Shape derivative of geometric constraints without integration along rays

Florian Feppon

Grégoire Allaire, Charles Dapogny
Julien Cortial, Felipe Bordeu

ENGOPT - September 18th, 2018

Thickness control in structural optimization

Some recent advances in level-set based shape optimization: geometric constraints. ${ }^{[1][2]}$:

Figure 3.73: Full optimized shapes (a): without thickness constraint; for (b): $d_{\min }=0.05$; (c): $d_{\text {min }}=$ $0.06 ;(\mathrm{d}): d_{\text {min }}=0.07 ;(\mathrm{e}): d_{\text {min }}=0.08$, for the displacement inverter mechanism.

Figure: Michailidis (2014)

[^0]
Outline

1. Shape derivatives of geometric constraints based on the signed distance function
2. A variational method for avoiding integration along rays
3. Numerical comparisons and applications to shape and topology optimization

Outline

1. Shape derivatives of geometric constraints based on the signed distance function
2. A variational method for avoiding integration along rays
3. Numerical comparisons and applications to shape and topology optimization

1. Shape derivatives of geometric constraints

The signed distance function d_{Ω} to the domain $\Omega \subset D$ is defined by:

$$
\forall x \in D, d_{\Omega}(x)=\left\{\begin{array}{cl}
-\min _{y \in \partial \Omega}\|y-x\| & \text { if } x \in \Omega \\
\min _{y \in \partial \Omega}\|y-x\| & \text { if } x \in D \backslash \Omega
\end{array}\right.
$$

1. Shape derivatives of geometric constraints

The signed distance function allows to formulate geometric constraints.

- Maximum thickness constraint :

$$
\forall x \in \Omega,\left|d_{\Omega}(x)\right| \leq d_{\max } / 2
$$

- Minimum thickness constraint:

$$
\forall y \in \partial \Omega,\left|\zeta_{-}(y)\right| \geq d_{\min } / 2
$$

1. Shape derivatives of geometric constraints

For shape optimization, one formulates geometric constraints using penalty functionals $P(\Omega)$ as follows:

$$
\min _{\Omega} J(\Omega), \text { s.t. } P(\Omega) \leq 0, \text { where } P(\Omega):=\int_{D} j\left(d_{\Omega}(x)\right) \mathrm{d} x
$$

We rely on the method of Hadamard (figure from ${ }^{[3]}$):

[3] dapogny2017geometrical.

1. Shape derivatives of geometric constraints

For shape optimization, one formulates geometric constraints using penalty functionals $P(\Omega)$ as follows:

$$
\min _{\Omega} J(\Omega), \text { s.t. } P(\Omega) \leq 0, \text { where } P(\Omega):=\int_{D} j\left(d_{\Omega}(x)\right) \mathrm{d} x \text {. }
$$

The shape derivative of $P(\Omega)$ reads

$$
P^{\prime}(\Omega)(\boldsymbol{\theta})=\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) d_{\Omega}^{\prime}(\boldsymbol{\theta})(x) \mathrm{d} x=\int_{\partial \Omega} u \boldsymbol{\theta} \cdot \mathbf{n} \mathrm{~d} y
$$

with

$$
\forall y \in \partial \Omega, u(y)=-\int_{x \in \operatorname{ray}(y)} j^{\prime}\left(d_{\Omega}(x)\right) \prod_{1 \leq i \leq n-1}\left(1+\kappa_{i}(y) d_{\Omega}(x)\right) \mathrm{d} x .
$$

1. Shape derivatives of geometric constraints

$$
\forall y \in \partial \Omega, u(y)=-\int_{x \in \operatorname{ray}(y)} j^{\prime}\left(d_{\Omega}(x)\right) \prod_{1 \leq i \leq n-1}\left(1+\kappa_{i}(y) d_{\Omega}(x)\right) \mathrm{d} x
$$

Computing u requires:

1. Shape derivatives of geometric constraints

$$
\forall y \in \partial \Omega, u(y)=-\int_{x \in \operatorname{ray}(y)} j^{\prime}\left(d_{\Omega}(x)\right) \prod_{1 \leq i \leq n-1}\left(1+\kappa_{i}(y) d_{\Omega}(x)\right) \mathrm{d} x .
$$

Computing u requires:

1. Integrating along rays on the discretization mesh:

1. Shape derivatives of geometric constraints

$$
\forall y \in \partial \Omega, u(y)=-\int_{x \in \operatorname{ray}(y)} j^{\prime}\left(d_{\Omega}(x)\right) \prod_{1 \leq i \leq n-1}\left(1+\kappa_{i}(y) d_{\Omega}(x)\right) \mathrm{d} x .
$$

Computing u requires:

1. Integrating along rays on the discretization mesh:

2. Estimating the principal curvatures $\kappa_{i}(y)$.

Outline

1. Shape derivatives of geometric constraints based on the signed distance function
2. A variational method for avoiding integration along rays
3. Numerical comparisons and applications to shape and topology optimization

2. A variational method for avoiding integration along rays

More precisely, the shape derivative of $P(\Omega)$ reads

$$
P^{\prime}(\Omega)(\boldsymbol{\theta})=\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) d_{\Omega}^{\prime}(\boldsymbol{\theta})(x) \mathrm{d} x=\int_{\partial \Omega} u \boldsymbol{\theta} \cdot \mathbf{n} \mathrm{~d} y
$$

with $d_{\Omega}^{\prime}(\boldsymbol{\theta})$ satisfying

$$
\left\{\begin{aligned}
\nabla d_{\Omega}^{\prime}(\boldsymbol{\theta}) \cdot \nabla d_{\Omega} & =0 \text { in } D \backslash \bar{\Sigma} \\
d_{\Omega}^{\prime}(\boldsymbol{\theta}) & =-\boldsymbol{\theta} \cdot \mathbf{n} \text { on } \partial \Omega
\end{aligned}\right.
$$

2. A variational method for avoiding integration along rays

More precisely, the shape derivative of $P(\Omega)$ reads

$$
P^{\prime}(\Omega)(\boldsymbol{\theta})=\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) d_{\Omega}^{\prime}(\boldsymbol{\theta})(x) \mathrm{d} x=\int_{\partial \Omega} u \boldsymbol{\theta} \cdot \mathbf{n} \mathrm{~d} y
$$

with $d_{\Omega}^{\prime}(\boldsymbol{\theta})$ satisfying

$$
\left\{\begin{aligned}
\nabla d_{\Omega}^{\prime}(\boldsymbol{\theta}) \cdot \nabla d_{\Omega} & =0 \text { in } D \backslash \bar{\Sigma} \\
d_{\Omega}^{\prime}(\boldsymbol{\theta}) & =-\boldsymbol{\theta} \cdot \mathbf{n} \text { on } \partial \Omega .
\end{aligned}\right.
$$

Our method: u solves the following variational problem (with $\omega>0$ rather arbitrary):

Find $u \in V_{\omega}$ such that $\forall v \in V_{\omega}$,

$$
\int_{\partial \Omega} u v \mathrm{~d} s+\int_{D \backslash \bar{\Sigma}} \omega\left(\nabla d_{\Omega} \cdot \nabla u\right)\left(\nabla d_{\Omega} \cdot \nabla v\right) \mathrm{d} x=-\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) v(x) \mathrm{d} x
$$

2. A variational method for avoiding integration along rays

More precisely, the shape derivative of $P(\Omega)$ reads

$$
P^{\prime}(\Omega)(\boldsymbol{\theta})=\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) d_{\Omega}^{\prime}(\boldsymbol{\theta})(x) \mathrm{d} x=\int_{\partial \Omega} u \boldsymbol{\theta} \cdot \mathbf{n} \mathrm{~d} y
$$

with $d_{\Omega}^{\prime}(\boldsymbol{\theta})$ satisfying

$$
\left\{\begin{aligned}
\nabla d_{\Omega}^{\prime}(\boldsymbol{\theta}) \cdot \nabla d_{\Omega} & =0 \text { in } D \backslash \bar{\Sigma} \\
d_{\Omega}^{\prime}(\boldsymbol{\theta}) & =-\boldsymbol{\theta} \cdot \mathbf{n} \text { on } \partial \Omega
\end{aligned}\right.
$$

Our method: Take $v=d_{\Omega}^{\prime}(\theta)$:

Find $u \in V_{\omega}$ such that $\forall v \in V_{\omega}$,

$$
\int_{\partial \Omega} u v \mathrm{~d} s+\int_{D \backslash \bar{\Sigma}} \omega\left(\nabla d_{\Omega} \cdot \nabla u\right)\left(\nabla d_{\Omega} \cdot \nabla v\right) \mathrm{d} x=-\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) v(x) \mathrm{d} x
$$

2. A variational method for avoiding integration along rays

More precisely, the shape derivative of $P(\Omega)$ reads

$$
P^{\prime}(\Omega)(\boldsymbol{\theta})=\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) d_{\Omega}^{\prime}(\boldsymbol{\theta})(x) \mathrm{d} x=\int_{\partial \Omega} u \boldsymbol{\theta} \cdot \mathbf{n} \mathrm{~d} y
$$

with $d_{\Omega}^{\prime}(\boldsymbol{\theta})$ satisfying

$$
\left\{\begin{aligned}
\nabla d_{\Omega}^{\prime}(\boldsymbol{\theta}) \cdot \nabla d_{\Omega} & =0 \text { in } D \backslash \bar{\Sigma} \\
d_{\Omega}^{\prime}(\boldsymbol{\theta}) & =-\boldsymbol{\theta} \cdot \mathbf{n} \text { on } \partial \Omega
\end{aligned}\right.
$$

Our method: Take $v=d_{\Omega}^{\prime}(\theta)$:

Find $u \in V_{\omega}$ such that $\forall v \in V_{\omega}$,

$$
\begin{gathered}
\int_{\partial \Omega} u v \mathrm{~d} s+\int_{D \backslash \bar{\Sigma}} \omega\left(\nabla d_{\Omega} \cdot \nabla u\right)\left(\nabla d_{\Omega} \cdot \nabla v\right) \mathrm{d} x=-\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) v(x) \mathrm{d} x \\
\int_{\partial \Omega} u d_{\Omega}^{\prime}(\theta) \mathrm{d} s+\int_{D \backslash \bar{\Sigma}} \omega\left(\nabla d_{\Omega} \cdot \nabla u\right)\left(\nabla d_{\Omega} \cdot \nabla d_{\Omega}^{\prime}(\theta)\right) \mathrm{d} x=-\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) d_{\Omega}^{\prime}(\theta)(x) \mathrm{d} x,
\end{gathered}
$$

2. A variational method for avoiding integration along rays

More precisely, the shape derivative of $P(\Omega)$ reads

$$
P^{\prime}(\Omega)(\boldsymbol{\theta})=\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) d_{\Omega}^{\prime}(\boldsymbol{\theta})(x) \mathrm{d} x=\int_{\partial \Omega} u \boldsymbol{\theta} \cdot \mathbf{n} \mathrm{~d} y
$$

with $d_{\Omega}^{\prime}(\boldsymbol{\theta})$ satisfying

$$
\left\{\begin{aligned}
\nabla d_{\Omega}^{\prime}(\boldsymbol{\theta}) \cdot \nabla d_{\Omega} & =0 \text { in } D \backslash \bar{\Sigma} \\
d_{\Omega}^{\prime}(\boldsymbol{\theta}) & =-\boldsymbol{\theta} \cdot \mathbf{n} \text { on } \partial \Omega
\end{aligned}\right.
$$

Our method: Take $v=d_{\Omega}^{\prime}(\theta)$:

Find $u \in V_{\omega}$ such that $\forall v \in V_{\omega}$,

$$
\begin{gathered}
\int_{\partial \Omega} u v \mathrm{~d} s+\int_{D \backslash \bar{\Sigma}} \omega\left(\nabla d_{\Omega} \cdot \nabla u\right)\left(\nabla d_{\Omega} \cdot \nabla v\right) \mathrm{d} x=-\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) v(x) \mathrm{d} x, \\
\int_{\partial \Omega} u d_{\Omega}^{\prime}(\theta) \mathrm{d} s+\int_{D \backslash \bar{\Sigma}} \omega\left(\nabla d_{\Omega} \cdot \nabla u\right)\left(\nabla d_{\Omega} \cdot \nabla d_{\Omega}^{\prime}(\boldsymbol{\theta})\right) \mathrm{d} x=-\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) d_{\Omega}^{\prime}(\boldsymbol{\theta})(x) \mathrm{d} x,
\end{gathered}
$$

2. A variational method for avoiding integration along rays

More precisely, the shape derivative of $P(\Omega)$ reads

$$
P^{\prime}(\Omega)(\boldsymbol{\theta})=\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) d_{\Omega}^{\prime}(\boldsymbol{\theta})(x) \mathrm{d} x=\int_{\partial \Omega} u \boldsymbol{\theta} \cdot \mathbf{n} \mathrm{~d} y
$$

with $d_{\Omega}^{\prime}(\boldsymbol{\theta})$ satisfying

$$
\left\{\begin{aligned}
\nabla d_{\Omega}^{\prime}(\boldsymbol{\theta}) \cdot \nabla d_{\Omega} & =0 \text { in } D \backslash \bar{\Sigma} \\
d_{\Omega}^{\prime}(\boldsymbol{\theta}) & =-\boldsymbol{\theta} \cdot \mathbf{n} \text { on } \partial \Omega
\end{aligned}\right.
$$

Our method: Take $v=d_{\Omega}^{\prime}(\theta)$:

Find $u \in V_{\omega}$ such that $\forall v \in V_{\omega}$,

$$
\begin{gathered}
\int_{\partial \Omega} u v \mathrm{~d} s+\int_{D \backslash \bar{\Sigma}} \omega\left(\nabla d_{\Omega} \cdot \nabla u\right)\left(\nabla d_{\Omega} \cdot \nabla v\right) \mathrm{d} x=-\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) v(x) \mathrm{d} x, \\
\int_{\partial \Omega} u d_{\Omega}^{\prime}(\theta) \mathrm{d} s+\int_{D \backslash \bar{\Sigma}} \omega\left(\nabla d_{\Omega} \cdot \nabla u\right)\left(\nabla d_{\Omega} \cdot \nabla d_{\Omega}^{\prime}(\theta)\right) \mathrm{d} x=-\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) d_{\Omega}^{\prime}(\boldsymbol{\theta})(x) \mathrm{d} x, \\
\int_{\partial \Omega} u(-\boldsymbol{\theta} \cdot \mathbf{n}) \mathrm{d} s+0=-\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) d_{\Omega}^{\prime}(\boldsymbol{\theta})(x) \mathrm{d} x .
\end{gathered}
$$

2. A variational method for avoiding integration along rays

Our theoretical results for the variational problem:
Find $u \in V_{\omega}$ such that $\forall v \in V_{\omega}$,
$\int_{\partial \Omega} u v \mathrm{~d} s+\int_{D \backslash \bar{\Sigma}} \omega\left(\nabla d_{\Omega} \cdot \nabla u\right)\left(\nabla d_{\Omega} \cdot \nabla v\right) \mathrm{d} x=-\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) v(x) \mathrm{d} x$

2. A variational method for avoiding integration along rays

Our theoretical results for the variational problem:
Find $u \in V_{\omega}$ such that $\forall v \in V_{\omega}$,

$$
\begin{equation*}
\int_{\partial \Omega} u v \mathrm{~d} s+\int_{D \backslash \bar{\Sigma}} \omega\left(\nabla d_{\Omega} \cdot \nabla u\right)\left(\nabla d_{\Omega} \cdot \nabla v\right) \mathrm{d} x=-\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) v(x) \mathrm{d} x \tag{1}
\end{equation*}
$$

1. Under rather unrestrictive assumptions, the trace of the solution u is independent on the weight ω and is given by

$$
\begin{equation*}
\forall y \in \partial \Omega, u(y)=-\int_{x \in \operatorname{ray}(y)} j^{\prime}\left(d_{\Omega}(x)\right) \prod_{1 \leq i \leq n-1}\left(1+\kappa_{i}(y) d_{\Omega}(x)\right) \mathrm{d} x \tag{2}
\end{equation*}
$$

2. A variational method for avoiding integration along rays

Our theoretical results for the variational problem:
Find $u \in V_{\omega}$ such that $\forall v \in V_{\omega}$,

$$
\begin{equation*}
\int_{\partial \Omega} u v \mathrm{~d} s+\int_{D \backslash \bar{\Sigma}} \omega\left(\nabla d_{\Omega} \cdot \nabla u\right)\left(\nabla d_{\Omega} \cdot \nabla v\right) \mathrm{d} x=-\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) v(x) \mathrm{d} x \tag{1}
\end{equation*}
$$

1. Under rather unrestrictive assumptions, the trace of the solution u is independent on the weight ω and is given by

$$
\begin{equation*}
\forall y \in \partial \Omega, u(y)=-\int_{x \in \operatorname{ray}(y)} j^{\prime}\left(d_{\Omega}(x)\right) \prod_{1 \leq i \leq n-1}\left(1+\kappa_{i}(y) d_{\Omega}(x)\right) \mathrm{d} x \tag{2}
\end{equation*}
$$

(1) can be solved with FEM while (2) requires computing rays and curvatures!

2. A variational method for avoiding integration along rays

Our theoretical results for the variational problem:
Find $u \in V_{\omega}$ such that $\forall v \in V_{\omega}$,

$$
\begin{equation*}
\int_{\partial \Omega} u v \mathrm{~d} s+\int_{D \backslash \bar{\Sigma}} \omega\left(\nabla d_{\Omega} \cdot \nabla u\right)\left(\nabla d_{\Omega} \cdot \nabla v\right) \mathrm{d} x=-\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) v(x) \mathrm{d} x \tag{1}
\end{equation*}
$$

1. Under rather unrestrictive assumptions, the trace of the solution u is independent on the weight ω and is given by

$$
\begin{equation*}
\forall y \in \partial \Omega, u(y)=-\int_{x \in \operatorname{ray}(y)} j^{\prime}\left(d_{\Omega}(x)\right) \prod_{1 \leq i \leq n-1}\left(1+\kappa_{i}(y) d_{\Omega}(x)\right) \mathrm{d} x \tag{2}
\end{equation*}
$$

(1) can be solved with FEM while (2) requires computing rays and curvatures!
2. It is possible to show the well-posedeness of (??) for a large class of weights ω in a suitable space V_{ω}.

2. A variational method for avoiding integration along rays

Our theoretical results for the variational problem:
Find $u \in V_{\omega}$ such that $\forall v \in V_{\omega}$,

$$
\begin{equation*}
\int_{\partial \Omega} u v \mathrm{~d} s+\int_{D \backslash \bar{\Sigma}} \omega\left(\nabla d_{\Omega} \cdot \nabla u\right)\left(\nabla d_{\Omega} \cdot \nabla v\right) \mathrm{d} x=-\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) v(x) \mathrm{d} x \tag{1}
\end{equation*}
$$

1. Under rather unrestrictive assumptions, the trace of the solution u is independent on the weight ω and is given by

$$
\begin{equation*}
\forall y \in \partial \Omega, u(y)=-\int_{x \in \operatorname{ray}(y)} j^{\prime}\left(d_{\Omega}(x)\right) \prod_{1 \leq i \leq n-1}\left(1+\kappa_{i}(y) d_{\Omega}(x)\right) \mathrm{d} x \tag{2}
\end{equation*}
$$

(1) can be solved with FEM while (2) requires computing rays and curvatures!
2. It is possible to show the well-posedeness of (??) for a large class of weights ω in a suitable space V_{ω}.
3. The framework extends to more general \mathcal{C}^{1} vector field β (without assuming $\left.\operatorname{div}(\beta) \in L^{\infty}(D)\right)$ than $\beta=\nabla d_{\Omega}$.

2. A variational method for avoiding integration along rays

Examples of more general settings:

Outline

1. Shape derivatives of geometric constraints based on the signed distance function
2. A variational method for avoiding integration along rays
3. Numerical comparisons and applications to shape and topology optimization

3. Numerical comparisons and applications to shape and topology optimization

Does it really work?

$$
u(y)=-\int_{x \in \operatorname{ray}(y)} j^{\prime}\left(d_{\Omega}(x)\right) \prod_{1 \leq i \leq n-1}\left(1+\kappa_{i}(y) d_{\Omega}(x)\right) \mathrm{d} x, \forall y \in \partial \Omega,
$$

versus

$$
\int_{\partial \Omega} u v \mathrm{~d} s+\int_{D \backslash \bar{\Sigma}} \omega\left(\nabla d_{\Omega} \cdot \nabla u\right)\left(\nabla d_{\Omega} \cdot \nabla v\right) \mathrm{d} x=-\int_{D \backslash \bar{\Sigma}} j^{\prime}\left(d_{\Omega}(x)\right) v(x) \mathrm{d} x
$$

3. Numerical comparisons and applications to shape and topology optimization

An analytic example...

Figure: A prescribed $-j^{\prime}\left(d_{\Omega}(x)\right)$

3. Numerical comparisons and applications to shape and topology optimization

It works with weights ω vanishing near the skeleton.

(a) Mesh $\mathcal{T}^{\prime}, \omega=1$

(c) Mesh $\mathcal{T}, \omega=2 /\left(1+\left|\Delta d_{\Omega}\right|^{3.5}\right)$

(b) Mesh $\mathcal{T}, \omega=1$

(d) Fine mesh $\mathcal{T}, \omega=2 /\left(1+\left|\Delta d_{\Omega}\right|^{3.5}\right)$

3. Numerical comparisons and applications to shape and topology optimization

It works with weights vanishing near the skeleton.

(a) Mesh \mathcal{T}^{\prime} (skeleton manually truncated),
(b) Mesh $\mathcal{T}, \omega=1$.
(c) Mesh \mathcal{T},
$\omega=2 /\left(1+\left|\Delta d_{\Omega}\right|^{3.5}\right)$
$\omega=1$
Figure: P1 elements with $\omega=1$ do not allow discontinuities of test functions near the skeleton...

3. Numerical comparisons and applications to shape and topology optimization

We were able to implement conveniently geometric constraints in level set based shape optimization.

3. Numerical comparisons and applications to shape and topology optimization

We were able to implement conveniently geometric constraints in level set based shape optimization.

(a) No maximum thickness constraint

(b) $d_{\max }=0.07$.

Figure: Maximum thickness constraint for 2D arch.

3. Numerical comparisons and applications to shape and topology optimization

We were able to implement conveniently geometric constraints in level set based shape optimization.

(a) No minimum thickness constraint.

(c) $d_{\text {min }}=0.2$

Figure: Minimum thickness.constraint for 2D cantilever.

Preprint to appear

Thank you for your attention.
Much more details in the following preprint to appear.
固 Feppon, F., Allaire, and Dapogny, C. A variational formulation for computing shape derivatives of geometric constraints along rays.
(2018).

[^0]: [1] Michailidis2014Manufacturing.
 [2] Allaire2016Thickness.

