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The story starts with the wave equation in the heterogeneous domain. Let D be a smooth
bounded domain with density ρb and bulk modulus κb. The complement of D is an acoustic
material of density ρ and bulk modulus κ. The wave equation in such material reads in the whole
space

1

κ(x)

∂2u

∂2t
− div

(
1

ρ(x)
∇u
)

= 0 in Rd, (1)

where

κ(x) =

{
κb if x ∈ D,
κ if x ∈ Rd \D,

ρ(x) =

{
ρb if x ∈ D,
ρ if x ∈ Rd \D.

One of the objectives of the lecture is to understand the resonances of the system (1) in the high
contrast regime

δ :=
ρb
ρ
→ 0. (2)

Minnaert was the first to demonstrate physically that air bubbles [4] have the property to interact
with waves whose wavelength is several order of magnitudes of the size of the bubble. Such result
can be obtained by a thorough asymptotic analysis of (1) in the low frequency regime. See

https://www.college-de-france.fr/site/en-pierre-louis-lions/
seminar-2017-06-02-11h15.htm

for a presentation on Minnaert resonnaces (in French) including a demonstrating experiment.

1 Derivation of the Helmholtz equation
In order to study the behavior of (1) at a given frequency ω, one considers an incident wave
uin(t, x) = eiωtuin(x), oscillating at the frequency t. Since uin comes from the far field, we can
consider it solves

1

κ

∂2uin
∂2t

− 1

ρ
∆u = 0 in Rd.

Inserting uin(t, x) = eiωtuin(x) implies that uin solves the Helmholtz equation in Rd:

∆uin + k2uin = 0 in Rd

with

k := ω

√
ρ

κ
.

The quantity

v :=

√
κ

ρ

is homogeneous to a velocity and is the speed of the sound in the medium Rd \D. When the wave
uin encounters the heterogeneity D, it generates a scattered field us(t, x) := u(t, x)−uin(t, x) which
oscillates at the same frequency ω. Inserting u(t, x) = eiωtu(x) in (1), we find that u satisfies

div

(
1

ρ(x)
∇u
)

+
ω2

κ(x)
u = 0 in Rd.

1

https://www.college-de-france.fr/site/en-pierre-louis-lions/seminar-2017-06-02-11h15.htm
https://www.college-de-france.fr/site/en-pierre-louis-lions/seminar-2017-06-02-11h15.htm


This equation holds in a distributional sense, which means more precisely

∆u+ k2bu = 0 in D,

∆u+ k2u = 0 in Rd \D,
1

ρ

∂u

∂n

∣∣∣∣
+

=
1

ρb

∂u

∂n

∣∣∣∣
−

on ∂D,

u|+ = u|− on ∂D,

(3)

where we have denoted

kb := ω

√
ρ

κ
.

Furthermore, the scattered field us := u − uin must be outgoing, which can be mathematically
formulated as the Sommerfeld radiation condition:(

∂

∂|x|
− ik

)
(u− uin) = O

(
|x|−(d+1)/2

)
as |x| → +∞. (4)

We can prove that the formulation (3) and (4) admits a unique solution. It is useful to reformulate
the third line of (3) in terms of the contrast parameter δ of (2):

∂u

∂n

∣∣∣∣
−

= δ
∂u

∂n

∣∣∣∣
+

on ∂D. (5)

2 Layer potentials
As we will see generically in this lecture, the asymptotic analysis of (3) in terms of the parameter
δ is possible once he have an (rather) explicit representation of the solution u in terms of the
parameter δ. Such is possible by the use of layer potentials.

Another method to obtain asymptotic expansions in parameter dependent partial differential
equations is the method of matched asymptotic expansions, see e.g. [2].

Layer potentials exploit the knowledge of the fundamental solution of a differential operator.
In fact, there may be infinitely many fundamental solutions for a given differental operator. For
the Helmholtz equation, a fundamental solution Γk satisfies

(∆ + k2)Γk = δ0

in the sense of distributions. The physically relevant one is the outgoing fundamental solution
given by

Γk(x) :=
k

d
2−1

4(2π)d/2−1
Yd/2−1(k|x|)− iJd/2−1(k|x|)

|x|d/2−1

where Jd/2−1 and Yd/2−1 are the Bessel functions of the first and second kind of order (d/2 − 1),
see [3] for a derivation. In dimensions 2 and 3, Γk is given by

Γk(x) =


− i

4
H

(1)
0 (k|x|), if d = 2,

− e
ik|x|

4π|x|
, if d = 3.

where
H

(1)
0 (k|x|) = J0 + iY0.

is the Hankel function of the first kind. The definition of the single and double layer potentials are
motivated by the following result.
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Proposition 1. Let u a function satisfying
(∆ + k2)u = 0 in Rd \ ∂D(

∂

∂|x|
− ik

)
u = O

(
|x|−(d+1)/2

)
as |x| → +∞.

(6)

and D ⊂ Rd a smooth domain of Rd. Then for any x ∈ Rd \ ∂D, u(x) can be expressed in terms
of its trace and its normal derivative on ∂D:

∀x ∈ Rd \ ∂D, u(x) =

∫
∂D

Γk(x− y)

s
∂u

∂n
(y)

{
dσ(y)−

∫
∂D

∇yΓk(x− y) ·n(y) Ju(y) K dσ(y), (7)

where J·K denotes the jump accross the surface ∂D:

JuK := u|+ − u|−,
s
∂u

∂n

{
=

∂u

∂n

∣∣∣∣
+

− ∂u

∂n

∣∣∣∣
−

= ∇u|+ · n−∇u|− · n on ∂D,

and where u+ and u− denote the outer and inner traces of a function u:

u|+(x0) = lim
s→0
s>0

u(x0 + sn(x0)), u|−(x0) = lim
s→0
s>0

u(x0 − sn(x0)), x0 ∈ ∂D.

Proof. Multiply (4) by the fundamental solution and integrate formally by parts, by neglecting the
behavior at infinity (this can be justified thanks to the Sommerfeld radiation condition):

0 =

∫
Rd

((∆ + k2)u(y))Γk(x− y)dy

=

∫
Rd

u(y)((∆ + k2)Γk(x− y))dy −
∫
∂D

s
∂u

∂n

{
Γk(x− y)dσ(y)

+

∫
∂D

JuK∇yΓk(x− y) · n(y)dσ(y).

The result follows because ∫
Rd

u(y)(∆ + k2)Γk(x− y)dy = u(x).

Remark 1. It is useful to remember the identity∫
D

∆uvdx =

∫
D

u∆vdx+

∫
∂D

(
∂u

∂n
v − u∂v

∂n

)
dσ.

Remark 2. In (7), the notation ∇yΓk(x− y) means ∇y(Γk(x− y)) and not −(∇yΓk)(x− y).

Remark 3. In many text books, one consider rather the fundamental solution of −∆− k2 which
induces a minus sign on Γk. Then the formula (7) is obtained with an opposite sign. This conven-
tion induces some variations in the definitions and properties of the layer potentials. I recommend
that these can be retrieved quickly from formal arguments to avoid mistakes.

Equation (7) shows that one can retrieve the values of u(x) everywhere in the space Rd \∂D as
soon as one knows the values of the jumps of u and ∂u

∂n on the interface ∂D. This is at the basis of
the method of integral equations, where we seek to reduce the problem (4) in the infinite space on
a problem set on the bounded surface ∂D, where the jumps become the unknown of the problem.
To achieve this, one needs to take the limit x → x0 for a given x0 ∈ ∂D in (7), which motivates
the definition of the following surface operators.
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Definition 1. Assume D to be a smooth bounded domain. The single layer potential is the operator
SkD defined for a function φ ∈ L2(∂D) on the boundary ∂D by:

SkD[φ](t) :=

∫
∂D

Γk(t− t′)φ(t′)dσ(t′), t ∈ ∂D.

The Neumann-Poincaré operator is the operator KD defined for a function φ defined on the bound-
ary ∂D by:

KkD[φ](t) :=

∫
∂D

n(t′) · ∇t′Γk(t− t′)φ(t′)dσ(t′), t ∈ ∂D,

where the integral is a convergent because the smoothness of D implies the existence of a constant
c > 0 such that

n(t′) · t− t
′

|t− t′|
6 c|t− t′| uniformly in t, t′ ∈ ∂D.

Remark 4. When D is a Lipschitz domain, it is still possible to define the Neumann-Poincaré
operator as a Cauchy principal value integral:

KkD[φ](t) := p.v.

∫
∂D

n(t′) · ∇t′Γk(t− t′)φ(t′)dσ(t′) = lim
ε→0

∫
∂D\B(t,ε)

n(t′) · ∇t′Γk(t− t′)φ(t′)dσ(t′),

where B(t, ε) is the ball of center t and radius ε. It turns out that the above limit exists, although
n · ∇yΓk(t− ·) may not be integrable on the surface ∂D.

Remark 5. In view of the preceding remark, the discretization of the Neumann Poincaré oper-
ator proposed by [1, section 2.4.5.1] relies on the smoothness of the boundary, and not on the
computation of a Cauchy principal value integral.

These operators are not to be confused with the single and double layer potentials which are
defined in the exterior domain Rd \D.

Definition 2. We also call “single layer potential” the operator SkD mapping a function φ ∈ L2(∂D)
to a function of Rd \D and defined by

SkD[φ](x) :=

∫
∂D

Γk(x− t′)φ(t′)dσ(t′), x ∈ Rd \ ∂D.

The double-layer potential is the operator denoted by DkD which maps a function φ ∈ L2(∂D) to a
function of Rd \D given by

DkD[φ](x) :=

∫
∂D

n(y) · ∇yΓk(x− y)φ(y)dσ(y), x ∈ Rd \ ∂D.

In order to reduce a partial differential equation posed on Rd \ D to an integral equation for
a function defined only on the boundary ∂D, we need to take the limit as x → x0 with x0 ∈ ∂D
and x ∈ R3 \ ∂D of SkD[φ], DkD[φ] or their normal derivatives. The most useful jump identities are
summarized in the following proposition.

Proposition 2 (Jump relations). 1. The single layer potential is continuous accross the inter-
face ∂D:

SkD[φ]
∣∣
± = SkD[φ].

2. The double layer potential is discontinuous accross the interface ∂D, and we have

DkD[φ]
∣∣
± = ∓1

2
I +KkD (8)

3. The normal derivative of the single layer potential is discontinuous accross the interface ∂D,
and it holds:

∂

∂n
SkD
∣∣∣∣
±

= ±1

2
I +Kk∗D , (9)

where Kk∗D is the adjoint of the Neumann-Poincaré operator and is given (when D is a smooth
domain) by

Kk∗D [φ](t) =

∫
∂D

n(t) · ∇tΓk(t− t′)φ(t′)dσ(t′).
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Proof. 1. The continuity is due to the fact that the singularity of Γk is Lebesgue integrable on
∂D. For instance, for a small h and if d = 3, there exists a uniform constant C > 0 such that∣∣∣∣ 1

4π|x0 + h− t|
− 1

4π|x0 − t|

∣∣∣∣ 6 C
1

4π|x0 − t|

for any h ∈ R3 small enough. By the Lebesgue dominated convergence theorem, this shows
that h→ 1/(4π|x0 + h− t|) is continuous and the result.

2. We need to handle the singularity. The “trick” is to decompose DkD[φ]± to bring cancellations
of the singularities:

DkD[φ](x) =

∫
∂D

n(y) · ∇y(Γk(x− y)− Γk(x0 − y))(φ(y)− φ(x0))dσ(y)

+

∫
∂D

n(y) · ∇yΓk(x− y)dσ(y)φ(x0) +

∫
∂D

n(y) · Γk(x0 − y)(φ(y)− φ(x0))dσ(y)

=

∫
∂D

n(y) · ∇y(Γk(x− y)− Γk(x0 − y))(φ(y)− φ(x0))dσ(y)

+ (g(x)− g(x0))φ(x0) +KkD[φ](x0),

where g is the function

g(x) :=


∫
∂D

n(y) · ∇yΓk(x− y)dσ(y) if x ∈ Rd \ ∂D,∫
∂D

n(y) · ∇yΓk(x− y)dσ(y) if x ∈ ∂D,

and where ∫
∂D

n(y) · ∇y(Γk(x− y)− Γk(x0 − y))(φ(y)− φ(x0))dσ(y)

is a continuous function at x = x0 “due to the removal of the singularity”.

A little reasoning using an integration by parts and a drawing shows that

g(x) =



− k2
∫
D

Γk(x− y)dy if x ∈ Rd \D,

− k2
∫
D

Γk(x− y)dy + 1 if x ∈ D,

− k2
∫
D

Γk(x− y)dy +
1

2
if x ∈ ∂D.

We obtain as such
g|± − g∂D = ∓1

2
,

from where (8) follows.

The proof is identical to the point 2., where one needs to study the limit of

n(x0) · ∇xSkD[φ](x).

References
[1] H. Ammari, B. Fitzpatrick, H. Kang, M. Ruiz, S. Yu, and H. Zhang, Mathematical

and Computational Methods in Photonics and Phononics, American Mathematical Society, oct
2018.

5



[2] V. Kozlov, V. Maz’ya, and A. Movchan, Asymptotic analysis of fields in multi-structures,
Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York,
1999. Oxford Science Publications.

[3] W. C. H. McLean, Strongly elliptic systems and boundary integral equations, Cambridge
university press, 2000.

[4] M. Minnaert, Xvi. on musical air-bubbles and the sounds of running water, The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 16 (1933), pp. 235–
248.

6


	Derivation of the Helmholtz equation
	Layer potentials

