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Thickness control in structural optimization

Some recent advances in level-set based shape optimization: geometric
constraints.[1][2]:

Figure: Michailidis (2014)

[1] Michailidis2014Manufacturing.
[2] Allaire2016Thickness.
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1. Shape derivatives of geometric constraints

The signed distance function dΩ to the domain Ω ⊂ D is defined by:

∀x ∈ D, dΩ(x) =


− min

y∈∂Ω
||y − x || if x ∈ Ω,

min
y∈∂Ω

||y − x || if x ∈ D\Ω.



1. Shape derivatives of geometric constraints

The signed distance function allows to formulate geometric constraints.

I Maximum thickness constraint :

∀x ∈ Ω, |dΩ(x)| ≤ dmax/2

I Minimum thickness constraint:

∀y ∈ ∂Ω, |ζ−(y)| ≥ dmin/2.



1. Shape derivatives of geometric constraints

For shape optimization, one formulates geometric constraints using
penalty functionals P(Ω) as follows:

min
Ω

J(Ω), s.t. P(Ω) ≤ 0, where P(Ω) :=

∫
D

j(dΩ(x))dx .

We rely on the method of Hadamard (figure from[3]):

[3] dapogny2017geometrical.
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min
Ω

J(Ω), s.t. P(Ω) ≤ 0, where P(Ω) :=

∫
D

j(dΩ(x))dx .

The shape derivative of P(Ω) reads

P ′(Ω)(θ) =

∫
D\Σ

j ′(dΩ(x))d ′Ω(θ)(x)dx =

∫
∂Ω

u θ · ndy

with

∀y ∈ ∂Ω, u(y) = −
∫
x∈ray(y)

j ′(dΩ(x))
∏

1≤i≤n−1

(1 + κi (y)dΩ(x))dx .



1. Shape derivatives of geometric constraints

∀y ∈ ∂Ω, u(y) = −
∫
x∈ray(y)

j ′(dΩ(x))
∏

1≤i≤n−1

(1 + κi (y)dΩ(x))dx .

Computing u requires:

1. Integrating along rays on the discretization mesh:

2. Estimating the principal curvatures κi (y).
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2. A variational method for avoiding integration along rays

More precisely, the shape derivative of P(Ω) reads

P ′(Ω)(θ) =

∫
D\Σ

j ′(dΩ(x))d ′Ω(θ)(x)dx =

∫
∂Ω

u θ · ndy

with d ′Ω(θ) satisfying {
∇d ′Ω(θ) · ∇dΩ = 0 in D\Σ

d ′Ω(θ) = −θ · n on ∂Ω.

|θ · n|

θ

Ω

Find u ∈ Vω such that ∀v ∈ Vω,∫
∂Ω

uvds +

∫
D\Σ

ω(∇dΩ · ∇u)(∇dΩ · ∇v)dx = −
∫
D\Σ

j ′(dΩ(x))v(x)dx ,

∫
∂Ω

ud ′Ω(θ)ds+

∫
D\Σ

ω(∇dΩ·∇u)(∇dΩ · ∇d ′Ω(θ))dx = −
∫
D\Σ

j ′(dΩ(x))d ′Ω(θ)(x)dx ,∫
∂Ω

u (−θ · n)ds + 0 = −
∫
D\Σ

j ′(dΩ(x))d ′Ω(θ)(x)dx .
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2. A variational method for avoiding integration along rays

Our theoretical results for the variational problem:

Find u ∈ Vω such that ∀v ∈ Vω,∫
∂Ω

uvds +

∫
D\Σ

ω(∇dΩ · ∇u)(∇dΩ · ∇v)dx = −
∫
D\Σ

j ′(dΩ(x))v(x)dx (1)

1. Under rather unrestrictive assumptions, the trace of the solution u is
independent on the weight ω and is given by

∀y ∈ ∂Ω, u(y) = −
∫
x∈ray(y)

j ′(dΩ(x))
∏

1≤i≤n−1

(1 + κi (y)dΩ(x))dx . (2)

(1) can be solved with FEM while (2) requires computing rays and
curvatures!

2. It is possible to show the well-posedeness of (??) for a large class of
weights ω in a suitable space Vω.

3. The framework extends to more general C1 vector field β (without
assuming div(β) ∈ L∞(D)) than β = ∇dΩ.
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2. A variational method for avoiding integration along rays

Examples of more general settings:



Outline

1. Shape derivatives of geometric constraints based on the signed
distance function

2. A variational method for avoiding integration along rays

3. Numerical comparisons and applications to shape and topology
optimization



3. Numerical comparisons and applications to shape and
topology optimization

Does it really work?

u(y) = −
∫
x∈ray(y)

j ′(dΩ(x))
∏

1≤i≤n−1

(1 + κi (y)dΩ(x))dx , ∀y ∈ ∂Ω,

versus∫
∂Ω

uvds +

∫
D\Σ

ω(∇dΩ · ∇u)(∇dΩ · ∇v)dx = −
∫
D\Σ

j ′(dΩ(x))v(x)dx



3. Numerical comparisons and applications to shape and
topology optimization

An analytic example...

Figure: A prescribed −j ′(dΩ(x))



3. Numerical comparisons and applications to shape and
topology optimization

It works with weights ω vanishing near the skeleton.
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(a) Mesh T ′, ω = 1
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(d) Fine mesh T , ω = 2/(1 + |∆dΩ|3.5)



3. Numerical comparisons and applications to shape and
topology optimization

It works with weights vanishing near the skeleton.

(a) Mesh T ′ (skeleton
manually truncated),
ω = 1

(b) Mesh T , ω = 1. (c) Mesh T ,
ω = 2/(1 + |∆dΩ|3.5)

Figure: P1 elements with ω = 1 do not allow discontinuities of test functions
near the skeleton...



3. Numerical comparisons and applications to shape and
topology optimization

We were able to implement conveniently geometric constraints in level
set based shape optimization.

(a) No maximum
thickness constraint

(b) dmax = 0.07.

Figure: Maximum thickness constraint for 2D arch.
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(a) No maximum
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(b) dmax = 0.07.

Figure: Maximum thickness constraint for 2D arch.



3. Numerical comparisons and applications to shape and
topology optimization

We were able to implement conveniently geometric constraints in level
set based shape optimization.

(a) No minimum thickness
constraint.

(b) dmin = 0.1.

(c) dmin = 0.2

.Figure: Minimum thickness constraint for 2D cantilever.



Preprint to appear

Thank you for your attention.

Much more details in the following preprint to appear.

Feppon, F., Allaire, and Dapogny, C. A variational
formulation for computing shape derivatives of geometric constraints
along rays.
(2018).


