The geometric interpretation of dynamical model order reduction:

Some recent developpements for continuous time matrix algorithms

Florian Feppon

Pierre F.J. Lermusiaux

ICIAM 2019 - Valencia - July 16th, 2019

Dynamical model order reduction

For many applications, one is interested in solving parameter dependent PDEs of the form

$$
\partial_{t} u(t, x ; \omega)=\mathcal{L}(t, u(t, x ; \omega))
$$

Dynamical model order reduction

For many applications, one is interested in solving parameter dependent PDEs of the form

$$
\partial_{t} u(t, x ; \omega)=\mathcal{L}(t, u(t, x ; \omega))
$$

After discretization with ℓ spatial nodes and m parameter realizations, it rewrites as an ODE for a $\ell \times m$ matrix $\tilde{R}(t):=\left(\tilde{R}_{i j}(t)\right)=\left(u\left(t, x_{i} ; \omega_{j}\right)\right)$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \tilde{R}=\mathcal{L}(t, \tilde{R})
$$

Dynamical model order reduction

For many applications, one is interested in solving parameter dependent PDEs of the form

$$
\partial_{t} u(t, x ; \omega)=\mathcal{L}(t, u(t, x ; \omega))
$$

After discretization with ℓ spatial nodes and m parameter realizations, it rewrites as an ODE for a $\ell \times m$ matrix $\tilde{R}(t):=\left(\tilde{R}_{i j}(t)\right)=\left(u\left(t, x_{i} ; \omega_{j}\right)\right):$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \tilde{R}=\mathcal{L}(t, \tilde{R})
$$

If ℓ and m are both large, one rather seeks for a (low) rank r approximation $R(t)$:

$$
\tilde{R}(t) \simeq R(t)=U(t) Z(t)^{T}
$$

with $U(t) \in \mathcal{M}_{\ell, r}, Z(t) \in \mathcal{M}_{m, r}$ and $r \ll \min (\ell, m)$.

Dynamical model order reduction

How to track efficiently the best rank r approximation $R(t)=U(t) Z(t)^{T}$ of a (full rank) time matrix $\tilde{R}(t) \in \mathcal{M}_{\ell, m}$?

Outline

1. The DO approximation: a geometric approach to dynamical model order reduction
2. Extrinsic curvatures on the fixed rank manifold: DO error analysis and dynamical systems computing the truncated SVD Numerical application: ROM for 2D convection dominated problem.

Outline

1. The DO approximation: a geometric approach to dynamical model order reduction
2. Extrinsic curvatures on the fixed rank manifold: DO error analysis and dynamical systems computing the truncated SVD
3. Numerical application: ROM for 2D convection dominated problem.

Outline

1. The DO approximation: a geometric approach to dynamical model order reduction
2. Extrinsic curvatures on the fixed rank manifold: DO error analysis and dynamical systems computing the truncated SVD
3. Numerical application: ROM for 2D convection dominated problem.

1. The DO approximation:

Full dynamical system in $\mathcal{M}_{\ell, m}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \tilde{R}(t)=\mathcal{L}(t, \tilde{R}(t))
$$

1. The DO approximation:

Full dynamical system in $\mathcal{M}_{\ell, m}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \tilde{R}(t)=\mathcal{L}(t, \tilde{R}(t))
$$

The set for the reduced approximation $R(t)=U(t) Z(t)^{T} \simeq \tilde{R}(t)$ is the fixed rank manifold

$$
\mathcal{M}:=\left\{R \in \mathcal{M}_{\ell, m} \mid \operatorname{rank}(R)=r\right\} .
$$

1. The DO approximation

Figure: The manifold \mathcal{M} of 2 -by- 2 rank 1 matrices

1. The DO approximation:

Full dynamical system in $\mathcal{M}_{\ell, m}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \tilde{R}(t)=\mathcal{L}(t, \tilde{R}(t))
$$

The set for the reduced approximation $R(t)=U(t) Z(t)^{T} \simeq \tilde{R}(t)$ is the fixed rank manifold

$$
\mathcal{M}:=\left\{R \in \mathcal{M}_{\ell, m} \mid \operatorname{rank}(R)=r\right\} .
$$

Any rank preserving reduced order model is a dynamical system

$$
\dot{R}=L(t, R(t)) \in \mathcal{T}(R(t))
$$

where $\mathcal{T}(R(t))$ is the tangent space of \mathcal{M} at $R(t)$.

1. The DO approximation

1. The DO approximation

The best approximation of the $\ell \times r$ matrix $\tilde{R}(t)$ is given by the truncated SVD:
$\Pi_{\mathcal{M}}(\tilde{R}(t)):=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}$ satisfies $\Pi_{\mathcal{M}}(\tilde{R}(t))=\arg \min _{R \in \mathcal{M}}\|\tilde{R}(t)-R\|$,
where $\tilde{R}(t)=\sum_{i=1}^{\operatorname{rank}(\tilde{R}(t))} \sigma_{i} u_{i} v_{i}^{T}$ is the SVD of $\tilde{R}(t)$.

1. The DO approximation

The best approximation of the $\ell \times r$ matrix $\tilde{R}(t)$ is given by the truncated SVD:
$\Pi_{\mathcal{M}}(\tilde{R}(t)):=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}$ satisfies $\Pi_{\mathcal{M}}(\tilde{R}(t))=\arg \min _{R \in \mathcal{M}}\|\tilde{R}(t)-R\|$,
where $\tilde{R}(t)=\sum_{i=1}^{\operatorname{rank}(\tilde{R}(t))} \sigma_{i} u_{i} v_{i}^{T}$ is the SVD of $\tilde{R}(t)$.
Finding a "good reduced order model" \Leftrightarrow finding a tangent ODE

$$
\dot{R}=L(t, R) \in \mathcal{T}(R)
$$

such that $R(t) \simeq \Pi_{\mathcal{M}}(\tilde{R}(t))$.

1. The DO approximation

The Dynamically Orthogonal (Sapsis and Lermusiaux (2009)), or Dynamical low-rank approximation (Koch and Lubich 2007):

$$
\left\{\begin{aligned}
\dot{R} & =\Pi_{\mathcal{T}(R)}(\mathcal{L}(t, R(t))) \\
R(0) & =\Pi_{\mathcal{M}}(\tilde{R}(0))
\end{aligned}\right.
$$

where $\Pi_{\mathcal{T}(R)}$ is the projection onto the tangent space of \mathcal{M} at R.

1. The DO approximation

Outline

1. The DO approximation: a geometric approach to dynamical model order reduction
2. Extrinsic curvatures on the fixed rank manifold: DO error analysis and dynamical systems computing the truncated SVD
3. Numerical application: ROM for 2D convection dominated problem.

2. Extrinsic curvatures on the fixed rank manifold

a. Error analysis of the DO approximation

The DO method:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \tilde{R}(t)=\mathcal{L}(t, \tilde{R}(t)) \longrightarrow\left\{\begin{aligned}
\dot{R} & =\Pi_{\mathcal{T}(R)}(\mathcal{L}(t, R(t))) \\
R(0) & =\Pi_{\mathcal{M}}(\tilde{R}(0))
\end{aligned}\right.
$$

$$
\mathcal{M}:=\left\{R \in \mathcal{M}_{\ell, m} \mid \operatorname{rank}(R)=r\right\}
$$

2. Extrinsic curvatures on the fixed rank manifold

a. Error analysis of the DO approximation

The DO method:

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} t} \tilde{R}(t)=\mathcal{L}(t, \tilde{R}(t)) \longrightarrow\left\{\begin{aligned}
\dot{R} & =\Pi_{\mathcal{T}(R)}(\mathcal{L}(t, R(t))) \\
R(0) & =\Pi_{\mathcal{M}}(\tilde{R}(0))
\end{aligned}\right. \\
\mathcal{M}:=\left\{R \in \mathcal{M}_{\ell, m} \mid \operatorname{rank}(R)=r\right\} .
\end{gathered}
$$

We can prove the following approximation error bound:

$$
\begin{aligned}
& \forall t \in[0, T],\left\|R(t)-\Pi_{\mathcal{M}}(\tilde{R}(t))\right\| \leq \\
& \int_{0}^{t} \underbrace{\left\|\tilde{R}(s)-\Pi_{\mathcal{M}}(\tilde{R}(s))\right\|}_{\text {best approximation error }}\left(K+\frac{\|\mathcal{L}(s, \tilde{R}(s))\|}{\sigma_{r}(\tilde{R}(s))-\sigma_{r+1}(\tilde{R}(s))}\right) \underbrace{e^{\eta(t-s)}}_{\text {exponential growth }} \mathrm{d} s,
\end{aligned}
$$

2. Extrinsic curvatures on the fixed rank manifold

a. Error analysis of the DO approximation

The DO method:

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} t} \tilde{R}(t)=\mathcal{L}(t, \tilde{R}(t)) \longrightarrow\left\{\begin{aligned}
\dot{R} & =\Pi_{\mathcal{T}(R)}(\mathcal{L}(t, R(t))) \\
R(0) & =\Pi_{\mathcal{M}}(\tilde{R}(0))
\end{aligned}\right. \\
\mathcal{M}:=\left\{R \in \mathcal{M}_{\ell, m} \mid \operatorname{rank}(R)=r\right\} .
\end{gathered}
$$

We can prove the following approximation error bound:

$$
\begin{aligned}
& \forall t \in[0, T],\left\|R(t)-\Pi_{\mathcal{M}}(\tilde{R}(t))\right\| \leq \\
& \int_{0}^{t} \underbrace{\left\|\tilde{R}(s)-\Pi_{\mathcal{M}}(\tilde{R}(s))\right\|}_{\text {best approximation error }}\left(K+\frac{\|\mathcal{L}(s, \tilde{R}(s))\|}{\sigma_{r}(\tilde{R}(s))-\sigma_{r+1}(\tilde{R}(s))}\right) \underbrace{e^{\eta(t-s)}}_{\text {exponential growth }} \mathrm{d} s,
\end{aligned}
$$

2. Extrinsic curvatures on the fixed rank manifold

a. Error analysis of the DO approximation

The DO method:

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} t} \tilde{R}(t)=\mathcal{L}(t, \tilde{R}(t)) \longrightarrow\left\{\begin{aligned}
\dot{R} & =\Pi_{\mathcal{T}(R)}(\mathcal{L}(t, R(t))) \\
R(0) & =\Pi_{\mathcal{M}}(\tilde{R}(0))
\end{aligned}\right. \\
\mathcal{M}:=\left\{R \in \mathcal{M}_{\ell, m} \mid \operatorname{rank}(R)=r\right\} .
\end{gathered}
$$

We can prove the following approximation error bound:

$$
\begin{aligned}
& \forall t \in[0, T],\left\|R(t)-\Pi_{\mathcal{M}}(\tilde{R}(t))\right\| \leq \\
& \int_{0}^{t} \underbrace{\left\|\tilde{R}(s)-\Pi_{\mathcal{M}}(\tilde{R}(s))\right\|}_{\text {best approximation error }}\left(K+\frac{\|\mathcal{L}(s, \tilde{R}(s))\|}{\sigma_{r}(\tilde{R}(s))-\sigma_{r+1}(\tilde{R}(s))}\right) \underbrace{e^{\eta(t-s)}}_{\text {exponential growth }} \mathrm{d} s,
\end{aligned}
$$

2. Extrinsic curvatures on the fixed rank manifold

a. Error analysis of the DO approximation

The DO method:

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} t} \tilde{R}(t)=\mathcal{L}(t, \tilde{R}(t)) \longrightarrow\left\{\begin{aligned}
\dot{R} & =\Pi_{\mathcal{T}(R)}(\mathcal{L}(t, R(t))) \\
R(0) & =\Pi_{\mathcal{M}}(\tilde{R}(0))
\end{aligned}\right. \\
\mathcal{M}:=\left\{R \in \mathcal{M}_{\ell, m} \mid \operatorname{rank}(R)=r\right\}
\end{gathered}
$$

We can prove the following approximation error bound:

$$
\begin{aligned}
& \forall t \in[0, T],\left\|R(t)-\Pi_{\mathcal{M}}(\tilde{R}(t))\right\| \leq \\
& \int_{0}^{t} \underbrace{\left\|\tilde{R}(s)-\Pi_{\mathcal{M}}(\tilde{R}(s))\right\|}_{\text {best approximation error }}\left(K+\frac{\|\mathcal{L}(s, \tilde{R}(s))\|}{\sigma_{r}(\tilde{R}(s))-\sigma_{r+1}(\tilde{R}(s))}\right) \underbrace{e^{\eta(t-s)}}_{\text {exponential growth }} \mathrm{d} s,
\end{aligned}
$$

The approximation is "good" as long as there is no crossing of the singular value of order r, i.e. if

$$
\sigma_{r}(\tilde{R}(t))>\sigma_{r+1}(\tilde{R}(t))
$$

2. Extrinsic curvatures on the fixed rank manifold

a. Error analysis of the DO approximation

2. Extrinsic curvatures on the fixed rank manifold

a. Error analysis of the DO approximation

2. Extrinsic curvatures on the fixed rank manifold

a. Error analysis of the DO approximation

2. Extrinsic curvatures on the fixed rank manifold

a. Error analysis of the DO approximation

The skeleton set $\operatorname{Sk}(\mathcal{M})$ is exactly

$$
\operatorname{Sk}(\mathcal{M})=\left\{\tilde{R} \in \mathcal{M}_{\ell, m} \mid \sigma_{r}(\tilde{R})=\sigma_{r+1}(\tilde{R})\right\} .
$$

2. Extrinsic curvatures on the fixed rank manifold

a. Error analysis of the DO approximation

The DO method:

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} t} \tilde{R}(t)=\mathcal{L}(t, \tilde{R}(t)) \longrightarrow\left\{\begin{aligned}
\dot{R} & =\Pi_{\mathcal{T}(R)}(\mathcal{L}(t, R(t))) \\
R(0) & =\Pi_{\mathcal{M}}(\tilde{R}(0))
\end{aligned}\right. \\
\mathcal{M}:=\left\{R \in \mathcal{M}_{\ell, m} \mid \operatorname{rank}(R)=r\right\}
\end{gathered}
$$

We can prove the following approximation error bound:

$$
\begin{aligned}
& \forall t \in[0, T],\left\|R(t)-\Pi_{\mathcal{M}}(\tilde{R}(t))\right\| \leq \\
& \int_{0}^{t} \underbrace{\left\|\tilde{R}(s)-\Pi_{\mathcal{M}}(\tilde{R}(s))\right\|}_{\text {best approximation error }}\left(K+\frac{\|\mathcal{L}(s, \tilde{R}(s))\|}{\sigma_{r}(\tilde{R}(s))-\sigma_{r+1}(\tilde{R}(s))}\right) \underbrace{\underbrace{\eta(t-s)}}_{\text {exponential growth }} \mathrm{d} s,
\end{aligned}
$$

The approximation is "good" as long as there is no crossing of the singular value of order r, i.e. if

$$
\sigma_{r}(\tilde{R}(t))>\sigma_{r+1}(\tilde{R}(t))
$$

2. Extrinsic curvatures on the fixed rank manifold

b. Derivative of the truncated SVD

The proof is based on the answer to following question:

2. Extrinsic curvatures on the fixed rank manifold

b. Derivative of the truncated SVD

The proof is based on the answer to following question:

- the best rank r approximation is the truncated SVD $\Pi_{\mathcal{M}}(\tilde{R}(t))$

2. Extrinsic curvatures on the fixed rank manifold

b. Derivative of the truncated SVD

The proof is based on the answer to following question:

- the best rank r approximation is the truncated SVD $\Pi_{\mathcal{M}}(\tilde{R}(t))$
- what ODE satisfies $\Pi_{\mathcal{M}}(\tilde{R}(t))$, i.e. what is the derivative of the truncated SVD ?

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \Pi_{\mathcal{M}}(\tilde{R}(t)) \quad ?
$$

2. Extrinsic curvatures on the fixed rank manifold

b. Derivative of the truncated SVD

The proof is based on the answer to following question:

- the best rank r approximation is the truncated SVD $\Pi_{\mathcal{M}}(\tilde{R}(t))$
- what ODE satisfies $\Pi_{\mathcal{M}}(\tilde{R}(t))$, i.e. what is the derivative of the truncated SVD ?

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \Pi_{\mathcal{M}}(\tilde{R}(t)) \quad ?
$$

The answer is given by the computation of the extrinsic curvatures of \mathcal{M}.

2. Extrinsic curvatures on the fixed rank manifold

b. Derivative of the truncated SVD

The truncated SVD, $\Pi_{\mathcal{M}}$, is an orthogonal projection onto the manifold \mathcal{M}.

$$
\mathcal{M}:=\left\{R \in \mathcal{M}_{\ell, m} \mid \operatorname{rank}(R)=r\right\} .
$$

2. Extrinsic curvatures on the fixed rank manifold

b. Derivative of the truncated SVD

2. Extrinsic curvatures on the fixed rank manifold

b. Derivative of the truncated SVD

The truncated SVD, $\Pi_{\mathcal{M}}$, is an orthogonal projection onto the manifold \mathcal{M}.

$$
\mathcal{M}:=\left\{R \in \mathcal{M}_{\ell, m} \mid \operatorname{rank}(R)=r\right\} .
$$

For a co-dimension one surface $\mathcal{M} \subset E=\mathbb{R}^{n}$, the differential of $\Pi_{\mathcal{M}}$ reads in terms of principal curvatures κ_{i} and directions Φ_{i} :

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \Pi_{\mathcal{M}}(\tilde{R}(t))=\sum_{i=1}^{n-1} \frac{1}{1-\kappa_{i}} \Phi_{i} \Phi_{i}^{T} \mathrm{~d} \tilde{R} / \mathrm{d} t
$$

2. Extrinsic curvatures on the fixed rank manifold

b. Derivative of the truncated SVD

The truncated SVD, $\Pi_{\mathcal{M}}$, is an orthogonal projection onto the manifold \mathcal{M}.

$$
\mathcal{M}:=\left\{R \in \mathcal{M}_{\ell, m} \mid \operatorname{rank}(R)=r\right\} .
$$

For a co-dimension one surface $\mathcal{M} \subset E=\mathbb{R}^{n}$, the differential of $\Pi_{\mathcal{M}}$ reads in terms of principal curvatures κ_{i} and directions Φ_{i} :

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \Pi_{\mathcal{M}}(\tilde{R}(t))=\sum_{i=1}^{n-1} \frac{1}{1-\kappa_{i}} \Phi_{i} \Phi_{i}^{T} \mathrm{~d} \tilde{R} / \mathrm{d} t
$$

κ_{i} and Φ_{i} are the eigenvalues and eigenvectors of the Weingarten map at $R(t)=\Pi_{\mathcal{M}}(\tilde{R}(t))$:

$$
L_{R(t)}:=-\nabla \boldsymbol{n}=\sum_{i=1}^{n-1} \kappa_{i} \Phi_{i} \Phi_{i}^{T}
$$

where \boldsymbol{n} is the outward normal at $R(t)$.

1. Geometry of the fixed rank manifold

b. Derivative of the truncated SVD

2. Extrinsic curvatures on the fixed rank manifold

b. Derivative of the truncated SVD

This extends for arbitrary extrinsic submanifolds:

- the Weingerten map $L_{R(t)}(N)$ depends on the normal vector $N=\tilde{R}(t)-\Pi_{\mathcal{M}}(\tilde{R}(t))$.

2. Extrinsic curvatures on the fixed rank manifold

b. Derivative of the truncated SVD

2. Extrinsic curvatures on the fixed rank manifold

b. Derivative of the truncated SVD

This extends for arbitrary extrinsic submanifolds:

- the Weingerten map $L_{R(t)}(N)$ depends on the normal vector $N=\tilde{R}(t)-\Pi_{\mathcal{M}}(\tilde{R}(t))$.
- the derivative or $\Pi_{\mathcal{M}}(\tilde{R}(t))$ now reads

$$
\begin{aligned}
& \mathrm{d} \Pi_{\mathcal{M}}(\tilde{R}(t)) / \mathrm{d} t \mid t=0 \\
& \sum_{i=1}^{\operatorname{dim}(\mathcal{M})} \frac{1}{1-\kappa_{i}(N)} \Phi_{i} \Phi_{i}^{T}(\mathrm{~d} \tilde{R}(t) / \mathrm{d} t) \\
& \kappa_{i}(N) \text { and } \Phi_{i} \text { depend on } N=\tilde{R}(t)-\Pi_{\mathcal{M}}(\tilde{R}(t)) .
\end{aligned}
$$

2. Extrinsic curvatures on the fixed rank manifold

b. Derivative of the truncated SVD

$$
\mathrm{d} \Pi_{\mathcal{M}}(\tilde{R}(t)) / \mathrm{d} t_{\mid t=0}=\sum_{i=1}^{\operatorname{dim}(\mathcal{M})} \frac{1}{1-\kappa_{i}(N)} \Phi_{i} \Phi_{i}^{T}(\mathrm{~d} \tilde{R}(t) / \mathrm{d} t)
$$

For the fixed rank manifold, it turns out that the spectral decomposition $\kappa_{i}(N), \Phi_{i}$ can be computed explicitly!!

2. Extrinsic curvatures on the fixed rank manifold

b. Derivative of the truncated SVD

$$
\mathrm{d} \Pi_{\mathcal{M}}(\tilde{R}(t)) / \mathrm{d} t_{\mid t=0}=\sum_{i=1}^{\operatorname{dim}(\mathcal{M})} \frac{1}{1-\kappa_{i}(N)} \Phi_{i} \Phi_{i}^{T}(\mathrm{~d} \tilde{R}(t) / \mathrm{d} t)
$$

For the fixed rank manifold, it turns out that the spectral decomposition $\kappa_{i}(N), \Phi_{i}$ can be computed explicitly!!

$$
\begin{gathered}
\tilde{R}(t)=\sum_{i=1}^{\operatorname{rank} \tilde{R}} \sigma_{i} u_{i} v_{i}^{T}, \\
\kappa_{i, r+j}^{ \pm}(N)= \pm \frac{\sigma_{r+j}}{\sigma_{i}}, \Phi_{i, r+j}^{ \pm}=\frac{1}{\sqrt{2}}\left(u_{r+j} v_{i}^{T} \pm u_{i} v_{r+j}^{T}\right)
\end{gathered}
$$

2. Extrinsic curvatures on the fixed rank manifold

b. Derivative of the truncated SVD

Let $\tilde{R}(t)=\sum_{i=1}^{r+k} \sigma_{i}(t) u_{i}(t) v_{i}(t)^{T} \in \mathcal{M}_{\ell, m}$ the SVD of $\tilde{R}(t)$ with
$\sigma_{r}(t)>\sigma_{r+1}(t)$ for all time.

2. Extrinsic curvatures on the fixed rank manifold

b. Derivative of the truncated SVD

Let $\tilde{R}(t)=\sum_{i=1}^{r+k} \sigma_{i}(t) u_{i}(t) v_{i}(t)^{T} \in \mathcal{M}_{\ell, m}$ the SVD of $\tilde{R}(t)$ with $\sigma_{r}(t)>\sigma_{r+1}(t)$ for all time. Then a dynamical system for $\Pi_{\mathcal{M}}(\tilde{R}(t))=U(t) Z(t)^{T}$ is given by:

$$
\left\{\begin{aligned}
\dot{U}= & \left(I-U U^{T}\right) \dot{\tilde{R}} Z\left(Z^{T} Z\right)^{-1} \\
& +\left[\sum_{\substack{1 \leq i \leq r \\
1 \leq j \leq k}} \frac{\sigma_{r+j}}{\sigma_{i}^{2}-\sigma_{r+j}^{2}}\left(\sigma_{i} u_{r+j}^{T} \dot{\tilde{R}} v_{i}+\sigma_{r+j} u_{i}^{T} \dot{\tilde{R}} v_{r+j}\right) u_{r+j} v_{i}^{T}\right] Z\left(Z^{T} Z\right)^{-1} \\
\dot{Z}= & \dot{\tilde{R}}^{T} U+\left[\sum_{\substack{1 \leq i \leq r \\
1 \leq j \leq k}} \frac{\sigma_{r+j}}{\sigma_{i}^{2}-\sigma_{r+j}^{2}}\left(\sigma_{r+j} u_{r+j}^{T} \dot{\tilde{R}} v_{i}+\sigma_{i} u_{i}^{T} \dot{\tilde{R}} v_{r+j}\right) v_{r+j} u_{i}^{T}\right] U .
\end{aligned}\right.
$$

2. Extrinsic curvatures on the fixed rank manifold

c. Gradient flow computing the truncated SVD

2. Extrinsic curvatures on the fixed rank manifold

c. Gradient flow computing the truncated SVD

Let $\tilde{R} \in \mathcal{M}_{\ell, m}$ be fixed and $U(t), Z(t)$ solving the ODE:

$$
\left\{\begin{array}{l}
\dot{U}=\left(I-U U^{T}\right) \tilde{R} Z\left(Z^{T} Z\right)^{-1} \\
\dot{Z}=\tilde{R}^{T} U-Z
\end{array}\right.
$$

2. Extrinsic curvatures on the fixed rank manifold

c. Gradient flow computing the truncated SVD

Let $\tilde{R} \in \mathcal{M}_{\ell, m}$ be fixed and $U(t), Z(t)$ solving the ODE:

$$
\left\{\begin{array}{l}
\dot{U}=\left(I-U U^{T}\right) \tilde{R} Z\left(Z^{T} Z\right)^{-1} \\
\dot{Z}=\tilde{R}^{T} U-Z
\end{array}\right.
$$

Then for almost any initial data $U(0), Z(0), R(t)=U(t) Z(t)^{T}$ converges to $\Pi_{\mathcal{M}}(\tilde{R})$.

2. Extrinsic curvatures on the fixed rank manifold

- Extrinsic curvatures can also be computed for other matrix manifolds.

2. Extrinsic curvatures on the fixed rank manifold

- Extrinsic curvatures can also be computed for other matrix manifolds.
- This allows to obtain derivatives of other matrix decompositions and new dynamical systems to compute them:

2. Extrinsic curvatures on the fixed rank manifold

- Extrinsic curvatures can also be computed for other matrix manifolds.
- This allows to obtain derivatives of other matrix decompositions and new dynamical systems to compute them:
- Stiefel manifold \leftrightarrow polar decomposition

2. Extrinsic curvatures on the fixed rank manifold

- Extrinsic curvatures can also be computed for other matrix manifolds.
- This allows to obtain derivatives of other matrix decompositions and new dynamical systems to compute them:
- Stiefel manifold \leftrightarrow polar decomposition
- Isospectral manifold \leftrightarrow linear eigenprojectors of symmetric matrices

2. Extrinsic curvatures on the fixed rank manifold

- Extrinsic curvatures can also be computed for other matrix manifolds.
- This allows to obtain derivatives of other matrix decompositions and new dynamical systems to compute them:
- Stiefel manifold \leftrightarrow polar decomposition
- Isospectral manifold \leftrightarrow linear eigenprojectors of symmetric matrices
- Grassmann manifold \leftrightarrow linear eigenprojectors of non symmetric matrices

3. ROM for 2 D convection

We applied the DO method for stochastic advection:

How to solve numerically the stochastic PDE in $\psi(t, x ; \omega)$

$$
\partial_{t} \psi+\boldsymbol{v}(t, x ; \omega) \cdot \nabla \psi=0
$$

for a huge number of realizations ω ?

Figure: A "real-life" uncertain velocity field $\boldsymbol{v}(t, x ; \omega)$ (Lermusiaux 2006)

3. ROM for 2 D convection

Methodology:

- We evolve time-dependent modes and coefficients $U(t)$ and $Z(t)$ with the DO approximation

3. ROM for 2 D convection

Methodology:

- We evolve time-dependent modes and coefficients $U(t)$ and $Z(t)$ with the DO approximation
- we use fully linear central finite difference schemes for advection.

3. ROM for 2D convection

Random oscillation frequency for $\boldsymbol{v}(t, x ; \omega)$

3. ROM for 2D convection

3. ROM for 2D convection

Coefficient distribution

Figure: 4 first dominant modes and coefficients $U(T), Z(T)$

References

围 Feppon，F．and Lermusiaux，P．F．J．The Extrinsic Geometry of Dynamical Systems tracking nonlinear matrix projections．
SIAM Journal on Matrix Analysis and Applications．（2019）．
目 Feppon，F．and Lermusiaux，P．F．J．A geometric approach to dynamical model order reduction．
SIAM Journal on Matrix Analysis and Applications．（2018）．
国 Feppon，F．and Lermusiaux，P．F．J．Dynamically orthogonal numerical schemes for efficient stochastic advection and Lagrangian transport．
SIAM Review（2018）．

Thank you!

