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Dynamical model order reduction

For many applications, one is interested in solving parameter
dependent PDEs of the form

∂tu(t, x ;ω) = L(t, u(t, x ;ω)).

After discretization with ` spatial nodes and m parameter
realizations, it rewrites as an ODE for a `×m matrix
R̃(t) := (R̃ij(t)) = (u(t, xi ;ωj)):

d

dt
R̃ = L(t, R̃).

If ` and m are both large, one rather seeks for a (low) rank r
approximation R(t):

R̃(t) ' R(t) = U(t)Z (t)T ,

with U(t) ∈M`,r , Z (t) ∈Mm,r and r << min(`,m).
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Dynamical model order reduction

How to track efficiently the best rank r approximation
R(t) = U(t)Z (t)T of a (full rank) time matrix R̃(t) ∈M`,m?



Outline

1. The DO approximation: a geometric approach to dynamical
model order reduction

2. Extrinsic curvatures on the fixed rank manifold: DO error
analysis and dynamical systems computing the truncated SVD

3. Numerical application: ROM for 2D convection dominated
problem.
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1. The DO approximation:

Full dynamical system in M`,m:

d

dt
R̃(t) = L(t, R̃(t)).

The set for the reduced approximation R(t) = U(t)Z (t)T ' R̃(t)
is the fixed rank manifold

M := {R ∈M`,m|rank(R) = r}.

Any rank preserving reduced order model is a dynamical
system

Ṙ = L(t,R(t)) ∈ T (R(t))

where T (R(t)) is the tangent space of M at R(t).
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Ṙ = L(t,R(t)) ∈ T (R(t))

where T (R(t)) is the tangent space of M at R(t).
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Figure: The manifold M of 2-by-2 rank 1 matrices
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1. The DO approximation

The best approximation of the `× r matrix R̃(t) is given by the
truncated SVD:

ΠM(R̃(t)) :=
r∑

i=1

σiuiv
T
i satisfies ΠM(R̃(t)) = arg min

R∈M
||R̃(t)−R||,

where R̃(t) =

rank(R̃(t))∑
i=1

σiuiv
T
i is the SVD of R̃(t).

Finding a “good reduced order model” ⇔ finding a tangent
ODE

Ṙ = L(t,R) ∈ T (R)

such that R(t) ' ΠM(R̃(t)) .
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1. The DO approximation

The Dynamically Orthogonal (Sapsis and Lermusiaux (2009)), or
Dynamical low-rank approximation (Koch and Lubich 2007):{

Ṙ = ΠT (R)(L(t,R(t)))

R(0) = ΠM(R̃(0))

where ΠT (R) is the projection onto the tangent space of M at R.

It rewrites in terms of an ODE for the decomposition
R(t) = UZ (t):

U̇ = (I − UUT )L(t,UZT )Z (ZTZ )−1

Ż = L(t,UZT )TU

U(0)Z (0)T = ΠM(R̃(0)).
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2. Extrinsic curvatures on the fixed rank manifold
a. Error analysis of the DO approximation

The DO method:

d

dt
R̃(t) = L(t, R̃(t)) −→

{
Ṙ = ΠT (R)(L(t,R(t)))

R(0) = ΠM(R̃(0))

M := {R ∈M`,m|rank(R) = r}.

We can prove the following approximation error bound:

∀t ∈ [0,T ], ||R(t)− ΠM(R̃(t))|| ≤∫ t

0

||R̃(s)− ΠM(R̃(s))||︸ ︷︷ ︸
best approximation error

(
K +

||L(s, R̃(s))||
σr (R̃(s))− σr+1(R̃(s))

)
eη(t−s)︸ ︷︷ ︸

exponential growth

ds,

The approximation is “good” as long as there is no crossing of the
singular value of order r , i.e. if

σr (R̃(t)) > σr+1(R̃(t))
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R̃(t0)

ΠP(R̃(t0))

R̃(t1)

ΠP(R̃(t−1 )) ΠP(R̃(t+
1 ))

The skeleton set Sk(M) is exactly

Sk(M) = {R̃ ∈M`,m |σr (R̃) = σr+1(R̃)}.
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Ṙ = ΠT (R)(L(t,R(t)))

R(0) = ΠM(R̃(0))

M := {R ∈M`,m|rank(R) = r}.
We can prove the following approximation error bound:

∀t ∈ [0,T ], ||R(t)− ΠM(R̃(t))|| ≤∫ t

0

||R̃(s)− ΠM(R̃(s))||︸ ︷︷ ︸
best approximation error

(
K +

||L(s, R̃(s))||
σr (R̃(s))− σr+1(R̃(s))

)
eη(t−s)︸ ︷︷ ︸

exponential growth

ds,

The approximation is “good” as long as there is no crossing of the
singular value of order r , i.e. if

σr (R̃(t)) > σr+1(R̃(t))



2. Extrinsic curvatures on the fixed rank manifold
b. Derivative of the truncated SVD

The proof is based on the answer to following question:

I the best rank r approximation is the truncated SVD
ΠM(R̃(t))

I what ODE satisfies ΠM(R̃(t)), i.e. what is the derivative of
the truncated SVD ?

d

dt
ΠM(R̃(t)) ?

The answer is given by the computation of the extrinsic curvatures
of M.
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2. Extrinsic curvatures on the fixed rank manifold
b. Derivative of the truncated SVD

The truncated SVD, ΠM, is an orthogonal projection onto the
manifold M.

M := {R ∈M`,m|rank(R) = r}.

For a co-dimension one surface M⊂ E = Rn, the differential of
ΠM reads in terms of principal curvatures κi and directions Φi :

d

dt
ΠM(R̃(t)) =

n−1∑
i=1

1

1− κi
ΦiΦ

T
i dR̃/dt.

κi and Φi are the eigenvalues and eigenvectors of the Weingarten
map at R(t) = ΠM(R̃(t)) :

LR(t) := −∇n =
n−1∑
i=1

κiΦiΦ
T
i

where n is the outward normal at R(t).
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R̃(t)
L(t, R̃

(t))

R(t) = ΠM(R̃(t))

ΠT (R(t))(L
(t, R

(t)))

M
N (R(t))

T (R(t))

R̃(t)− ΠM(R̃(t)) ∈ N (R(t)).
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1. Geometry of the fixed rank manifold
b. Derivative of the truncated SVD
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2. Extrinsic curvatures on the fixed rank manifold
b. Derivative of the truncated SVD

This extends for arbitrary extrinsic submanifolds:

I the Weingerten map LR(t)(N) depends on the normal vector

N = R̃(t)− ΠM(R̃(t)).

I the derivative or ΠM(R̃(t)) now reads

dΠM(R̃(t))/dt|t=0 =

dim(M)∑
i=1

1

1− κi (N)
ΦiΦ

T
i (dR̃(t)/dt)

κi (N) and Φi depend on N = R̃(t)− ΠM(R̃(t)).
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dΠM(R̃(t))/dt|t=0 =

dim(M)∑
i=1

1

1− κi (N)
ΦiΦ

T
i (dR̃(t)/dt)

For the fixed rank manifold, it turns out that the spectral
decomposition κi (N),Φi can be computed explicitly!!

R̃(t) =
rankR̃∑
i=1

σiuiv
T
i ,

κ±i ,r+j(N) = ±
σr+j

σi
, Φ±i ,r+j =

1√
2

(ur+jv
T
i ± uiv

T
r+j)
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2. Extrinsic curvatures on the fixed rank manifold
b. Derivative of the truncated SVD

Let R̃(t) =
r+k∑
i=1

σi (t)ui (t)vi (t)T ∈M`,m the SVD of R̃(t) with

σr (t) > σr+1(t) for all time.

Then a dynamical system for

ΠM(R̃(t)) = U(t)Z (t)T is given by:

U̇ = (I − UUT ) ˙̃RZ (ZTZ )−1

+

 ∑
1≤i≤r
1≤j≤k

σr+j

σ2
i − σ2

r+j

(σiu
T
r+j

˙̃Rvi + σr+ju
T
i

˙̃Rvr+j)ur+jv
T
i

Z (ZTZ )−1

Ż = ˙̃RTU +

 ∑
1≤i≤r
1≤j≤k

σr+j

σ2
i − σ2

r+j

(σr+ju
T
r+j

˙̃Rvi + σiu
T
i

˙̃Rvr+j)vr+ju
T
i

U.
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2. Extrinsic curvatures on the fixed rank manifold
c. Gradient flow computing the truncated SVD

Let R̃ ∈M`,m be fixed and U(t),Z (t) solving the ODE:{
U̇ = (I − UUT )R̃Z (ZTZ )−1

Ż = R̃TU − Z

Then for almost any initial data U(0),Z (0), R(t) = U(t)Z (t)T

converges to ΠM(R̃).
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2. Extrinsic curvatures on the fixed rank manifold

I Extrinsic curvatures can also be computed for other matrix
manifolds.

I This allows to obtain derivatives of other matrix
decompositions and new dynamical systems to compute them:

I Stiefel manifold ↔ polar decomposition
I Isospectral manifold ↔ linear eigenprojectors of symmetric
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I Grassmann manifold ↔ linear eigenprojectors of non
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3. ROM for 2D convection

We applied the DO method for stochastic advection:

How to solve numerically the
stochastic PDE in ψ(t, x ;ω)

∂tψ + v(t, x ;ω) · ∇ ψ = 0

for a huge number of
realizations ω?

Figure: A “real-life” uncertain
velocity field v(t, x ;ω) (Lermusiaux
2006)



3. ROM for 2D convection

Methodology:

I We evolve time-dependent modes and coefficients U(t) and
Z (t) with the DO approximation

I we use fully linear central finite difference schemes for
advection.
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3. ROM for 2D convection

Random oscillation frequency for v(t, x ;ω)



3. ROM for 2D convection

DO solutions

True realizations



3. ROM for 2D convection

(ψi )x (ψi )y Coefficient distribution

Figure: 4 first dominant modes and coefficients U(T ), Z (T )
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