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Abstract. In these expanded lecture notes of the minicourse held at the

workshop on “Homotopy algebras, deformation theory and quantization” at
the Mathematical Research and Conference Center in Bȩdlewo, the theory of

derived representation schemes is reviewed with the aim to present the simplest

instance of the relation to N = 2 supersymmetric gauge theory.
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1. Introduction

In these notes we review parts of the theory of derived representation schemes
as developed in [3–6], with an emphasis on examples and with a view towards the
relation to N = 2 supersymmetric gauge theory and an application [14] to the
analytic properties of gauge theory partition functions.

One motivation for the theory of derived representation schemes is the approach
to non-commutative geometry proposed by Kontsevich and Rosenberg [19]: to an
associative algebra A (over C, say) we can associate a sequence An of commuta-
tive algebras, namely the algebras of polynomial functions on the space of repre-
sentations (algebra homomorphisms) A → End(Cn). The idea is that the non-
commutative geometry of A should be encoded in the commutative geometry of
the algebras An. Of course this idea has its limitations: for example there are
associative algebras, such as algebras of differential operators which don’t have fi-
nite dimensional representations. Even if they have “enough” representations, the
representation schemes Spec(An) can be very singular. In this case it is natural
to pass to the world of derived geometry, which in our case means that we replace
our algebra by a suitable resolution, technically a cofibrant replacement, which is
a differential graded algebra, and apply the functor A 7→ An to the resolution.
We obtain a differential graded commutative algebra whose homology is called the
n-th representation homology H•(A,n). With the machinery of model categories
one sees that this construction is independent (up to isomorphism) of the choice
of resolution. Moreover one has that H0(A,n) = An and if the associative alge-
bra is smooth (quasi-free) in the sense of Cuntz and Quillen [11], then all An are

smooth and thus the representation schemes RepAn = Spec(An) are smooth. Also
Hi(A,n) = 0 for i 6= 0, for smooth algebras (under mild finiteness assumptions),
see [4, Theorem 21]. So, in a sense, higher representation homology groups give
additional information on the non-commutative geometry of an associative algebra,
measuring the non-smoothness.

One of the main non-trivial examples we will consider is the polynomial algebra in
two variables A = k[x, y] over a field k of characteristic 0. This algebra is not smooth
as an associative algebra and indeed the representation schemes are the commuting
schemes of pairs of commuting n × n matrices, known to be singular schemes for
n ≥ 2. For the representation homology we have a conjectural description of its
GLn-invariant part, see Conjecture 3.19, leading to new combinatorial identities
(which can be proved). Another example, relevant to gauge theory, is obtained by
replacing the relation xy−yx = 0, defining the commuting scheme, by xy−yx+ij =
0 with some additional variables i, j. The representations we are after are such that
x and y are sent to n × n matrices and i, j to n × r, r × n matrices, respectively.
More precisely we are considering representations of a quiver with relations. These
representations belong to the 0-level of the moment map in the description of framed
instanton on R4 by Atiyah–Drinfeld–Hitchin–Manin: the moduli space M(n, r) of
framed U(r) instantons with instanton number n is the GIT quotient of the 0-level
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by the natural action of GLn. It is a smooth algebraic variety with an action of
GLr ×GL2, with GL2 acting by linear transformations of x, y.

This establishes the connection to N = 2 supersymmetric gauge theory. Indeed
it turns out that the character-valued Euler characteristic of the GLn-invariants
in the representation homology of the ADHM quiver of dimension (n, r) coincides

with the instanton number n contribution Z(n)
5D to the K-theoretic Nekrasov parti-

tion function of the N = 2 supersymmetric pure Yang–Mills theory with gauge

group U(r) in an Ω-background [28]. Mathematically Z
(n)
5D may be defined as∑

i(−1)i chT H
i(M(n, r),O) in terms of the characters of the sheaf cohomology

with respect to action of the torus of diagonal matrices in GLr×GL2. Replacing the
structure sheaf O by other T -equivariant vector bundles yields partition functions
of gauge theories with matter fields. They depend on the vector bundles through
their classes in the equivariant K-theory. Since the cohomology groups have finite

dimensional weight spaces Z
(n)
5D and the partition function Z5D =

∑
vnZ

(n)
5D make

sense as formal power series. Also they can be computed by the localization for-
mula, see [24, 28]. Still the question of convergence is subtle and is part of our
discussion below.

These lecture notes consist of three parts, roughly corresponding to the three
lectures of the minicourse. Section 2 contains foundational material on representa-
tion schemes of associative algebras with examples and exercises. In Section 3 we
introduce derived representation schemes and representation homology. Some basic
results are quoted, in particular about the comparison of representation homology
with more classical invariants. The example of the derived commuting scheme is
described in more detail; in this case the Harish–Chandra isomorphism conjecture
and its relation with constant term identities, which we use in the third part, is
explained. In Section 4 we introduce Nekrasov partition functions in four and five
dimensions and explain the relation to representation homology. The relation with
generalized random matrix models and the application to the convergence of the
partition function are sketched in this section.

Throughout these lectures, the ground field k is assumed to contain Q (k = C
in Section 4),

Acknowledgments. The author learned most of the material of Sections 2 and
3 from Yuri Berest and Ajay Ramadoss. He is grateful to them and the other
coauthors of [2–4], from which some of the material is taken, and who should not
be held responsible for the mistakes in these notes. The author also wishes to thank
Ivan Cherednik, Stefano D’Alesio, Corrado De Concini, Andrei Okounkov, Ujjwol
Paudel and Claudio Procesi for discussions on matters related to these notes and the
referee for their careful reading and pertinent suggestions. This research is partially
supported by the National Centre of Competence in Research SwissMAP—The
Mathematics of Physics of the Swiss National Science Foundation.

2. Representation schemes

Let Algk the category of unital associative algebras over the field k of charac-
teristic zero. Its objects are associative algebras A with unit 1A and a morphism
f : A→ B is a linear map such that, for all a, b ∈ A,

f(ab) = f(a)f(b), f(1A) = 1B .
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2.1. Representations. If V is a k-vector space then the space Endk(V ) of k-linear
maps V → V is an object of Algk. A representation of A on a vector space V is a
morphism ρ : A → Endk(V ). The dimension of a representation is the dimension
of the underlying vector space V . If dimV = n is finite then upon choosing a basis
we can assume that V = kn and identify Endk(V ) with the algebra Mn(k) of n×n
matrices with entries in k. The group GLn(k) of invertible matrices acts on the
set of representation by change of basis. Representations related by this action are
called equivalent.

We are interested in the sequence of representation spaces

RepAn (k) = HomAlgk(A,Mn(k)), n = 1, 2, 3, . . . ,

and in the sets of equivalence classes RepAn (k)/GLn(k).

2.2. Representation schemes. The set RepAn (k) is the set of k-rational points

of an affine scheme over k, the n-th representation scheme RepAn . Before giving

the construction of this scheme, or rather of its coordinate ring An = k[RepAn ], we
characterize it by a universal property, by giving its sets of B-points for any B. For
a commutative unital algebra B let Mn(B) be the algebra of matrices with entries
in B and set

RepAn (B) = HomAlgk(A,Mn(B)),

the set of n-dimensional matrix representations of A with coefficients in B. A mor-
phism f : B → B′ of unital commutative algebras induces a morphism of associative
algebras Mn(f) : Mn(B)→Mn(B′) (act on each matrix entry) and a map

f∗ = Mn(f) ◦—: RepAn (B)→ RepAn (B′),

such that (f ◦ g)∗ = f∗ ◦ g∗ for any composition of morphisms f, g of commutative

unital algebras. In other words RepAn is a covariant functor

(2.1) RepAn : ComAlgk → Set

from the category of unital commutative algebras to the category of sets.

Definition 2.1. Let n be a natural number and A a unital associative alge-
bra. A pair (B, π) consisting of a commutative algebra B and representation
π : A → Mn(B) with coefficients in B is called universal if for any n-dimensional
representation ρ : A → Mn(B′) there is a unique morphism f : B → B′ so that
ρ = f∗π.

Proposition 2.2. Let A ∈ Algk and n ∈ {1, 2, . . . }. Then there is a universal
representation (An, πn). It is unique in the sense that for any other universal
(A′n, π

′
n), there exists a unique isomorphism f : A′n → An such that π′n = πn ◦ f .

The uniqueness is standard for this sort of definitions and is left to the reader.
The existence is proven below. The universal property of πn implies that GLn acts
by automorphisms on An. Let AGLn

n = {a ∈ A : g · a = a for all g ∈ GLn} be the
algebra of invariants.

Definition 2.3. The n-th representation scheme of A is RepAn = Spec(An). The

n-th character scheme of A is RepAn //GLn = Spec(AGLn
n ).

We will mostly consider the coordinates rings An and AGLn
n rather than the

schemes themselves.
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Remark 2.4. It may be useful to interpret the result geometrically: suppose that
B = O(X) is the space of regular functions on X. Then a representation of A with
coefficients in B is a family of representations with parameter space X. The state-
ment is that every such family is the pullback of a universal family parametrized
by RepAn by a map X → RepAn .

2.3. Construction of An. We are ready to give a proof of Prop. 2.2, which we do
by exhibiting an algebra An given A and n: An is the commutative algebra with
generators aij , one for each a ∈ A and 1 ≤ i, j ≤ n subject to the relations

1ij = δij1, (λa+ µb)ij = λaij + µbij , (ab)ij =

n∑
l=1

ailblj ,

for all λ, µ ∈ k, a, b ∈ A, 1 ≤ i, j ≤ n. The universal representation is πn : a 7→
(aij)1≤i,j≤n and is clearly a representation. If ρ : A 7→ Mn(B) is a representation
then the matrix entries ρij(a) ∈ B of ρ(a) obey the same relations as the aij ,
implying that the morphism f : An → B with f(aij) = ρij(a) is well defined and

obeys f∗πn = ρ. If f̃∗πn = ρ for some other morphism f̃ then f̃(aij) = ρij(a) and

f̃ has the same values on generators of An as f and is thus equal to f .

2.4. The representation functor as an adjoint functor. Recall that a pair of
functors F : C → D, G : D → C between categories C,D is called an adjoint pair
if there is a family of bijections

ϕx,y : HomD(F (x), y)→ HomC(x,G(y))

which is natural in both x and y (i.e., ϕ—,— is a natural transformation between
the two functors on Cop ×D). In this case we write F : C � D :G and say that F
is left adjoint to G or that G is right adjoint to F .

We apply this notion to the functor B 7→ Mn(B) on the category ComAlgk of
commutative algebras over k, sending B to the associative algebra of n×n matrices
with entries in B.

Theorem 2.5. The functor Mn : ComAlgk → Algk has a left adjoint functor (—)n:

(—)n : Algk � ComAlgk :Mn

In other words we have isomorphisms

(2.2) HomComAlgk(An, B)→ HomAlgk(A,Mn(B))

that are natural in A and B.

In particular the functor (2.1) is corepresented by An and A 7→ An is a functor
from associative algebras to commutative algebras. It is a standard fact that Theo-
rem 2.5 follows from Prop. 2.2: given a universal representation (An, πn), the map
2.2 sends f ∈ HomComAlgk(An, B) to Mn(f) ◦ πn. The universal property of πn is
the statement that this map is an isomorphism.

2.5. Examples.

Example 2.6. Let A = k[x] be the algebra of polynomials in a variable x with
coefficients in k. Then for any n × n matrix X ∈ Mn(B) there is a unique rep-

resentation ρ such that ρ(x) = X. Thus RepAn is an affine space of dimension n2

and An = k[xij , i, j = 1, . . . n] is a polynomial algebra in n2 variables, the matrix
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entries xij . The invariant subalgebra AGLn is generated by the coefficients ci of the
characteristic polynomial (of −X)

det(t1 +X) = tn +

n∑
i=1

ci(X)tn−i

of X = (xij), which are algebraically independent. Thus

AGLn
n ' k[c1, . . . , cn]

Example 2.7. The polynomial algebra A = k〈x1, . . . , xm〉 in non-commutative vari-
ables x1, . . . , xm is the algebra of formal linear combinations of words xi1 · · ·xik . It
is the free algebra with generators x1, . . . , xm, namely morphisms A → B in Algk
are in one-to-one correspondence with maps {x1, . . . , xm} → B. Thus RepAn is an
affine space of dimension mn2 and An is the polynomial algebra in matrix entries
xaij , a = 1, . . . ,m, 1 ≤ i, j ≤ n. The algebra of invariants is generated by the traces

tr(Xa1 · · ·Xak), 1 ≤ k ≤ n2, 1 ≤ ai ≤ m
of the matrices Xa = (xaij), see [35], Ch. 8. These invariants are not algebraically
independent in general: for example if m = 2 and n = 2, AGLn

n is generated by five

algebraically independent invariants: tr(Xj
i ) i, j = 1, 2, and tr(X1X2).

Example 2.8. Let A = k[x, y] be the polynomial algebra in two (commuting) vari-
ables x, y. Then a representation A 7→ Mn(B) is the same thing as a pair (X,Y )
of commuting matrices and An = k[xij , yij , i, j = 1, . . . , n]/I where I is the ideal
generated by

n∑
l=1

xilylj − yilxlj , i, j = 1, . . . , n.

The corresponding scheme RepAn is called the commuting scheme.

Example 2.9. More generally let A be a finitely presented algebra. So A is the
quotient of a free algebra F = k〈x1, . . . , xm〉 by the two-sided ideal generated
by relations ri ∈ F , i = 1, . . . , p. Let Rn = k[X1, . . . , Xm] denote the polynomial
ring in mn2 variables Xi = (xiab)

n
a,b=1, viewed as entries of m matrices X1, . . . , Xm.

The universal representation for the free algebra is the morphism πn : F →Mn(Rn)
sending xi to Xi. Then An = k[X1, . . . , Xm]/I where I is the ideal generated by
the matrix entries of the matrix-valued polynomials πn(ri), i = 1, . . . , p. In fact
this construction works for any finitely generated algebra: the ideal I is still finitely
generated by the Hilbert basis theorem.

Example 2.10. An example with empty representation schemes: the algebra of
polynomial differential operators A = k〈x,D〉/(Dx − xD − 1) does not have any
finite dimensional representations since for any ρ : A→Mn(k), we have ρ(D)ρ(x)−
ρ(x)ρ(D) = 1 which is impossible since the left-hand side has trace zero while the
trace of the right-hand side is n.

2.6. Relative representation scheme. It will be useful to consider a slight gen-
eralization of representation schemes. Let A be a unital associative algebra over
k and j : S → A a morphism of unital associative algebras. Then for any repre-

sentation ρS : S → End(V ) we have a scheme Rep
S\A
V , called the representation

scheme relative to (S, V ) whose k-points are morphisms ρ : A→ End(V ) such that
ρ ◦ j = ρS . If we take S = k, V = kn and ρS sending 1A to the identity matrix we
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recover the definition of representation scheme. The main motivation for us comes
from representations of quivers which we review next.

2.7. Path algebras of quivers. Let Q = (Q0, Q1, h, t) be a quiver (or directed
graph). Thus Q consists of a set Q0 of vertices, Q1 of arrows and two maps
h, t : Q1 → Q0 (head, tail of an arrow). We say that a ∈ Q1 goes from i to j

and write i
a→ j if h(a) = j and t(a) = i. A path on Q from i ∈ Q0 to j ∈ Q0

is a finite sequence (i = i0, e1, i1 . . . , e`, i` = j) such that ik ∈ Q0, ek ∈ Q1 and
h(ek) = ik = t(ek−1) for all k = 1, . . . , `. Denote by Pi,j the set of paths from i to
j and P = tPi,j the set of all paths. There is an obvious associative concatenation
map Pi,j ×Pj,k → Pk,j . The path algebra kQ of Q is the vector space with basis P .
The product of basis elements is the concatenation if defined and zero otherwise.
The paths pi = (i) of length 0 are orthogonal idempotents in kQ:

pipj = δijpi, i, j ∈ Q0.

If Q0 is finite, which we will always assume, then kQ is a unital algebra with unit
1 =

∑
i∈Q0

pi and the idempotent pi span a unital subalgebra S.

Let (Vi)i∈Q0
be a collection of vector spaces labeled by the vertices of a quiver Q.

A representation of Q on (Vi) is simply an assignment of a linear map ρ(e) : Vt(e) →
Vh(e) for each edge e ∈ Q1. Equivalently it is a representation of the path algebra
kQ on V = ⊕i∈Q0Vi such that ρ(pi) is the projection onto Vi for all idempotents
pi. In other words we have a representation of kQ relative to the representation V
of the subalgebra S of idempotents.

A quiver with relations is a quiver with a set of formal linear combinations rk of
paths in Pik,jk with the same endpoints. The path algebra of a quiver with relations
rk is the quotient kQ/I of the path algebra of the quiver by the two sided ideal I
generated by the relations rk.

Example 2.11. Let Q be the quiver with one vertex and m arrow x1, . . . , xm. The
the path algebra of Q is the free algebra k〈x1, . . . , xm〉. Relations are just elements
of this free algebra and the path algebra of a quiver with relations with underlying
quiver Q is a finitely generated algebra with a presentation by generators and
relations.

Let S be as above the algebra generated by the idempotents pi, i ∈ Q0 and ρS
be the representation of S sending pi to the projection onto Vi in a direct sum
V = ⊕i∈Q0

Vi. Then we have a morphism S → kQ/I and a representation of the
quiver Q with relations is a representation on V whose pull-back to S is ρS .

2.8. Smooth algebras. A notion of smoothness for associative algebras was in-
troduced by Cuntz and Quillen [11] under the name of quasi-free algebras. One
definition, which we adopt, is via the lifting property for square zero ideals. It is
the associative version of a characterization of smoothness for affine schemes by
Grothendieck (Chapter 0 in EGA IV).

An ideal I ⊂ B of an algebra B ∈ Algk is called a square zero ideal if I2 = 0,
i.e., if ab = 0 for every pair a, b ∈ I.

Definition 2.12. An associative algebra A ∈ Algk is formally smooth if it has
the following lifting property for square zero ideals I ⊂ B in an arbitrary B ∈
Algk: every map A → B/I factors as A → B → B/I, where the second map is
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the canonical projection. An associative algebra is called smooth if it is finitely
generated and formally smooth.

The main examples of smooth associative algebras are free associative algebras:
they have the lifting property for all ideals, not just square zero ideals.

The main non-examples are the polynomial algebras in m ≥ 2 variables or more
generally the coordinate rings of affine schemes of dimension ≥ 2. In particular
a smooth commutative algebra is usually not smooth as an associative algebra:
the commutative notion of formal smoothness requires the lifting property only for
commutative B.

Theorem 2.13. Representation schemes of smooth algebras are smooth.

The proof is left as an exercise (see Exercise 6).

2.9. Exercises.

(1) Show that A1 = A/A[A,A]A, the quotient of A be the two-sided ideal
generated by commutators [a, b] = ab− ba, a, b ∈ A.

(2) Show that if 1 ∈ [A,A] then An = 0 for all n. Show that this is the
case for the algebra of differential operators in m variables with polynomial
coefficients. Hint: show that RepAn (B) is empty except if B = 0 using the
fact that the trace of an n× n matrix vanishes on commutators.

(3) Show that A 7→ An is a functor.
(4) An idempotent in an algebra is an element e such that e2 = e.

(a) Show that if f : A 7→ B/I is a map to a quotient by a square zero ideal
and e ∈ A is an idempotent then there exists an idempotent E ∈ B
such that f(E) = e+ I.

(b) Show that the direct sum A⊕B of smooth algebras is smooth.
(c) Show that path algebras of quivers are smooth.

(5) Let k be algebraically closed and f(x) ∈ k[x] a nonzero polynomial. Show
that k[x]/f(x)k[x] is smooth if and only if the polynomial f(x) has only
simple zeros.

(6) Use the adjunction of Theorem 2.5 to show that if A is smooth then An is
smooth for all n.

3. Derived representation schemes

3.1. Differential graded algebras. A Z grading of a k-vector space A is a de-
composition as a direct sum

A = ⊕i∈ZAi
The summands Ai are called homogeneous components and we say that a ∈ Ai is
homogeneous and has degree i or |a| = i. A vector space with a Z-grading is called a
Z-graded vector space. Morphisms of Z-graded vector spaces are degree preserving
linear maps. Ordinary vector spaces can be viewed as Z-graded vector spaces with
Ai = 0 for i 6= 0. They form a full subcategory of the category of Z-graded vector
spaces.

A Z-graded algebra is a unital associative algebra A with a Z-grading such that
Ai ·Aj ⊂ Ai+j . The unit element 1 necessarily belongs to A0, which is a subalgebra.

A differential on a Z-graded vector space A is a linear map d : A→ A such that

(1) d(Ai) ⊂ Ai−1 (d has degree −1),
(2) d ◦ d = 0.
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A chain complex over k is a Z-graded vector space with a differential. A mor-
phism of chain complexes, also called a chain map, is a morphism of Z-graded vector
spaces commuting with the differentials.

The homology of a chain complex (C, d) is the graded vector space H•(C, d) =
⊕Hi(C, d), with

Hi(C, d) = Ker(d : Ci → Ci−1)/Im(d : Ci+1 → Ci).

This is well-defined since the space of boundaries B(d) = Im(d) is contained in
the space of cycles Z(d) = Ker(d) because d2 = 0. Also a chain map f : C →
C ′ sends cycles to cycles and boundaries to boundaries and thus induces a map
H•(f) : H•(C)→ H•(C

′) such that H•(fg) = H•(f)H•(g). In other words we have
a homology functor H• from the category of chain complexes to the category of
graded vector spaces.

Definition 3.1. A differential graded algebra (dga) over k is a Z-graded algebra A
with a differential d which is a graded derivation:

d(ab) = d(a)b+ (−1)|a|ad(b),

for all homogeneous a, b ∈ A. A morphism of differential graded algebras is a
morphism of algebras which is also a chain map.

An immediate consequence of the definition is that the homology of a dga is a
Z-graded algebra. Indeed the cycles form a Z-graded algebra and the boundaries
form an ideal in the algebra of cycles. Also a morphism f : A → B induces an
algebra morphism H•(f) : H•(A)→ H•(B).

Definition 3.2. A dga is commutative if

ab = (−1)|a||b|ba

for all homogeneous a, b. Morphisms of commutative dgas are morphisms of dgas.

Definition 3.3. A morphism of dgas or of commutative dgas is called a quasi-
isomorphism if it induces an isomorphism in homology.

We denote by DGAk the category of (unital) differential graded algebras over k
and by CDGAk the full subcategory of commutative dgas.

Definition 3.4. The tensor product of dgas A⊗B is the dgas with homogeneous
components

(A⊗B)i = ⊕j+l=iAj ⊗Bl,
product

(a⊗ b)(a′ ⊗ b′) = (−1)|b||a
′|aa′ ⊗ bb′,

and differential
d(a⊗ b) = da⊗ b+ (−1)|a|a⊗ db.

3.2. Free algebras. Free algebras are important examples of graded algebras. Let
V ⊗m = V ⊗ · · ·⊗V (m factors) denote the m-fold tensor product of a vector space
V with itself.

The tensor algebra of a graded vector space V = ⊕Vi is

T (V ) = k ⊕ V ⊕ V ⊗2 ⊕ V ⊗3 ⊕ · · ·
with homogeneous components

T (V )i = ⊕k ⊕i1+···+ik=i Vi1 ⊗ · · · ⊗ Vik .
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The product is defined by concatenation:

(a1 ⊗ · · · ⊗ an)(b1 ⊗ · · · ⊗ bm) = a1 ⊗ · · · ⊗ an ⊗ b1 ⊗ · · · ⊗ bm.

It is the free graded algebra generated by V (T is left adjoint of the forgetful functor
DGAk → Vectk to vector spaces).

If (xi)i∈I is a homogeneous basis of V then T (V ) has a homogeneous basis of
words

xi1xi2 · · ·xim , m ≥ 0, is ∈ I,
including the empty word 1.

The symmetric group Sl, which is the group of permutations of l letters, acts on
V ⊗l with the Koszul sign rule: the transposition si of i and i+ 1 acts via

sij(· · · ⊗ vi ⊗ vi+1 ⊗ · · · ) = (−1)|vi||vi+1| · · · ⊗ vi+1 ⊗ vi ⊗ · · · .

Definition 3.5. The symmetric algebra of a graded vector space V = ⊕Vi is the
direct sum of coinvariants

Sym(V ) =

∞⊕
m=0

Symm(V ), Symm(V ) = (V ⊗m)Sm ,

with the understanding that Sym0(V ) = k. In other words, Sym(V ) is the quotient
of T (V ) by the two-sided ideal generated by vw− (−1)|v||w|wv for all homogeneous
v, w ∈ V . It is the free graded commutative algebra generated by V .

If (xi)i∈I is a homogeneous basis of V then we denote Sym(V ) also k[xi, i ∈ I].
It has a basis of monomials

∏
i∈I x

ni
i where ni = 0 except for finitely many i and

ni ∈ {0, 1} for variables xi of odd degree.
If V is a chain complex then T (V ) and Sym(V ) are differential graded algebras.

The differential is uniquely determined by the condition that the inclusion of gen-
erators V → T (V ), V → Sym(V ) are chain maps. The algebras T (V ), Sym(V ) are
the free differential graded (commutative) algebras generated by the chain complex
V . We will need to consider more generally semi-free differential graded algebras,
whose underlying graded algebras are free but whose differential is not assumed to
be induced by a differential on V .

3.3. Representation schemes of differential graded algebras. The general-
ization of the functors (—)n to dgas is straightforward: if B is a commutative dga
then Mn(B) with differential acting on each matrix entry is a dga. A representation
of a dga A with coefficients in B is a morphism A → Mn(B) of dgas. There is a
universal representation A→Mn(An) given by the same construction as in Section
2.3. This gives:

Proposition 3.6. There is a pair of adjoint functors

(—)n : DGAk � CDGAk :Mn

3.4. Representation homology. A dga over k is called semi-free if it is free as a
graded algebra, i.e., it is isomorphic as a graded algebra (forgetting the differential)
to the tensor algebra of a graded vector space. A (non-negatively graded) semi-free
resolution of an algebra A, viewed as a dga concentrated in degree 0, is a quasi-
isomorphism QA → A, where QA is semi-free and concentrated in non-negative
degrees.
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Definition 3.7. The nth representation homology H•(A,n) of an algebra A ∈ Algk
is the homology

H•(A,n) = H•((QA)n)

of the n-th representation algebra of a semi-free resolution of A.

In Section 4 we will need a generalization to the relative case S → A. A reso-
lution is taken in the category of differential graded algebras over S, resulting in a
homology H•(S\A, V ) see [5] for details.

For Definition 3.7 to make sense we need the existence of semi-free resolutions
and that the result is independent of the choice of resolution.

Let us first consider the existence question in a simple, apparently innocent,
example, the two-dimensional algebra A = k[x]/(x2) of dual numbers. The general
case follows the same pattern. As a first approximation to a semi-free resolution
we adjoin a variable p of degree 1 that “kills the relations”;

R = k〈x, p〉, dp = x2, dx = 0.

Then Z0(R) = k[x] and B0(R) = span(d(xmpx`)) = x2k[x], and H0(R) = A as
desired. However H1(R) 6= 0 as it contains the class of px − xp which cannot
possibly be a boundary as all boundaries have degree at least 2 in x. So we add a
new variable killing this cocycle;

R′ = k〈x, p, p′〉, dp′ = px− xp.
Now the strategy is clear: we recursively add new variables of higher and higher
degree to kill cocycles degree by degree and we get a sequence of algebras

R ⊂ R′ ⊂ R′′ ⊂ · · ·
whose homology in degree zero is A and whose homology in positive degree vanishes
up to higher and higher degree. The direct limit (union) of this sequence is a
resolution QA.

Exercise. Let A = k[x]/(x2). Show that QA = k〈p0, p1, p2, . . . 〉 with deg pi = i,
differential defined by dp0 = 0 and

dpi =

i−1∑
k=0

(−1)kpi−1−kpk, i ≥ 1,

and map QA→ A sending p0 to x and pi to 0 for i > 0, is a semi-free resolution of
A.

Proposition 3.8. The representation homology is independent of the choice of
semi-free resolution up to isomorphism of graded commutative algebras.

3.5. Derived representation schemes. Proposition 3.8 is a consequence of a
stronger statement holding on the level of homotopy categories. We formulate it
for simplicity in the absolute case and refer to [5] for the relative case of an algebra
homomorphism S → A.

Theorem 3.9 (Berest, Khatchatryan, Ramadoss [5]). The functor A 7→ An has a
total left derived functor

L(—)n : Ho(DGAk)→ Ho(CDGAk)

between homotopy categories.
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We proceed to give a short explanation of the terminology used in the statement
of this theorem. The setting is Quillen’s theory of model categories [36, 37]. See
[13,16,17] for accounts of this theory and the appendices to [5] for a summary and
the applications to categories of differential graded algebras.

The homotopy categories in Theorem 3.9 are localizations with respect to the
class of quasi-isomorphisms. Recall that a localization D = C[W−1] of a category C
with respect to a class W of morphisms is a pair (D, γ) consisting of a category D
and a functor γ : C → D sending morphisms in W to isomorphisms and such that
for any other pair (D′, γ′) with this property, there is a unique functor f : D → D′

such that γ′ = f ◦ γ. Given a localization (D, γ) and a functor f : C → E, a left
derived functor g = Lf of f is a pair (g, t) consisting of a functor g : D → E and
a natural transformation t : g ◦ γ → f such that for any other pair (g′, t′) there
exists a unique natural transformation s : g′ → g such that t′ is the composition
g′ ◦ γ′ → g ◦ γ → f of the natural transformations s ◦ γ and t. As usual with these
definitions through universal properties, localizations and derived functors, if they
exist, they are unique in the appropriate sense.

What makes it possible to work with these abstract definitions is Quillen’s
theory of model categories. These are categories with finite limits and colimits,
equipped with three distinguished classes of morphisms, called weak equivalences,
fibrations and cofibrations, obeying a system of axioms borrowed from homotopy
theory of topological spaces, which provide the prototypical example. The cate-
gories DGAk,CDGAk are model categories such that weak equivalence are quasi-
isomorphisms and fibrations are epimorphisms in each degree.

The homotopy category Ho(C) of a model category C is the localization (C[W−1],
γC) with respect to the class W of weak equivalences and a total left derived functor
Lf of a functor f : C → D between model categories is a left derived functor of the
composition γD ◦ f : C → Ho(D).

To get a more explicit description of homotopy categories and derived functors
we need to involve fibrations and cofibrations. A fibrant object of a model category is
an object A so that the map A→ ∗ to the terminal object is a fibration. Similarly a
cofibrant object A is such that the map ∅→ A from the initial object is a cofibration.
It follows from the axioms that for every object A of a model category there is a
cofibrant object QA and a weak equivalence QA → A which is also a fibration.
Such an object QA is called a cofibrant replacement of A and is the generalization
of a projective resolution in homological algebra.

The homotopy category of a model category C such that all objects are fibrant,
such as DGAk,CDGAk, may be realized concretely as the category whose objects
are the objects in C and whose morphisms A→ B are homotopy classes π(QA, QB)
of morphisms between cofibrant replacements. Homotopies between morphisms are
defined in model categories. For model categories of differential graded algebras
they can be described explicitly in terms of the algebraic de Rham algebra Ω =
k[t] ⊕ k[t]dt (with the convention that the differential d : t 7→ dt has degree −1).
Namely, a homotopy between morphisms f and g : A → B with A cofibrant is a
morphism A → B ⊗ Ω such that h(0) = f and h(1) = g (the evaluation h(a) at a
means setting t = a and dt = 0).

The functor L(—)n applied to an associative algebra A is the coordinate ring
of the nth derived representation scheme DRepnA. A semi-free differential graded
algebra QA with a surjective morphism QA → A is an example of a cofibrant
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replacement of A and the coordinate ring O(DRepnA) is realized as the commu-
tative differential graded algebra (QA)n. It is shown in [5, Section 2.3.6] that for
a suitable choice of cofibrant replacement the derived representation scheme is iso-
morphic to the derived space of actions, a derived scheme previously introduced by
Ciocan-Fontanine and Kapranov, see [10, Section 3.3]

3.6. Comparison maps. In this section we introduce two algebras that map to
and from the invariant part of representation homology. The trace map maps
the symmetric algebra of the cyclic homology to the representation homology and
the Harish–Chandra homomorphism maps the invariant part of the representation
homology to the symmetric algebra of the first representation homology. These
constructions allow us to compare the representation homology with more classical
invariants.

Definition 3.10. The character of a representation ρ : A → Mn(B) with coeffi-
cients in a commutative algebra B is the map A → B given by the trace (sum of
diagonal matrix entries)

χρ(a) = tr ρ(a).

The two basic properties of characters are easy to prove:

Proposition 3.11.

(1) χρ vanishes on commutators [a, b] = ab− ba.
(2) If ρ and ρ′ are equivalent then χρ = χρ′ .

Let [A,A] be the vector subspace of A spanned by commutators. Then χρ(a),

as a function of ρ is a GLn-invariant function on RepAn . We thus obtain a map
Trn : A/[A,A]→ AGLn

n . The formal definition is:

Definition 3.12. The trace map

Trn : A/[A,A]→ AGLn
n

is the character of the universal representation:

Trn(a) = trπn(a) =

n∑
i=1

aii

Example 3.13. Let A = k[x]. Then A/[A,A] = A, An = k[xij , 1 ≤ i, j ≤ n]. Let
X = (xij) ∈Mn(An).

Trn(xp) = tr(Xp) =

n∑
i1,...,ip=1

xi1,i2xi2,i3 · · ·xip,i1 .

More general invariant functions can be obtained by taking linear combinations
of products of characters. This yields an algebra homomorphism, extending Trn

(3.1) Trn : Sym(A/[A,A])→ AGLn
n .

Theorem 3.14 (Procesi 1976 [34]). The trace map 3.1 is surjective.

For k[x] this means that the functions on n× n matrices

tr(Xp1) · · · tr(Xpm), X = (xij),

span the space of GLn invariant polynomials in the matrix entries, cf. Example 2.7.
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Now A/[A,A] = HC0(A) is the degree zero cyclic homology and the trace map
extends [5] naturally to a map

Trn : HC•(A)→ H•(A,n).

We get a comparison map from cyclic homology to representation homology. It
is shown in [6] that while a naive extension of Procesi’s theorem does not hold,
one gets a stabilization results for augmented algebras. In the case of augmented
algebras there are GLn-equivariant maps An+1 → An, H•(A,n+ 1)→ H•(A,n) so
one has an inverse limit H•(A,∞) which has a Hopf algebra structure. Then the
trace map defines an isomorphism of Hopf algebras SymHC•(A)→ H•(A,∞)GL∞ ,
where HC•(A) is the reduced cyclic homology of A. See [6] for details and more
precise statements.

The other comparison map is with the derived version of the “commutativisa-
tion” of an associative algebra A, i.e. the commutative algebra A/A[A,A]A. As we
have seen in Exercise 1 it coincides with algebra A1 of functions on the first repre-
sentation scheme which is the degree zero part of the first representation homology
H•(A, 1).

The direct sum of representations ρi : A 7→Mni(B) of dimension ni, i = 1, . . . ,m
of A ∈ Algk is the representation ρ = ρ1 ⊕ · · · ⊕ ρm of dimension n =

∑
ni given

by the block diagonal matrices

ρ(a) =


ρ1(a)

ρ2(a)
. . .

ρm(a)

 .

This defines a map (restriction to direct sum representations)

ϕ : An → An1
⊗ · · · ⊗Anm .

Indeed we have a map ⊕ :
∏m
i=1 RepAni(B)→ RepAn (B) which defines a map

m∏
i=1

Hom(Ani , B) ' Hom(⊗ni=1Ani , B)→ Hom(An, B).

Now take B = ⊗ni=1Ani (the coproduct in CDGAk): the image of the identity map
is ϕ.

We will be mostly concerned with the special case where all ni = 1. In the
description of Section 2.3 the map An → A⊗n1 is given by

aij 7→ aiδij

where ai = 1⊗ · · · ⊗ a⊗ · · · ⊗ 1 with a in the ith factor. It induces a morphism of
algebras, called the Harish-Chandra homomorphism

AGLn
n → (A⊗n1 )Sn

Example 3.15. Let A = k[x]. Then An = k[X] = k[xij , i, j = 1, . . . , n] and
A⊗n1 = k[x1, . . . , xn]. The algebra AGLn

n consists of conjugation invariant polyno-
mial functions on n× n-matrices which is a polynomial algebra An = k[c1, . . . , cn]
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in the coefficients of the characteristic polynomial, see Example 2.6. The Harish-
Chandra homomorphism k[c1, . . . , cn]→ k[x1, . . . , xn]Sn is the restriction to diago-
nal matrices and sends cr to the elementary symmetric function∑

i1<···<ir

xi1 · · ·xir .

It is well-known to be an isomorphism.

The Harish-Chandra homomorphism extends to a homomorphism of differential
graded algebras and induces an algebra homomorphism

H•(A,n)GLn → (H•(A, 1)⊗n)Sn

called the derived Harish-Chandra homomorphism. It restricts to the Harish-
Chandra homomorphism in degree 0. In the previous example the representation
homology is concentrated in degree 0 and thus the derived Harish-Chandra homo-
morphism is an isomorphism. In the next section we discuss a less trivial example.

3.7. Derived commuting schemes. Here we return to Example 2.8. We view the
algebra k[x, y] as an associative algebra: it is the quotient of the free algebra k〈x, y〉
by the relation xy − yx = 0. Following the strategy of Section 3.4 to construct a
semi-free resolution and adjoin a variable θ of degree 1 with differential

dθ = xy − yx.

It turns out that we do not need to adjoin other variables to get a resolution.
Namely the differential graded algebra QA = k〈x, y, θ〉 with this differential has
vanishing homology in negative degree so that the map QA→ A defined by setting
θ to 0 is a quasi-isomorphism.

The representation homology is the homology of the commutative differential
graded algebra C•(A,n) = k[X,Y,Θ] = k[xij , yij , θij , i, j = 1, . . . , n], with differen-
tial

dxij = dyij = 0, dθij =

n∑
l=1

(xilylj − yilxlj).

The homology of this complex seems to be hard to compute except for n = 1 in
which case the differential vanishes so that

H•(A, 1) = k[x, y, θ] = k[x, y]⊕ k[x, y]θ.

The derived Harish–Chandra homomorphism is then the map

(3.2) H•(k[x, y], n)GLn → k[x1, . . . , xn, y1, . . . , yn, θ1, . . . , θn]Sn

induced by the map of differential graded algebras

xij 7→ xiδij , yij 7→ yiδij , θij 7→ θiδij .

Conjecture 3.16. The derived Harish-Chandra homomorphism 3.2 is an isomor-
phism.

The conjecture has a combinatorial identity (which can actually be proved) as
an interesting consequence. It is obtained by comparing character-valued Euler
characteristics. The complex QA is infinite dimensional but decomposes as a direct
sum of subcomplexes QAm with fixed weightm ∈ Z2

≥0 for the action of (k×)2 so that
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xij has weight (1, 0), yij has weight (0, 1) and θij has weight (1, 1). The homology
and its invariant part decompose accordingly into finite dimensional weight spaces:

H•(A,n) = ⊕m∈Z2
≥0
H•(A,n)m,

H•(A,n)GLn = ⊕m∈Z2
≥0
H•(A,n)GLn

m .

We can then define the character-valued Euler characteristic as the generating func-
tion of the Euler characteristics of the weight subcomplexes. We are interested in
the invariant part, so we set

χ(A,n) =
∑

m∈Z2
≥0

∑
i≥0

(−1)i dimHi(A,n)GLn
m qm1

1 qm2
2

=
∑

m∈Z2
≥0

∑
i≥0

(−1)i dimCi(A,n)GLn
m qm1

1 qm2
2 .

Here we used that the Euler characteristic of the homology of a finite dimensional
complex is the same as the Euler characteristic of the complex and that taking
invariants for a reductive group such as GLn commutes with passing to homology.

Recall that the dimension of the GLn-invariant subspace of a finite dimensional
representation of GLn is given by Weyl’s formula

dimV =
1

n!
CT

chA V
∏
i 6=j

(
1− zi

zj

)
in terms of the character

chA V =
∑
µ∈Zn

dimVµz
µ1

1 · · · zµnn ,

where V = ⊕Vµ is the decomposition of V into weight spaces for the action of the
torus A = (k×)n of diagonal matrices in GLn. Here

CT: Z[z±11 , . . . , z±1n ]→ Z

is the constant term (coefficient of z01 · · · z0n) of a Laurent polynomial. Applying
Weyl’s formula to C•(A,n)m gives

χ(A,n) =
1

n!
CT

∑
m∈Z2

≥0

∑
d≥0

(−1)d chA(Cd(A,n)m)
∏
i 6=j

(
1− zi

zj

)
qm1
1 qm2

2 .

where CT is extended to a map Z[z±11 , · · · , z±1n ][[q1, q2]] → Z[[q1, q2]] by acting on
coefficients. The characters are easy to calculate explicitly in terms of geometric
series since the weight spaces are spanned by monomials. We get

(3.3) χ(A,n) =
1

n!
CT

n∏
i,j=1

′ (1− q1q2zi/zj)(1− zi/zj)
(1− q1zi/zj)(1− q2zi/zj)

.

The notation
∏′

indicates that one should omit the factors 1− zi/zj with i = j.
This is to compared with the Euler characteristic of

(H•(A, 1)⊗n)Sn = k[xi, yi, θi, i = 1, . . . , n]Sn .
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This Euler characteristic can be computed by enumerating Sn-orbits of monomials.
The answer can be written in many different ways, see [3]. Here is one formula-
tion, which will be useful to us to estimate gauge theory partition functions. An-
other, mentioned below in Conjecture 3.19, leads to generalizations for reductive
Lie groups replacing GLn.

Lemma 3.17. Let En = k[xi, yi, θi, i = 1, . . . , n]Sn be the algebra of Sn-invariants
of the free graded commutative algebra with generators xi, yi of degree 0 and θi of
degree 1. Let (En)d,m be the weight m components of the homogeneous component
of degree d. Let further

an(q1, q2) =
∑

m∈Z2
≥0

n∑
d=0

(−1)d dim(En)d,mq
m1
1 qm2

2 .

be the character-valued Euler characteristic of (H•(A, 1)⊗n)Sn . Then the formal
power series an(q1, q2) converges to a holomorphic function for |q1| < 1, |q2| < 1
and is the coefficient of vn of the Taylor expansion at 0 of
∞∑
n=0

vnan(q1, q2) =
1− v∏∞

n=1(1− vqn1 )(1− vqn2 )
= exp

( ∞∑
n=1

1− qn1 qn2
(1− qn1 )(1− qn2 )

vn

n

)
.

Let (q; q)n =
∏n
j=1(1 − qj). Using the product formula for the q-exponential

function
1∏∞

j=0(1− vqn)
=

∞∑
j=0

vn

(q; q)n

we get the more explicit formula

(3.4) an(q1, q2) =

n∑
j=0

qj2
(q1; q1)j(q2, q2)n−j

The comparison of (3.4) with (3.3) leads to an identity of formal power series in
q1, q2 (and of holomorphic functions on the neighbourhood of 0).

Theorem 3.18. The constant term identity

1

n!
CT

n∏
i,j=1

′ (1− q1q2zi/zj)(1− zi/zj)
(1− q1zi/zj)(1− q2zi/zj)

=

n∑
j=0

qj2
(q1; q1)j(q2, q2)n−j

holds in Z[[q1, q2]], where the prime means that the factors (1 − zi/zj) with i = j
are omitted.

We derived this formula by comparing Euler characteristics from the conjecture
that the Harish-Chandra map is an isomorphism. However Theorem 3.18 can be
deduced replacing k[x, y] by the quantum plane k〈x, y〉/(xy − ζyx) with ζ not a
root of unity. In this case the representation homology is concentrated in degree
0 and the Harish-Chandra isomorphism conjecture can be proved, see [3]. The
Euler characteristics are insensitive to ζ since the chain complexes are modules
independent of ζ, the only dependence is in the differential.

We end the discussion with a conjectural generalization of this identity [3]. Let
G be a connected compact Lie group with Lie algebra g and adjoint representation
Ad: G→ GL(g). The Haar measure dg on G is normalized so that

∫
G
dg = 1. Let

T ⊂ G be a maximal torus. The Weyl group W = N(T )/T acts on the Lie algebra
h of T .
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Conjecture 3.19. [3] For any q1, q2 ∈ C so that |q1|, |q2| < 1,∫
G

det(1− q1q2 Ad(g))

det(1− q1 Ad(g)) det(1− q2 Ad(g))
dg =

1

|W |
∑
w∈W

det(1− q1q2w)

det(1− q1w) det(1− q2w)
.

where the determinants are defined by the natural action of W on h.

This conjecture is proved for G = U(n) since it is a rephrasing of the identity
of Theorem 3.18. It was checked for U(n), SU(n), for classical groups in the stable
range and up to second order in the Taylor expansion in powers of q1, q2 for arbitrary
G in [3], and for B2, G2 [32]. Note that the left-hand side can be written as a
constant term via Weyl’s integration formula [7, Ch. IX, §9]. The set of roots
R ⊂ h∗ spans the root lattice Q. Let ZQ be the group ring of Q. We use the
customary notation eα to denote the element of ZQ corresponding to α ∈ Q. The
constant term CT: ZQ → Z is the linear map such that eα 7→ δα,0. It extends
to a linear map ZQ[[q1, q2]] → Z[[q1, q2]] defined by acting on coefficients. The
conjecture may be written as (r = dim h)

(1− q1q2)r

(1− q1)r(1− q2)r
CT

∏
α∈R

(1− q1q2eα)(1− eα)

(1− q1eα)(1− q2eα)
=
∑
w∈W

det(1− q1q2w)

det(1− q1w) det(1− q2w)
.

The conjecture is a consequence of a more general conjecture. A representation of
k[x, y] in n× n matrices is the same as a Lie algebra homomorphism a→ gln from
the two-dimensional abelian Lie algebra a with basis x, y. A Lie algebra version of
derived representation schemes exists, see [2,3], and gives a representation homology
H•(a, g) for reductive Lie algebras g such that H0(a, g) is the coordinate ring of the
scheme of Lie algebra homomorphisms a → g. The adjoint action of g extends
to the representation homology and one has a Harish-Chandra homomomorphism
H•(a, g)ad g → H•(a, h)W , which is conjectured to be an isomorphism for a two-
dimensional abelian and g reductive with Cartan subalgebra h and Weyl group W .
It is checked for classical Lie algebras in the stable range where the rank tends to
infinity.

The following statement, mildly supporting the conjecture, is left as an exercise.

Exercise. Prove Conjecture 3.19 for q2 = 0 in the following way. Recall that the
Chevalley theorem, see [8, Ch. V, §5] states that for any semisimple Lie algebra
g of rank r the algebra Sym(g∗)g of invariants in the symmetric algebra for the
coadjoint action of g is isomorphic by the canonical restriction map g∗ → h∗ to the
algebra of Weyl group invariant functions Sym(h∗)W on a Cartan subalgebra.

Let w ∈ W act on h with eigenvalues λ1, . . . , λr. Show that the induced action
of w on Symd h∗ has eigenvalues λn1

1 · · ·λnrr with ni ∈ Z≥0,
∑
ni = d. Deduce that

the generating function
∑∞
d=0 q

d tr(w|Symd(h∗)) of characters of w is det(1− qw)−1.
Show with the Chevalley isomorphism that∫

G

1

det(1− qAd(g))
dg =

1

|W |
∑
w∈W

1

det(1− qw)
.

Moreover Sym(h∗)W is a free commutative algebra with generators Id1 , . . . , Idr with

Idi ∈ Symd(h∗) homogeneous of degree di. Show that∫
G

1

det(1− qAd(g))
dg =

r∏
i=1

1

1− qdi
.
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or, as a constant term identity,

(3.5)
1

|W |
CT

∏
α∈R

1− eα

1− qeα
=

r∏
i=1

1− q
1− qdi

.

Remark 3.20. The Macdonald constant term conjecture [20], proved for any root
systems R by Cherednik [9],

(3.6)
1

|W |
CT

∞∏
n=0

∏
α∈R

1− qneα

1− qnteα
=

∞∏
n=0

r∏
i=1

(1− qnt)(1− qn+1tdi−1)

(1− qn+1)(1− qntdi)
,

for root systems of rank r, is a two variable version of the identity∫
G

det(1− qAd(g))dg =

r∏
i=1

(1− q2di−1)

to which it reduces for t = q2 (Macdonald’s original conjecture [20, Conjecture 3.1]
is for t = qk, k ∈ Z>0 when the products reduce to finite products). The latter
identity follows in the same way as in the exercise from the Hopf–Koszul–Samelson
theorem stating that the invariants (

∧
g)g in the exterior algebra of a semisimple

Lie algebra g is the exterior algebra in generators of degree 2di− 1, i = 1, . . . , r. So
our conjecture is an “even” version of the Macdonald constant term identity and the
Macdonald identity itself can be understood in terms of representation homology
of a super Lie algebra, see [3]. Note that the Macdonald identity (3.6) also reduces
to (3.5) as q → 0.

4. N = 2 supersymmetric gauge theory

In this lecture we describe the connection of representation homology with N = 2
supersymmetric gauge theory in the simplest case of pure super Yang–Mills theory,
and its application to analytic properties of the partition function. The ground
field is taken to be k = C.

4.1. Instanton partition function of N = 2 Yang–Mills theory. The start-
ing point of our discussion is Nekrasov’s instanton partition function which is the
contribution of instantons to the full partition function of the gauge theory in the
Ω-background.

The Nekrasov instanton partition function of N = 2 supersymmetric Yang–Mills
theory with gauge group U(r) on R4 in the Ω-background with parameters ε1, ε2 is

given as a sum over r-tuples ~Y = (Yi)
r
i=1 of Young diagrams of total size |~Y |:

Z4D(ε1, ε2, a, q, λ) =
∑
~Y

q|
~Y |

r∏
α,β=1

∏
b∈Yα

1

Eαβ(b)(ε1 + ε2 − Eαβ(b))
,

Eαβ(b) = aα − aβ − lYβ (b)ε1 + (aYα(b) + 1)ε2.

In this formula

• The Coulomb parameters a = (a1, . . . , ar) ∈
√
−1Rn parametrize boundary

conditions of scalar fields in the vector multiplets.
• The Ω-background parameters ε1, ε2 are equivariant parameters for the ac-

tion of U(1)2 on R4 = C2.
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b aY (b)

lY (b)

Figure 1. Arm and leg length of a box b of a Young diagram Y .
In this example aY (b) = 3, lY (b) = 2.

• aY (b), lY (b) denote the arm and leg length of the box b ∈ Y . The arm and
leg lengths of a box b in a Young diagram Y are the number of boxes to its
right and below it, respectively, see Figure 1.

The intuitive definition of the instanton partition function Z4D of a gauge the-
ory in 4 dimensions with gauge group U(r) should be a count of instantons (anti-
selfdual connections) with proper behaviour at infinity up to gauge equivalence.
Instantons come with a topological invariant called the instanton number and

Z4D =
∑∞
n=0 q

nZ
(n)
4D with q related to the coupling constant and Z

(n)
4D the con-

tribution of instantons of instanton number n. So we try and write

(4.1) Z
(n)
4D =

∫
M(n,r)

1

where M(n, r) is the moduli space of framed instantons of instanton number n,
which is best viewed mathematically as the moduli space of torsion free sheaves
on CP2 of rank r, second Chern class n and with fixed trivialization at infinity.
The way Nekrasov makes sense of this expression is to consider 1 as an equivariant
cohomology class of the action of U(1)×U(1) on CP2, which induces a U(1)×U(1)
action on M(n, r). From the present point of view it is better to consider the
partition function as the limit of the partition function of a 5-dimensional theory.

4.2. Five-dimensional supersymmetric theory. Z4D is the limit of the instan-
ton partition function on R4 × S1

λ as the radius λ of the circle tends to 0:

Z5D(q1, q2, u, v) =
∑
~Y

v|
~Y |

r∏
α,β=1

∏
b∈Yα

1

(1− Fαβ(b))(1− q1q2Fαβ(b)−1)
,(4.2)

Fαβ(b) = uαu
−1
β q
−lYβ (b)
1 q

aYα (b)+1
2

The partition function Z4D is obtained by setting

qi = e−λεi , uα = e−λaα , v = qλ2re−λr(ε1+ε2)/2,

and taking the limit of each summand as λ→ 0.
In the five-dimensional case equivariant cohomology is replaced by equivariant

K-theory and the integration is replaced by pushforward of the map to a point,
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which may be expressed in terms of sheaf cohomology and can be computed by the
localization formula.

We proceed to explain the steps of this construction, starting from the Atiyah–
Drinfeld–Hitchin–Manin (ADHM) description ofM(n, r) in terms of linear algebra
data.

4.3. ADHM equations. In the ADHM description, M(n, r) is a Hamiltonian
quotient

M(n, r) = T ∗(Mn,n ×Mn,r)//µGLn

under the symplectic action of GLn by conjugation on the space of n× n matrices
Mn,n and by left multiplication on n × r matrices Mn,r. It is a smooth algebraic
variety of dimension 2nr. The Hamiltonian quotient is the Geometric Invariant
Theory (GIT) quotient µ−1(0)/GITGLn for the moment map

µ : T ∗(Mn,n ×Mn,r)→Mn,n, µ(X, I, Y, J) = [X,Y ] + IJ.

Here X, I are coordinates on Mn,n×Mn,r and the dual coordinates Y, J are on the
dual vector space, which we identify with Mn,n ×Mr,n via the trace pairing. GIT
means that we take the GLn-orbits of the four-tuples (X, I, Y, J) ∈ µ−1(0) obeying
the stability condition: there is no non-trivial proper subspace of Cn containing
I(Cr) that is invariant under X and Y .

We refer to [12] for an explanation of the relation to torson free sheaves and
instantons and the hyperkähler structure on M(n, r). The variety M(n, r) is a
special case of a Nakajima quiver variety, see [23], which is the natural context for
our discussion.

4.4. Torus action. The torus T = U(1)2×U(1)r acts onM(n, r): (t1, t2) ∈ U(1)2

acts by (X, I, Y, J) 7→ (t1X, t1t2I, t2Y, J) and the action U(1)r is the restriction to
diagonal matrices of the action of U(r) given by g · (X, I, Y, J) 7→ (X, Ig−1, Y, gJ).
This action induces an action on the sheaf cohomology groups Hi(X,O) with coeffi-
cient in the structure sheaf, which decomposes into a direct sum of finite dimensional
weight spaces for T .

4.5. Instanton count in the five-dimensional theory and equivariant K-

theory. The contribution Z
(n)
5D of instanton number n to the instanton partition

function Z5D =
∑
n≥0 v

nZ
(n)
5D is by definition

Z
(n)
5D =

2nr∑
i=0

(−1)ichTH
i(M(n, r),O),

which can be understood as the push-forward of the class of the trivial bundle in
T -equivariant theory [24–26, 28]. It may be understood in more physical terms
as a Witten index, see [27]. The cohomology groups Hi(M(n, r),O) have finite
dimensional weight spaces for the action of U(1)2 and only positive weights appear.
Thus, in terms of the equivariant parameters ui of U(1)r and q1, q2 of U(1)2,

Z
(n)
5D ∈ Z[u±11 , . . . , u±1r ][[q1, q2]]

which lies in a completion of the K-theory KT (pt) of a point. The action of T on
M(n, r) has isolated fixed points labeled by r-tuples of Young diagrams of total
size r. The localization formula gives then the answer (4.2), see [26,28].
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4.6. Gauge theory on S4, AGT correspondence. The Nekrasov partition
function appears in a variety of contexts in physics and mathematics. We men-
tion here a few.

• The square of the absolute value of the Nekrasov partition function |Z4D|2
(or |Z5D|2) appears in the integrand over the Coulomb parameters of the
partition function of N = 2 supersymmetric gauge theory on S4 (or S4×S1)
with ellipsoidal metric with half-axes ε1, ε2 [31, 33].
• Partition functions for gauge theory with matter fields are obtained by re-

placing the trivial bundle by suitable vector bundles (or their Chern char-
acters in the 4D case).
• By the AGT (Alday–Gaiotto–Tachikawa) correspondence [1], Nekrasov in-

stanton partition functions (with suitable matter fields) are related to con-
formal blocks of Liouville or Toda theories, or their q-deformations for the
theory in five dimensions. The pure Yang–Mills gauge theory case we con-
sider here can be obtained in a confluent limit, see [15], in which conformal
blocks degenerate to square norms of Whittaker vectors.

4.7. A special case of the AGT correspondence in 5 dimensions: Gaiotto
states. The AGT correspondence is far from being understood mathematically in
the general case. One degenerate limit has a relatively clear meaning in representa-
tion theory. It concerns the representation theory of the deformed Virasoro algebra
[38], which is the associative algebra with topological generators Tn, n ∈ Z with
quadratic relations

[Tn, Tm] = −
∞∑
l=1

rl(Tn−lTm+l−Tm−lTn+l)−
(1− q1)(1− q2)

1− q1q2
(qn1 q

n
2−q−n1 q−n2 )δm+n,0,

∑
l≥0

rlx
l = exp

∑
n≥1

(1− qn1 )(1− qn2 )

1 + qn1 q
n
2

xn

n
.

In a suitable limit q1, q2 → 1 we recover the Virasoro algebra, and much of the
representation theory of the Virasoro algebra applies to the deformed case. The
relevant objects for our discussion are Whittaker vectors in Verma modules.

The Verma module Mh with highest weight h ∈ C is generated by a vector |h〉
with relations Tn|h〉 = δn,0h|h〉, for n ≥ 0. It has a grading Mh = ⊕∞n=0Mh,n by
eigenspaces of T0 to the eigenvalues h + n. The decomposition into eigenspaces is
orthogonal for the Shapovalov bilinear form on Mh, which is the unique bilinear
form such that S(|h〉, |h〉) = 1 and S(Tnx, y) = S(x, T−ny).

A Gaiotto state (or Whittaker vector) [15] is a formal power series |G〉 =∑∞
n=0 ξ

n|Gn〉 with coefficients |Gn〉 ∈Mh,n such that

T1|G〉 = ξ|G〉, Tj |G〉 = 0, j ≥ 2,

and with the normalization condition |G0〉 = |h〉.
The normed squared S(|G〉, |G〉) is a degenerate limit of a conformal block and

coincides by the AGT correspondence to the Nekrasov partition functions of the
N = 2 supersymmetric Yang–Mills theory.

We will see that the norm squared, which is a priori a formal power series in ξ
has in fact a finite radius of convergence.
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Figure 2. The quiver corresponding to the ADHM relations.

4.8. Derived representation scheme for ADHM relations. To relate gauge
theory to representation homology we view the ADHM relations as representations
of a quiver with relations.

Indeed, for the moment map µ defined in Section 4.3, µ−1(0) is the relative

representation scheme Rep
S\A
V of the path algebra A of the quiver of Figure 2 on

V = Cr ⊕ Cn with ADHM relations XY − Y X + IJ = 0 on the generators. Here
S is the algebra of idempotents, see 2.6, 2.7.

A cofibrant replacement QA of the path algebra with ADHM relation has an
additional generator Θ of degree 1 whose differential enforces the relation on ho-
mology:

dΘ = XY − Y X + IJ, dX = dY = dI = dJ = 0.

ThenH•(S\A, V ) is the homology of the free graded commutative algebra generated
by matrix entries

C[xαβ , yαβ , iαµ, jµβ , θαβ |α, β = 1, . . . , n, µ = 1, . . . , r]

with induced differential

dθαβ =
∑
γ

(xαγyγβ − yαγxγβ) +
∑
µ

iαµjµβ .

The torus (C×)2 acts by rescaling of X,Y . Also GLn ×GLr acts on the represen-
tation homology. In particular we have an action of T = U(1)2 × U(1)r on the
GLn-invariants of representation homology H•(S\A, V ) relative to the the subal-
gebra S generated by the idempotents.

The observation of [2] is that the character-valued Euler characteristic of the
GLn-invariants in representation homology of the ADHM quiver coincides with the
contribution of instanton number n of the Nekrasov partition function on R4×S1.
Namely if we set

χn = χ(S\A, V ) =
∑
i

(−1)i chT Hi(S\A, V )GLn , V = Cn ⊕ Cr,

we observe that
χn = Z

(n)
5D .

Actually we arrive at the constant term formula (see Section 3.7 for the definition
of CT)

χn =
1

n!

(1− q1q2)n

(1− q1)n(1− q2)n

CT

n∏
j=1

r∏
α=1

1

(1− uα/zj)(1− q1q2zj/uα)

∏
j 6=k

(zj − zk)(zj − q1q2zk)

(zj − q1zk)(zj − q2zk)

which is an alternative formula for Z
(n)
5D . The constant term can be replaced by an

integral over the torus |zi| = ρ, i = 1, . . . , n of the differential form obtained by
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multiplying by
∏
j dzj/(2πizj) (assuming |qj | < 1, |uα| = 1). The radius ρ is such

that 1 < ρ < |q1q2|−1. Such integral formulas are known in the physics literature,
see [21, 22]. The sum over r-tuples of partitions can be recovered by applying the
residue theorem, see the appendix to [14] for a detailed proof.

Exercise. Prove this formula for χn (the calculation is very similar to the one in
Section 3.7).

4.9. Analytic properties of the partition function. We now sketch a result
on the convergence of the partition function Z5D which is a priori a formal power
series. The range of parameters of interest for gauge theory on S4 × S1 with
ellipsoid geometry is ε1, ε2 > 0 and ai ∈

√
−1R. In the exponential variables

0 < q1, q2 < 1, |ui| = 1. In the AGT correspondence the central charge of Liouville
theory is c = 1 + 6(b + b−1)2 ∈ (1,∞), ε1 = b, ε2 = b−1 and we may assume that
Re εi > 0. There are two ranges of parameters relevant for the AGT correspondence:
The strongly coupled Liouville theory with 1 < c < 25, ε1 = ε̄2 ∈ S1, and the
weakly coupled Liouville theory: c > 25, ε1, ε2 > 0. A relevant limiting case is
the Nekrasov–Shatashvili limit ε2 → 0 with fixed ε1, and is connected to quantum
integrable systems [29,30].

In the exponential variables qj = exp(−λεj) with λ > 0, the ranges are q1 = q̄2
with |qj | < 1 and 0 < q1, q2 < 1, respectively.

Theorem 4.1. [14] Let |q1|, |q2| < 1, |uα| = 1. Suppose that either q1 = q̄2 or
q1, q2 ∈ R+. Then the formal power series Z5D(v) has convergence radius (at least)
1 and depends analytically on the parameters.

Variants of this theorem for more general gauge theories, including with matter
fields, can be proved by the same methods, see [14].

Corollary 4.2. Under the assumptions of Theorem 4.1, the norm of the Gaiotto
state for the deformed Virasoro algebra is analytic for |ξ| < (q1q2)1/2.

The proof of the theorem amounts to an estimate of the asymptotic behaviour

of the coefficients Z
(n)
5D = Z

(n)
5D (q1, q2, ~u) of the formal power series Z5D: we need to

show that lim supn→∞(Z
(n)
5D )

1
n ≤ 1. This can be done with techniques from unitary

random matrix theory.

We write Z
(n)
5D as an expectation value

Z
(n)
5D = ζnE

 n∏
j=1

r∏
α=1

1

(1− uα/zj)(1− q1q2zj/uα)


for a system of particles z1, . . . , zn on a circle of radius ρ with Boltzmann distribu-
tion

1

ζn
exp

−∑
j<k

W (zj/zk)

∏ dzi
2πizi

with the pair potential

W (z) = − log

∣∣∣∣ (1− z)(1− q1q2z)(1− q1z)(1− q2z)

∣∣∣∣2 ,
for z on the unit circle, which is repulsive at short distances, see Figure 3.
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Figure 3. The pair potentialW (exp(iθ)) for q1 = 0.7 and q2 = 0.9
as a function of the angle θ.

The estimate of E(· · · ) uses techniques of potential theory adapted from ran-
dom matrix theory, see [18]. One proves that for large n the particle configurations
approach an equilibrium distribution on the circle, which is the solution to a vari-
ational problem. The essential observation [14] is that the pair potential W is

positive definite in the sense that
∫ 2π

0
W (ei(θ1−θ2))ρ(θ1)ρ(θ2)dθ1dθ2 ≥ 0 for any

continuous real-valued function ρ such that
∫ 2π

0
ρ(θ)dθ = 0. It follows that the

equilibrium distribution is the uniform distribution on the circle. The asymptotic
behaviour of the integral is then calculated by evaluating the integrand on this
distribution.

The normalization factor ζn (Z
(n)
5D at r = 0) is the character-valued Euler char-

acteristic of the representation homology of k[x, y] and can be computed explicitly
as we saw in Section 3.7 with the result

∞∑
n=0

vnζn = exp

( ∞∑
n=1

1− qn1 qn2
(1− qn1 )(1− qn2 )

vn

n

)
.

The right-hand side converges for |v| < 1 so we get that limn→∞ |ζn|
1
n = 1.

4.10. Open questions.

• The formal limit λ → 0 of the estimated radius of convergence converges
to the expected radius of convergence in the 4D theory. However the con-
vergence is not uniform and we cannot deduce a result on the analyticity
of Z4D.
• From the point of view of random matrices the equilibrium measure in the

4D theory is no longer uniform as the two-particle potential is attractive at
intermediate distances. It would be interesting to describe this distribution.
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