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In this lecture, we study the phenomenon of subwavelength resonances for acoustic waves in
high-contrast media. we consider an acoustic medium D ⊂ R3 constituted of N smooth connected
components Bi (the “bubbles” or acoustic resonators):

D =

N⋃
i=1

Bi.

We refer to fig. 1 for an illustration of the setting. The background medium R3\D is a homogeneous
acoustic material characterized by a homogeneous density ρ and bulk modulus κ. The “bubbles”
are acoustic heterogeneities with homogeneous density ρb and bulk modulus κb. We are interested
in the scattering of an incoming wave uin propagating through the bulk material with frequency
ω. We denote by

v =

√
κ

ρ
, vb =

√
κb
ρb
, k =

ω

v
, kb =

ω

vb

the sound velocities v and vb and the wave numbers k and kb in respectively the background
medium and the acoustic obstacles. We consider the high-contrast regime whereby the quantity

δ :=
ρb
ρ

is asymptotically small: δ → 0. The incoming sound wave uin is the solution to the Helmholtz
equation in the free space R3; it satisfies

∇ ·
(

1

ρ
∇uin

)
+
ω2

κ
uin = 0 in R3 \D.

The wave uin generates a scattered field us, which is such that the total field utot := uin + us is

B1

B2

B3

B4

B5 D = ∪Ni=1Bi
κb, ρb

R3\D
κ, ρ

uin

us

Figure 1: Distribution of acoustic obstacles in the three-dimensional space R3. An incident wave
uin is propagating with frequency ω and generates a total wave field utot.
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the solution to the following scattering problem:

∇ ·
(

1

ρb
∇utot

)
+
ω2

κb
utot = 0 in D,

∇ ·
(

1

ρ
∇utot

)
+
ω2

κ
utot = 0 in R3\D,

utot,+ − utot,− = 0 on ∂D,
1

ρb

∂utot
∂n

∣∣∣∣
−

=
1

ρ

∂utot
∂n

∣∣∣∣
+

on ∂D,(
∂

∂|x|
− ik

)
(utot − uin) = O

(
1

|x|2

)
as |x| → +∞,

(1)

where utot,+ and utot,− denote the trace of utot on respectively the outer and the inner boundaries
of the obstacles ∂D, and ∂utot/∂n|− and ∂utot/∂n|+ the inner and outer normal derivatives with
the normal vector n pointing outward D. The last equation is the outgoing Sommerfeld radiation
condition for the scattered field us.

The goal of these notes is to show that as δ → 0, there exists 2N complex resonant frequencies
(ω±i (δ))16i6N satisfying ω±i (δ) = O(δ

1
2 ). For a real frequency ω satisfying ω → ω+

i (δ), we shall
establish a point scatterer approximation of the form

utot(x)− uin(x) ' α
ω2

<(ω+
i (δ))

− 1 + iτω
uin(x)Γk(x) as |x| → +∞, (2)

for some constants α and τ , showing that there is a magnification of the total field around the
resonant frequencies. The formula (2) shows the effect of a single group of bubble on the incident
wave field. Since the magnification occurs at wavelength 2πv/ω much larger than the size of the
bubbles, the system D manipulates the incident wave at subwavelength scales. We can construct
a metamaterial by filling a bounded domain with many small packets of such resonators and it is
possible to guess the physical properties of the effective medium from (2), we will discuss this in
the next lecture.

The material of the present lecture is strongly inspired from my recent work [6], which is a
sequel to several previous analyses [3, 2].

1 Integral formulation of the scattering problem
We had seen in the first lecture that the solution utot can be represented as single layer potentials
in D and R3\D:

utot(x) =

{
SkbD [φ](x) if x ∈ D,

uin(x) + SkD[ψ](x) if x ∈ R3 \D,
(3)

where the functions (φ, ψ) ∈ L2(∂D)× L2(∂D) solve the integral equation

A(ω, δ)

[
φ
ψ

]
=

[
uin
δ ∂uin

∂n

]
, (4)

with the operator A(ω, δ) being given by

A(ω, δ) =

[
SkbD −SkD

− 1
2I +Kkb∗D −δ

(
1
2I +Kk∗D

)] .
Due to the Sommerfeld radiation condition, the problem (4) can be shown to admit a unique
solution for any real frequency provided the wave number k = ω/v is not a Dirichlet eigenvalue of
the domain D [4]. This assumption is naturally satisfied in the regime ω → 0.
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In order to compute the inverse of A(ω, δ), we solve the following linear system (4) which reads
explicitly 

SkbD [φ]− SkD[ψ] = uin,(
−1

2
I +Kkb∗D

)
[φ]− δ

(
1

2
I +Kk∗D

)
[ψ] = δ

∂uin
∂n

.
(5)

Reducing (5) to a single equation by using the invertibility of SkD we are left with
ψ = (SkD)−1SkbD [φ]− (SkD)−1[uin],(

−1

2
I +Kkb∗D − δ

(
1

2
I +Kk∗D

)
(SkD)−1SkbD

)
[φ] = δ

∂uin
∂n
− δ

(
1

2
I +Kk∗D

)
(SkD)−1[uin].

(6)

So the invertibility of A(ω, δ) is equivalent to that of the operator

L(ω, δ) := −1

2
I +Kkb∗D − δ

(
1

2
I +Kk∗D

)
(SkD)−1SkbD . (7)

The operator L(ω, δ) is holomorphic in the variables ω and δ. Indeed, we recall the following
classical expansions of the potential (see e.g. [4]).

Proposition 1. The following expansions hold for the single layer potential and the Neumann-
Poincaré operator as k = ω/v → 0:

SkD =

+∞∑
p=0

kpSD,p = SD + kSD,1 + k2SD,2 + . . . , (8)

Kk∗D =

+∞∑
p=0

kpK∗D,p = K∗D + k2K∗D,2 + k3K∗D,3 + . . . , (9)

where the series converges in operator norms, and where the operators SD,p and K∗D,p are defined
by

SD,p[φ] := − ip

4πp!

∫
∂D

|x− y|p−1φ(y)dσ(y), φ ∈ L2(∂D), p ∈ N, (10)

K∗D,p[φ] := − ip

4πp!

∫
∂D

n(x) · ∇x|x− y|p−1φ(y)dσ(y), φ ∈ L2(∂D), p ∈ N. (11)

Furthermore, we have the identities

(i) ∆SD,0[φ] = ∆SD,1[φ] = 0 and ∆SD,p[φ] = −SD,p−2[φ] for any p > 2,

(ii) KD,p[φ](x) = n(x) · ∇xSD,p[φ] for p > 1, and∫
∂Bi

K∗D[φ]dσ =
1

2

∫
∂Bi

φdσ and
∫
∂Bi

K∗D,p[φ]dσ = −
∫
Bi

SD,p−2[φ]dσ for p > 2.

In view of (9) we find that (7) can be rewritten as

L(ω, δ) = −1

2
I +K∗D + ω2B1(ω) + δB2(ω), (12)

where B1(ω) and B2(ω) are the holomorphic and compact operators defined by

B1(ω) :=

+∞∑
p=2

ωp

vpb
K∗D,p, B2(ω) := −

(
1

2
I +Kk∗D

)
(SkD)−1SkbD . (13)

Classically, the computation of the inverse of the holomorphic Fredholm operator L(ω, δ) reduces
to that of a finite dimensional holomorphic Schur complement matrix after introducing suitable
projections on the kernel and coimage [8, 9]. In our context, we compute L(ω, δ)−1 by using a
method inspired from [5] which consists in introducing a constant finite-range operator H making
the operator − 1

2I +K∗D +H invertible.
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2 Inverse of holomorphic Fredholm operators
In order to study the properties of L(ω, δ)−1, we establish in this part a result regarding the inverse
of holomorphic Fredholm operators. These results are to be related to Gohberg and Sigal theory,
e.g. [8].

Let A(z) := A0 + zB(z) : V → V a parameterized Fredholm operator of index 0 holomorphic
with respect to z. Assume that dim(Ker(A(z))) = N and denote by H and G two N -dimensional
complements of KerA0 and RanA0:

V = KerA0 ⊕H = G⊕ RanA0.

Let H be any operator of the form





Ĥ 0

0 0

G

RanA0

KerA0 H

H =

where H̃ is an invertible operator KerA0 → G.

Lemma 1. (i) A0 +H is invertible and its inverse reads





Ĥ−1 0

0 A−10

KerA0

H

G RanA0

(A0 +H)−1 =

where A−10 denotes the inverse of A0 : H → RanA0.

(ii) The linear operator A0 +H+ zB(z) : V → V is invertible for small z and the inverse reads

(A0 +H+ zB(z))−1 = (A0 +H)−1 − C(z),

where C(z) is the operator defined by the Neumann series

C(z) =
∑
p>1

(−1)p+1zp(A0 +H)−1(B(z)(A0 +H)−1)p.

Proposition 2. The linear system
A(z)[φ] = f (14)

is invertible if and only if the N -dimensional linear system KerA0 → G,

HC(z)ψ = H(A0 +H+ zB(z))−1[f ], ψ ∈ KerA0, (15)

is invertible. When this is the case, the unique solution to (14) is given by

φ = (A0 +H+ zB(z))−1[ψ + f ] (16)

and it holds ψ = H[φ].
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Proof. We rewrite (14) as
(A0 +H+ zB(z))[φ]−H[φ] = f,

which is equivalent to

φ− (A0 +H+ zB(z))−1H[φ] = (A0 +H+ zB(z))−1[f ]. (17)

If this equation has a solution, then left multiplying by H and setting ψ = H[φ], we obtain

ψ −H(A0 +H)−1ψ +HC(z)[ψ] = H(A0 +H+ zB(z))−1[f ].

The linear system (15) follows since for ψ ∈ KerA0, H(A0 +H)−1[ψ] = ψ. Then (16) is obtained
from (17).

Reciprocally, if (15) has a unique solution, one verifies that setting (16) yields a solution to
(14).

The result of proposition 2 is very powerful: it shows that the inversion of the infinite dimen-
sional system (14) can be reduced to a finite dimensional one (15), if one knows the inverse of
A0 +H.

2.1 Minnaert resonances
The operator L(ω, δ) is a compact perturbation of the Fredholm operator − 1

2I +K∗D, which has a
finite dimensional kernel, as recalled in the following proposition (see e.g. [10, 7, 4]):

Proposition 3. The kernel of the operator − 1
2I +K∗D is the N -dimensional space

Ker

(
−1

2
I +K∗D

)
= span((ψ∗i )16i6N ),

where (ψ∗i )16i6N are the functions defined by

ψ∗i = S−1D [1∂Bi ], 1 6 i 6 N.

The range of the operator − 1
2I+K∗D is the space of zero average square integrable functions L2

0(∂D):

Ran

(
−1

2
I +K∗D

)
= L2

0(∂D),

where L2
0(∂D) :=

{
φ ∈ L2(∂D)

∣∣∣ ∫∂Bi
φdσ = 0 for any 1 6 i 6 N

}
. Furthermore, we have the

direct sum decomposition

L2(∂D) = L2
0(∂D)⊕Ker

(
−1

2
I +K∗D

)
,

and − 1
2I +K∗D is invertible as an operator L2

0(∂D)→ L2
0(∂D).

In order to introduce the operator H in the context of the operator L(ω, δ) of (7), we introduce
a new basis of functions (φ∗i )16i6N of Ker(− 1

2I +K∗) defined by

φ∗i := −
N∑
j=1

(C−1)ijψ
∗
j , 1 6 i 6 N, (18)

where C is the capacitance matrix

Cij := −
∫
∂Bi

ψ∗jdσ. (19)

The definition (18) ensures the property∫
∂Bi

φ∗jdσ = δij for any 1 6 i, j 6 N. (20)
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Definition 1. We choose H : L2(∂D) → L2(∂D) to be the unique projection operator satisfying
Ker(H) = L2

0(∂D) and Ran(H) = Ker(− 1
2I + K∗D). For any φ ∈ L2(∂D), the value of H[φ] reads

explicitly

H[φ] =

N∑
i=1

(∫
∂Bi

φdσ

)
φ∗i . (21)

The operator L(ω, δ) reads
L(ω, δ) = G(ω, δ)−H, (22)

with L0 := (− 1
2 +K∗D) +H. and where G(ω, δ) is the operator

G(ω, δ) := L0 + ω2B1(ω) + δB2(ω).

Let us introduce the operator C(ω, δ)

C(ω, δ) :=

+∞∑
p=1

(−1)p+1L−10 ((ω2B1(ω) + δB2(ω))L−10 )p. (23)

The result of proposition 2 reads

Proposition 4. The operator A(ω, δ) is invertible if and only if the N × N matrix A(ω, δ) ≡
(A(ω, δ)ij)16i,j6N defined by

A(ω, δ)ij :=

∫
∂Bi

C(ω, δ)[φ∗j ]dσ, 1 6 i, j 6 N, (24)

is invertible. When it is the case, the solution (φ, ψ) to the problem (5) reads
φ =

N∑
i=1

xiG−1(ω, δ)[φ∗i ] + G−1(ω, δ)[f ],

ψ =

N∑
i=1

xi(SkD)−1SkbD G
−1(ω, δ)[φ∗i ] + (SkD)−1SkbD G

−1(ω, δ)[f ]− (SkD)−1[uin],

(25)

where f ∈ L2(∂D) is the function

f := δ
∂uin
∂n
− δ

(
1

2
I +Kk∗D

)
(SkD)−1[uin], (26)

and where the coefficients x := (xi)16i6N are the solutions to the finite dimensional problem

A(ω, δ)x = F with F :=

(∫
∂Bi

G−1(ω, δ)[f ]dσ

)
16i6N

. (27)

Let V be the (positive definite) diagonal matrix whose entries are the volumes of the resonators
(Bi)16i6N :

V := diag((|Bi|)16i6N ). (28)

In [1, 6], we prove the following result:

Proposition 5. The following asymptotic holds true as ω → 0 and δ → 0:

A(ω, δ) =
ω2

v2b
V C−1 − δI +O(ω(ω2 + δ)), (29)

where C is the capacitance matrix (19), V is the volume matrix (28) and 1 = (1)16i6N is the
vector of ones.
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The expansion (29) shows that we can expect 2N resonances (ω±i (δ))1<i6N such that A(ω, δ)
has a non-trivial kernel, and hence A(ω, δ), these resonances satisfy

ω±i (δ) ∼ vbλ
1
2
i δ

1
2

where (λi)16i6N are the eigenvalues of the generalized eigenvalue problem

Cai = λiV ai. (30)

Notably, the eigenvalues (λi)16i6N enable to predict the frequencies of the subwavelength res-
onances thanks to the asymptotic ω±i (δ) ∼ ±vbλ

1
2
i δ

1
2 as δ → 0. When the eigenvalues of the

capacitance matrix are simple, we can prove the following result.

Corollary 1. Assume that the eigenvalues of the (weighted) capacitance matrix are simple. The
subwavelength resonances ω±i (δ) admit the following asymptotic expansions:

ω±i (δ) = ±δ 1
2 vbλ

1
2
i −

iv2bλ
2
i

8πv
(aTi V 1)2δ +O(δ

3
2 ). (31)

Remark 1. If D is a single resonator D ≡ B (N = 1), we have C = cap (B) and V = |B| hence
λ1 = cap (B)/|B| and a1 = |B|−1/2. Then (31) reads more explicitly as

ω±1 (δ) = ±δ 1
2 vb

√
cap (B)

|B|
− iv2bcap (B)2

8πv|B|
δ +O(δ

3
2 ). (32)

3 Point scatterer approximation
Lemma 2. The following expansion holds for the vector F of (27):

F = δuin(0)C1 +O(ωδ). (33)

For ω → ω±i (δ), the solution x to (27) reads approximately

x ' uin(0)

(
δ
ω2

v2b
V C−1 − I

)−1
1 =

N∑
i=1

uin(0)
ω2

ω2
M,i
− 1

(1TV ai)V ai

where we denote
ωM,i := δ

1
2λ

1
2
i vb.

Therefore, we find that as ω → ω+
i,M ,

ψ '
N∑
i=1

xiφ
∗
i '

N∑
i=1

N∑
j=1

(eTi V aj)(1
TV aj)

ω2

ω2
M,j
− 1

uin(0)φ∗i .

As a result, as |x| → +∞,

utot(x)− uin(x) = SkD[ψ](x) '
(∫

∂D

ψdσ

)
Γk(x) ' 1

ω2

ω2
M,i
− 1

(1TV ai)
2uin(0)Γk(x). (34)

Remark 2. The approximation (34) is called “point-scatterer approximation”. It shows that if
1TV ai 6= 0, then the scattered field behaves as a monopole with a resonant amplification factor.
If 1TV ai = 0, then the resonance is of “dipole type” and higher order terms need to be taken into
account.

We have neglected the terms of order O(ωδ) for computing A(ω, δ)−1. Therefore, the approxima-
tion (34) is valid only for ω slightly away from ωM,i. A more accurate expansion with quantitative
error terms is computed in [6].
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