Multiphysics shape optimization based on a level set mesh evolution framework

Florian Feppon

Grégoire Allaire, Charles Dapogny
Julien Cortial, Felipe Bordeu

MMG Day - December 13, 2018

Simplified weakly coupled three-physics setting

$$
\min _{\Gamma} J(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma))
$$

- Incompressible Navier-Stokes equations for (\boldsymbol{v}, p) in Ω_{f}

$$
-\operatorname{div}\left(\sigma_{f}(\boldsymbol{v}, p)\right)+\rho \nabla \boldsymbol{v} \boldsymbol{v}=\boldsymbol{f}_{f} \text { in } \Omega_{f}
$$

Simplified weakly coupled three-physics setting

$$
\min _{\Gamma} J(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma))
$$

- Incompressible Navier-Stokes equations for (\boldsymbol{v}, p) in Ω_{f}

$$
-\operatorname{div}\left(\sigma_{f}(\boldsymbol{v}, p)\right)+\rho \nabla \boldsymbol{v} \boldsymbol{v}=\boldsymbol{f}_{f} \text { in } \Omega_{f}
$$

- Steady-state convection-diffusion for T_{f} and T_{s} in Ω_{f} and Ω_{s} :

$$
\begin{array}{rlrl}
-\operatorname{div}\left(k_{f} \nabla T_{f}\right)+\rho \boldsymbol{v} \cdot \nabla T_{f} & =Q_{f} & \text { in } \Omega_{f} \\
-\operatorname{div}\left(k_{s} \nabla T_{s}\right) & =Q_{s} & & \text { in } \Omega_{s}
\end{array}
$$

Simplified weakly coupled three-physics setting

- Incompressible Navier-Stokes equations for (\boldsymbol{v}, p) in Ω_{f}

$$
-\operatorname{div}\left(\sigma_{f}(\boldsymbol{v}, p)\right)+\rho \nabla \boldsymbol{v} \boldsymbol{v}=\boldsymbol{f}_{f} \text { in } \Omega_{f}
$$

- Steady-state convection-diffusion for T_{f} and T_{s} in Ω_{f} and Ω_{s} :

$$
\begin{aligned}
-\operatorname{div}\left(k_{f} \nabla T_{f}\right)+\rho \mathbf{v} \cdot \nabla T_{f} & =Q_{f} & & \text { in } \Omega_{f} \\
-\operatorname{div}\left(k_{s} \nabla T_{s}\right) & =Q_{s} & & \text { in } \Omega_{s}
\end{aligned}
$$

- Linearized thermoelasticity with fluid-structure interaction for \boldsymbol{u} in Ω_{s} :

$$
\begin{aligned}
-\operatorname{div}\left(\sigma_{s}\left(\boldsymbol{u}, T_{s}\right)\right) & =\boldsymbol{f}_{s} & & \text { in } \Omega_{s} \\
\sigma_{s}\left(\boldsymbol{u}, T_{s}\right) \cdot \boldsymbol{n} & =\sigma_{f}(\boldsymbol{v}, p) \cdot \boldsymbol{n} & & \text { on } \Gamma .
\end{aligned}
$$

Hadamard's method of boundary variations

$$
\begin{aligned}
& \Gamma_{\boldsymbol{\theta}}=(I+\boldsymbol{\theta}) \Gamma, \text { where } \boldsymbol{\theta} \in W_{0}^{1, \infty}\left(\Omega, \mathbb{R}^{d}\right),\|\boldsymbol{\theta}\|_{W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)}<1 . \\
& J\left(\Gamma_{\boldsymbol{\theta}}\right)=J(\Gamma)+\frac{\mathrm{d} J}{\mathrm{~d} \boldsymbol{\theta}}(\boldsymbol{\theta})+o(\boldsymbol{\theta}), \quad \text { where } \frac{|o(\boldsymbol{\theta})|}{\|\boldsymbol{\theta}\|_{W^{1, \infty}\left(\Omega, \mathbb{R}^{d}\right)} \xrightarrow{\boldsymbol{\theta} \rightarrow 0} 0} 0
\end{aligned}
$$

Stakes

For industrial applications, we seek to solve

$$
\begin{array}{ll}
\min _{\Gamma} & J(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma)) \\
\text { s.t. } & g_{i}(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma))=0,1 \leq i \leq p \\
& h_{i}(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma)) \leq 0,1 \leq i \leq q
\end{array}
$$

For reliability:

1. For compatibility with industrial solvers, the physics should not be altered.

Stakes

For industrial applications, we seek to solve

$$
\begin{array}{ll}
\min _{\Gamma} & J(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma)) \\
\text { s.t. } & g_{i}(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma))=0,1 \leq i \leq p \\
& h_{i}(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma)) \leq 0,1 \leq i \leq q
\end{array}
$$

For reliability:

1. For compatibility with industrial solvers, the physics should not be altered.
2. User should provide only minimal information: J, g_{i}, h_{i} and sensitivities

$$
\frac{\partial J}{\partial \Gamma}, \ldots, \frac{\partial J}{\partial \boldsymbol{u}}, \frac{\partial g_{i}}{\partial \Gamma}, \ldots, \frac{\partial g_{i}}{\partial \boldsymbol{u}}, \frac{\partial h_{i}}{\partial \Gamma}, \ldots, \frac{\partial h_{i}}{\partial \boldsymbol{u}} \text { and so on. }
$$

Stakes

For industrial applications, we seek to solve

$$
\begin{array}{ll}
\min _{\Gamma} & J(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma)) \\
\text { s.t. } & g_{i}(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma))=0,1 \leq i \leq p \\
& h_{i}(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma)) \leq 0,1 \leq i \leq q
\end{array}
$$

For reliability:

1. For compatibility with industrial solvers, the physics should not be altered.
2. User should provide only minimal information: J, g_{i}, h_{i} and sensitivities

$$
\frac{\partial J}{\partial \Gamma}, \ldots, \frac{\partial J}{\partial \boldsymbol{u}}, \frac{\partial g_{i}}{\partial \Gamma}, \ldots, \frac{\partial g_{i}}{\partial \boldsymbol{u}}, \frac{\partial h_{i}}{\partial \Gamma}, \ldots, \frac{\partial h_{i}}{\partial \boldsymbol{u}} \text { and so on. }
$$

3. Optimization should handle unfeasible initializations Γ

Stakes

For industrial applications, we seek to solve

$$
\begin{array}{ll}
\min _{\Gamma} & J(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma)) \\
\text { s.t. } & g_{i}(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma))=0,1 \leq i \leq p \\
& h_{i}(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma)) \leq 0,1 \leq i \leq q
\end{array}
$$

For reliability:

1. For compatibility with industrial solvers, the physics should not be altered.
2. User should provide only minimal information: J, g_{i}, h_{i} and sensitivities

$$
\frac{\partial J}{\partial \Gamma}, \ldots, \frac{\partial J}{\partial \boldsymbol{u}}, \frac{\partial g_{i}}{\partial \Gamma}, \ldots, \frac{\partial g_{i}}{\partial \boldsymbol{u}}, \frac{\partial h_{i}}{\partial \Gamma}, \ldots, \frac{\partial h_{i}}{\partial \boldsymbol{u}} \text { and so on. }
$$

3. Optimization should handle unfeasible initializations Γ
4. No fine tuning of optimization algorithm parameters should be required

Stakes

For industrial applications, we seek to solve

$$
\begin{array}{ll}
\min _{\Gamma} & J(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma)) \\
\text { s.t. } & g_{i}(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma))=0,1 \leq i \leq p \\
& h_{i}(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma)) \leq 0,1 \leq i \leq q
\end{array}
$$

Our method:

1. The interface Γ is remeshed at every iteration for solving original state equations on each subdomain

Stakes

For industrial applications, we seek to solve

$$
\begin{array}{ll}
\min _{\Gamma} & J(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma)) \\
\text { s.t. } & g_{i}(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma))=0,1 \leq i \leq p \\
& h_{i}(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma)) \leq 0,1 \leq i \leq q
\end{array}
$$

Our method:

1. The interface Γ is remeshed at every iteration for solving original state equations on each subdomain
2. We implement a single analytical formula for

$$
\frac{\mathrm{d}}{\mathrm{~d} \Gamma}[J(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma)]
$$

for an arbitrary J based on $\frac{\partial J}{\partial \Gamma}, \ldots \frac{\partial J}{\partial \boldsymbol{u}}$.

Stakes

For industrial applications, we seek to solve

$$
\begin{array}{ll}
\min _{\Gamma} & J(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma)) \\
\text { s.t. } & g_{i}(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma))=0,1 \leq i \leq p \\
& h_{i}(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma)) \leq 0,1 \leq i \leq q
\end{array}
$$

Our method:

1. The interface Γ is remeshed at every iteration for solving original state equations on each subdomain
2. We implement a single analytical formula for

$$
\frac{\mathrm{d}}{\mathrm{~d} \Gamma}[J(\Gamma, \boldsymbol{v}(\Gamma), p(\Gamma), T(\Gamma), \boldsymbol{u}(\Gamma)]
$$

for an arbitrary J based on $\frac{\partial J}{\partial \Gamma}, \ldots \frac{\partial J}{\partial \boldsymbol{u}}$.
3. We designed our own constrained optimization algorithm

1. Level set based mesh evolution method

We consider the algorithm proposed by Allaire, Dapogny, Frey (2013):

1. Given a mesh and a moving vector field

1. Level set based mesh evolution method

We consider the algorithm proposed by Allaire, Dapogny, Frey (2013):
2. A level-set function ϕ associated to $\Omega=\Omega_{s} \cup \Omega_{f}$ is computed on the mesh.

1. Level set based mesh evolution method

We consider the algorithm proposed by Allaire, Dapogny, Frey (2013):
3. The level-set function is avected on the computational domain which is then adaptively remeshed:

1. Level set based mesh evolution method

We consider the algorithm proposed by Allaire, Dapogny, Frey (2013):
3. The level-set function is avected on the computational domain which is then adaptively remeshed:

Advection of a level set for Ω on the computational mesh.

$$
\partial_{t} \phi+\boldsymbol{\theta} \cdot \nabla \phi=0
$$

1. Level set based mesh evolution method

We consider the algorithm proposed by Allaire, Dapogny, Frey (2013):
3. The level-set function is avected on the computational domain which is then adaptively remeshed:

Breaking the zero isoline of the level set.

1. Level set based mesh evolution method

We consider the algorithm proposed by Allaire, Dapogny, Frey (2013):
3. The level-set function is avected on the computational domain which is then adaptively remeshed:

Remeshing adaptively the computational mesh.

2. User provides minimal information

For instance, for drag minimization

$$
J(\Gamma, \boldsymbol{v}(\Gamma))=\int_{\Omega_{f}} 2 \nu e(\boldsymbol{v}): e(\boldsymbol{v}) \mathrm{d} x
$$

with $e(\boldsymbol{v})=\left(\nabla \boldsymbol{v}+\nabla \boldsymbol{v}^{\boldsymbol{T}}\right) / 2$.

2. User provides minimal information

For instance, for drag minimization

$$
J(\Gamma, \boldsymbol{v}(\Gamma))=\int_{\Omega_{f}} 2 \nu e(\boldsymbol{v}): e(\boldsymbol{v}) \mathrm{d} x
$$

with $e(\boldsymbol{v})=\left(\nabla \boldsymbol{v}+\nabla \boldsymbol{v}^{T}\right) / 2$.
User will provide only

$$
\frac{\partial J}{\partial \Gamma} \cdot \boldsymbol{\theta}=\int_{\Gamma} 2 \nu e(\boldsymbol{v}): e(\boldsymbol{v}) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} s
$$

2. User provides minimal information

For instance, for drag minimization

$$
J(\Gamma, \boldsymbol{v}(\Gamma))=\int_{\Omega_{f}} 2 \nu e(\boldsymbol{v}): e(\boldsymbol{v}) \mathrm{d} x
$$

with $e(\boldsymbol{v})=\left(\nabla \boldsymbol{v}+\nabla \boldsymbol{v}^{T}\right) / 2$.
User will provide only

$$
\begin{aligned}
\frac{\partial J}{\partial \Gamma} \cdot \boldsymbol{\theta} & =\int_{\Gamma} 2 \nu e(\boldsymbol{v}): e(\boldsymbol{v}) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} s \\
\frac{\partial J}{\partial \boldsymbol{v}} \cdot \boldsymbol{w} & =\int_{\Omega_{f}} 4 \nu e(\boldsymbol{v}): e(\boldsymbol{w}) \mathrm{d} x
\end{aligned}
$$

2. User provides minimal information

For instance, for drag minimization

$$
J(\Gamma, \boldsymbol{v}(\Gamma))=\int_{\Omega_{f}} 2 \nu e(\boldsymbol{v}): e(\boldsymbol{v}) \mathrm{d} x
$$

with $e(\boldsymbol{v})=\left(\nabla \boldsymbol{v}+\nabla \boldsymbol{v}^{T}\right) / 2$.
User will provide only

$$
\begin{gathered}
\frac{\partial J}{\partial \Gamma} \cdot \boldsymbol{\theta}=\int_{\Gamma} 2 \nu e(\boldsymbol{v}): e(\boldsymbol{v}) \boldsymbol{\theta} \cdot \boldsymbol{n} \mathrm{d} s \\
\frac{\partial J}{\partial \boldsymbol{v}} \cdot \boldsymbol{w}=\int_{\Omega_{f}} 4 \nu e(\boldsymbol{v}): e(\boldsymbol{w}) \mathrm{d} x
\end{gathered}
$$

Then the value of $\frac{\mathrm{d}}{\mathrm{d} \Gamma}[J(\Gamma, \boldsymbol{v}(\Gamma))]$ is computed analytically and automatically by solving adjoint states.

2. User provides minimal information

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\theta}} {\left[J\left(\Gamma_{\boldsymbol{\theta}}, \boldsymbol{v}\left(\Gamma_{\boldsymbol{\theta}}\right), p\left(\Gamma_{\boldsymbol{\theta}}\right), T\left(\Gamma_{\boldsymbol{\theta}}\right), \boldsymbol{u}\left(\Gamma_{\boldsymbol{\theta}}\right)\right)\right](\boldsymbol{\theta}) } \\
&=\frac{\overline{\partial \mathcal{J}}}{\partial \boldsymbol{\theta}}(\boldsymbol{\theta})+\int_{\Gamma}\left(\boldsymbol{f}_{f} \cdot \boldsymbol{w}-\sigma_{f}(\boldsymbol{v}, p): \nabla \boldsymbol{w}+\boldsymbol{n} \cdot \sigma_{f}(\boldsymbol{w}, q) \nabla \boldsymbol{v} \cdot \boldsymbol{n}+\boldsymbol{n} \cdot \sigma_{f}(\boldsymbol{v}, p) \nabla \boldsymbol{w} \cdot \boldsymbol{n}\right)(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} s \\
& \quad+\int_{\Gamma}\left(k_{s} \nabla T_{s} \cdot \nabla S_{s}-k_{f} \nabla T_{f} \cdot \nabla S_{f}+Q_{f} S_{f}-Q_{s} S_{s}-2 k_{s} \frac{\partial T_{s}}{\partial n} \frac{\partial S_{s}}{\partial n}+2 k_{f} \frac{\partial T_{f}}{\partial n} \frac{\partial S_{f}}{\partial n}\right)(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} s \\
& \quad+\int_{\Gamma}\left(\sigma_{s}\left(\boldsymbol{u}, T_{s}\right): \nabla \boldsymbol{r}-\boldsymbol{f}_{s} \cdot \boldsymbol{r}-\boldsymbol{n} \cdot A e(\boldsymbol{r}) \nabla \boldsymbol{u} \cdot \boldsymbol{n}-\boldsymbol{n} \cdot \sigma_{s}\left(\boldsymbol{u}, T_{s}\right) \nabla \boldsymbol{r} \cdot \boldsymbol{n}\right)(\boldsymbol{\theta} \cdot \boldsymbol{n}) \mathrm{d} s
\end{aligned}
$$

2. User provides minimal information

$$
\int_{\Omega_{s}} A e(\boldsymbol{r}): \nabla \boldsymbol{r}^{\prime} \mathrm{d} \boldsymbol{x}=\frac{\partial \mathfrak{J}}{\partial \hat{\boldsymbol{u}}}\left(\boldsymbol{r}^{\prime}\right) \quad \forall \boldsymbol{r}^{\prime} \in V_{u}(\Gamma)
$$

2. User provides minimal information

$$
\begin{gathered}
\int_{\Omega_{s}} A e(\boldsymbol{r}): \nabla \boldsymbol{r}^{\prime} \mathrm{d} \boldsymbol{x}=\frac{\partial \tilde{J}}{\partial \hat{\boldsymbol{u}}}\left(\boldsymbol{r}^{\prime}\right) \quad \forall \boldsymbol{r}^{\prime} \in V_{u}(\Gamma) . \\
\downarrow \\
\int_{\Omega_{s}} k_{s} \nabla S \cdot \nabla S^{\prime} \mathrm{d} \boldsymbol{x}+\int_{\Omega_{f}}\left(k_{f} \nabla S \cdot \nabla S^{\prime}+\rho c_{\rho} S \boldsymbol{v} \cdot \nabla S^{\prime}\right) \mathrm{d} \boldsymbol{x}=\int_{\Omega_{s}} \alpha \operatorname{div}(\boldsymbol{r}) S^{\prime} \mathrm{d} \boldsymbol{x}+\frac{\partial \tilde{\mathcal{J}}}{\partial \hat{T}}(S) \quad \forall S^{\prime} \in V_{T}(\Gamma) .
\end{gathered}
$$

2. User provides minimal information

$$
\begin{gathered}
\int_{\Omega_{s}} A e(\boldsymbol{r}): \nabla \boldsymbol{r}^{\prime} \mathrm{d} \boldsymbol{x}=\frac{\partial \mathfrak{J}}{\partial \hat{\boldsymbol{u}}}\left(\boldsymbol{r}^{\prime}\right) \quad \forall \boldsymbol{r}^{\prime} \in V_{u}(\Gamma) . \\
\downarrow \\
\int_{\Omega_{s}} k_{s} \nabla S \cdot \nabla S^{\prime} \mathrm{d} \boldsymbol{x}+\int_{\Omega_{f}}\left(k_{f} \nabla S \cdot \nabla S^{\prime}+\rho c_{\rho} S \boldsymbol{v} \cdot \nabla S^{\prime}\right) \mathrm{d} \boldsymbol{x}=\int_{\Omega_{s}} \alpha \operatorname{div}(\boldsymbol{r}) S^{\prime} \mathrm{d} \boldsymbol{x}+\frac{\partial \tilde{J}}{\partial \hat{T}}(S) \quad \forall S^{\prime} \in V_{T}(\Gamma) . \\
\downarrow \\
\boldsymbol{w}=\boldsymbol{r} \text { on } \Gamma \text { and } \forall\left(\boldsymbol{w}^{\prime}, q^{\prime}\right) \in V_{\mathbf{v}, p}(\Gamma) \\
\int_{\Omega_{f}}\left(\sigma_{f}(\boldsymbol{w}, q): \nabla \boldsymbol{w}^{\prime}+\rho \boldsymbol{w} \cdot \nabla \boldsymbol{w}^{\prime} \cdot \boldsymbol{v}+\rho \boldsymbol{w} \cdot \nabla \boldsymbol{v} \cdot \boldsymbol{w}^{\prime}-q^{\prime} \operatorname{div}(\boldsymbol{w})\right) \mathrm{d} \boldsymbol{x}= \\
\int_{\Omega_{f}}-\rho c_{\rho} S \nabla T \cdot \boldsymbol{w}^{\prime} \mathrm{d} \boldsymbol{x}+\frac{\partial \mathfrak{J}}{\partial\left(\boldsymbol{v}^{\prime}, p^{\prime}\right)}\left(\boldsymbol{w}^{\prime}, q^{\prime}\right),
\end{gathered}
$$

3. A generic optimization algorithm

$\min _{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}} J\left(x_{1}, x_{2}\right)=x_{1}^{2}+\left(x_{2}+3\right)^{2}$

$$
\text { s.t. } \begin{cases}h_{1}\left(x_{1}, x_{2}\right)=-x_{1}^{2}+x_{2} & \leq 0 \\ h_{2}\left(x_{1}, x_{2}\right)=-x_{1}-x_{2}-2 & \leq 0\end{cases}
$$

3. A generic optimization algorithm

All in all, we solve an ODE of the form

$$
\dot{x}=-\alpha_{J} \xi_{J}(x)-\alpha_{C} \xi_{C}(x)
$$

- $-\xi_{J}(x)$ is the best descent direction $-\xi_{J}(x)$ tangent to the constraints:

1. If no constraint are saturated, $\xi_{J}(x)=\nabla J(x)$

3. A generic optimization algorithm

All in all, we solve an ODE of the form

$$
\dot{x}=-\alpha_{J} \xi_{J}(x)-\alpha_{C} \xi_{C}(x)
$$

- $-\xi_{J}(x)$ is the best descent direction $-\xi_{J}(x)$ tangent to the constraints:

1. If no constraint are saturated, $\xi_{J}(x)=\nabla J(x)$
2. If not, $\xi_{J}(x)=-\Pi_{C_{l}(x)}(\nabla J(x))$ where $\Pi_{C_{l}}$ is the linear tangent projection on

$$
\left\{\xi \in \mathbb{R}^{n}, D h_{i}(x) \xi=0 \text { for } i \in I\right\}
$$

for I a relevant subset of the constraints.

3. A generic optimization algorithm

All in all, we solve an ODE of the form

$$
\dot{x}=-\alpha_{J} \xi_{J}(x)-\alpha_{C} \xi_{C}(x)
$$

- $-\xi_{J}(x)$ is the best descent direction $-\xi_{J}(x)$ tangent to the constraints:

1. If no constraint are saturated, $\xi_{J}(x)=\nabla J(x)$
2. If not, $\xi_{J}(x)=-\Pi_{C_{l}(x)}(\nabla J(x))$ where $\Pi_{C_{I}}$ is the linear tangent projection on

$$
\left\{\xi \in \mathbb{R}^{n}, \mathrm{D} h_{i}(x) \xi=0 \text { for } i \in I\right\}
$$

for I a relevant subset of the constraints.
3. The subset I can determined by solving some dual quadratic optimization subproblem.

3. A generic optimization algorithm

All in all, we solve an ODE of the form

$$
\dot{x}=-\alpha_{J} \xi_{J}(x)-\alpha_{C} \xi_{C}(x)
$$

- $-\xi_{J}(x)$ is the best descent direction $-\xi_{J}(x)$ tangent to the constraints:

1. If no constraint are saturated, $\xi_{J}(x)=\nabla J(x)$
2. If not, $\xi_{J}(x)=-\Pi_{C_{l}(x)}(\nabla J(x))$ where $\Pi_{C_{I}}$ is the linear tangent projection on

$$
\left\{\xi \in \mathbb{R}^{n}, \mathrm{D} h_{i}(x) \xi=0 \text { for } i \in I\right\}
$$

for I a relevant subset of the constraints.
3. The subset I can determined by solving some dual quadratic optimization subproblem.

3. A generic optimization algorithm

All in all, we solve an ODE of the form

$$
\dot{x}=-\alpha_{J} \xi_{J}(x)-\alpha_{C} \xi_{C}(x)
$$

- $-\xi_{J}(x)$ is the best descent direction $-\xi_{J}(x)$ tangent to the constraints:

1. If no constraint are saturated, $\xi_{J}(x)=\nabla J(x)$
2. If not, $\xi_{J}(x)=-\Pi_{c_{l}(x)}(\nabla J(x))$ where $\Pi_{C_{l}}$ is the linear tangent projection on

$$
\left\{\xi \in \mathbb{R}^{n}, D h_{i}(x) \xi=0 \text { for } i \in I\right\}
$$

for I a relevant subset of the constraints.
3. The subset / can determined by solving some dual quadratic optimization subproblem.

- $-\xi_{C}(x)$ is a Gauss-Newton direction moving the trajectory back onto the feasible set:

$$
\mathrm{D} h_{i}\left(-\xi_{C}(x)\right)=-h_{i}(x)
$$

Practical implementation

- State and adjoint PDE equations are solved with FreeFem++

Practical implementation

- State and adjoint PDE equations are solved with FreeFem++
- The optimization loop runs in python

Practical implementation

- State and adjoint PDE equations are solved with FreeFem++
- The optimization loop runs in python
- Remeshing is performed by mmg2d (-ls option)

Demonstrations on shape optimization test cases

Volume minimization subject to rigidity constraint

$$
\begin{aligned}
& \min _{\Omega} \int_{\Omega_{s}} \mathrm{~d} x \\
& \text { s.t. } \int_{\Omega_{s}} A e(\boldsymbol{u}): e(\boldsymbol{u}) \mathrm{d} x \leq C
\end{aligned}
$$

Demonstrations on shape optimization test cases

Volume minimization subject to multiple load rigidity constraints

$$
\begin{aligned}
& \min _{\Omega} \int_{\Omega_{s}} \mathrm{~d} x \\
& \text { s.t. } \int_{\Omega_{s}} A e\left(\boldsymbol{u}_{i}\right): e\left(\boldsymbol{u}_{i}\right) \mathrm{d} x \leq C_{i}, \quad \forall i=1 \ldots 9
\end{aligned}
$$

Demonstrations on shape optimization test cases

Lift maximisation subject to drag, volume and center of mass constraint:

$$
\begin{aligned}
& \max _{\Omega} \int_{\partial \Omega_{f}} \boldsymbol{e}_{y} \cdot \sigma_{f}(\boldsymbol{v}, p) \cdot \boldsymbol{n} \mathrm{d} x \\
& \text { s.t. }\left\{\begin{array}{r}
\int_{\Omega_{f}} 2 \nu e(\boldsymbol{v}): e(\boldsymbol{v}) \mathrm{d} x \leq C_{d r a g} \\
\int_{\Omega_{f}} \mathrm{~d} x=C_{v o l}, \\
\int_{\Omega_{f}} \boldsymbol{x} \mathrm{~d} x=0
\end{array}\right.
\end{aligned}
$$

Demonstrations on shape optimization test cases

Heat transfer subject to maximal pressure drop, volume and center of mass constraint:

$$
\begin{aligned}
& \max _{\Omega} \int_{\partial \Omega_{f, \text { out }}} \rho c_{p} T \boldsymbol{v} \cdot \boldsymbol{n} D s-\int_{\partial \Omega_{f, \text { in }}} \rho c_{p} T \boldsymbol{v} \cdot \boldsymbol{n} D s \\
& \text { s.t. } \int_{\partial \Omega_{f, \text { out }}} p \mathrm{~d} s-\int_{\partial \Omega_{f, \text { in }}} p \mathrm{~d} s \leq \mathrm{DP}_{0}
\end{aligned}
$$

Demonstrations on shape optimization test cases

Heat exchange subject to maximal pressure drop and non penetration constraint:

$$
\begin{aligned}
\max _{\Omega} & \int_{\Omega_{f, \text { cold }}} \rho c_{p} \boldsymbol{v} \cdot \nabla T \mathrm{~d} x-\int_{\Omega_{f, \text { hot }}} \rho c_{p} \boldsymbol{v} \cdot \nabla T \mathrm{~d} x \\
\text { s.t. } & \int_{\partial \Omega_{f, \text { out }}} p \mathrm{~d} s-\int_{\partial \Omega_{f, \text { in }}} p \mathrm{ds} \leq \mathrm{DP}_{0}, \\
& d\left(\Omega_{f, \text { hot }}, \Omega_{f, \text { cold }}\right) \geqslant d_{\text {min }}
\end{aligned}
$$

Demonstrations on shape optimization test cases

References

围 Feppon, F., Allaire, G., Bordeu, F., Cortial, J., and Dapogny, C. Shape optimization of a coupled thermal fluid-structure problem in a level set mesh evolution framework.
HAL preprint hal-01686770 (2018).
囦 Feppon, F., Allaire, G., and Dapogny, C. Null space gradient flows for constrained optimization with applications to shape optimization.
In preparation (2018).

