Null Space Gradient Flows for Constrained Optimization with Applications to Shape Optimization

Florian Feppon

Grégoire Allaire, Charles Dapogny
Julien Cortial, Felipe Bordeu

SIAM CSE - Spokane - February 26, 2019

SAFRAN

Shape optimization

Multiphysics, non parametric, shape and topology optimization, in 2D...

Shape optimization

And in 3D...

Shape optimization

And in 3D...

Nonlinear, non convex, infinite dimensional optimization problems featuring multiple and arbitrary constraints!

Outline

1. Gradient flows for equality and inequality constrained optimizations
2. Demonstration on topology optimization test cases

1. Constrained optimization

$$
\begin{aligned}
& \min _{x \in \mathcal{X}} J(x) \\
& \text { s.t. }\left\{\begin{array}{l}
\boldsymbol{g}(x)=0 \\
\boldsymbol{h}(x) \leq 0
\end{array}\right.
\end{aligned}
$$

with $J: \mathcal{X} \rightarrow \mathbb{R}, \boldsymbol{g}: \mathcal{X} \rightarrow \mathbb{R}^{p}$ and $\boldsymbol{h}: \mathcal{X} \rightarrow \mathbb{R}^{q}$ Fréchet differentiable.
The set \mathcal{X} can be

- a finite dimensional vector space, $\mathcal{X}=\mathbb{R}^{n}$

1. Constrained optimization

$$
\begin{aligned}
& \min _{x \in \mathcal{X}} J(x) \\
& \text { s.t. }\left\{\begin{array}{l}
\boldsymbol{g}(x)=0 \\
\boldsymbol{h}(x) \leq 0
\end{array}\right.
\end{aligned}
$$

with $J: \mathcal{X} \rightarrow \mathbb{R}, \boldsymbol{g}: \mathcal{X} \rightarrow \mathbb{R}^{p}$ and $\boldsymbol{h}: \mathcal{X} \rightarrow \mathbb{R}^{q}$ Fréchet differentiable.
The set \mathcal{X} can be

- a finite dimensional vector space, $\mathcal{X}=\mathbb{R}^{n}$
- a Hilbert space equipped with a scalar product $a(\cdot, \cdot), \mathcal{X}=V$

1. Constrained optimization

$$
\begin{aligned}
& \min _{x \in \mathcal{X}} J(x) \\
& \text { s.t. }\left\{\begin{array}{l}
\boldsymbol{g}(x)=0 \\
\boldsymbol{h}(x) \leq 0
\end{array}\right.
\end{aligned}
$$

with $J: \mathcal{X} \rightarrow \mathbb{R}, \boldsymbol{g}: \mathcal{X} \rightarrow \mathbb{R}^{p}$ and $\boldsymbol{h}: \mathcal{X} \rightarrow \mathbb{R}^{q}$ Fréchet differentiable.
The set \mathcal{X} can be

- a finite dimensional vector space, $\mathcal{X}=\mathbb{R}^{n}$
- a Hilbert space equipped with a scalar product $a(\cdot, \cdot), \mathcal{X}=V$
- a "manifold", as in topology optimization:

$$
\mathcal{X}=\{\Omega \subset D \mid \Omega \text { Lipschitz }\}
$$

1. A generic optimization algorithm

From a current guess x_{n}, how to select the descent direction $\boldsymbol{\xi}_{n}$ given objective J and constraints $\boldsymbol{g}, \boldsymbol{h}$?

1. A generic optimization algorithm

From a current guess x_{n}, how to select the descent direction $\boldsymbol{\xi}_{n}$ given objective J and constraints $\boldsymbol{g}, \boldsymbol{h}$?

- Many "iteratives" methods in literature:
- Penalty methods (like Augmented Lagrangian Method)
- Linearization methods : SLP, SQP, MMA, MFD

1. A generic optimization algorithm

From a current guess x_{n}, how to select the descent direction $\boldsymbol{\xi}_{n}$ given objective J and constraints $\boldsymbol{g}, \boldsymbol{h}$?

- Many "iteratives" methods in literature:
- Penalty methods (like Augmented Lagrangian Method)
- Linearization methods : SLP, SQP, MMA, MFD

These methods suffer from:

- the need for tuning unintuitive parameters.

1. A generic optimization algorithm

From a current guess x_{n}, how to select the descent direction $\boldsymbol{\xi}_{n}$ given objective J and constraints $\boldsymbol{g}, \boldsymbol{h}$?

- Many "iteratives" methods in literature:
- Penalty methods (like Augmented Lagrangian Method)
- Linearization methods : SLP, SQP, MMA, MFD

These methods suffer from:

- the need for tuning unintuitive parameters.
- "inconsistencies" when $\Delta t \rightarrow 0$: SLP, SQP, MFD subproblems may not have a solution if Δt too small. ALG does not guarantee reducing the objective function if constraints are satisfied.

1. A generic optimization algorithm

Dynamical systems approaches:

1. A generic optimization algorithm

Dynamical systems approaches:

- For unconstrained optimization, the celebrated gradient flow:

$$
\dot{x}=-\nabla J(x)
$$

$J(x(t))$ decreases necessarily!

1. A generic optimization algorithm

Dynamical systems approaches:

- For unconstrained optimization, the celebrated gradient flow:

$$
\dot{x}=-\nabla J(x)
$$

$J(x(t))$ decreases necessarily!

- For equality constrained optimization, projected gradient flow (Tanabe (1980)):

$$
\dot{x}=-\left(I-\mathrm{D} \boldsymbol{g}^{T}\left(\mathrm{D} \boldsymbol{g} \mathrm{D} \boldsymbol{g}^{T}\right)^{-1} \mathrm{D} \boldsymbol{g}\right) \nabla J(x)
$$

(gradient flow on $\mathcal{X}=\{x \in V \mid \boldsymbol{g}(x)=0\}$)

1. A generic optimization algorithm

Dynamical systems approaches:

- For unconstrained optimization, the celebrated gradient flow:

$$
\dot{x}=-\nabla J(x)
$$

$J(x(t))$ decreases necessarily!

- For equality constrained optimization, projected gradient flow (Tanabe (1980)):

$$
\dot{x}=-\left(I-\mathrm{D} \boldsymbol{g}^{T}\left(\mathrm{D} \boldsymbol{g} \mathrm{D} \boldsymbol{g}^{T}\right)^{-1} \mathrm{D} \boldsymbol{g}\right) \nabla J(x)
$$

(gradient flow on $\mathcal{X}=\{x \in V \mid \boldsymbol{g}(x)=0\}$)
Then Yamashita (1980) added a Gauss-Newton direction:

$$
\begin{aligned}
& \dot{x}=-\alpha_{J}\left(I-\mathrm{D}^{T}\left(\mathrm{D} \boldsymbol{g} \mathrm{D} \boldsymbol{g}^{T}\right)^{-1} \mathrm{D} \boldsymbol{g}\right) \nabla J(x) \\
&-\alpha_{C} \mathrm{D} \boldsymbol{g}^{T}\left(\mathrm{D} \boldsymbol{g} \mathrm{D} \boldsymbol{g}^{T}\right)^{-1} \boldsymbol{g}(x)
\end{aligned}
$$

1. A generic optimization algorithm

Dynamical systems approaches:

- For unconstrained optimization, the celebrated gradient flow:

$$
\dot{x}=-\nabla J(x)
$$

$J(x(t))$ decreases necessarily!

- For equality constrained optimization, projected gradient flow (Tanabe (1980)):

$$
\dot{x}=-\left(I-\mathrm{D} \boldsymbol{g}^{T}\left(\mathrm{D} \boldsymbol{g} \mathrm{D} \boldsymbol{g}^{T}\right)^{-1} \mathrm{D} \boldsymbol{g}\right) \nabla J(x)
$$

(gradient flow on $\mathcal{X}=\{x \in V \mid \boldsymbol{g}(x)=0\}$)
Then Yamashita (1980) added a Gauss-Newton direction:

$$
\begin{aligned}
& \dot{x}=-\alpha_{J}\left(I-\mathrm{D} \boldsymbol{g}^{T}\left(\mathrm{D} \boldsymbol{g} \mathrm{D} \boldsymbol{g}^{T}\right)^{-1} \mathrm{D} \boldsymbol{g}\right) \nabla J(x) \\
&-\alpha_{C} \mathrm{D} \boldsymbol{g}^{T}\left(\mathrm{D} \boldsymbol{g} \mathrm{D} \boldsymbol{g}^{T}\right)^{-1} \boldsymbol{g}(x)
\end{aligned}
$$

$\boldsymbol{g}(x(t))=\boldsymbol{g}(x(0)) e^{-\alpha c t}$ and $J(x(t))$ is guaranteed to decrease if $\boldsymbol{g}(x(t))=0$.

1. A generic optimization algorithm

For both equality constraints $\boldsymbol{g}(x)=0$ and inequality constraints $\boldsymbol{h}(x) \leq 0$, consider $\widetilde{I}(x)$ the set of violated constraints:

$$
\begin{gathered}
\widetilde{I}(x)=\left\{i \in\{1, \ldots, q\} \mid h_{i}(x) \geqslant 0\right\} . \\
\boldsymbol{C}_{\widetilde{I}(x)}=\left[\begin{array}{lll}
\boldsymbol{g}(x) & \mid\left(h_{i}(x)\right)_{i \in \tilde{I}(x)}
\end{array}\right]^{T}
\end{gathered}
$$

1. A generic optimization algorithm

For both equality constraints $\boldsymbol{g}(x)=0$ and inequality constraints $\boldsymbol{h}(x) \leq 0$, consider $\widetilde{I}(x)$ the set of violated constraints:

$$
\begin{gathered}
\widetilde{I}(x)=\left\{i \in\{1, \ldots, q\} \mid h_{i}(x) \geqslant 0\right\} . \\
\boldsymbol{C}_{\widetilde{I}(x)}=\left[\begin{array}{lll}
\boldsymbol{g}(x) & \mid\left(h_{i}(x)\right)_{i \in \widetilde{I}(x)}
\end{array}\right]^{T}
\end{gathered}
$$

We propose

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x(t))-\alpha_{C} \xi_{C}(x(t))
$$

with

$$
\begin{aligned}
&-\boldsymbol{\xi}_{J}(x):=\left\{\begin{array}{r}
\text { the "best" descent direction } \\
\text { with respect to the constraints } \widetilde{I}(x)
\end{array}\right. \\
&-\boldsymbol{\xi}_{C}(x):=\left\{\begin{array}{c}
\text { the Gauss-Newton direction } \\
-\mathrm{D} \boldsymbol{C}_{\widetilde{I}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\widetilde{I}(x)} \mathrm{D} \boldsymbol{C}_{\widetilde{I}(x)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{\widetilde{I}(x)}(x)
\end{array}\right.
\end{aligned}
$$

1. A generic optimization algorithm

1. A generic optimization algorithm

We propose:

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x(t))-\alpha_{C} \boldsymbol{\xi}_{C}(x(t))
$$

with

$$
\begin{gathered}
\boldsymbol{\xi}_{J}(x):=\left(I-\mathrm{D} \boldsymbol{C}_{\overparen{I}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\overparen{I}(x)} \mathrm{D} \boldsymbol{C}_{\overparen{I}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\overparen{I}(x)}\right)(\nabla J(x)) \\
\boldsymbol{\xi}_{C}(x):=\mathrm{D} \boldsymbol{C}_{\widetilde{I}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\widetilde{I}(x)} \mathrm{D} \boldsymbol{C}_{\widetilde{I}(x)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{\widetilde{I}(x)}(x)
\end{gathered}
$$

1. A generic optimization algorithm

We propose:

$$
\dot{x}=-\alpha_{J} \boldsymbol{\xi}_{J}(x(t))-\alpha_{C} \boldsymbol{\xi}_{C}(x(t))
$$

with

$$
\begin{gathered}
\boldsymbol{\xi}_{J}(x):=\left(I-\mathrm{D} \boldsymbol{C}_{\overparen{I}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\overparen{I}(x)} \mathrm{D} \boldsymbol{C}_{\overparen{I}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\overparen{I}(x)}\right)(\nabla J(x)) \\
\boldsymbol{\xi}_{C}(x):=\mathrm{D} \boldsymbol{C}_{\widetilde{I}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\widetilde{I}(x)} \mathrm{D} \boldsymbol{C}_{\widetilde{I}(x)}^{\mathcal{T}}\right)^{-1} \boldsymbol{C}_{\widetilde{I}(x)}(x)
\end{gathered}
$$

$\widehat{I}(x) \subset \widetilde{I}(x)$ is a subset of the active or violated constraints which can be computed by mean of a dual subproblem.

1. A generic optimization algorithm

The best descent direction $-\boldsymbol{\xi}_{J}(x)$ must be proportional to

$$
\begin{aligned}
& \boldsymbol{\xi}^{*}=\quad \arg \min _{\boldsymbol{\xi} \in V} \mathrm{D} J(x) \boldsymbol{\xi} \\
& \text { s.t. }\left\{\begin{array}{r}
\mathrm{D} \boldsymbol{g}(x) \boldsymbol{\xi}=0 \\
\mathrm{D} \boldsymbol{h}_{\widetilde{I}(x)}(x) \boldsymbol{\xi} \leq 0 \\
\|\boldsymbol{\xi}\| V \leq 1 .
\end{array}\right.
\end{aligned}
$$

where $\boldsymbol{h}_{\tilde{I}(x)}(x)=\left(h_{i}(x)\right)_{i \in \widetilde{I}(x)}$

1. A generic optimization algorithm

Proposition

Let $\left(\boldsymbol{\lambda}^{*}(x), \boldsymbol{\mu}^{*}(x)\right) \in \mathbb{R}^{p} \times \mathbb{R}^{\operatorname{Card}(x)}$ the solutions of the following dual minimization problem:
$\left(\boldsymbol{\lambda}^{*}(x), \boldsymbol{\mu}^{*}(x)\right):=\arg \min _{\substack{\boldsymbol{\lambda} \in \mathbb{R}^{p} \\ \boldsymbol{\mu} \in \mathbb{R}^{\boldsymbol{q}(x)}, \boldsymbol{\mu} \geqslant 0}}\left\|\nabla J(x)+\mathrm{D} \boldsymbol{g}(x)^{\mathcal{T}} \boldsymbol{\lambda}+\mathrm{D} \boldsymbol{h}_{\widetilde{I}(x)}(x)^{\mathcal{T}} \boldsymbol{\mu}\right\|_{v}$.
Then, unless x is a KKT point, the best descent direction $\xi^{*}(x)$ is given by

$$
\boldsymbol{\xi}^{*}(x)=-\frac{\nabla J(x)+\mathrm{D} \boldsymbol{g}(x)^{\mathcal{T}} \boldsymbol{\lambda}^{*}(x)+\mathrm{D} \boldsymbol{h}_{\widetilde{I}(x)}(x)^{\mathcal{T}} \boldsymbol{\mu}^{*}(x)}{\left\|\nabla J(x)+\mathrm{D} \boldsymbol{g}(x)^{\mathcal{T}} \boldsymbol{\lambda}^{*}(x)+\mathrm{D} \boldsymbol{h}_{\widetilde{I}(x)}(x)^{\mathcal{T}} \boldsymbol{\mu}^{*}(x)\right\|_{v}} .
$$

1. A generic optimization algorithm

Proposition

Let $\widehat{l}(x)$ the set obtained by collecting the non zero components of $\boldsymbol{\mu}^{*}(x)$:

$$
\widehat{I}(x):=\left\{i \in \widetilde{I} \mid \mu_{i}^{*}(x)>0\right\} .
$$

Then $\boldsymbol{\xi}^{*}(x)$ is explicitly given by:

$$
\xi^{*}(x)=-\frac{\Pi_{\boldsymbol{C}_{\overparen{\Pi}(x)}}(\nabla J(x))}{\left\|\Pi_{\boldsymbol{C}_{\overparen{\Gamma}(x)}}(\nabla J(x))\right\|_{V}}
$$

with

$$
\Pi_{\boldsymbol{C}_{\overparen{I}(x)}}(\nabla J(x))=\left(I-\mathrm{D} \boldsymbol{C}_{\hat{I}(x)}^{\mathcal{T}}\left(\mathrm{D} \boldsymbol{C}_{\widehat{\Gamma}(x)} \mathrm{D} \boldsymbol{C}_{\widehat{\Gamma}(x)}^{\mathcal{T}}\right)^{-1} \mathrm{D} \boldsymbol{C}_{\widehat{\Gamma}(x)}\right)(\nabla J(x))
$$

1. A generic optimization algorithm

We can prove:

1. Constraints are asymptotically satisfied:

$$
\boldsymbol{g}(x(t))=e^{-\alpha_{C} t} \boldsymbol{g}(x(0)) \text { and } \boldsymbol{h}_{\tilde{I}(x(t))} \leq e^{-\alpha_{C} t} \boldsymbol{h}(x(0))
$$

2. J decreases as soon as the violation $\boldsymbol{C}_{\widetilde{I}(x(t))}$ is sufficiently small
3. All stationary points x^{*} of the ODE are KKT points

2. Applications to shape optimization

What is truely required by the user:

1. Specification of objective and constraints J, $\boldsymbol{g}, \boldsymbol{h}$

2. Applications to shape optimization

What is truely required by the user:

1. Specification of objective and constraints J, $\boldsymbol{g}, \boldsymbol{h}$
2. Fréchet derivatives $\mathrm{D} J(x), \mathrm{D} \boldsymbol{g}(x), \mathrm{D} \boldsymbol{h}(x)$ given as linear operators

2. Applications to shape optimization

What is truely required by the user:

1. Specification of objective and constraints $J, \boldsymbol{g}, \boldsymbol{h}$
2. Fréchet derivatives $\mathrm{D} J(x), \mathrm{D} \boldsymbol{g}(x), \mathrm{D} \boldsymbol{h}(x)$ given as linear operators
3. Scalar product a for identifying these derivatives

2. Applications to shape optimization

What is truely required by the user:

1. Specification of objective and constraints $J, \boldsymbol{g}, \boldsymbol{h}$
2. Fréchet derivatives $\mathrm{D} J(x), \mathrm{D} \boldsymbol{g}(x), \mathrm{D} \boldsymbol{h}(x)$ given as linear operators
3. Scalar product a for identifying these derivatives
4. Typical length scale Δt (e.g. the mesh size)

2. Applications to shape optimization

What is truely required by the user:

1. Specification of objective and constraints J, $\boldsymbol{g}, \boldsymbol{h}$
2. Fréchet derivatives $\mathrm{D} J(x), \mathrm{D} \boldsymbol{g}(x), \mathrm{D} \boldsymbol{h}(x)$ given as linear operators
3. Scalar product a for identifying these derivatives
4. Typical length scale Δt (e.g. the mesh size)
5. α_{J} and α_{C} for tuning the relative magnitude of $\boldsymbol{\xi}_{J}$ and $\boldsymbol{\xi}_{C}$, i.e. the speed at which violated constraints become satisfied.

2. Applications to shape optimization

A multiple load case.

g_{0}	g_{1}	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}	g_{8}
Γ_{0}	Γ_{1}	Γ_{2}	Γ_{3}	Γ_{4}	Γ_{5}	Γ_{6}	Γ_{7}	Γ_{8}
(77717 Γ_{D}								

$$
\left\{\begin{aligned}
-\operatorname{div}\left(A e\left(\boldsymbol{u}_{i}\right)\right) & =0 & & \text { in } \Omega \\
\operatorname{Ae}\left(\boldsymbol{u}_{i}\right) \boldsymbol{n} & =0 & & \text { on } \Gamma \\
\operatorname{Ae}\left(\boldsymbol{u}_{i}\right) \boldsymbol{n} & =\boldsymbol{g}_{i} & & \text { on } \Gamma_{i} \\
\operatorname{Ae}\left(\boldsymbol{u}_{i}\right) \boldsymbol{n} & =0 & & \text { on } \Gamma_{j} \text { for } j \neq i \\
\boldsymbol{u}_{i} & =0 & & \text { on } \Gamma_{D},
\end{aligned}\right.
$$

2. Applications to shape optimization

Volume minimization subject to multiple load rigidity constraints

$$
\begin{aligned}
& \min _{\Omega} \int_{\Omega} \mathrm{d} x \\
& \text { s.t. } \int_{\Omega} \operatorname{Ae}\left(\boldsymbol{u}_{i}\right): e\left(\boldsymbol{u}_{i}\right) \mathrm{d} x \leq C, \quad \forall i=1 \ldots 9
\end{aligned}
$$

Demonstration on shape optimization test cases

(a) One load (only \boldsymbol{g}_{4} is considered).

(b) Three loads (only $\boldsymbol{g}_{0}, \boldsymbol{g}_{4}, \boldsymbol{g}_{8}$ are considered).

(c) All nine loads.

2. Applications to shape optimization

Figure: Single load case.

2. Applications to shape optimization

Figure: Three load case.

2. Applications to shape optimization

Figure: Nine load case.

2. Applications to shape optimization

Heat exchange subject to maximal pressure drop and non penetration constraint:

$$
\begin{aligned}
\max _{\Omega} & \int_{\Omega_{f, \text { cold }}} \rho c_{p} \boldsymbol{v} \cdot \nabla T \mathrm{~d} x-\int_{\Omega_{f, \text { hot }}} \rho c_{p} \boldsymbol{v} \cdot \nabla T \mathrm{~d} x \\
\text { s.t. } & \int_{\partial \Omega_{f, \text { out }}} p \mathrm{~d} s-\int_{\partial \Omega_{f, \text { in }}} p \mathrm{ds} \leq \mathrm{DP}_{0} \\
& d\left(\Omega_{f, \text { hot }}, \Omega_{f, \text { cold }}\right) \geqslant d_{\text {min }}
\end{aligned}
$$

100.8
-75.5
-50.1
-24.8
-0.6

References

围 Feppon，F．，Allaire，G．，Bordeu，F．，Cortial，J．， and Dapogny，C．Shape optimization of a coupled thermal fluid－structure problem in a level set mesh evolution framework．
SeMA Journal（2019）．
圊 Feppon，F．，Allaire，G．，and Dapogny，C．Null space gradient flows for constrained optimization with applications to shape optimization． HAL preprint hal－01972915（2019）．
囯 Feppon，F．，Allaire，G．，and Dapogny，C．A variational formulation for computing shape derivatives of geometric constraints along rays．
HAL preprint hal－01879571（2019）．

Many thanks!

Constrained optimization

- For a vector space $\mathcal{X}=V$, a sequence of updates will be of the form

$$
x_{n+1}=x_{n}-\Delta t \xi_{n}
$$

where $-\boldsymbol{\xi}_{n}$ is the current descent direction.

- For a manifold, this becomes

$$
x_{n+1}=\rho_{x_{n}}\left(-\Delta t \boldsymbol{\xi}_{n}\right)
$$

1. A generic optimization algorithm

Warning: $\nabla J(x)$ and the transpose ${ }^{\mathcal{T}}$ must be computed with respect to the scalar product a of the Hilbert space V or $T_{x_{n}}$. In practice this means solving

$$
\begin{aligned}
& \forall \boldsymbol{\xi} \in V, a(\nabla J(x), \boldsymbol{\xi})=\mathrm{D} J(x) \boldsymbol{\xi} \\
& \forall \boldsymbol{\xi} \in V, a\left(\nabla g_{i}(x), \boldsymbol{\xi}\right)=\mathrm{D} g_{i}(x) \boldsymbol{\xi} \\
& \forall \boldsymbol{\xi} \in V, a\left(\nabla h_{i}(x), \boldsymbol{\xi}\right)=\mathrm{D} h_{i}(x) \boldsymbol{\xi}
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathrm{D} \boldsymbol{g}^{\mathcal{T}}(x) & =\left[\begin{array}{lll}
\nabla g_{0}(x) & \cdots & \nabla g_{p}(x)
\end{array}\right]^{T} \\
\mathrm{D} \boldsymbol{h}^{\mathcal{T}}(x) & =\left[\begin{array}{lll}
\nabla h_{0}(x) & \cdots & \nabla h_{q}(x)
\end{array}\right]^{T}
\end{aligned}
$$

