ϕ : C`k×kn →
{
A ∈ C`k×kn

∣∣ AT = A
}
, ϕ(P ) := PP

T
(3.311)

Let thus P ∈ ϕ−1
(
{Id}

)
. Computing the differential leads us to:

dϕ(P )H = HP
T

+ PH
T
, ∀H ∈ C`k×kn (3.312)

Let us choose H = 1
2H̃P , where H̃

T
= H̃ is arbitrary. Then we have:

dϕ(P )H = HP
T

+ PH
T

=
1

2
H̃PP

T
+

1

2
PP

T
H̃
T

=
1

2
H̃ +

1

2
H̃
T

= H, (3.313)

which shows surjectivity of the differential. Therefore, as P was arbitrary and Ũ(n.k) = ϕ−1({Id}),
Ũ(n, k) is a smooth manifold.

We define u(n, k) := {H ∈ C`k×kn |HT
+ H = 0}. This is the kind of Lie algebra we want our Lie

group to possess. The key point to show lies in the following:
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Lemma 3.3.1.2. The matrix exponential defined as usual leads to a map:

exp : u(n, k)→ U(n, k) ⊂ Ũ(n, k), (3.314)

which is a diffeomorphism on a neighbourhood of 0 and thus maps an open neighbourhood of 0 bijectively
to an open neighbourhood of Id in Ũ(n, k). The image of the open neighbourhood is then also a
submanifold.

Proof. It is easy to see:

exp(H)
T

=
∞∑
l=0

1

l!
H l

T

=
∞∑
l=0

1

l!

(
H
T )l

= exp
(
H
T )

= exp(−H) = exp(H)−1, (3.315)

where in the last line, we actually mean the inverse as matrices. Indeed, it can be directly checked:

exp(H) exp(−H) = exp(−H) exp(H) = Id, (3.316)

and therefore showing that the map in Lemma 3.3.1.2 is well-defined. Smoothness of the map is
immediate, as the matrix product is bilinear and due to the manifold property in Lemma 3.3.1.1. The
local diffeomorphism statement follows, as:

d exp(0)H = H, ∀H ∈ u(n, k), (3.317)

which obviously is invertible. Note that in Lemma 3.3.1.1, we actually implicitely showed that the
tangent space at the identity of Ũ(n, k) is u(n, k), which we use here to conclude bijectivity of the
differential. So the desired result is proven.

Let us now denote by V the open image in Ũ(n, k) of some open neighbourhood of 0 under exp,
on which exp defines a diffeomorphism. Without any loss of generality, we may assume that V is the
image of a symmetric open neighbourhood of 0, i.e. a neighbourhood containing H if and only if it
contains −H. This property is related to V being closed under inverses which is crucial for our later
considerations. We have the following:

Lemma 3.3.1.3. The set:

H :=
∞⋃
l=1

V l (3.318)

is an open subset of Ũ(n, k) and an open subset of U(n, k), as well. Moreover, H is even a Lie group.

Proof. This result is immediate, as any P ∈ V is invertible and thus induces a homeomorphism when
multiplied from the left, therefore showing that V 2 =

⋃
P∈V P · V is open as a union of open subsets

(the product of sets is naturally defined in the usual manner evoking the product structure provided for
elements). The openness of V l follows by induction and the openness of the union by general properties
of a topology. The openness in U(n, k) is clear due to the definition of the subspace-topology and the
group property is immediate, if we assume from the beginning that V is the image of a symmetric
neighbourhood of 0 under exp to ensure it is closed under inverses.
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We now want to show that H actually agrees with the connected component U(n, k)0 of the iden-
tity in U(n, k), which would show that the connected component is a Lie group with u(n, k) as its Lie
algebra. This will be the Lie group we shall be working with. We highlight that one can easily show
that Ũ(n, k) is compact by using the definition as well as general properties of the Clifford product, in
particular its connection to the norm. This also enables one to show that U(n, k) is a Lie group as well.

To arrive at this conclusion, let us observe the following: H ⊂ U(n, k)0 is an open subset which is also
a subgroup. This immediately implies that H is also relatively closed, as H splits U(n, k)0 into disjoint
equivalence classes in the usual way, each of which is homeomorphic to H and thus open. Therefore,
H is clopen in U(n, k)0, which by connectedness shows H = U(n, k)0, since Id ∈ H excludes the
scenario H = ∅. This proves our desired assertion. Thus we have shown, as H is a Lie group and
U(n, k) is compact:

Lemma 3.3.1.4. The connected component of the identity matrix U(n, k)0 in U(n, k) is a compact
Lie group with Lie algebra u(n, k).

3.3.1.2 Gauge Operator and its Differential

In the definition of the operator N , we shall from now on use G = U(4, 2k)0 and g = u(4, 2k). The
precise definition of the operator is as follows:

N(P ) :=
(

Πc

( 3∑
j=0

∂j(P
−1∂jP )

)
,ΠSym ◦

(
Π4 + P

)(
P−1∂RP

))
(3.319)

Here, P is defined as in the case of 2-dimensional codomains before and ΠSym denotes the projection
onto the symmetric part (i.e. the part with HT = H), more precisely:

ΠSym(H) =
H +HT

2
, ∀H ∈ C`2k×2k

4 (3.320)

The reason for the inclusion of ΠSym lies in the need to ensure that the second component of N maps
to the image of g under Π4 to be able to require:

N(P ) = (0,Γ0). (3.321)

To do this, we observe that projecting H ∈ g to E4 componentwise, the resulting matrix is symmetric
due to:

ej = −ej , ejek = −ejek, (3.322)

for all j 6= k ∈ {1, 2, 3, 4}. So symmetry of this projection follows from H
T

= −H. We shall see
that the inclusion of ΠSym will not obstruct our arguments in any way and we may argue completely
analogous to the case of 2D-codomains. In addition, the gauge operator generalises to the case of
domains of dimension ≤ 8 in the same way, as we shall see later on.

Let now P0 ∈ Ẇ 1,p ∩ Ẇ 1,p′(R4, G) with P0 − Id ∈ Lp
′∗

(R4) be given and we compute the differential
of N at P0 in the following way (just as in Da Lio-Rivière [23]), using U ∈ Ẇ 1,p ∩ Ẇ 1,p′ ∩Lp′∗(R4, g),
if we consider N = (N1, N2) in components:

dN1(P0)U =
d

dt
N1

(
P0 exp(tU)

)
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= Πc

(
∆U +

3∑
j=0

(
− UP−1

0 ∂jP0 + P−1
0 ∂jP0U

))
dN2(P0)U =

d

dt
N2

(
P0 exp(tU)

)
= ΠSym ◦

(
Π4 + P

)(
∂RU −

3∑
j=0

(−1)δ0j
(
− UP−1

0 ∂jP0 + P−1
0 ∂jP0U

))
(3.323)

If we choose P0 = Id, the expression simplifies to:

dN(Id)U =
(

Πc

(
∆U

)
,ΠSym ◦

(
Π4 + P

)(
∂RU

))
(3.324)

We shall use the notation LP (U) := dN(P )U later. We show the following:

Lemma 3.3.1.5. The differential dN(Id) defines an elliptic operator.

Proof. Let us split U ∈ Ẇ 1,p ∩ Ẇ 1,p′ ∩ Lp′∗(R4, g) into Uc = Πc(U), U4 = Π4(U). It is clear that:

U = Uc + U4

Observe:

dN(Id)U =
(

Πc

(
∆U

)
,ΠSym ◦

(
Π4 + P

)(
∂RU

))
=
(

∆Uc,
(
Π4 + P

)(
∂RU4

)
+ ΠSym ◦

(
Π4 + P

)(
∂RUc

))
(3.325)

Notice that UT4 = U4 by direct computation, so the projection to the symmetric part can be omitted
for this summand. It is obvious that dN1(Id) is elliptic, since the Laplacian is elliptic. Moreover, this
means that we can restrict our attention to the part involving U4 of dN2(Id), as this will be the only
part that impacts the invertibility of the symbol of dN(Id). However, as before, it can be easily shown
that

(
Π4 + P

)
◦ ∂R actually corresponds to the Riemann-Fueter operator acting from the right, thus

it must also be elliptic. This proves the claim.

We emphasise that we could even omit the contribution of Uc in dN2(Id) simply due to the fact that
at worst, the projection of U to the directions in the Clifford algebra which include e4 and have length
smaller or equal to 4 could contribute. However, for lengths 3 and 4, the associated projections are
skew-symmetric and thus get mapped to 0 under ΠSym. On the other hand, the elements of length 1
and 2 are precisely the ones contained in E4. So U4 is the sole contributor to dN2(Id).

A close examination of the proof presented for codomains of dimension 2 as provided in [26] shows
that the existence of the change of gauge is now immediate from the very same proof as before in the
case of codomains of dimension 2. So there exists P , such that:

N(P ) = (0,Γ0), (3.326)

where P satisfies the same estimates as in the case of codomains of dimension 2. We shall present
some of the details in the next subsection, in order to convince the reader that the changes are not
affecting the argument in a meaningful way:
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3.3.1.3 The Gauge Lemma for the compact Matrix Lie group

The main goal of this section is to prove the following assertion:

Theorem 3.3.1.1. There exist constants C, ε > 0, such that for any ω ∈ W−1,4(R4, Ec) and g ∈
L4(R4, E4) satisfying:

‖ω‖W−1,4 , ‖g‖L4 < ε,

there exists a P ∈ Ẇ 1,4(R4, G) such that:

N(P ) = (ω, g), (3.327)

and the following estimate holds true:

‖∇P‖L4 ≤ C
(
‖ω‖W−1,4 + ‖g‖L4

)
(3.328)

In order to prove Theorem 3.3.1.1, we shall need to introduce some notations and establish some inter-
mediate results completely the same way a for codomains of dimension 2: By approximation, it suffices
to prove Theorem 3.3.1.1 assuming that ω and g are more regular, see also the argument in Da Lio-
Rivière [23]. More precisely, we first prove Theorem 3.3.1.1 in the case ω ∈ (W−1,p ∩W−1,p′)(R4, Ec)
and g ∈ (Lp ∩ Lp′)(R4, E4) for some fixed 4 < p and its Hölder-dual p′ = p

p−1 .

For ε > 0, we now introduce:

C`ε :=


(ω, g) ∈ (W−1,p ∩W−1,p′)(R4, Ec)× (Lp ∩ Lp′)(R4, E4)

‖ω‖W−1,4 + ‖g‖L4 < ε

 (3.329)

For constants ε,Θ > 0, let Vε,Θ ⊆ C`ε denote the set of pairs (ω, g) for which we have a decomposition
as in (3.327) satisfying the following estimates:

‖∇P‖L4 ≤ Θ(‖ω‖W−1,4 + ‖g‖L4) (3.330)

‖∇P‖p ≤ Θ(‖ω‖W−1,p + ‖g‖Lp) , (3.331)

‖∇P‖p′ ≤ Θ(‖ω‖W−1,p′ + ‖g‖Lp′ ) . (3.332)

That is:

Vε,Θ :=

(ω, g) ∈ C`ε :

there exists P ∈ (Ẇ 1,p ∩ Ẇ 1,p′)(R4, G), so that

P − Id ∈ L4p/3p−4(R4, G)

and (3.327), (3.330), (3.331), (3.332) hold.


The strategy to prove Theorem 3.3.1.1 follows the one introduced by K. Uhlenbeck in order to construct
Coulomb gauges in critical dimensions. In fact, Theorem 3.3.1.1 is going to be a consequence of the
following proposition:

Proposition 3.3.1.1. There exist Θ > 0 and ε > 0, such that Vε,Θ = C`ε.

Proof of Proposition 3.3.1.1. Proposition 3.3.1.1 will follow, once we have shown the following
four properties:
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(i.) C`ε is connected.

(ii.) Vε,Θ is nonempty.

(iii.) For any ε,Θ > 0, Vε,Θ is a relatively closed subset of C`ε.

(iv.) There exist Θ > 0 and ε > 0, such that Vε,Θ is a relatively open subset of C`ε.

Property (i.) is obvious, since C`ε is obviously starshaped with center 0, rendering it even path-
connected. Property (ii.) is also clear, because (0, 0) ∈ Vε,Θ can be checked by using P = Id.
Consequently, it remains to verify the latter two:

The closedness property (iii.) follows almost verbatim as in the case of physical Dirac operators in the
previous section: Assume that (ωn, gn), (ω, g) ∈ Vε,Θ and moreover, (ωn, gn) → (ω, g) and let Pn be
as in the definition of Vε,Θ. Observe that ∇Pn is bounded in Lp and Lp

′
. Therefore, we can extract

weakly converging subsequences with limit P̃ . Furthermore, we may extract another subsequence of
Pn − Id converging locally in Lq for some q < 4p

3p−4 we may choose, due to the Ẇ 1,p′-boundedness

of Pn. The limit P − Id satisfies ∇P = P̃ and P assumes values in G a.e.. This can be seen by
extracting another subsequence of Pn − Id converging a.e. pointwise and using the closedness of G.
Due to the weak lower semi-continuity of the norms, we immediately obtain that (3.330), (3.331) and
(3.332) hold. Finally, observe that, in the distributional sense, we have the convergence:

Πc

(
3∑
i=0

(∂xi((Pn)−1∂xi(Pn))

)
→ Πc

(
3∑
i=0

(∂xi((P )−1∂xi(P ))

)
,

as well as
ΠSym ◦ (Π4 + P)(D(Pn))→ ΠSym ◦ (Π4 + P)(D(P )).

This shows N(P ) = (ω, g) and therefore relative closedness.

Lastly, we show the openness property (iv). For this let ω0, g0 be arbitrary in Vε,Θ, for some ε,Θ > 0
chosen below and let P0 ∈ Ẇ 1,p ∩ Ẇ 1,p′(R4, g), P0 − Id ∈ L4p/3p−4(R4), such that the decomposition
(3.327) as well as the estimates (3.330), (3.331) and (3.332) are satisfied for ω0 and g0. The argument
now relies on the reduction to a special subclass of perturbations provided by the exponential:

Let us consider perturbations of P0 of the form P = P0 exp(U) where U ∈ Ẇ 1,p∩Ẇ 1,p′∩L4p/3p−4(R4, g).
Observe that the exponent p > 4 has been chosen in particular to ensure U ∈ C0 ∩ L∞(R4) and

P0 exp(U)− Id ∈ L
4p

3p−4 . Indeed, as argued in Da Lio-Rivière [23], for a Schwartz function U , one has

U(x) = C

∫
R4

∇x|x− y|−2 · ∇U(y) dy ⇒ ‖U‖∞ . ‖∇x|x− y|−2‖L4/3,∞ ‖∇U‖L4,1

The generalized Hölder-Lorentz inequality yields moreover:

‖∇U‖L4,1 ≤ C ‖∇U‖αLp ‖∇U‖1−αLp′
.

where 4−1 = αp−1 + (1 − α)p′−1. The statement U ∈ L∞, and thus continuity by approximation,

follows due to the density of Schwartz functions in Ẇ 1,p ∩ Ẇ 1,p′ ∩ L
4p

3p−4 . It can be easily seen, that
the argument carries over to domains of arbitrary dimension m, if m < p, as the density result and
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the interpolation identity do not critically depend on m = 4. This is in preparation for extensions to
domains of arbitrary dimension ≤ 8 later.

We now aim to prove the following:

Lemma 3.3.1.6. For any Θ > 0 there exists ε > 0 so that the following holds for any ω0, g0 and
P0 as above: For any ω ∈ W−1,p ∩W−1,p′(R4, Ec) and g ∈ Lp ∩ Lp′(R4, E4), there exists a unique
U ∈ Ẇ 1,p ∩ Ẇ 1,p′ ∩ L4p/3p−4(R4, g), such that

(ω, g) = LP0(U)

and for some constant C = C(ω0, g0,Θ) > 0, it holds

‖∇U‖Lp(R4) + ‖∇U‖Lp′ (R4) ≤ C
(
‖ω‖W−1,p(R4) + ‖ω‖W−1,p′ (R4) (3.333)

+‖g‖Lp(R4) + ‖g‖Lp′ (R4)

)
.

Proof of Lemma 3.3.1.6.
Claim 1. LId(U) is invertible as a map between the space of functions U ∈ Ẇ 1,p′ ∩ Lp′∗(R4, g) and
the space W−1,p′(R4, Ec)× Lp

′
(R4, E4)

Proof of the Claim 1. We have seen that LId(U) is elliptic and therefore a Caldéron-Zygmund
operator. More precisely, let Γ4 denote the fundamental solution of ∆. Using the decomposition
U = Uc + U4 as introduced before, we have:

∆Uc = ω =⇒ Uc = Γ4 ∗ ω.

Similarily, we write U4 = U0
4 e4 +U1

4 e1e4 +U2
4 e2e4 +U3

4 e3e4 and up to replacing e4, e1e4, e2e4 and e3e4

by the quaternionic basis 1, i, j and k respectively, we see:

(Π4 + P)[∂RU4] = g ⇐⇒ DRF
R U4 = g,

where DRF
R = ∂0 +∂1 · i+∂2 · j+∂3 ·k is the quaternionic Riemann-Fueter operator in 4D acting from

the right. We highlight that there is no need to include any contributions of Uc here, as ΠSym cancels
them out. A simple calculation shows:

D
RF
R DRF

R = ∆,

where D
RF
R = ∂0 − ∂1 · i− ∂2 · j − ∂3 · k is the conjugate operator. Therefore, we have:

∆U4 = D
RF
R g.

As a result, we deduce:

U4 = Γ4 ∗D
RF
R g = D

RF
R Γ4 ∗ g.

Using Caldéron-Zygmund estimates for the Laplacian, we obtain:

‖∇Uc‖Lp′ . ‖ω‖W−1,p′

‖∇U4‖Lp′ . ‖g‖Lp′ .

Consequently, given ω ∈W−1,p′(R4, E6), g ∈ Lp′(R4, E4), there exists a unique U ∈ Ẇ 1,p′(R4, g) such
that:

LId(U) = (ω, g) .



230

The elliptic estimates above yield:

‖∇U‖Lp′ . ‖ω‖W−1,p′ + ‖g‖Lp′ .

The claim is therefore proved. �

Estimate for LP0(U)− LId(U)
It suffices to estimate using Hölder’s inequality, boundedness of G due to compactness, the Sobolev-
embeddings and the L4-estimate for ∇P :

‖P−1
0 (∂xiP0)U − UP−1

0 ∂xiP0‖Lp′ . ‖P
−1
0 ‖L∞‖∇P0‖L4‖U‖L4p/3p−4

. ‖∇P0‖L4‖∇U‖Lp′

. Θε · ‖∇U‖Lp′ .

Using this inequality, we conclude:

‖∂xi
(
P−1

0 (∂xiP0)U − UP−1
0 ∂xiP0

)
‖W−1,p′ ≤ ‖P−1

0 (∂xiP0)U − UP−1
0 ∂xiP0‖Lp′

. Θε · ‖∇U‖Lp′ .

Choosing ε > 0 small enough (depending on Θ), we obtain that LP0(u) is an invertible map from
Ẇ 1,p′ ∩ Lp′∗(R4, g) to W−1,p′(R4, Ec)× Lp

′
(R4, E4) by general results from Functional Analysis.

Claim 2. Assuming now ω ∈W−1,p ∩W−1,p′(R4, Ec), g ∈ Lp ∩Lp
′
(R4, E4), we show that the unique

solution U of (ω, g) = LP0(U) lies in Ẇ 1,p(R4).
Proof of Claim 2: Firstly, due to ∇U ∈ Lp′ , we know that we may choose U by Sobolev-embeddings
and the density of Schwartz functions in the following way:

U ∈ L4p/3p−4.

As previously, in order to bootstrap, it suffices to deduce improved integrability of P−1
0 ∂xlP0U , as this

implies improved integrability of ∇U . The same estimates immediately apply to UP−1
0 ∂xlP0. By a

previous comment, it suffices to show that ∇U ∈ Lq for some q > 4, because then, by interpolation,
∇U ∈ Lp′ ∩ Lq and we could thus conclude that U ∈ L∞ leading to P−1

0 ∂xlP0U ∈ Lp, which immedi-
ately shows ∇U ∈ Lp. Therefore, Claim 2 is proven in the process.

We argue by a bootstrap argument: Assume that U ∈ Lr for some 4 > r ≥ 4p
3p−4 = p′∗. In this case,

Hölder’s inequality implies:
‖P−1

0 ∂xlP0U‖Lt . ‖∇P0‖Lp‖U‖Lr ,

for 1
t = 1

p + 1
r ≥

1
p + 1

4 . Observe that 4
3 ≤ t < 4 < p. We conclude due to elliptic estimates as in Claim

1 and the identity LP0(U) = (ω, g):
∇U ∈ Lt.

This implies by Sobolev-embeddings that U ∈ L4t/4−t. Thus, if we define r′ = 4t
4−t , we observe:

1

r′
=

1

t
− 1

4
=

1

r
+

1

p
− 1

4
,

which implies that the reciprocal values are decreasing by a constant amount due to p > 4 with each
iterating step. Therefore, after finitely many steps, we have:

r′ > 4.
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This implies, by the previously outlined argument, that ∇U ∈ Lp(R4, g), finishing the proof of Claim
2.
Proof of proposition 3.3.1.1 continued.
For ε = ε(Θ) > 0 chosen small enough and for any (ω0, g0) ∈ Vε,Θ, the local inversion theorem
applied to N implies the existence of some δ > 0 (that might depend on (ω0, g0)) such that, for every
(ω, g) ∈ C`ε with

‖ω − ω0‖W−1,p(R4) + ‖ω − ω0‖W−1,p′ (R4) < δ (3.334)

‖g − g0‖Lp(R4) + ‖g − g0‖Lp′ (R4) < δ, (3.335)

we surely find P = P0e
U ∈ Ẇ 1,p ∩ Ẇ 1,p′(R4), so that P − Id ∈ L4p/3p−4(R4) and (3.327) is satisfied.

It remains to prove (3.330), (3.331) and (3.332). This will be a consequence of the following Lemma:

Lemma 3.3.1.7. There exists a Θ > 0 and a σ > 0, such that, whenever P ∈ Ẇ 1,p ∩ Ẇ 1,p′(R4) with
P − Id ∈ L4p/3p−4(R4) satisfying (3.327) is given, and it holds

‖∇P‖L4(R4) ≤ σ, (3.336)

then (3.330), (3.331) and (3.332) hold true as well.

Proof of Lemma 3.3.1.7.
Let (ω, g) ∈ C`ε satisfy (3.334) and (3.335) and let P = P0e

U ∈ Ẇ 1,p ∩ Ẇ 1,p′(R4), such that P − Id ∈
L4p/3p−4(R4) and (3.327) is satisfied. We first consider the following Hodge decomposition of P−1dP :

P−1dP = dΓP + d∗YP (3.337)

where YP ∈ Ω2(R4), YP =
∑

0≤i<j≤3 Y
ij
P dxi ∧ dxj is a differential 2-form. We denote d∗YP =∑3

i=0 y
i
Pdxi

26 for brevity. We may choose ΓP and YP as follows:

ΓP = ∆−1d∗(P−1dP ) (3.338)

YP = ∆−1d(P−1dP ) (3.339)

In particular, we then have dYP = 0 and d∗ΓP = 0.

Due to (3.338), it follows that:

Πc(−∆ΓP ) = Πc(d
∗(P−1dP )) = ω. (3.340)

26We recall that d∗ = (−1)n(k−1)+1 ∗ d ∗, ∗ is the Hodge operator. If ξ =
∑

0≤i<j≤3 ξijdxi ∧ dxj then d∗ξ =
−(α0dx0 + α1dx1 + α2dx2 + α3dx3) where:

α0 = ∂x1ξ01 + ∂x2ξ02 + ∂x3ξ03

α1 = −∂x0ξ01 + ∂x2ξ12 + ∂x3ξ13

α2 = −∂x0ξ02 − ∂x1ξ12 + ∂x3ξ23

α3 = −∂x2ξ23 − ∂x1ξ13 − ∂x0ξ03
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Therefore, for every r ∈ [p′, p] we have:

‖Πc(∇ΓP )‖Lr . ‖ω‖W−1,r (3.341)

From (3.337), it follows that

−∆YP = d(P−1dP ) = dP−1 ∧ dP. (3.342)

From (3.342), it follows that ∇Yq ∈ Lr(R4) and due to the compensation result in Lemma 3.2.7.1:

‖∇YP ‖Lr . ‖dP‖L4(R4)‖dP‖Lr(R4) ≤ σ‖dP‖Lr(R4). (3.343)

From (3.337) it follows now:

g = (Π4 + P)D(P ) = (Π4 + P)(DΓP )

+ (Π4 + P)(y0
P −

3∑
i=1

yiP ei). (3.344)

Therefore:

(Π4 + P)(DΓP ) = g − (Π4 + P)(y0
P −

3∑
i=1

yiP ei) (3.345)

Observe that dΓP ∈ g, since P−1dP ∈ g. Therefore:

dΓP = (Π4 + Πc)(dΓP ).

Hence:

(Π4 + P)(DΠ4(dΓP )) = dg − d(Π4 + P)(y0
P −

3∑
i=1

yiP ei) (3.346)

− (Π4 + P)(DΠ6(dΓP )) (3.347)

Since the operator (Π4 + P) ◦D is invertible, we find:

Π4(dΓP ) = ((Π4 + P) ◦D)−1dg (3.348)

+ ((Π4 + P) ◦D)−1d(Π4 + P)(y0
P −

3∑
i=1

yiP ei) (3.349)

+ ((Π4 + P) ◦D)−1[(Π4 + P)(DΠ6(dΓP ))].

By using (3.348), we get:

‖Π4(dΓP )‖Lr . ‖g‖Lr + ‖d∗YP ‖Lr + ‖ω‖W−1,r

. ‖g‖Lr + σ‖dP‖Lr + ‖ω‖W−1,r (3.350)

Combining (3.337), (3.341) and (3.350), we get the following estimate:

‖dP‖Lr . ‖dΓP ‖Lr + ‖d∗YP ‖Lr (3.351)
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. ‖Π4(dΓP )‖Lr + ‖Π6(dΓP )‖Lr + ‖d∗YP ‖Lr
≤ C(‖g‖Lr + σ‖dP‖Lr + 2‖ω‖W−1,r + σ‖dP‖Lr). (3.352)

Choosing Θ = C
1−2Cσ , we finally arrive at the inequality:

‖dP‖Lr ≤ Θ(‖ω‖W−1,r + ‖g‖Lr).

This concludes the proof of Lemma 3.3.1.7. �

End of the proof of Proposition 3.3.1.1
Thanks to Lemma 3.3.1.7, the openness property (iv.) is proven. Proposition 3.3.1.1 is thus estab-
lished.

3.3.1.4 Improved Regularity

The argument for improved integrability in the case of codomains of dimension 2 relies on the fact,
that ∂Lα appears and is in L(4,2) with an appropriate smallness condition satisfied. If we assume that:

Γ0 = ∂LW,

with an estimate of the L(4,2)-norm (which is for example the case if Q = eW̃ for some antisymmetric
W̃ ), we could reiterate the very same argument and arrive at the same conclusion. It is important
that we assume that W is symmetric and takes values in R · e4, to ensure that ∂LW assumes values
in g. The argument for the bootstrap test carries over as well.

Indeed, let us assume that ‖∇W‖L(4,2) < ε and ∂LW = Γ0. If ε is sufficiently small, we can solve:

N(P ) = (0,−∂LW ),

by using Theorem 3.3.1.1. We have the following Lemma:

Lemma 3.3.1.8. Let U = U4 + Uc be a splitting as previously and assume that:

LId(U) = (∆Uc,ΠSym ◦ (Π4 + P)(DU4)) = (0,−∂LW ),

then:
Πei+1ei−1e4(DU4) = 0, ∀i = 1, 2, 3

The proof is an exact copy of the argument in the case of codomains of dimension 2. This result
in turn allows us to establish the following:

Lemma 3.3.1.9. Under the assumptions in this section, we have:

Πc(P
−1∂RP ),Πei+1ei−1e4(P−1∂RP ) ∈ L(4,1).

There exist corresponding estimates for the L(4,1)-norms depending on the L(4,2)-norms of ∇P and
∇W .

This follows again by the very same argument as in the case of codomains of dimension 2, see
[26]. The result also generalises to situations where we have a rotation-condition analogous to the
codimension 2 case, see [26], as the argument still goes through without issues, but the naturality
of this kind of condition is less apparent than the one presented. Therefore, we can conclude the
bootstrap lemma as in the previous subsection.
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3.3.1.5 Morrey-type Estimates

In this subsection, we work under the assumption that Proposition III.4 from Da Lio-Rivière [23]
extends to our current scenario. Therefore, we merely have to prove that an appropriate decomposition
exists and that Morrey-type estimates can be established. For all further steps, we refer to Da Lio-
Rivière [23]. So the general regularity result follows, as soon as we have the desired Morrey estimates:

Non-linear Hodge Decomposition First, we will show how to obtain an appropriate version of the
non-linear Hodge decomposition on balls Br(x). Let for thisG be an arbitrary 1-form inW 1, n

n−1 (Br(0))
as obtained in the proof. Then, by classical Hodge decomposition, there exist a function A on Br(0)
vanishing along the boundary and a 2-form Ã, such that:

dA+ d∗Ã = G (3.353)

Next, we consider the Hodge decomposition in the same manner of P−1d∗A, again obtaining zero
boundary conditions for the function B̃:

dB̃ + d∗B = P−1d∗Ã (3.354)

Thus, we have:

G = dA+ d∗A = dA+ Pd∗B + PdB̃ ⇒ G− dA− Pd∗B = PdB̃ (3.355)

We observe that on Br(0):

∆B̃ = d∗dB = d∗
(
P−1d∗Ã

)
= ± ∗

(
dP−1 ∧ d(∗Ã)

)
(3.356)

Due to the zero boundary condition, we can therefore deduce by similar arguments as in our compen-
sation result in Lemma 3.2.7.1:

‖∇B‖
L

n
n−1 (Br(x))

. ‖dP‖Ln(Br(x))‖d∗Ã‖L n
n−1 (Br(x))

. ε‖G‖
L

n
n−1 (Br(x))

(3.357)

So, if ε > 0 is sufficiently small, we can argue by iteration that there exists a solution to the non-linear
Hodge decomposition as in the case of codomains of dimension 2, such that A has boundary value 0.

Morrey-Estimates To deduce local regularity, we merely have to establish slightly improved regu-
larity and hence Morrey-estimates as in Da Lio-Rivière [23], the full regularity as in Theorem 3.2.1.2
follows by Morrey-bootstrapping going over to possibly smaller balls to obtain uniform powers in the
Morrey estimates. Therefore, let us point out the differences to Da Lio-Rivière [23] and our considera-
tions in connection with the bootstrap lemma: Namely, we can estimate A as in the bootstrap lemma,
if we find A,B for a given Br(x). More precisely, due to the boundary conditions, we will find:

‖∇A‖
L

n
n−1 ,∞(Br(x))

. ε‖PF‖
L

n
n−1 ,∞(Br(x))

+ ε‖A‖
L

n
n−1 ,∞(Br(x))

, (3.358)

so if ε is sufficiently small, we arrive at:

‖∇A‖
L

n
n−1 ,∞(Br(x))

. ε‖PF‖
L

n
n−1 ,∞(Br(x))

, (3.359)
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Then, it remains to obtain appropriate estimates for d∗B. For this, write d∗B =
∑

j bjdxj and we can
deduce completely analogous to the bootstrap lemma:

∂L(e1b1) = −
∑
j≥2

∂jRj ,

where Rj is an expression depending on P and ∇A. So we can now split e1b1 into a Clifford analytic
and thus harmonic part, which can be estimated by means of Campanato-estimates as in Da Lio-
Rivière [23] and the convolution of the RHS in the equation above with the fundamental solution of
∂L on the entire Rm. This second summand can be estimated by usual estimates for the fundamental
solution of the Laplacian. Therefore, we arrive at the desired estimates by completely the same means
as in Da Lio-Rivière [23] once we use the link between bj and b1 established in the bootstrap lemma.

Naturally, all arguments extend in the same spirit to domains of dimension 3 and, of course, of
dimension ≤ 8. The existence of suitable gauge groups has been established, so it merely remains to
modify the gauge lemma as needed.

3.3.2 Domains of Dimension ≤ 8 and Octonionic Differentiation

As promised at the beginning of the current section, we shall explain how the results from [26] generalise
to domains of dimension ≤ 8.

3.3.2.1 General case

Using the operators outlined in the current section, we can construct similar changes of gauge and
arguments leading higher regularity in the same spirit as in the case of domains of dimension 3 and 4
in the paper [26] as well as the previous subsection. The restriction to dimensions ≤ 8 is binding, as
we make in some sense use of a complete orthonormal frame on a sphere of higher dimension by using
a suitable first order operator.

3.3.2.2 Gauge Operators

Let us consider a domain of dimension n ≤ 8. In the cases n = 3, 4, we were able to reduce the
linearised gauge operator to a Laplacian on a subspace as well as a Riemann-Fueter operator on H
together up to perturbation. This procedure is limited to these cases, as H is merely 4-dimensional and
thus cannot accommodate similar procedures for domains of dimension > 4. In order to extend these
considerations to higher dimensional domains, we have to use a larger space than the quaternions and
there are two natural candidates: the Clifford algebra C`3 and the octonions O27 with the respective
Riemann-Fueter-type differential operators.

Let us start by considering the ramifications of using C`3. The natural extension of the Riemann-
Fueter operator would be the Clifford derivative:

D̃RF
R = ∂0 + ∂1 · e1 + ∂2 · e2 + ∂3 · e3 + ∂4 · e1e2 + ∂5 · e2e3 + ∂6 · e3e1 + ∂7 · e1e2e3

There appears a major issue in this case: The resulting operator is no longer elliptic. We highly
emphasise that the operator considered is no standard Dirac operator. This is reflected in the symbol

27The octonions form a non-commutative, non-associative normed division algebra. We refer the interested reader to
Baez [3].
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matrix no longer consisting of pairwise orthogonal columns, which in the case H = C`2 was reflected
in the identity:

DRF
R DRF

R = DRF
R DRF

R = ∆. (3.360)

So we are required to work over the octonions, if we want to have any hope of generalising the
previous considerations in an immediate manner. Also, this immediately provides an explanation for
the remaining restriction n ≤ 8, as in higher dimensions, we merely have Clifford algebras C`k as a
possible candidates to construct a Riemann-Fueter-type differential operator.

Fortunately, if we choose to work with octonions, we can remedy this issue. The use of the octonions
is motivated by the fact that they introduce a parallelisation on S7 which essentially boils down, by
going over from symbols to differential operators, to an identity similar to (3.360). For the remainder
of this subsection, we shall work with symbols of linear differential operators and show how to deduce
the general operator N (see (3.168) for its definition in the case of 4D and (3.277) for 3D domains28),
as the proof previously given will generalise immediately to these situations as well, without major
modifications.

The symbol of the general first order differential operator is the following:

σ(ξ) =



ξ0 −ξ1 −ξ2 −ξ3 −ξ4 −ξ5 −ξ6 −ξ7

ξ1 ξ0 −ξ3 ξ2 −ξ5 ξ4 ξ7 −ξ6

ξ2 ξ3 ξ0 −ξ1 −ξ6 −ξ7 ξ4 ξ5

ξ3 −ξ2 ξ1 ξ0 −ξ7 ξ6 −ξ5 ξ4

ξ4 ξ5 ξ6 ξ7 ξ0 −ξ1 −ξ2 −ξ3

ξ5 −ξ4 ξ7 −ξ6 ξ1 ξ0 ξ3 −ξ2

ξ6 −ξ7 −ξ4 ξ5 ξ2 −ξ3 ξ0 ξ1

ξ7 ξ6 −ξ5 −ξ4 ξ3 ξ2 −ξ1 ξ0


(3.361)

One easily notices that the columns are pairwise orthogonal and therefore that detσ(ξ) = ±|ξ|8.
Inserting ξ = (1, 0, 0, 0, 0, 0, 0, 0), we deduce immediately:

detσ(ξ) = |ξ|8,

due to the connectedness of Rn\{0}, if n > 1. Thus the octonionic Riemann-Fueter operator is elliptic.
In order to illustrate how we construct the general N , let us consider the case n = 5. All other

cases follow completely analogously. Observe that in this case, as only derivatives ∂0, . . . , ∂4 appear,
we have ξ5 = ξ6 = ξ7 = 0, resulting in the symbol:

σ(ξ) =



ξ0 −ξ1 −ξ2 −ξ3 −ξ4 0 0 0
ξ1 ξ0 −ξ3 ξ2 0 ξ4 0 0
ξ2 ξ3 ξ0 −ξ1 0 0 ξ4 0
ξ3 −ξ2 ξ1 ξ0 0 0 0 ξ4

ξ4 0 0 0 ξ0 −ξ1 −ξ2 −ξ3

0 −ξ4 0 0 ξ1 ξ0 ξ3 −ξ2

0 0 −ξ4 0 ξ2 −ξ3 ξ0 ξ1

0 0 0 −ξ4 ξ3 ξ2 −ξ1 ξ0


(3.362)

Let us now compute the symbol of the Dirac operator involved in the gauge arguments ∂R on
u = u0e5 + u1e1e5u

2e2e5 + u3e3e5 + u4e4e5. In this case, we easily find:

28In particular, we remind the reader that the second component of N is controlling the operator at hand, thus
requiring special care in our considerations.
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Basis direc-
tion

u0e5 u1e1e4 u2e2e5 u3e3e5 u4e4e5

e5
ξ0 −ξ1 −ξ2 −ξ3 −ξ4

e1e5
ξ1 ξ0

e2e5
ξ2 ξ0

e3e5
ξ3 ξ0

e4e5
ξ4 ξ0

e1e2e5
ξ2 −ξ1

e1e3e5
ξ3 −ξ1

e1e4e5
ξ4 −ξ1

e2e3e5
ξ3 −ξ2

e2e4e5
ξ4 −ξ2

e3e4e5
ξ4 −ξ3

The columns contains the derivatives of the term at the top under ∂R split into the different directions.
We notice that the first 5 rows of the table above appear the same way in σ(ξ). Therefore, we now
merely want to define operators that exchange the base directions in C`5 to arrive at the differential
symbol σ(ξ) (observe that the last three columns in the symbol are similar to the 3D-case, where
we used an additional degree of freedom in Spin(4) remedy the non-ellipticity). In this case, it is
straightforward to check that the following works:

• Map e1e3e5 to e2e5

• Map −e1e2e5 to e3e5

• Map −e2e3e5 to e1e5

The remaining directions will be kept and the additional degrees of freedom of q we use will as in
the 4D-case to include a Laplacian, once linearised. Similar considerations apply in all other cases
5 ≤ n ≤ 8. This in turn enables us to formulate a gauge Lemma similar to the ones for n = 3, 4 and
prove the corresponding assertions.

The reader is also invited to compare the current restrictions with Gilbert-Murray [38, p.205-206],
where it is shown that the ellipticity of a first order, constant coefficient differential operator on a
vectorbundle over a domain of dimension n requires the fibers to be of dimension k, such that:

ρ(k) ≥ n, (3.363)

with ρ(k) being the Radon-Hurwitz number. If k = (2a+ 1)16b2c with 0 ≤ c ≤ 3, then:

ρ(k) = 2c + 8b, (3.364)
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see Gilbert-Murray [38]. It is related to the number of linearily independent tangent vector fields over
Sk−1 ⊂ Rk and therefore to the parallelisability. The condition may be rephrased in terms of k. In
our current situation, it may be observed that k necessarily satisfies k ≤ n(n+ 1)/2 by the restriction
imposed by the dimension of the Lie algebra of the Spin group. It is simple to see, following the
argument in Gilbert-Murray [38], that for n = 8m+ r + 1 with 0 ≤ r ≤ 7, we have:

ρ(k) ≥ n ⇔ k ≥

{
16m2dr/2e, if r = 0, 6, 7

16m2dr/2e+1, if r = 1, 2, 3, 4, 5
, (3.365)

for some k in the range previously outlined holds only if n ≤ 1629, showing already that the technique
is limited to a finite range of dimensions of the domain. Indeed, the only n in question besides n ≤ 8
would be n ∈ {9, 10, 11, 12, 16}. Accounting for other factors like a required relationship between
the first order differential operator and the Dirac operator encountered in the change of gauge as
well as the way we create gauge operators, the condition becomes reasonably motivated, since the
construction of gauge operators also does not generalise in a straightforward manner to values of n
that are > 8 (the still potentially admissible values above).

3.3.2.3 Compensation by Means of Explicit Solvability

In this subsection, we mimic the argument in the 4D-case in order to deduce improved regularity of
the solution modulo absorption of the α-term in our considerations. We will do so in full generality,
extending even to domains of dimension n ≥ 9. All considerations merely imitate the arguments in
the case n = 4.

We want to consider the equation:

Πn(∂Ru) = ∂Lαen,

where u takes values in spin(n + 1) and ∂L, ∂R are the generalized Dirac operators in dimension n.
Here, Πn denotes the projection in C`n on the subspace C`n−1 · en.

It should be noted that ∂RΠn(u) = −Πn(∂Ru), therefore it suffices to merely assume that u =
u0en + . . . unen−1en ∈ C`n−1 · en (the remaining part will be controlled by its Laplacian being 0, see
the case n = 4). We observe that ∂Ru has three different kinds of terms:

• In the direction en, we find the following term ∂0u
0 − ∂1u

1 − . . . ∂n−1u
n−1.

• In the directions ejen, we have contributions of the form ∂0u
j + ∂ju

0.

• In the directions eiejen where i < j, we have contributions of the form ∂ju
i − ∂iuj .

Therefore, the system of equations we want to study becomes:

∂0u
0 −

n−1∑
j=1

∂ju
j = ∂0α

∂ju
0 + ∂0u

j = −∂jα
29This is easily seen by a direct computation and noticing that our vector spaces are subspaces of the Spin-Lie algebras.

This is due to the gauge group being the Spin group and leads to k ≤ n(n+1)
2

.
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∂ju
i − ∂iuj = 0,

for all i 6= j ∈ {1, . . . , n− 1}. The third set of PDEs implies that the vector (u1, . . . , un−1) should be
a gradient of some function β, i.e. of the following form:

∇x′β =


u1

u2

...
un−1

 ,

where x′ = (x1, . . . xn−1). Therefore, the second set of equations turns into:

∇x′u0 +∇x′∂0β = −∇x′α.

A possible solution of this would be:
u0 = −∂0β − α.

Inserting now the previously found expressions into the first equation, we arrive at the following PDE
for β:

−∆β − ∂0α = ∂0α.

This can now be solved for β, meaning that we found a solution where we do not need further terms
or rely on the contributions of the projections used to create an elliptic operator. This implies that
the result in Lemma 3.2.2.5 generalizes to all n ≤ 8 and consequently, so does Lemma 3.2.2.6 as well.
Notice that our assumption of slightly higher integrability does not affect this argument. This however
yields the major tools required to prove the bootstrap test, so we may conclude that the bootstrap
test continues to hold for domains of dimension n ≤ 8.



Bibliography

[1] D.R.Adams, A note on Riesz potentials, Duke Math. J. 42 (1975), no. 4, 765-778.
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