Multiphysics shape optimization based on a level
set mesh evolution framework

Florian Feppon

Grégoire Allaire, Charles Dapogny
Julien Cortial, Felipe Bordeu

MMG Day — December 13, 2018

ECOLE
POLYTECHNIQUE

UNIVERSITE PARIS-SACLAY

S SAFRAN

Simplified weakly coupled three-physics setting

Qf

min J(T, ¥(T), p(T), T(), u()).

L3
.
—

207 =
|
E—

=
—
I

» Incompressible Navier-Stokes equations for (v, p) in Q¢

—div(o¢(v,p)) + pVvv = fr in Qf

Simplified weakly coupled three-physics setting

= Qf

0P ——wo

min J(T, ¥(T), p(T), T(), u()).

» Incompressible Navier-Stokes equations for (v, p) in Q¢

—div(o¢(v,p)) + pVvv = fr in Qf

» Steady-state convection-diffusion for Ty and Ty in Qf and Qq:
—div(ka Tf') +pv-VTf= Qf in Qf
—div(ksVTs) = Qs in Qs

Simplified weakly coupled three-physics setting

E Q

0P ——wo

min J(T, ¥(T), p(T), T(), u()).

» Incompressible Navier-Stokes equations for (v, p) in Q¢

—div(of(v,p)) + pVvv = f in Qf

» Steady-state convection-diffusion for Ty and Ty in Qf and Qq:
—div(ka Tf') + pv - VTr=Qf 1in Qrf
—div(ksVTs) = Qs in Qs
» Linearized thermoelasticity with fluid-structure interaction for u in
Qs:
—div(os(u, Ts)) = £ in Qg
os(u, Ts)-n=oc¢(v,p)-n onT.

Hadamard's method of boundary variations

mrin J(r)

o= (I +0)I, where 8 € Wy™(Q,RY), [|6]]y1.0(ma pey< 1.

o) = HT) + (0) +0(0), where EO

\ 07
18] w00 (0,7

For industrial applications, we seek to solve
min J(T, v(T), p(T), T(T), u(T))
st. g(Tv(T), p(), T(N), u(N) =0,1<i < p
hi(F,v(T), p(T), T(M),u(l) <0,1<i<gq

For reliability:

1. For compatibility with industrial solvers, the physics should
not be altered.

For industrial applications, we seek to solve
min J(T, v(T), p(T), T(T), u(T))

st gl (M), p(T), T(N),u(l)) =0,1<i<p
hi(T, (), p(M), T(M), u(T) <0,1<i<gq

For reliability:
1. For compatibility with industrial solvers, the physics should
not be altered.
2. User should provide only minimal information: J, g;, h; and
sensitivities
oJ aJ 8g,- 8g,- 8h,- Oh;

1
—— and so on.

ﬁ,...,%,ﬁ,...,%,ﬁ,...,au

For industrial applications, we seek to solve
min J(T, v(T), p(T), T(T), u(T))

st gl v(M),p(N), T(N),u(l) =0,1<i<p
hi(T, (), p(M), T(M), u(T) <0,1<i<gq

For reliability:
1. For compatibility with industrial solvers, the physics should
not be altered.
2. User should provide only minimal information: J, g;, h; and
sensitivities
0J oJ 8g,- 8g,- 8h,- 8/1,'
—— and so on.

ﬁ,...,a,ﬁ,...,%,ﬁ,...,au

3. Optimization should handle unfeasible initializations '

For industrial applications, we seek to solve
min J(T, v(T), p(T), T(T), u(T))

st gl v(M),p(N), T(N),u(l) =0,1<i<p
hi(T, (), p(M), T(M), u(T) <0,1<i<gq

For reliability:
1. For compatibility with industrial solvers, the physics should
not be altered.
2. User should provide only minimal information: J, g;, h; and
sensitivities
oJ o0J 8g,- 8g,- 8h,- 8/1,' and so on
or’” "7 0ou’ or’ " 7 ou’ r’ T Ou)
3. Optimization should handle unfeasible initializations '

4. No fine tuning of optimization algorithm parameters should be
required

For industrial applications, we seek to solve
ml_in J(M,w(l),p(N), T(T), u(T))

st &M, v(l),p(T), T(M),u(l))=0,1<
hi(T, v(1),p(1), T(M), u(l) <0, 1 <

Our method:

1. The interface I is remeshed at every iteration for solving
original state equations on each subdomain

For industrial applications, we seek to solve
ml_in J(M,w(l),p(N), T(T), u(T))

st &M, v(l),p(T), T(M),u(l))=0,1<
hi(T, v(1),p(1), T(M), u(l) <0, 1 <

Our method:

1. The interface I is remeshed at every iteration for solving
original state equations on each subdomain

2. We implement a single analytical formula for

LT (D), (1), T(), u()]

oJ oJ

for an arbitrary J based on T 9

For industrial applications, we seek to solve
ml_in J(M,w(l),p(N), T(T), u(T))

st &M, v(l),p(T), T(M),u(l))=0,1<
hi(T, v(1),p(1), T(M), u(l) <0, 1 <

Our method:

1. The interface I is remeshed at every iteration for solving
original state equations on each subdomain

2. We implement a single analytical formula for

LT (D), (1), T(), u()]

o) 0l
or’ ou

3. We designed our own constrained optimization algorithm

for an arbitrary J based on

1. Level set based mesh evolution method

We consider the algorithm proposed by Allaire, Dapogny, Frey
(2013):

1. Given a mesh and a moving vector field

1. Level set based mesh evolution method

We consider the algorithm proposed by Allaire, Dapogny, Frey
(2013):

2. A level-set function ¢ associated to Q = Q5 U Qf is computed

on the mesh.
0.010
0.006
0.002
-0.002
-0.006

1. Level set based mesh evolution method

We consider the algorithm proposed by Allaire, Dapogny, Frey
(2013):
3. The level-set function is avected on the computational domain
which is then adaptively remeshed:

1. Level set based mesh evolution method

We consider the algorithm proposed by Allaire, Dapogny, Frey
(2013):
3. The level-set function is avected on the computational domain
which is then adaptively remeshed:

Advection of a level set
for Q on the
computational mesh.

0t¢p+0-Vo =0

1. Level set based mesh evolution method

We consider the algorithm proposed by Allaire, Dapogny, Frey
(2013):
3. The level-set function is avected on the computational domain
which is then adaptively remeshed:

Breaking the zero isoline
of the level set.

1. Level set based mesh evolution method

We consider the algorithm proposed by Allaire, Dapogny, Frey
(2013):
3. The level-set function is avected on the computational domain
which is then adaptively remeshed:

Remeshing adaptively
the computational mesh.

2. User provides minimal information

For instance, for drag minimization

ST, v(r)) = / 2ve(v) : e(v)dx

Qf

with e(v) = (Vv + Vv T)/2.

2. User provides minimal information

For instance, for drag minimization

ST, v(r)) = /Q 2ve(v) : e(v)dx
with e(v) = (Vv + Vv T)/2.
User will provide only

oJ
ET 0= /r21/e(v) ce(v) - nds

2. User provides minimal information

For instance, for drag minimization

ST, v(r)) = / 2ve(v) : e(v)dx

Qf
with e(v) = (Vv + Vv T)/2.
User will provide only
aJ
ET 0= /r21/e(v) ce(v) - nds

a0J
w W= /Qf 4ve(v) : e(w)dx

2. User provides minimal information

For instance, for drag minimization

ST, v(r)) = /Q 2ve(v) : e(v)dx
with e(v) = (Vv + Vv T)/2.
User will provide only

oJ
ET 0= /r21/e(v) ce(v) - nds

a0J
w W= /Qf 4ve(v) : e(w)dx

Then the value of %[J(r, v(l))] is computed analytically and
automatically by solving adjoint states.

2. User provides minimal information

[0, v(T0). (o). T(To). u(a))](0)

= g%(e) + /(ff -w —or(v,p): Vw +n-or(w,q)Vv-n+n-of(v,p)Vw - n)(0 - n)ds
r

T. T,
+/ (ksVTs -VSs — keV T - VSr+ QrSr — QsSs — 2ks8 s 95 + 2kfﬂ%> (0 - n)ds
r on On on On

+ / (os(u, Ts):Vr—F-r—n-Ae(r)Vu-n—n-os(u, Ts)Vr-n) (0 - n)ds
r

2. User provides minimal information

/ Ae(r) : Vr'dx = 6—{(#) Vr' € Vu(T).
Qs oa

2. User provides minimal information

/ Ae(r) : Vr'dx = 6—{(#) Vr' € Vu(T).
Qs oa

!

10)
/ ksVS-VS'dx+ (kaS-VS’ercPSV-VS’)dx:/ adiv(r)S'dx+ d

~(S) vS e vy(D).
) o, o, 8T() T(T)

2. User provides minimal information

/ Ae(r) : Vr'dx = 6—{(#) Vr' € Vu(T).
Qs oa

!

10)
/ ksVS-VS'dx+ (kaS-VS'ercPSV-VS')dx:/ ozdiv(r)S’derag_
s Qf Qs

!

(S) vS' eve().

w=ronl and V(w’,q") € Vy p(I)

/ (crf(w,q) Vw' +pow -Vw' v+ pw- Vv w' — q/div(w))dx =
Qf

(w',q'),

/ —pcpSVT - w/dx +
Qf

a(v',p')

3. A generic optimization algorithm

min J(x1,x2) = x¢ + (x2 +3)?

(X;[,XQ)G]R2
. hi(x1,x0) = —x§ + x2 <0
s.t.
ho(x1,%) =—x1 —x2—2 <0
34 °
2_
o1
O_
1
2 0 2 4

3. A generic optimization algorithm

All in all, we solve an ODE of the form
x = —ay§(x) — acfc(x)
> —&y(x) is the best descent direction —¢&,(x) tangent to the

constraints:
1. If no constraint are saturated, £,(x) = VJ(x)

3. A generic optimization algorithm

All in all, we solve an ODE of the form

X = —Oé_]fJ(X) - aCﬁC(X)

> —&y(x) is the best descent direction —¢&,(x) tangent to the
constraints:
1. If no constraint are saturated, £,(x) = VJ(x)
2. If not, £5(x) = —MN¢,(x)(VJI(x)) where TN, is the linear
tangent projection on

{£eR", Dhi(x)¢ =0for e l}

for I a relevant subset of the constraints.

3. A generic optimization algorithm

All in all, we solve an ODE of the form

X = —OéJfJ(X) - aCﬁC(X)

> —&y(x) is the best descent direction —¢&,(x) tangent to the
constraints:
1. If no constraint are saturated, £,(x) = VJ(x)
2. If not, £5(x) = —MN¢,(x)(VJI(x)) where TN, is the linear
tangent projection on

{£eR", Dhi(x)¢ =0for e l}

for I a relevant subset of the constraints.
3. The subset | can determined by solving some dual quadratic
optimization subproblem.

3. A generic optimization algorithm

All in all, we solve an ODE of the form

X = —OéJfJ(X) - aCﬁC(X)

> —&y(x) is the best descent direction —¢&,(x) tangent to the
constraints:
1. If no constraint are saturated, £,(x) = VJ(x)
2. If not, £5(x) = —MN¢,(x)(VJI(x)) where TN, is the linear
tangent projection on

{£eR", Dhi(x)¢ =0for e l}

for I a relevant subset of the constraints.
3. The subset | can determined by solving some dual quadratic
optimization subproblem.

3. A generic optimization algorithm

All in all, we solve an ODE of the form

X = —OéJfJ(X) - aCﬁC(X)

> —&y(x) is the best descent direction —¢&,(x) tangent to the
constraints:
1. If no constraint are saturated, £,(x) = VJ(x)
2. If not, £5(x) = —MN¢,(x)(VJI(x)) where TN, is the linear
tangent projection on

{£eR", Dhi(x)¢ =0for e l}

for I a relevant subset of the constraints.
3. The subset | can determined by solving some dual quadratic
optimization subproblem.
» —&c(x) is a Gauss-Newton direction moving the trajectory
back onto the feasible set:

Dhi(=¢c(x)) = —hi(x).

Practical implementation

» State and adjoint PDE equations are solved with FreeFem++

Practical implementation

» State and adjoint PDE equations are solved with FreeFem++

» The optimization loop runs in python

Practical implementation

» State and adjoint PDE equations are solved with FreeFem++
» The optimization loop runs in python

» Remeshing is performed by mmg2d (-1s option)

Demonstrations on shape optimization test cases

Volume minimization subject to rigidity constraint

min/ dx
Q Q.

s.t. /Qs Ae(u) : e(u)dx < C

Demonstrations on shape optimization test cases

Volume minimization subject to multiple load rigidity constraints

min / dx
Q Q.

s.t./ Ae(u;) i e(u)dx < G, Vi=1...9
Qs

Demonstrations on shape optimization test cases

Lift maximisation subject to drag, volume and center of mass
constraint:

max / e, -or(v,p) - ndx
Q Elol

)
/ 2ue(v) : e(v)dx < Cyrag,
Qf

s.t. / dx = Cvoly
Qf

/ xdx =0
\ Qf

Demonstrations on shape optimization test cases

Heat transfer subject to maximal pressure drop, volume and center
of mass constraint:

max / pcpTv-nDs — / pcp Tv-nDs
Q 8Qf,out‘ 6QF,in

s.t./ pds — / pds < DPg
8Qf,out 8Qf,in

Demonstrations on shape optimization test cases

Heat exchange subject to maximal pressure drop and non
penetration constraint:

max / pcpv-Vde—/ pcpv - V Tdx
Q Qf cold Qf hot

s.t. / pds — / pds < DPy,
OQf out 0Qf in

d(Qf,hthf,cold) P dmin

Demonstrations on shape optimization test cases

References

[@ FeppoN, F., ALLAIRE, G., BorDEU, F., CORTIAL, J.,
AND DAPOGNY, C. Shape optimization of a coupled thermal
fluid-structure problem in a level set mesh evolution
framework.

HAL preprint hal-01686770 (2018).

@ FeppoN, F., ALLAIRE, G., AND DAPOGNY, C. Null space
gradient flows for constrained optimization with applications
to shape optimization.

In preparation (2018).

