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Abstract

The theory of α-harmonic maps has been initiated some years ago by the author
and Tristan Rivière in [8]. These maps are critical points of the following nonlocal
energy

Lα(u) =

∫

Rk

|(−∆)
α
2 u(x)|2dxk , (1)

where u ∈ Ḣα(Rk,N ), N ⊂ Rm is an at least C2 closed (compact without boundary)
n-dimensional smooth manifold. In a recent paper [10] we also introduce the notion
of horizontal α-harmonic maps. Precisely, given a C1 plane distribution PT on all
Rm, these are maps u ∈ Ḣα(Rk,Rm), α ≥ 1/2, satisfying

{
PT (u)∇u = ∇u in D′(Rk)

PT (u)(−∆)αu = 0 in D′(Rk).

If the distribution of planes is integrable, then we recover the case of α-harmonic
maps with values into a manifold. We will concentrate here to the case α = 1/2
and k = 1 which corresponds to a critical situation. Such maps arise from several
geometric problems such as for instance in the study of free boundary manifolds.
After giving an overview of the recent results on the regularity and the compactness
of horizontal 1/2-harmonic maps, we will describe the techniques that have been
introduced in [8, 9] to investigate the regularity of such maps and mention some
relevant applications to geometric problems.
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1 Overview

Since the early 50’s the analysis of critical points to conformal invariant Lagrangians has
raised a special interest, due to the important role they play in physics and geometry.

The most elementary example of a 2-dimensional conformal invariant Lagrangian is
the Dirichlet Energy

L(u) =
∫

D

|∇u(x, y)|2dxdy , (2)

where D ⊆ R2 is an open set, u : D → Rm and ∇u is the gradient of u .
We can define the Lagrangian (2) in the set of maps taking values in an at least C2

closed n- dimensional submanifold N ⊆ Rm. In this case critical points u ∈ W 1,2(D,N )
of L satisfy in a weak sense the equation

−∆u ⊥ TuN , (3)

where TξN is the tangent plane a N at the point ξ ∈ N , or in a equivalent way

−∆u = A(u)(∇u,∇u) := A(u)(∂xu, ∂xu) + A(u)(∂yu, ∂yu), (4)

where A(ξ) is the second fundamental form at the point ξ ∈ N (see for instance [17]).
The equation (4) is called the harmonic map equation into N .

In the case when N is an oriented hypersurface of Rm the harmonic map equation
reads as

−∆u = ν(u)〈∇ν(u),∇u〉 , (5)

where ν is the unit normal vector field to N .
The key point to get the regularity of the harmonic maps with values into the sphere

Sm−1 was to rewrite the r.h.s of the equations as a sum of a Jacobians. More precisely
Hélein in [17] wrote the equation (5) in the form

−∆u = ∇⊥B · ∇u, (6)

where ∇⊥B = (∇⊥Bij) with ∇⊥Bij = ui∇uj−uj∇ui, (for every vector field v : R2 → Rm,
∇⊥v denotes the π/2 rotation of the gradient ∇v, namely ∇⊥v = (−∂yv, ∂xv)) .

The r.h.s of (6) can be written actually as a sum of Jacobians:

∇⊥Bij∇uj = ∂xuj∂yBij − ∂yuj∂xBij .

This particular structure permitted to apply to the equation (6) the following result

Theorem 1.1 [28] Let D be a smooth bounded domain of R2. Let a and b be two mea-
surable functions in D whose gradients are in L2(D). Then there exists a unique solution
ϕ ∈ W 1,2(D) to 




−∆ϕ =
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
, in D

ϕ = 0 on ∂D .
(7)

2



Moreover there exists a constant C > 0 independent of a and b such that

||ϕ||∞ + ||∇ϕ||L2 ≤ C||∇a||L2||∇b||L2 .

In particular ϕ is a continuous in D . ✷

In the case of an oriented hypersurface N of Rm by using the fact that ∇u is orthogonal
to ν(u) the equation (5) can be reformulated as follows

−∆ui =

m∑

j=1

(
ν(u)i ∇(ν(u))j − ν(u)j ∇(ν(u))i

)
· ∇uj . (8)

Unlike the sphere case there is no reason for which the vector field

ν(u)i ∇(ν(u))j − ν(u)j ∇(ν(u))i

is divergence-free. What remains true is the anti-symmetry of the matrix

Ω :=
(
ν(u)i ∇(ν(u))j − ν(u)j ∇(ν(u))i

)
i,j=1···m

. (9)

Actually Rivière in [20] identified the anti-symmetry of the 1-form in (9) as the essential
structure of equation (5) and he succeeded in writing the harmonic map system in the
form of a conservation law whose constituents satisfy elliptic equations with a Jacobian
structure to which Wente’s regularity result (Theorem 1.1) could be applied.

Let us now introduce PT (z), PN(z) the orthogonal projections respectively to the tan-
gent space TzN and to the normal space (TzN )⊥. Then the equation (3) can be re-
formulated as follows

PT (u)∆u = 0, in D′(D). (10)

We are going to release the assumption that the field of orthogonal projections is
associated to a sub-manifold N and to consider the equation (10) for a general field of
orthogonal projections PT and for horizontal maps u satisfying

PN(u)∇u = 0, in D′(D). (11)

We will assume that PT ∈ C1(Rm,Mm(R)) and PN ∈ C1(Rm,Mm(R)) satisfy




PT ◦ PT = PT PN ◦ PN = PN

PT + PN = Im

∀ z ∈ Rm ∀U, V ∈ TzR
m < PT (z)U, PN(z)V >= 0

‖∂zPT‖L∞(Rm) < +∞

(12)

where < ·, · > denotes the standard scalar product in Rm. In other words PT is a C1

map into the orthogonal projections of Rm. For such a distribution of projections PT we
denote by

n := rank(PT ).
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Such a distribution identifies naturally with the distribution of n-planes given by the
images of PT (or the Kernel of PT ) and conversely, any C1 distribution of n-dimensional
planes defines uniquely PT satisfying (12).

For any α ≥ 1/2 and for k ≥ 1 we define the space of Hα-Sobolev horizontal maps

H
α(Rk) :=

{
u ∈ Hα(Rk,Rm); PN (u)∇u = 0 in D′(Rk)

}
.

Observe that this definition makes sense since we have respectively PN◦u ∈ Hα(Rk,Mm(R))
and ∇u ∈ Hα−1(Rk,Rm). Next we give the following definition.

Definition 1.1 Given a C1 plane distribution PT in Rm satisfying (12), a map u in the
space Hα(Rk) is called horizontal α-harmonic with respect to PT if

∀ i = 1 · · ·m
m∑

j=1

P ij
T (u)(−∆)αuj = 0 in D′(Rk) (13)

and we shall use the following notation

PT (u) (−∆)αu = 0 in D′(Rk).

✷

When the plane distribution PT is integrable that is to say when

∀ X, Y ∈ C1(Rm,Rm) PN [PT X,PT Y ] ≡ 0, (14)

where [·, ·] denotes the Lie Bracket of vector-fields, using Frobenius theorem the plane
distribution corresponds to the tangent plane distribution of a n−dimensional foliation
F . A smooth map u in Hα(Rm) takes values everywhere into a leaf of F that we denote
N n and we are back to the classical theory of harmonic maps into manifolds. Observe that
our definition includes the case of α-harmonic maps with values into a sub-manifold of the
euclidean space and horizontal with respect to a plane distribution in this sub-manifold.
Indeed it is sufficient to add to such a distribution the projection to the sub-manifold and
extend the all to a tubular neighborhood of the sub-manifold.

In [10] we have proved the following result

Theorem 1.2 (Theorem 2.1, [10]) Let PT be a C1 distribution of planes (or projec-
tions) satisfying (12). Any map u ∈ H1(D)

PT (u)∆u = 0 in D′(D) (15)

is in ∩δ<1C
0,δ
loc (D). ✷
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The main idea to prove Theorem 1.2 is to show that u satisfies an elliptic Schrödinger
type system with an antisymmetric potential Ω ∈ L2(Rk,Rk⊗so(m)) (whose construction
depends on PT ) of the form

−∆u = Ω · ∇u. (16)

Hence, following the analysis in [20] the authors deduced in dimension 2 the local existence
on a disk D of A ∈ L∞ ∩W 1,2(D,Glm(R)) and B ∈ W 1,2(D,Mm(R)), depending both
on PT (u), such that

div (A∇u) = ∇⊥B · ∇u (17)

from which the regularity of u can be deduced using Wente’s Theorem 1.1.1

Now we turn our attention to an analogous fractional problem in dimension 1. We
consider the following Lagrangian that we will call L−energy (L stands for “Line”)

L1/2(u) :=

∫

R

|(−∆)1/4u|2 dx (18)

within
Ḣ1/2(R,N ) :=

{
u ∈ Ḣ1/2(R,Rm) ; u(x) ∈ N for a. e. x ∈ R

}
.

The operator (−∆)α on R is defined by means of the Fourier transform as follows

̂(−∆)αu = |ξ|2αû ,

(given a function f , both f̂ and F [f ] denote the Fourier transform of f).
The Lagrangian (18) is invariant with respect to the Möbius group and it satisfies the

following identity

∫

R

|(−∆)1/4u(x)|2dx = inf

{∫

R2
+

|∇ũ|2dx : ũ ∈ W 1,2(R2
+,R

m), trace ũ = u

}
.

In [8] we introduced the following Definition:

Definition 1.2 A map u ∈ Ḣ1/2(R,N ) is called a weak 1/2-harmonic map into N if for
any φ ∈ Ḣ1/2(R,Rm) ∩ L∞(R,Rm) there holds

d

dt
L1/2(πN (u+ tφ))|t=0

= 0,

where ΠN is the orthogonal projection on N . ✷

1We denote by so(m) the space of antisymmetric matrices of order m and by GLm the space of
invertible matrices of order m.
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In short we say that a weak 1/2-harmonic map is a critical point of L1/2 in Ḣ1/2(R,N )
for perturbations in the target.

Weak 1/2-harmonic maps satisfy the Euler-Lagrange equation

ν(u) ∧ (−∆)1/2u = 0 in D′(R). (19)

Let Π−i : S
1 \ {−i} → R, Π−i(ξ + iη) = ξ

1+η
be the stereographic projection from the

south pole, then the following relation between the 1/2 Laplacian in R and in S1 holds:

Proposition 1.1 (Proposition 4.1, [7]) Given u : R → Rm, we set v := u◦Π−i : S
1 →

Rm. Then u ∈ L 1

2

(R)2 if and only if v ∈ L1(S1). In this case

(−∆)
1

2

S1v(e
iθ) =

((−∆)
1

2

Ru)(Π−i(e
iθ))

1 + sin θ
in D′(S1 \ {−i}), (20)

Observe that (1 + sin(θ))−1 = |Π′
−i(θ)|, and hence we have

∫

S1

(−∆)
1

2 v(eiθ)ϕ(eiθ) dθ =

∫

R

(−∆)
1

2u(x) ϕ(Π−1
−i (x)) dx for every ϕ ∈ C∞

0 (S1 \ {−i}).

From (20) and the invariance of the Lagrangian (18) with respect to the trace of
conformal maps in C it follows that a map u ∈ Ḣ1/2(R,N ) is weak 1/2-harmonic in R if
and only if v = u ◦ Π−i ∈ Ḣ1/2(S1,N ) is weak 1/2-harmonic in S1.

Indeed v ∈ Ḣ1/2(S1,N ) satisfies

ν(v) ∧ (−∆)1/2v = 0 in D′(S1 \ {−i}). (21)

Consider now the stereographic projection from the north pole Πi : S
1 \ {i} → R, Πi(ξ +

iη) = ξ
1−η

and ũ = v ◦ Π−1
i = u ◦ 1

z
. Since

1

z
: C \ {0} → C \ {0} is a conformal map,

ũ ∈ Ḣ1/2(R,N ) is weak 1/2-harmonic in R \ {0}. By applying Proposition 2.2 in [5] (a
singular point removability type result on R) we deduce that ũ is weak 1/2-harmonic in
R and in particular continuous in R. Therefore not only v is weak 1/2-harmonic in S1

but we deduce that

lim
x→+∞

u(x) = lim
x→+∞

u(x) and lim
z→−i+

z∈S1

v(z) = lim
z→−i−

z∈S1

v(z).

Fractional harmonic maps appear in several geometric problems and we mention below
some of them.

1. The first application is the connection between weak 1/2-harmonic maps and free
boundary minimal disks. The following characterization of weak 1/2-harmonic maps of
S1 into sub-manifolds of Rn holds, (see [7] and [18]).

2We recall that L 1

2

(R) :=
{
u ∈ L1

loc(R) :
∫
R

|u(x)|
1+x2 dx < ∞

}
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Theorem 1.3 Let u ∈ Ḣ1/2(S1,N ), where N is a n-dimensional closed smooth sub-
manifold of Rm. If u is a nontrivial weak 1/2-harmonic map, then its harmonic extension
ũ ∈ W 1,2(D,Rm) is conformal and

ν(u) ∧ ∂ũ

∂r
= 0 in D′(S1). ✷ (22)

From Theorem 1.3 it follows that ũ is a minimal disk whose boundary lies in N
and meets N orthogonally, namely its outward normal vector ∂ũ

∂r
is othogonal to N at

each point of ũ(S1). Moreover we can deduce the following two characterizations of 1/2-
harmonic maps in the case where N = S1 and N = S2.

Theorem 1.4 i) Weak 1/2-harmonic maps u : S1 → S1 with deg(u) = 1 coincide with
the trace of Möbius transformations of the disk B2(0, 1) ⊆ R2 .

ii) If u : S1 → S2 is a weak 1/2-harmonic map then u(S1) is an equatorial plane and it
is the composition of weak 1/2-harmonic map u : S1 → S1 with an isometry τ : S2 → S2 .

2. Another geometrical application concerns the so-called Steklov eigenvalue problem that
is the first eigenvalue σ1 of the Dirichlet-to-Neumann map on some Riemannian surfaces
(M, g) with boundary ∂M . In [14] the authors show the following

Theorem 1.5 ( Proposition 2.8, [14]) If M is a surface with boundary, and g0 is a
metric on M with

σ1(g0)Lg0(∂M) = max
g
σ1(g)Lg(∂M),

where Lg(∂M) is the lenght of ∂M , the max is over all smooth metrics on M in the con-
formal class of g0. Then there exist independent eigenfunctions u1, . . . , un corresponding
to the eigenvalue σ1(g0) which give a conformal minimal immersion u = (u1, . . . , un) of
M into the unit ball Bn and u(M) is a free boundary solution. That is, u : (M, ∂M) →
(Bn, ∂Bn) is a harmonic map such that u(∂M) meets ∂Bn orthogonally. Hence u|∂M is
1/2-harmonic.

3. 1/2-harmonic maps appear in the asymptotics of fractional Ginzburg-Landau equa-
tion, (see [18]) and in connections with regularity of critical knots of Möbius energy (see
[2]).

The theory of weak 1/2 harmonic maps with values into a closed n-dimensional sub-
manifold N has been initiated some years ago by the author and Tristan Rivière in [8].
Since then several extensions have been considered (see [4, 12, 9]). The main novelty
in the regularity of 1/2-harmonic was the re-formulation of the Euler-Lagrange equation
in terms of special algebraic quantities called 3-terms commutators which are roughly
speaking bilinear pseudo-differential operators satisfying some integrability by compensa-
tion properties.

As in the local case we can consider a plane distribution PT satisfying (12) and solutions
of

PT (u) (−∆)1/2u = 0 in D′(R) (23)
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under the constraint PN(u)∇u = 0 in D′(R). Maps u ∈ H1/2(R) satisfying (23) are called
horizontal 1/2-harmonic maps. One of the main result in [10] is the following Theorem.

Theorem 1.6 Let PT be a C1 distribution of planes satisfying (12). Any map u ∈
H1/2(R)

PT (u) (−∆)1/2u = 0 in D′(R) (24)

is in ∩δ<1C
0,δ
loc (R). ✷

In [10] conservation laws corresponding to horizontal 1/2-harmonic maps have been
discovered: locally, modulo some smoother terms coming from the application of non-local
operators on cut-off functions, we construct out of PT (u) A ∈ L∞ ∩ Ḣ1/2(R, Glm(R)) and
B ∈ Ḣ1/2(R,Mm(R)) such that

(−∆)1/4(Av) = J (B, v) + cut-off, (25)

where v := (PT (−∆)1/4u,R(PN(−∆)1/4u))t, R denotes the Riesz operator defined by

R̂f(ξ) = i ξ
|ξ| f̂ and J is a bilinear pseudo-differential operator satisfying

‖J (B, v)‖Ḣ−1/2(R) ≤ C ‖(−∆)1/4B‖L2(R) ‖v‖L2(R). (26)

As we will see later, the conservation law (25) will be crucial in the quantization analysis
of sequences of horizontal 1/2-harmonic maps.

By assuming that PT ∈ C2(Rm) and by bootstrapping arguments one gets that every
horizontal 1/2-harmonic map u ∈ H1/2(R) is C1,α

loc (R), for every α < 1 (see [11]).
We would like to mention that in the non-integrable case it seems not feasible to get

the regularity of the horizontal 1/2-harmonic maps by the techniques in [23] or [18] which
consist in transforming the a-priori non-local PDE (19) into a local one and in performing
ad-hoc extensions and reflections.

Also in the nonintegrable case the following geometric characterization holds.

Proposition 1.2 An element in H1/2 satisfying (23) has a harmonic extension ũ in
B2(0, 1) which is conformal and hence it is the boundary of a minimal disk whose ex-
terior normal derivative ∂rũ is orthogonal to the plane distribution given by PT . ✷

Example : We consider the following field of non-integrable projections in C2 \ {0}.
PT (z)Z := Z − |z|−2 [Z · (z1, z2) (z1, z2) + Z · (iz1, iz2) (iz1, iz2)] . (27)

An example of u satisfying (24) is given by solutions to the system




∂ũ

∂r
∧ u ∧ iu = 0 in D′(S1)

u · ∂u
∂θ

= 0 in D′(S1)

i u · ∂u
∂θ

= 0 in D′(S1)

anatleast (28)
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where ũ denotes the harmonic extension of u which happens to be conformal due to
Proposition 1.2 and define a minimal disk. An example of such maps is given by

u(θ) :=
1√
2
(eiθ, e−iθ) where ũ(z, z) =

1√
2
(z, z). (29)

Observe that the solution in (29) is also a 1/2-harmonic map into S3 and it would be
interesting to investigate whether this is the unique solution.

From a geometrical point of view to find a solution to (24) means to find a minimal
disk whose boundary is horizontal and the normal direction is vertical.

One natural question is to see if this problem is variational. A priori if ũ is a critical
point of the Dirichlet energy whose boundary is horizontal, then its exterior normal deriva-
tive ∂rũ does not belong necessarily to Im(PN). Despite the geometric relevance of equa-
tions (13) in the non-integrable case, it is however a-priori not the Euler-Lagrange equation
of the variational problem consisting in finding the critical points of ‖(−∆)α/2u‖2L2 within
Hα when PT is not satisfying (14). This can be seen in the particular case where α = 1
where the critical points to the Dirichlet Energy have been extensively studied in relation
with the computation of normal geodesics in sub-riemannian geometry. We then introduce
the following definition:

Definition 1.3 A map u in Hα is called variational α−harmonic into the plane dis-
tribution PT if it is a critical point of the ‖(−∆)α/2u‖2L2 within variations in Hα i.e. for
any ut ∈ C1((−1, 1),Hα) we have

d

dt
‖(−∆)α/2ut‖2L2

∣∣∣∣
t=0

= 0. (30)

✷

Example of variational harmonic maps from S1 into a plane distribution is given by the
sub-riemannian geodesics.

A priori the equation (23) is not the Euler-Lagrange equation associated to (30). The
main difficulty is that we have not a pointwise constraint but a constraint on the gradient.
In order to study critical points of (30) we use a convexification of the above variational
problem following the spirit of the approach introduced by Strichartz in [27] for normal
geodesics in sub-riemannian geometry. We prove in particular for the case α = 1/2 that
the smooth critical points of

L1/2(u, ξ) :=

∫

S1

|(−∆)
−1/4
0 (PT (u)ξ)|2

2
dθ

−
∫

S1

〈
(−∆)

−1/4
0 (PT (u)ξ), (−∆)

−1/4
0

(
PT (u)

du

dθ

)〉
dθ

−
∫

S1

〈
(−∆)

−1/4
0 (PN(u)ξ), (−∆)

−1/4
0

(
PN(u)

du

dθ

)〉
dθ

(31)
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in the co-dimension m Hilbert subspace of Ḣ1/2(S1,Rm)× Ḣ−1/2(S1,Rm) given by3

E :=





(u, ξ) ∈ Ḣ1/2(S1,Rm)×H−1/2(S1,Rm) s. t.

(
PN(u),

du

dθ

)

Ḣ1/2,Ḣ−1/2

= 0

(−∆)
−1/4
0 (PT (u)ξ) ∈ L2(S1) and (−∆)

−1/4
0

(
PT (u)

du

dθ

)
∈ L2(S1)





at the point where the constraint
(
PN(u),

du
dθ

)
Ḣ1/2,Ḣ−1/2 = 0 is non-degenerate are

“variational 1/2-harmonic” into the plane distribution PT in the sense of definition 1.3.
It remains open the regularity of critical points of (31) or even of the 1/2 energy (18) in
H1/2 in the case when the constraint

(
PN(u),

du
dθ

)
Ḣ1/2,H−1/2 = 0 is degenerate.

In a joint paper with P. Laurain and T. Rivière we investigate compactness and quanti-
zation properties of sequences of horizontal 1/2 harmonic maps uk ∈ H1/2(R) by extending
the results obtained by the author in [5] in the case of 1/2-harmonic maps with values
into a sphere. Our first main result is the following:

Theorem 1.7 [Theorem 1.2 in [6]] Let uk ∈ H1/2(R) be a sequence of horizontal 1/2-
harmonic maps such that

‖uk‖Ḣ1/2 ≤ C, ‖(−∆)1/2uk‖L1 ≤ C . (32)

Then it holds:

1. There exist u∞ ∈ H1/2(R) and a possibly empty set {a1, . . . , aℓ}, ℓ ≥ 1 , such that up
to subsequence

uk → u∞ in Ẇ
1/2,p
loc (R \ {a1, . . . , aℓ}), p ≥ 2 as k → +∞ (33)

and
PT (u∞)(−∆)1/2u∞ = 0, in D′(R) . (34)

2. There is a family ũi,j∞ ∈ Ḣ1/2(R) of horizontal 1/2-harmonic maps (i ∈ {1, . . . , ℓ}, j ∈
{1, . . . , Ni}), such that up to subsequence

∥∥∥∥∥(−∆)1/4

(
uk − u∞ −

∑

i,j

ũi,j∞((x− xki,j)/r
k
i,j)

)∥∥∥∥∥
L2
loc(R)

→ 0, as k → +∞ . (35)

for some sequences rki,j → 0 and xki,j ∈ R.

3Given f ∈ Ḣ1/2, g ∈ Ḣ−1/2 we denote by (f, g)Ḣ1/2,Ḣ−1/2 the duality between f and g.
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As we have already remarked in [6] the condition ‖(−∆)1/2uk‖L1 ≤ C is always satisfied
in the case the maps uk take values into a closed manifold of Rm (case of sequences of
1/2 harmonic maps) as soon as ‖uk‖Ḣ1/2 ≤ C. This follows from the fact that if u is a
1/2-harmonic maps with values into a closed manifold of N of Rm then the following
inequality holds (see Proposition 5.1 in [6])

‖(−∆)1/2u‖L1(R) ≤ C‖(−∆)1/4u‖2L2(R). (36)

Hence in the case of 1/2-harmonic maps defined in S1 we have the following corollary.

Corollary 1.1 [Corollary 1.1 in [6]] Let N be a closed C2 submanifold of Rm and let
uk ∈ H1/2(S1,N ) be a sequence of 1/2-harmonic maps such that

‖uk‖Ḣ1/2(S1) ≤ C (37)

then the conclusions of Ttheseheorem 1.7 hold. In particular up to subsequence we have
the following energy identity

lim
k→+∞

∫

S1

|(−∆)1/4uk|2 dθ =
∫

S1

|(−∆)1/4u∞|2 dθ +
∑

i,j

∫

S1

|(−∆)1/4ũi,j∞ |2 dθ (38)

where ũi,j∞ are the bubbles associated to the weak convergence.

For the moment it remains open to know whether the bound (36) holds or not in the
general case of horizontal 1/2-harmonic maps.

The compactness issue (first part of Theorem 1.7) is quite standard. The most delicate
part is the quantization analysis consisting in verifying that there is no dissipation of the
energy in the region between u∞ and the bubbles ũi,j∞ and between the bubbles themselves
(the so-called neck-regions). Such an analysis has been achieved in [6] by performing a
precise asymptotic development of horizontal 1/2-harmonic maps in these neck-regions,
that was possible thanks to the conservation law (25) and an application of new Pohozaev-
type identities in 1-D discovered in [6]. We refer the reader to [6] for a complete description
of compactness and quantization issues of horizontal 1/2-harmonic maps.

We conclude this section by mentioning that the partial regularity of 1/2-harmonic
map in dimension k ≥ 2 with values into a sphere has been been deduced in [18] from
existing regularity results of harmonic maps with free boundary. Schikorra [25] has also
studied the partial regularity of weak solutions to nonlocal linear systems with an anti-
symmetric potential in the supercritical case under a crucial monotonicity assumption on
the solutions which allows to reduce to the critical case.

It still remains open a direct proof of the partial regularity without an ad-hoc mono-
tonicity assumption.
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2 3-Commutators Estimates

As we have already mentioned in the previous section, when the notion of 1/2-harmonic
map was introduced in [8], one of the main novelty was the re-formulation of the Euler-
Lagrange equation in terms of three-terms-commutators which have played a key role in
all the results that have been obtained later.

In this section we will introduce such commutators and recall some important estimates
and properties. Such properties will be crucial to get regularity results of 1/2-harmonic
maps and to re-write the system (satisfied by a horizontal 1/2-harmonic map)





PT (u)(−∆)1/2u = 0

PN(u)∇u = 0
(39)

in term of a conservation law.
We first introduce some functional spaces.
H1(Rn) denotes the Hardy space which is the space of L1 functions f on Rnsatisfying

∫

Rn

sup
t∈R

|φt ∗ f |(x) dx < +∞ ,

where φt(x) := t−n φ(t−1x) and where φ is some function in the Schwartz space S(Rn)
satisfying

∫
Rn φ(x) dx = 1. For more properties on the Hardy space H1 we refer to

[15, 16, 26].
The L2,∞(R) is the space of measurable functions f such that

sup
λ>0

λ|{x ∈ R : |f(x)| ≥ λ}|1/2 < +∞ .

L2,1(R) is the Lorentz space of measurable functions satisfying
∫ +∞

0

|{x ∈ R : |f(x)| ≥ λ}|1/2dλ < +∞ .

In [8] the following two three-terms commutators have been introduced:

T (Q, v) := (−∆)1/4(Qv)−Q(−∆)1/4v + (−∆)1/4Qv (40)

and
S(Q, v) := (−∆)1/4[Qv]− R̄(QR(−∆)1/4v) + R̄((−∆)1/4QRv), (41)

where R is the Riesz operator.
In [8] the authors obtained the following estimates.

Theorem 2.1 Let v ∈ L2(R), Q ∈ Ḣ1/2(R) . Then T (Q, v), S(Q, v) ∈ H−1/2(R) and

‖T (Q, v)‖H−1/2(R) ≤ C ‖Q‖Ḣ1/2(R)‖v‖L2,∞(R) ; (42)

‖S(Q, v)‖H−1/2(R) ≤ C ‖Q‖Ḣ1/2(R)‖v‖L2,∞(R) . (43)
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We observe that under our assumptions u ∈ Ḣ1/2(R,Rm) and Q ∈ Ḣ1/2(R,Mℓ×m(R))
each term individually in T and S - like for instance (−∆)1/4(Q(−∆)1/4u) or Q(−∆)1/2u
... - are not in H−1/2 but the special linear combination of them constituting T and S are
in H−1/2. In a similar way, in dimension 2, J(a, b) := ∂a

∂x
∂b
∂y

− ∂a
∂y

∂b
∂x

satisfies, as a direct
consequence of Wente’s theorem 1.1

‖J(a, b)‖Ḣ−1 ≤ C ‖a‖Ḣ1 ‖b‖Ḣ1 (44)

whereas, individually, the terms ∂a
∂x

∂b
∂y

and ∂a
∂y

∂b
∂x

are not in H−1.

Actually in [5] we improve the estimates on the operators T, S.

Theorem 2.2 Let v ∈ L2(R), Q ∈ Ḣ1/2(R). Then T (Q, v), S(Q, v) ∈ H1(R) and

‖T (Q, v)‖H1(R) ≤ C‖Q‖Ḣ1/2(R)‖v‖L2(R) . (45)

‖S(Q, v)‖H1(R) ≤ C‖Q‖Ḣ1/2(R)‖v‖L2(R) . ✷ (46)

We refer the reader to [8] and [5] for the proof of respectively Theorem 2.1 and Theorem
2.2. We just mention that the above estimates is based on a well-known tool in harmonic
analysis, the Littlewood-Paley dyadic decomposition of unity that we briefly recall here.
Such a decomposition can be obtained as follows. Let φ(ξ) be a radial Schwartz function
supported in {ξ ∈ Rn : |ξ| ≤ 2}, which is equal to 1 in {ξ ∈ Rn : |ξ| ≤ 1} . Let ψ(ξ) be
the function given by

ψ(ξ) := φ(ξ)− φ(2ξ)

ψ is then a ”bump function” supported in the annulus {ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2} .
Let ψ0 = φ, ψj(ξ) = ψ(2−jξ) for j 6= 0 . The functions ψj , for j ∈ Z, are supported in

{ξ ∈ Rn : 2j−1 ≤ |ξ| ≤ 2j+1} and they realize a dyadic decomposition of the unity:

∑

j∈Z

ψj(x) = 1 .

We further denote

φj(ξ) :=

j∑

k=−∞

ψk(ξ) .

The function φj is supported on {ξ, |ξ| ≤ 2j+1}.
For every j ∈ Z and f ∈ S ′(R) we define the Littlewood-Paley projection operators

Pj and P≤j by

P̂jf = ψj f̂ P̂≤jf = φj f̂ .

Informally Pj is a frequency projection to the annulus {2j−1 ≤ |ξ| ≤ 2j}, while P≤j is a
frequency projection to the ball {|ξ| ≤ 2j} . We will set fj = Pjf and f j = P≤jf .
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We observe that f j =
∑j

k=−∞ fk and f =
∑+∞

k=−∞ fk (where the convergence is in
S ′(R)) .

Given f, g ∈ S ′(R) we can split the product in the following way

fg = Π1(f, g) + Π2(f, g) + Π3(f, g), (47)

where

Π1(f, g) =

+∞∑

−∞

fj
∑

k≤j−4

gk =

+∞∑

−∞

fjg
j−4 ;

Π2(f, g) =

+∞∑

−∞

fj
∑

k≥j+4

gk =

+∞∑

−∞

gjf
j−4 ;

Π3(f, g) =
+∞∑

−∞

fj
∑

|k−j|<4

gk .

We observe that for every j we have

suppF [f j−4gj] ⊂ {2j−2 ≤ |ξ| ≤ 2j+2};

suppF [
∑j+3

k=j−3 fjgk] ⊂ {|ξ| ≤ 2j+5} .
The three pieces of the decomposition (47) are examples of paraproducts. Informally the
first paraproduct Π1 is an operator which allows high frequences of f (∼ 2j) multiplied
by low frequences of g (≪ 2j) to produce high frequences in the output. The second
paraproduct Π2 multiplies low fequences of f with high frequences of g to produce high
fequences in the output. The third paraproduct Π3 multiply high frequences of f with
high frequences of g to produce comparable or lower frequences in the output. For a
presentation of these paraproducts we refer to the reader for instance to the book [16] .

The compensations of the 3 different terms in T (Q, v) will be clear just from the
Littlewood-Paley decomposition of the different products. With this regards to get for
instance the estimate (45) we shall need the following groupings

• i) For Π1(T (Q, v)) we proceed to the following decomposition

Π1(T (Q, v)) = Π1((−∆)1/4(Qv))︸ ︷︷ ︸+Π1Q(−∆)1/4v + (−∆)1/4Qv)︸ ︷︷ ︸ .

• ii) For Π2(R(Q, u)) we decompose as follows

Π2(T (Q, v)) = Π2((−∆)1/4(Qv)−Q(−∆)1/4v)︸ ︷︷ ︸+Π2((−∆)1/4Qv)︸ ︷︷ ︸ .

• ii) Finally, for Π3(R(Q, u)) we decompose as follows

Π3(T (Q, v)) = Π3((−∆)1/4(Qv))︸ ︷︷ ︸−Π3(Q(−∆)1/4v)︸ ︷︷ ︸+Π3((−∆)1/4Qv)︸ ︷︷ ︸ .
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The following 2-terms commutators have also been used in [9, 10]:

F (Q, v) := R[Q]R[v]−Qv. (48)

Λ(Q, v) := Qv +R[QR[v]]. (49)

Theorem 2.3 [Theorem 3.6 in [10]] For f, v ∈ L2 it holds

‖F (f, v)‖H−1/2(R) ≤ C‖f‖L2(R)‖v‖L2,∞(R), (50)

and
‖F (f, v)‖H1(R) ≤ C‖f‖L2(R)‖v‖L2(R) . ✷ (51)

Theorem 2.4 [Theorem 3.7 in [10]] For Q ∈ Ḣ1/2(R), v ∈ L2(R) it holds

‖(−∆)1/4(Λ(Q, v))‖H1(R) ≤ C‖Q‖H1/2(R)‖v‖L2(R) . ✷ (52)

Actually the estimate (51) is a consequence of the Coifman-Rochberg-Weiss estimate
[3].

From Theorem 2.4 we deduce that under the same assumptions it holds Λ(Q, v) ∈
L2,1(R) with

‖Λ(Q, v)‖L2,1(R) ≤ C‖Q‖H1/2(R)‖v‖L2(R).

We finally remark that we can simply write the operator S as follows:

S(Q, v) = R̄T (Q,Rv)− R̄(−∆)1/4[Λ(Q,Rv)]. (53)

Therefore the estimate (46) for S can be deduced from the estimate (46) for the operator
T and Theorem 2.4.

In [10] we have proved a sort of stability of of the operators T, S with respect to the
multiplication by a function P ∈ H1/2(R) ∩ L∞(R). Roughly speaking if we multiply
T (Q, v) or S(Q, v) by a function P ∈ H1/2(R) ∩ L∞(R) we get a decomposition into the
sum of a function in the Hardy Space and a term which is the product of function in L2,1

by one in L2.

Theorem 2.5 [Multiplication of T by P ∈ H1/2(R) ∩ L∞(R)] Let P,Q ∈ H1/2(R) ∩
L∞(R) and v ∈ L2(R). Then

PT (Q, v) = JT (P,Q, v) +AT (P,Q)v, (54)

where
AT (P,Q) = P (−∆)1/4[Q] + (−∆)1/4[P ]Q− (−∆)1/4[PQ] ∈ L2,1

with
‖AT (P,Q)‖L2,1 ≤ C‖(−∆)1/4[P ]‖L2‖(−∆)1/4[Q]‖L2 , (55)
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and
JT (P,Q, v) := T (PQ, v)− T (P,Qv) ∈ H1(R)

with

‖JT (P,Q, v)‖H1(R) ≤ C(‖P‖L∞ + ‖Q‖L∞)
(
‖(−∆)1/4[P ]‖L2 + ‖(−∆)1/4[Q]‖L2

)
‖v‖L2.

(56)

Proof of Theorem 2.5. We have

PT (Q, v) = P (−∆)1/4[Qv]− PQ(−∆)1/4[v] + P (−∆)1/4[Q]v

= {P (−∆)1/4[Q]− (−∆)1/4[PQ] + (−∆)1/4[P ]Q}v
+ (−∆)1/4[PQv]− PQ(−∆)1/4v + (−∆)1/4[PQ]v

−
(
(−∆)1/4[PQv] + P (−∆)1/4(Qv)− (−∆)1/4[P ]Qv

)

= [P (−∆)1/4[Q] + (−∆)1/4[P ]Q− (−∆)1/4[PQ]]v

+ T (PQ, v)− T (P,Qv).

Finally the estimates (55), (88) follow from Theorems 3.2 and 3.3 in [10]. ✷

An analogous property holds for the operator RS. We just state the Theorem and we
refer for proof to Theorem 3.10 in [10].

Theorem 2.6 [Multiplication of RS by a rotation P ∈ H1/2(R)∩L∞(R)] Let P,Q ∈
H1/2(R) ∩ L∞(R) and v ∈ L2(R). Then

PR[S(Q, v)] = AS(P,Q)v + JS(P,Q, v) (57)

where AS(P,Q) ∈ L2,1, JS(P,Q, v) ∈ H1(R) with

‖AS(P,Q)‖L2,1 ≤ C‖(−∆)1/4[P ]‖L2‖(−∆)1/4[Q]‖L2 ,

and

‖JS(P,Q, v)‖H1(R) ≤ C(‖P‖L∞ + ‖Q‖L∞)
(
‖(−∆)1/4[P ]‖L2 + ‖(−∆)1/4[Q]‖L2

)
‖v‖L2. ✷

We just mention that the operators AS(P,Q), JS(P,Q, v) and AT (P,Q), JT (P,Q, v)
can be expressed in turn as a combinations of the operators F, T, S.

Remark 2.1 We remark without entering into the details that in 2-D the Jacobian
J(a, b) = ∇(a)∇⊥(b) satisfies a stability property enjoyed by the operators (40), (41),
(48) with respect to the multiplication by P ∈ W 1,2(R2)∩L∞(R2) as well. More precisely
we may define the following two zero-order pseudo-differential operators: Grad(X) :=
∇div(−∆)−1(X), Rot(Y ) = ∇⊥curl(−∆)−1(Y ). If a, b ∈ W 1,2(R2) and P ∈ W 1,2(R2) ∩
L∞(R2) then
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J(a, b) = ∇(a)∇⊥(b) (58)

= Grad(∇(a)) Rot(∇⊥(b))− Rot(∇(a))Grad(∇⊥(b));

and

P J(a, b) = P ∇(a)∇⊥(b) (59)

= [PGrad(∇(a))−Grad(P∇(a))]︸ ︷︷ ︸
∈L2,1(R2)

Rot(∇⊥(b))

+ Grad(P∇(a)) Rot(∇⊥(b))− Rot(P∇(a))Grad(∇⊥(b))︸ ︷︷ ︸
∈H1(R2)

.

3 Regularity of horizontal 1/2-harmonic maps and

applications

In this section we describe the regularity results we have obtained respectively in [8, 9, 10].

3.1 Case of 1/2-harmonic maps with values into a sphere

In [8] we started the investigation of weak 1/2-harmonic maps u ∈ H1/2(R, Sm−1) with
values into the sphere Sm−1 which are critical points of the Lagrangian

L1/2(u) =

∫

R

|(−∆)1/4u(x)|2dx. (60)

The main novelty in [8] is the rewriting of the Euler-Lagrange equation. To this
purpose we recall the following equivalent relations.

Theorem 3.1 All weak 1/2-harmonic maps u ∈ H1/2(R, Sm−1) satisfy in a weak sense
i) the equation ∫

R

(−∆)1/2u · v dx = 0, (61)

for every v ∈ H1/2(R,Rm) ∩ L∞(R,Rm) and v ∈ Tu(x)S
m−1 almost everywhere, or in a

equivalent way
ii) the equation

(−∆)1/2u ∧ u = 0 in D′, (62)

or
iii) the equation

(−∆)1/4(u ∧ (−∆)1/4u) = T (Q, u) in D′, (63)

with Q = u ∧ .

17



Proof of Theorem 3.1
i) The proof of (61) is analogous of Lemma 1.4.10 in [17].
Let v ∈ H1/2(R,Rm) ∩ L∞(R,Rm) and v ∈ Tu(x)S

m−1. We have

ΠSm−1(u+ tv) = u+ twt ,

where ΠSm−1 is the orthogonal projection onto Sm−1 and

wt =

∫ 1

0

∂ΠSm−1

∂yj
(u+ tsv)vjds .

Hence

L1/2(ΠSm−1(u+ tv)) =

∫

R

|(−∆)1/4u|2dx+ 2t

∫

R

(−∆)1/2u · wtdx+ o(t) ,

as t→ 0.
Thus to be a critical point of (60) is equivalent to

lim
t→0

∫

R

(−∆)1/2u · wtdx = 0 .

Since ΠSm−1 is smooth it follows that wt → w0 = dΠSm−1(u)(v) in H1/2(R,Rm) ∩
L∞(R,Rm) and therefore

∫

R

(−∆)1/4u dΠSm−1(u)(v)dx = 0 .

Since v ∈ Tu(x)S
m−1 a.e., we have dΠSm−1(u)(v) = v a.e. and thus equation (61) follows

immediately.
ii) We prove (62). We take ϕ ∈ C∞

0 (R,
∧

m−2(R
m)). The following holds

∫

R

ϕ ∧ u ∧ (−∆)1/2u dx =

(∫

R

∗(ϕ ∧ u) · (−∆)1/2u dx

)
e1 ∧ . . . ∧ em . (64)

Claim : v = ∗(ϕ ∧ u) ∈ Ḣ1/2(R,Rm) 4 and v(x) ∈ Tu(x)S
m−1 a.e.

Proof of the claim.
The fact that v ∈ H1/2(R,Rm)∩L∞(R,Rm) follows form the fact that its components

are the product of two functions which are in Ḣ1/2(R,Rm) ∩ L∞(R,Rm), which is an
algebra .

We have
v · u = ∗(u ∧ ϕ) · u = ∗(u ∧ ϕ ∧ u) = 0 . (65)

4the symbol ∗ we denote the Hodge-star operator, ∗ : ∧p(R
m) → ∧

m−p(R
m), defined by ∗β = (e1 ∧

. . . ∧ en) • β, the symbol • is the first order contraction between multivectors, for every p = 1, . . . ,m,∧
p(R

m) is the vector space of p-vectors.
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It follows from (61) and (64) that
∫

R

ϕ ∧ u ∧ (−∆)1/2u dx = 0 .

This shows that (−∆)1/2u ∧ u = 0 in D′ , and we can conclude .
iii) As far as equation (63) is concerned it is enough to observe that (−∆)1/2u∧u = 0

and (−∆)1/4u ∧ (−∆)1/4u = 0 . ✷

The Euler Lagrange equation (63) will often be completed by the following “structure
equation” which is a consequence of the fact that u ∈ Sm−1 almost everywhere:

Proposition 3.1 All maps in Ḣ1/2(R, Sm−1) satisfy the following identity

(−∆)1/4(u · (−∆)1/4u) = S(u·, u)− R̄((−∆)1/4u · R(−∆)1/4u), (66)

where, in general for an arbitrary integer n, for every Q ∈ Ḣ1/2(Rn,Mℓ×m(R)), ℓ ≥ 1
and u ∈ Ḣ1/2(Rn,Rm), S is the operator defined by (41).

Proof of Proposition 3.1. We observe that if u ∈ H1/2(R,Rm−1) then the Leibniz’s
rule holds. Thus

∇|u|2 = 2u · ∇u in D′ . (67)

Indeed the equality (67) trivially holds if u ∈ C∞
0 (R,Rm−1). Let u ∈ H1/2(R,Rm−1) and

uj ∈ C∞
0 (R,Rm) be such that uj → u as j → +∞ in H1/2(R,Rm) . Then ∇uj → ∇u as

j → +∞ in H−1/2(R,Rm−1). Thus uj · ∇uj → u · ∇u in D′ and (67) follows.
If u ∈ H1/2(R, Sm−1), then ∇|u|2 = 0 and thus u · ∇u = 0 in D′ as well. Thus u

satisfies equation (66) and this conclude the proof. ✷

We remark that in the sphere case the term R̄((−∆)1/4u ·R(−∆)1/4u) is in the Hardy-
Space H1(R) as well (see Corollary 3.1 in [8]). The estimates (42) and (43) imply in
particular that if u ∈ Ḣ1/2(R,Sm−1) is a 1/2-harmonic map then

‖(−∆)1/4u‖L2(R) ≤ C‖(−∆)1/4u‖2L2(R) . (68)

where the constant C is independent of u.
From the inequality (68) it follows that if ε0 := ‖(−∆)1/4u‖L2(R) is small enough so

that
Cε0 < 1 (69)

then the solution is constant. This the so-called bootstrap test and it is the key observation
to prove Morrey-type estimates and to deduce Hölder regularity of 1/2-harmonic maps.

Indeed by combining Theorem 3.1, Proposition 3.1 and suitable localization estimates
obtained in Section 4 in [8] we get the local Hölder regularity of weak 1/2-harmonic maps.

Theorem 3.2 [Theorem 5.2, [8]] Let u ∈ Ḣ1/2(R, Sm−1) be a weak 1/2-harmonic map.
Then u ∈ C0,α

loc (R, S
m−1), for all α ∈ (0, 1).
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Sketch of Proof of 3.2. The strategy of proof is to show some decrease energy estimates.
From Proposition 4.1 and 4.2 in [8] by using the fact that u∧ (−∆)1/4u and u · (−∆)1/4u
satisfy respectively (63) and (66) one deduces that there exist C > 0 depending on
‖(−∆)1/4u‖L2(R), k̄ ∈ Z depending on ε0 in (69), such that that for every x0 ∈ R, for all
k < k̄ the following estimate holds

||(−∆)1/4u||2L2(B
2k

) ≤ C

∞∑

h=k

(2
k−h
2 )||(−∆)1/4u||2L2(Ah)

(70)

where B2k = B(x0, 2
k), Ah = B2h+1 \B2h−1 . On the other hand one has

2−1

k−1∑

h=−∞

||(−∆)1/4u||2L2(Ah)
≤ ||(−∆)1/4u||2L2(B

2k
) ≤

k−1∑

h=−∞

||(−∆)1/4u||2L2(Ah)
. (71)

By combining (70) and (71) we get

k−1∑

h=−∞

||(−∆)1/4u||2L2(Ah)
≤ C

∞∑

h=k

(2
k−h
2 )||(−∆)1/4u||2L2(Ah)

.

This implies by an iteration argument (see Proposition A.1 in [8], or Lemma A.1 in [24])

sup
x∈B(x0,ρ)

0<r<ρ/8

r−β

∫

B(x,r)

|(−∆)1/4u|2dx ≤ C , (72)

for ρ small enough, for some 0 < β < 1 independent on x0 and C > 0 depending only on
the dimension and on ‖(−∆)1/4u‖2L2(R).

Condition (72) yields that u ∈ C
0,β/2
loc (R) , (see for instance [1] or [11] for the details).

By bootstrapping into the equations (63) and (66) we can deduce that u ∈ C0,α
loc (R) for

all α ∈ (0, 1). ✷

We mention that Schikorra in [24] and the author and Schikorra in [12] extended the
local the Hölder continuity of respectively k/2-harmonic maps (k > 1 odd) and k/p-
harmonic maps (p ∈ (1,∞), k/p ∈ (0, k)) from subsets of Rk into a sphere.

k/p-harmonic maps with values into a sphere are defined as critical points of the
following nonlocal Lagrangian

∫

Rk

|(−∆)
k
2pu|p dxk ,

where u(x) ∈ Sm−1, a.e. and
∫
Rk |(−∆)

k
2pu|p dxk < +∞.
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3.2 Case of 1/2-harmonic maps into a closed manifold

We consider the case of 1/2-harmonic maps with values into a closed C2 n-dimensional
manifold N ⊂ Rm. Let ΠN be the orthogonal projection on N . We denote by PT and
PN respectively the tangent and the normal projection to the manifold N .

They verify the following properties: (PT )
t = PT , (PN)

t = PN (namely they are sym-
metric operators), (PT )

2 = PT , (PN)
2 = PN , PT + PN = Id, PNPT = PTPN = 0 .

In this case the Euler-Lagrange equation associated to the energy (60) and the struc-
tural equation can be expressed as follows:

{
PT (u)(−∆)1/2u = 0 in D′(R)

PN∇u = 0 in D′(R).
(73)

The second step is to reformulate the two equations in (73) by using the commutators
introduced in the previous section. The Euler equation (63) and structural equation (66)
become in this case respectively

(−∆)1/4(P T (−∆)1/4u) = T (P T , u)− ((−∆)1/4P T )(−∆)1/4u︸ ︷︷ ︸
(1)

. (74)

and

(−∆)1/4(R(PN(−∆)1/4u)) = R(S(PN , u))− ((−∆)1/4PN)(R(−∆)1/4u)︸ ︷︷ ︸
(2)

. (75)

Unlike the sphere case the term (1) in (74) is not zero and term (2) in (75) is not in the
Hardy Space.

The main idea in Proposition 1.1 in [9] is the re-writing of the terms (1) and (2) and to
show that v = (PT (−∆)1/4u,RPN(−∆)1/4u)t satisfies a nonlocal Schrödinger type system
with a antisymmetric potential. Precisely we got the following result.

Proposition 3.2 [Proposition 1.1, [9]] Let u ∈ Ḣ1/2(R,N ) be a weak 1/2-harmonic
map. Then the following equation holds

(−∆)1/4v = (−∆)1/4
(
PT (−∆)1/4u
RPN(−∆)1/4u

)
= Ω̃ + Ω1

(
PT (−∆)1/4u
RPN (−∆)1/4u

)
(76)

+ Ω

(
PT (−∆)1/4u
RPN (−∆)1/4u

)
,

where Ω = Ω ∈ L2(R, so(2m)), Ω1 = Ω1 ∈ L2,1(R,Mm×m) with

‖Ω‖L2 , ‖Ω1‖L2,1 ≤ C(‖PT‖Ḣ1/2 + ‖PT‖2Ḣ1/2),

Ω̃ =




−2F (ω1, (PN∆
1/4u)) + T (PT , (−∆)1/4u)

−2F (R((−∆)1/4PN),R((−∆)1/4u))− 2F (ω2, PN((−∆)1/4u) +R(S(PN , (−∆)1/4u))



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ω1, ω2 ∈ L2(R,Mm×m) and

‖ω1‖L2, ‖ω2‖L2 ≤ C(‖PT‖Ḣ1/2 + ‖PT‖2Ḣ1/2).
5

✷

We would like to make some comments on Proposition 3.2.
In [20] and [21] the author proved the sub-criticality of local a-priori critical Schödinger

systems of the form

∀i = 1 · · ·m −∆ui =

m∑

j=1

Ωi
j · ∇uj , (77)

where u = (u1, · · · , um) ∈ W 1,2(D,Rm) and Ω ∈ L2(D,R2 ⊗ so(m)), or of the form

∀i = 1 · · ·m −∆vi =

m∑

j=1

Ωi
j v

j , (78)

where v ∈ Ln/(n−2)(Bn,Rm) and Ω ∈ Ln/2(Bn, so(m)). In each of these two situations the
antisymmetry of Ω was responsible for the regularity of the solutions or for the stability
of the system under weak convergence.

One of the main result in the paper [9] was to establish the sub-criticality of non-local
Schrödinger systems of the form

(−∆)1/4v = Ωv + Ω1v + Z(Q, v) + g(x) (79)

where v ∈ L2(R), Q ∈ Ḣ1/2(R), Z : Ḣ1/2(R)× L2(R) → H1(R) is a linear combination of
the operators (48), (40) and (41) introduced in the previous section, Ω ∈ L2(R, so(m)),
Ω1 ∈ L2,1(R). Precisely we prove the following theorem which extends to a non-local
setting the phenomena observed in [20] and [21] for the above local systems.

Theorem 3.3 [Theorem 1.1, [9]] Let v ∈ L2(R) be a weak solution of (79). Then
v ∈ Lp

loc(R) for every 1 ≤ p < +∞.

From Theorem 3.3 it follows that (−∆)1/4u ∈ Lp
loc(R), for all p ≥ 1 as well, (u as in

Proposition 3.2). This implies that u ∈ C0,α
loc for all 0 < α < 1, since W

1/2,p
loc (R) →֒ C0,α

loc (R)
if p > 2 (see for instance [1]).

The main technique to prove Theorem 3.3 is to perform a change of gauge by rewrit-
ing the system after having multiplied v by a well chosen rotation valued map P ∈
H1/2(R, SO(m)) . 6 In [20] the choice of P for systems of the form (77) was given by the
geometrically relevant Coulomb Gauge satisfying

div
[
P−1∇P + P−1ΩP

]
= 0 . (80)

5The matrices Ω,Ω1, ω1 and ω2 are constructed out of the projection PT .
6SO(m) is the space of m×m matrices R satisying RtR = RRt = Id and det(R) = +1
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In this context there is not hope to solve an equation of the form (80) with the operator
∇ replaced by (−∆)1/4, since for P ∈ SO(m) the matrix P−1(−∆)1/4P is not in general
antisymmetric. The novelty in [9] was to choose the gauge P satisfying the following
(maybe less geometrically relevant) equation which involves the antisymmetric part of
P−1(−∆)1/4P 7:

Asymm
(
P−1(−∆)1/4P

)
:= 2−1

[
P−1(−∆)1/4P − (−∆)1/4P−1P

]
= Ω . (81)

The local existence of such P is given by the following theorem.

Theorem 3.4 There exists ε > 0 and C > 0 such that for every Ω ∈ L2(R; so(m))
satisfying

∫
R
|Ω|2dx ≤ ε, there exists P ∈ Ḣ1/2(R, SO(m)) such that





(i) P−1(−∆)1/4P − (−∆)1/4P−1P = 2Ω ;

(ii)

∫

R

|(−∆)1/4P |2dx ≤ C

∫

R

|Ω|2dx .
(82)

✷

The proof of this theorem is established by following an approach introduced by
K.Uhlenbeck in [29] to construct Coulomb Gauges for L2 curvatures in 4 dimension. The
construction does not provide the continuity of the map which to Ω ∈ L2 assigns P ∈ Ḣ1/2.
This illustrates the difficulty of the proof of Theorem 3.4 which is not a direct consequence
of an application of the local inversion theorem but requires more elaborated arguments.

Thus if the L2 norm of Ω is small, Theorem 3.4 gives a P for which w := Pv satisfies

(−∆)1/4w = −
[
PΩP−1 − (−∆)1/4P P−1

]
w + T (P, P−1w) + PΩ1P

−1w + PZ(Q,P−1w)

= −Symm
(
((−∆)1/4P )P−1

)
w + T (P, P−1w) + PΩ1P

−1w + PZ(Q,P−1w) . (83)

The matrix Symm
(
((−∆)1/4P )P−1

)
belongs to L2,1(R) and this fact comes from the

combination of the following lemma according to which

(−∆)1/4(Symm
(
((−∆)1/4P )P−1

)
) ∈ H1(R)

and the sharp Sobolev embedding 8 which says that f ∈ H1(R) implies that (−∆)−1/4f ∈
L2,1. Precisely we have

7Given am×mmatrixM , we denote byAsymm(M) and by Symm(M) respectively the antisymmetric

and the symmetric part of M , namely Asymm(M) := M−Mt

2 and Symm(M) := M+Mt

2 , M t is the
transpose of M .

8The fact that v ∈ H1 implies (−∆)−1/4v ∈ L2,1 is deduced by duality from the fact that (−∆)1/4v ∈
L2,∞ implies that v ∈ BMO(R). This last embedding has been proved by Adams in [1]
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Lemma 3.1 Let P ∈ H1/2(R, SO(m)) then (−∆)1/4(Symm
(
(−∆)1/4P P−1

)
) is in the

Hardy space H1(R) and the following estimates hold

‖(−∆)1/4[(−∆)1/4P P−1 + P (−∆)1/4P−1]‖H1 ≤ C‖P‖2
Ḣ1/2 ,

where C > 0 is a constant independent of P . This implies in particular that

‖Symm
(
((−∆)1/4P ) P−1

)
‖L2,1 ≤ C‖P‖2

Ḣ1/2 . (84)

The proof of Lemma 3.1 is a consequence of the Theorem 1.5 in [9].

By combining the different properties of the commutators (40), (41), (48) mentioned
in section 2, in [10] we proved that the system (79) is “equivalent” to a conservation law.

Theorem 3.5 Let v ∈ L2(R,Rm) be a solution of (79), where Ω ∈ L2(R, so(m)), Ω1 ∈
L2,1(R), Z is a linear combination of the operators (48), (40) and (41), Z(Q, v) ∈ H1 for
every Q ∈ Ḣ1/2, v ∈ L2 with

‖Z(Q, v))‖H1 ≤ C‖Q‖Ḣ1/2‖v‖L2.

There exists ε0 > 0 such that if

(‖Ω‖L2 + ‖Ω1‖L2,1 + ‖Q‖Ḣ1/2) < ε0,

then there exist A ∈ Ḣ1/2(R, GLm(R))) and an operator B ∈ Ḣ1/2(R) (both constructed
out of (Ω,Ω1, Q)) such that

‖A‖Ḣ1/2 + ‖B‖Ḣ1/2 ≤ C(‖Ω‖L2 + ‖Ω1‖L2,1 + ‖Q‖Ḣ1/2) (85)

dist({A,A−1}, SO(m)) ≤ C(‖Ω‖L2 + ‖Ω1‖L2,1 + ‖Q‖Ḣ1/2) (86)

and
(−∆)1/4[Av] = J (B, v) + Ag, (87)

where J is a linear operator in B, v, J (B, v) ∈ H1(R) and

‖J (B, v)‖H1(R) ≤ C‖B‖Ḣ1/2‖v‖L2 . ✷ (88)

We mention that the case of k/2-harmonic maps (k ≥ 3 odd) with values into a closed
manifold has been considered in [4].

3.3 Case of horizontal 1/2-harmonic maps

We release the assumption that the field of orthogonal projection PT is integrable and
associated to a sub-manifold N and to consider the equation (73) for a general field of
orthogonal projections PT defined on the whole of Rm and for horizontal maps u satisfying
PT (u)∇u = ∇u.
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Precisely we consider PT ∈ C1(Rm,Mm(R)) and PN ∈ C1(Rm,Mm(R)) such that





PT ◦ PT = PT PN ◦ PN = PN

PT + PN = Im

∀ z ∈ Rm ∀U, V ∈ Tz(R
m) < PT (z)U, PN(z)V >= 0

‖∂zPT‖L∞(Rm) < +∞

(89)

For such a distribution of projections PT we denote by

n := rank(PT ).

Such a distribution identifies naturally with the distribution of n−planes given by the
images of PT (or the Kernel of PT ) and conversely, any C1 distribution of n−dimensional
planes defines uniquely PT satisfying (89).

We will present here the proof of the Cα
loc of horizontal 1/2-harmonic maps which

directly uses the conservation law (87) and which is a refinement of the arguments used
in Theorem 3.3 (Theorem 1.1 in [9]). We premise the following result.

Theorem 3.6 Letm ∈ IN∗, then there exists δ > 0 such that for any PT , PN ∈ Ḣ1/2(R,Mm)
satisfying {

PT ◦ PT = PT , PN = Im − PT

∀X, Y ∈ Rm, for a.e x ∈ R < PT (x)X,PN (x)Y >= 0
(90)

and ∫

R

|(−∆)1/4PT |2 dθ ≤ δ (91)

then for any f ∈ H−1/2(R)

(PT + PN R) f = 0 =⇒ f = 0. (92)

Proof of Theorem 3.6.
We first set f := (−∆)1/2u. From (92) it follows that





PT (−∆)1/2u = 0

PNR(−∆)1/2u = 0
(93)

Then set v = (PT (−∆)1/4u,R(PN(−∆)1/4u))t. Therefore v satisfies a system of the form
(79) with Ω ∈ L2(R, so(Rm)) Ω1 ∈ L2,1, (Ω and Ω1 depend on PT ), Z(PT , v) is a linear
operator in PT , v, Z(PT , v) ∈ H1 with

‖Ω‖L2 = ‖Ω‖L2 ≤ C‖PT‖Ḣ1/2

‖Ω1‖L2,1 = ‖Ω1‖L2,1 ≤ C‖PT‖Ḣ1/2

‖Z(PT , v))‖H1 ≤ C‖PT‖Ḣ1/2‖v‖L2
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From Theorem 3.5 it follows that if δ is small enough then there exist A ∈ L∞ ∩
Ḣ1/2(R, GLm(R)) and B ∈ Ḣ1/2(R,Mm×m(R)) such that

(−∆)1/4[Av] = J (B, v) (94)

and

‖A‖Ḣ1/2 + ‖B‖Ḣ1/2 ≤ C‖PT‖Ḣ1/2

dist({A,A−1}, SO(m)) ≤ ≤ C‖PT‖Ḣ1/2 (95)

‖J (B, v)‖H1(R) ≤ C‖B‖Ḣ1/2‖v‖L2.

From (94) and (95) it follows that

‖v‖L2 = ‖A−1Av‖L2 ≤ C‖A−1‖L∞‖Av‖L2 (96)

≤ C‖(−∆)−1/4J (B, v)‖L2,1 ≤ C‖B‖Ḣ1/2‖v‖L2

≤ C‖PT‖Ḣ1/2‖v‖L2 ≤ Cδ‖v‖L2.

Again if δ is small enough then (96) yields v ≡ 0 a.e. and therefore f = 0 a.e. as well. ✷

Proof of Theorem 1.6. The proof of Theorem 1.6 follows by combining Theorem
3.6 and localization arguments used in [9]. ✷

3.4 Applications

In this section we mention two geometric applications related to 1/2-harmonic maps. We
start by proving Theorem 1.4 .

Proof of Theorem 1.4 . 1) (see [5, 14, 18] ). If N = S1, then its harmonic extension
ũ, which is conformal thanks to Theorem 1.3, maps the unit disk B2(0, 1) into itsself
because of the maximum principle. On the other hand it turns out that every conformal
transformation with finite energy from B2(0, 1) into B2(0, 1) and sending S1 into S1 has
to be a finite Blaschke product, namely there exist d > 0, θ0 ∈ R, a1, . . . , ad ∈ B2(0, 1)
such that

ũ(z) =

d∏

i=1

eiθ0
z − ai
1− zāi

.

Since deg(u) = 1 then d = 1 and ũ coincides with a Möbius transformation of the disk.
2) We are going to use the following result by Nitsche [19]: if Σ is a regular minimal

immersion in B3(0, 1) ⊂ R3 that meets B3(0, 1) orthogonally then ∂Σ is a great circle.
Let ũ : B2(0, 1) → B3(0, 1) be the harmonic extension of u. In [11] it has been shown

that u ∈ C1,α(S1), therefore ũ ∈ C1,α(B̄2). Moreover ũ is conformal in B̄2(0, 1) (see
Proposition 3.3 below)9 and by Maximum Principle ũ takes values in B3(0, 1). We set

9We refer to the book [22] for an overview of the the regularity of minimal disks up to the boundary
(solution of the Plateau problem)
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h = |ũ|2. We have −∆h ≤ 0, and h = 1 on S2. By Hopf Boundary Lemma we have
∂h
∂r

6= 0 on S1. Since ũ is conformal up to the boundary, this implies in particular ∇ũ 6= 0
on S1 and therefore ũ is a minimal immersion up to the boundary. Since it meets B3(0, 1)
orthogonally then by Nitsche’s result [19] ũ(S1) = u(S1) is an equatorial circle. Let
T : S2 → S2 be an isometry,10 σ := {az + by + cx = 0, a, b, c ∈ R} be a plane in R3 such
that u(S1) = σ ∩ S2. Define τ = T |σ∩S2 : σ ∩ S2 → S1. Let v := τ ◦ u : S1 → S1 and we
show that it is 1/2-harmonic in S1.

{
∆(τ̃ ◦ u) = 0 in B2

τ̃ ◦ u = τ ◦ u in ∂B2 (97)

Since τ can be identified with a rotation in R3, we have

∂τ̃ ◦ u
∂ν

= τ
∂ũ

∂ν.

It follows that

(−∆)1/2(τ ◦ u) =
∂τ̃ ◦ u
∂ν

= τ
∂ũ

∂ν
= τ(−∆)1/2u ‖ τ ◦ u .

We can conclude the proof. ✷

Proposition 3.3 [Proposition 1.1, [10]] An element in H1/2 satisfying

PT (u) (−∆)1/2u = 0 in D′(S1) (98)

has a harmonic extension ũ in B2(0, 1) which is conformal in B̄2(0, 1) and hence it is
the boundary of a minimal disk whose exterior normal derivative ∂rũ is orthogonal to the
plane distribution given by PT .

Proof of Proposition 3.3. We prove the result by assuming that PT ∈ C2(Rm). In
that case we have that u ∈ C1,α(S1), (see [11]). Denote ũ the harmonic extension of u. It
is well known that the Hopf differential of ũ

|∂x1
ũ|2 − |∂x2

ũ|2 − 2 i 〈∂x1
ũ, ∂x2

ũ〉 = f(z)

is holomorphic. Considering on S1 = ∂B2

2 〈∂rũ, ∂θũ〉 = − sin 2θ
(
|∂x1

ũ|2 − |∂x2
ũ|2
)
− cos 2 θ (− 2 〈∂x1

ũ, ∂x2
ũ〉) = −ℑ

(
z2 f(z)

)
.

Since 0 = PT (u) (−∆)1/2u = PT (u) ∂rũ and 0 = PN(u) ∂θu = PN(u) ∂θũ on S1 we have
that

ℑ
(
z2 f(z)

)
= 0 on S1.

Hence the holomorphic function z2 f(z) is equal to a real constant. Since f(z) cannot
have a pole at the origin we have that z2f(z) is identically equal to zero and thus ũ is
conformal. ✷

10The isometry group of the sphere S2 is isomorphic to the group SO(3) of orthogonal matrices.
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