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1 Solving the Helmholtz equation in Rd

Bessel functions arise in the solution of the Helmholtz equation in a spherical domain.

Proposition 1. The Laplacian in spherical coordinates in Rd is given by

∆φ =
1

rd−1

∂(rd−1φ)

∂r
+

1

r2
∆Γφ = ∂rrφ+

d− 1

r
∂rφ+

1

r2
∆Γφ,

where ∆Γφ is the Laplace-Beltrami operator.

Proof. Consider functions φ, ψ ∈ C∞c . An integration by parts yields∫
Rd

∆φψdx = −
∫
Rd
∇φ · ∇ψdx

= −
∫ +∞

0

∫
Sd−1

(
∂rφn +

1

r
∇Γφ

)
·
(
∂rψn +

1

r
∇Γψ

)
rd−1dσdr

= −
∫ +∞

0

∫
Sd−1

(
∂rφ∂rψr

d−1 +
rd−1

r2
∇Γφ · ∇Γψ

)
dσdr

=

∫ +∞

0

∫
Sd−1

(
∂r(r

d−1∂rφ)

rd−1
+

1

r2
∆Γφ

)
rd−1dσdr.

This implies the result.

We seek solutions to the Helmholtz equation in Rd:

(∆ + k2)u = 0 in Rd. (1)

We follow the derivation of [4]. Equation (1) reads in shperical coordinates

∂rru+
d− 1

r
∂ru+

1

r2
∆Γu+ k2u = 0. (2)

We use the method of separation of variables: we seek a solution of the form

u(x) = f(kr)ψ(ω) with r := |x| and ω = x/|x|.

Inserting into (2) and denoting by t := kr, we obtain(
k2f ′′ + k

d− 1

r
f ′ + k2f

)
ψ +

1

r2
f∆Γψ = 0

⇔
(
f ′′ +

d− 1

t
f ′ + f

)
ψ +

1

t2
f∆Γψ = 0.

Let us introduce the basis of eigenfunctions (Yi)i>0 of L2(Sd−1) for the Laplace-Beltrami operator
−∆Γ:

−∆ΓYi = λiYi, (3)
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where λi is the eigenvalue associated to Yi. Decomposing

ψ(ω) =

+∞∑
i=0

〈ψ,Yi〉Yi,

this leads us to consider rather the ansatz

u(x) =

+∞∑
i=0

fi(kr)ψ(ω) (4)

and we obtain the following ordinary differential equation for fi:

f ′′i +
d− 1

t
f ′i +

(
1− λi

t2

)
fi = 0 (5)

Equation (5) is a Bessel equation, while (3) is the definition of spherical harmonics. The object
of this lecture is to review properties associated to these two notions, which comes into play when
providing explicit formulas.

2 Spherical harmonics
We consider the eigenvalue problem

−∆ΓY = λY (6)

where ∆Γ is the Laplace-Beltrami operator. In this section, we follow [5]. We start with the
following lemma.

Lemma 1. For any µ ∈ R,

∆(rµg(ω)) = 0⇔ ∆Γg = µ(µ+ d− 2)g. (7)

Since µ 7→ µ(µ+d−2) maps (0,+∞) to (0,+∞) surjectively, all eigenvalues of (6) can be written
of the form

λ = µ(µ+ d− 2) with µ > 0 and ∆(rµg(ω)) = 0.

Proof.

∆(rµg(ω)) = µ(µ− 2)rµ−2g +
2− d
r

µrµ−1g + rµ−2∆Γg = rµ−2(µ(µ− 2) + (2− d)µ)g = 0.

In the next proposition, we denote by Γ the fundamental solution to the Laplace operator:

Γ(x) :=


1

2π
log |x| if d = 2,

2− d
|Sd−1|

1

|x|d−2
if d > 3.

It turns out that a function of the form rµg(ω) with µ > 0 satisfying ∆(rµg(ω)) = 0 in Rd \ {0}
must be a polynomial. This is a consequence of the two following results.

Proposition 2 (Removable singularity theorem). If h satisfies ∆h = 0 in Rd \ {0} and h(x) =
o(Γ(x)) as |x| → 0, then h can be extended into a harmonic function on Rd.

Proof. See [1, Theorem 2.69].

Proposition 3 (Liouville theorem). If g is a harmonic function in Rd satisfying

g(x) = O(|x|p) as |x| → +∞

for some exponent p > 0, then g must be a polynomial of degree lower or equal to p.
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Proof. The asymptotic implies that g is a tempered distribution. Therefore it has a Fourier trans-
form ĝ which satisfies

|ξ|2ĝ = 0.

This implies that ĝ must be of the form

ĝ =
∑
|α|6m

aαδ
α
0

for some number m and multi-indices coefficients aα. Taking the inverse Fourier transform, we
obtain that g is a polynomial.

Corollary 1. The spectral decomposition of the Laplace-Beltrami operator ∆Γ on the sphere has
the following characterization:

1. The spectrum of ∆Γ is given by

σ(∆Γ) = {m(m+ d− 2) |m ∈ N\{0}}.

2. For every m ∈ N\{0}, the eigenspace associated to the eigenvalue m(m+ d− 2) is the space

Hm := {Ym(x) | Ym is a harmonic polynomial of degree m}.

The space Hm is finite-dimensional and its dimension can be explicitly characterized [5].
To conclude with spherical harmonics, let us provide the following decomposition theorem.

Proposition 4. Any function g(x) can be decomposed as

g(rω) :=

+∞∑
i=0

gi(r)Yi(ω)

for a fixed r where gi(t) is a radial function, where Yi is a harmonic polynomial of degree i, and
where the above series is convergent in L2(Sd−1).

Proof. This is the decomposition of ω 7→ g(rω) onto the eigenvectors of ∆Γ on the sphere.

Remark 1. The above proposition justifies the validity of the ansatz (4) which was suggested by
the method of separation of variables.

3 Bessel functions
Definition 1. We call “Bessel equation of order µ” the ODE

x′′ +
1

t
x′ +

(
1− µ2

t2

)
x = 0. (8)

Equation (5) can be reformulated as a Bessel equation of order µ. For this, consider

gi(t) := t−αfi(t),

which is equivalent to fi(t) := tαgi(t). Inserting this into (5) yields

α(α− 1)tα
1

t2
gi + 2αtα

1

t
g′i + tαg′′i + α

d− 1

t2
tαgi + tα

d− 1

t
g′i +

(
1− λi

t2

)
tαgi = 0

Setting

2α+ d− 1 = 1⇔ α = 1− d

2
,
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we obtain that gi is solution to the following Bessel equation of order µ:

g′′i +
1

t
g′i +

(
1− µ2

t2

)
= 0 with µ2 =

(
1− d

2

)2

+ λi. (9)

Finally, we know that λi = i(i+ d− 2) so that

µ2 =

(
1− d

2

)2

− 2i

(
1− d

2
− i

2

)
=

(
1− d

2

)2

− 2i

(
1− d

2

)
+ i2

=

(
i− 1 +

d

2

)2

.

Therefore, gi is solution to the Bessel equation of order µ =
(
i+ d

2 − 1
)
.

Remark 2. The Bessel equation of order µ of (8) is a purely conventional choice of canonical
form. We use it to keep the conventions of the widely used literature, however it would certainly
be possible to write Bessel functions for the solution to (5).

Definition 2. We call Jµ “Bessel function of the first kind” of order µ the function defined by

Jµ(t) :=

+∞∑
p=0

(−1)p(t/2)µ+2p

p!Γ(µ+ p+ 1)
, (10)

where Γ is the Gamma function (generalizing the factorial). The function Jµ is a solution to the
Bessel equation (5) of order µ.

Proof. The function Jµ is obtained by seeking a solution of the form x(t) = tµ
∑+∞
p=0 cpx

p where
the exponent µ is motivated by the fact that (8) leads to expect x(t) ∼ tµ as t→ 0. This leads to
a recurrence which allows to identify the functions cp as those given by (10). See [6, 3] for more
details.

The function Jµ is smooth at the origin for µ > 0 and singular otherwise, with a singularity of
order t−µ.

Definition 3. The Bessel function of the second kind Yµ is defined as

Yµ :=
Jµ cos(πµ)− J−µ

sin(πµ)

if µ /∈ Z, and

Yµ := lim
µ′→µ

Jµ cos(πµ)− J−µ
sin(πµ)

otherwise. The functions Jµ and Yµ form a basis of solutions to (5).

Proposition 5. For µ > 0:

1. Jµ is smooth at the origin.

2. Yµ is singular at the origin and the singularity is of order O(t−µ) if µ > 0, and O(logµ) if
µ = 0.

3. The behavior of Jµ and Yµ at infinity are given by

Jµ(t) ∼
√

2

πt
cos

(
t− 1

2
πµ− π

4

)

Yµ(t) ∼
√

2

πt
sin

(
t− 1

2
πµ− π

4

)
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Figure 1: Bessel functions of the first and second kinds (source: wikipedia).

We provide plots of the bessel functions Jµ and Yµ on fig. 1. They are other types of Bessel
functions: Hankel functions, spherical Bessel functions, and spherical Hankel functions.

Definition 4. We call:

• spherical Bessel functions of the first and second kind the functions

jm(t, d) :=

√
π

2

Jm+d/2−1(t)

td/2−1
, ym(t, d) :=

√
π

2

Ym+d/2−1(t)

td/2−1

• Hankel functions of first and second kind the functions

H(1)
µ := Jµ + iYµ, H(2)

µ = Jµ − iYµ.

• spherical Hankel functions of first and second kind the functions

h(1)
m (·, d) := jm(·, d) + iym(·, d), h(2)

m = jm(·, d)− iym(·, d).

Remark 3. The scaling constant
√
π/2 ensures that

h(1)
m (k|x|, d) ∼ jm(k|x|, d) + iym(k|x|, d) ∼ 1

(k|x|)(d−1)/2
eik|x|e−i 12π(m+ d−1

2 ) as k|x| → +∞.

Going back to the Helmholtz equation, we obtain that solutions to the homogeneous Helmholtz
equation in Rd \ {0} are linear combinations of spherical Hankel functions of the first and second
kind.

Corollary 2. Any function u solving the Helmholtz equation in Rd \ {0} can be decomposed as

u(x) :=

+∞∑
m=0

dim(Hm)∑
l=0

(αm,ljm(k|x|, d) + βm,lym(k|x|, d))Ym,l(x/|x|)

=

+∞∑
m=0

dim(Hm)∑
l=0

(α′m,lh
(1)
m (k|x|, d) + β′m,lh

(2)
m (k|x|, d))Ym,l(x/|x|)

where for any m > 0, (Ym,l)16l6dim(Hm) is a orthonormal basis of harmonic polynomials of degree
m on the sphere. As a particular case the fundamental solution of the Helmholtz operator is given
by

Γk(x) := − kd−2

2(2π)(d−1)/2
ih

(1)
0 (d, k|x|).

Let us mention a few additional useful properties.
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Proposition 6. For any (z, t) ∈ C× C∗, let us define

g(z, t) = e
z
2 (t− 1

t ).

The function g is holomorphic on C× C∗ and admits the following Laurent series expansion:

g(z, t) =
∑
n∈Z

tnJn(z).

Corollary 3. For any θ ∈ R,
eiz sin(θ) =

∑
n∈Z

Jn(z)einθ

and
Jn(z) =

1

2π

∫ π

−π
eix sin(θ)e−inθdθ.

Corollary 2 can be physically interpreted as the decomposition of plane waves into cylindrical
waves. Indeed

eiz cos(θ) = eiz sin(π2−θ) =
∑
n∈Z

Jn(z)e−inθeinπ2

so that if k is a unit vector,

eik·x = ei|x| cos(θx) =
∑
n∈Z

Jn(|x|)e−inθxeinπ2

where θx is the angle between x and k.

4 Far field expansions
In this last part, we show how spherical harmonics yield far-field expansions of the solutions to the
Helmholtz equation. The method is rather general, let us illustrate it first on the Laplace operator
∆. We seek a far field expansion of

Γ(x) =


1

2π
log |x| if d = 2

2− d
|Sd−1|

1

|x|d−2
if d > 3.

We seek to expand Γ(x− y) as |x| > |y|. For this, let us start by decomposing (ρ, ω) 7→ Γ(x− ρω)
on spherical harmonics:

Γ(x− y) =

+∞∑
m=0

deg(Hm)∑
l=0

∫
Sd−1

Γ(x− ρη)Ym,l(η)dηYm,l(ω).

We compute the integral by making use of the two following identities which hold for any m > 0:

∆(ρmYm,l(ω)) = 0 in Rd, ∆(ρ2−d−mYm,l(ω)) = 0 in Rd \ {0}.

Let us denote by u(x) := |x|mYm,l(x/|x|) and v(x) := |x|2−d−mYm,l(x/|x|). Since v decays
“sufficiently” at infinity1, the following integration by parts holds true for x ∈ Rd \B(0, ρ):

0 =

∫
Rd\B(0,ρ)

∆tvΓ(x− t)dt = v(x) +

∫
∂B(0,ρ)

(
∂Γ

∂n
(x− t)v(t)− Γ(x− t) ∂v

∂n
(t)

)
dσ(t).

Furthermore, since u is smooth inside B(0, ρ) and u(t) = ρd−2+2mv(t) on ∂B(0, ρ), we have∫
B(0,ρ)

∆yuΓ(x− y)dy =

∫
∂B(0,ρ)

(
−ρd−2+2m ∂Γ

∂n
(x− y)v(y) + Γ(x− y)

∂u

∂n
(y)

)
dσ(y)

1It is a function of the Deny-Lions space D1,2(Rd \ {0})
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Eliminating ∂Γ
∂n (x− y), we obtain thus

ρd−2+2mv(x) +

∫
∂B(0,ρ)

Γ(x− y)

(
∂u

∂n
− ρd−2+2m ∂v

∂n

)
dσ(y) = 0

Since
∂u

∂n
= lρm−1Ym,l, ∂v

∂n
= (2− d−m)ρ1−d−mYm,l on ∂B(0, ρ),

we find

ρd−2+2m|x|2−d−mYm,l (x/|x|) + (2m+ d− 2)ρm+d−2

∫
∂B(0,ρ)

Γ(x− ρη)Ym,l(η)dσ(η) = 0.

Whence for m > 0:∫
Sd−1

Γ(x− ρη)Ym,l(η)dη = − ρm

|x|d−2+m

1

2m+ d− 2
Ym,l(x/|x|). (11)

For l = 0 we have instead from the mean value theorem:
1

|Sd−1|

∫
Sd−1

Γ(x− ρη)dσ(η) =
1

∂B(0, ρ)

∫
∂B(0,ρ)

Γ(x− y)dσ(y) = Γ(x).

We deduce:

Proposition 7. The following addition theorem holds for the fundamental solution to the Laplace
equation for d > 2:

Γ(x− y) = Γ(x)−
+∞∑
m=1

deg(Hm)∑
l=0

1

2m+ d− 2
|x|2−d−m|y|mYm,l(x/|x|)Ym,l(y/|y|). (12)

In fact, we have also

Γ(x− y) =

+∞∑
m=0

(−1)m
1

m!
∇mΓ(x) · ym for |x| > |y|

which shows that, for m > 0:

∇mΓ (ω) · ηm = (−1)m+1 m!

2m+ d− 2

deg(Hm)∑
l=0

Ym,l(ω)Ym,l(η)

Remark 4. The addition formula (12) enables to decompose a wave centered at y in terms of
higher order waves centered at 0. This property is at the origin of the multipole expansion method
of Greengard and Roeklin [2].

Remark 5. For d = 2, the space Hm is a one dimensional complex vector space, whose basis is
the polynomial

P (x1, x2) :=
1√
2π

(x1 + ix2)n =
1√
2π
|x|neinθx for n > 0.

Consequently (12) reads

Γ(x− y) = Γ(x)−
+∞∑

n∈Z\{0}

1

2n
|x|−|n||y||n|e−inθxeinθy .

For the fundamental solution to the Helmholtz equation, a similar reasoning provides the fol-
lowing addition theorem.

Proposition 8. The following addition formula holds for the fundamental solution to the Helmholtz
equation:

Γk(x− y) = −ikd−2
+∞∑
m=0

dim(Hm)∑
l=0

h(1)
m (d, k|x|)jm(k|y|)Ym,l(y/|y|)Ym,l(y/|y|).

In dimension 2:

Γk(x− y) = − i

4

∑
n∈Z

H(1)
n (k|x|)einθxJn(k|y|)e−inθy for |x| > |y|.
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