
Null Space Gradient Flows for Constrained
Optimization with Applications to Shape

Optimization

Florian Feppon

Grégoire Allaire, Charles Dapogny
Julien Cortial, Felipe Bordeu

SIAM CSE – Spokane – February 26, 2019

Shape optimization

Multiphysics, non parametric, shape and topology optimization, in
2D. . .

Shape optimization

And in 3D. . .

. . . Nonlinear, non convex, infinite dimensional optimization
problems featuring multiple and arbitrary constraints!

Shape optimization

And in 3D. . .

. . . Nonlinear, non convex, infinite dimensional optimization
problems featuring multiple and arbitrary constraints!

Outline

1. Gradient flows for equality and inequality constrained
optimizations

2. Demonstration on topology optimization test cases

1. Constrained optimization

min
x∈X

J(x)

s.t.

{
g(x) = 0

h(x) ≤ 0,

with J : X → R, g : X → Rp and h : X → Rq Fréchet
differentiable.
The set X can be

I a finite dimensional vector space, X = Rn

I a Hilbert space equipped with a scalar product a(·, ·), X = V

I a “manifold”, as in topology optimization:

X = {Ω ⊂ D |Ω Lipschitz }

1. Constrained optimization

min
x∈X

J(x)

s.t.

{
g(x) = 0

h(x) ≤ 0,

with J : X → R, g : X → Rp and h : X → Rq Fréchet
differentiable.
The set X can be

I a finite dimensional vector space, X = Rn

I a Hilbert space equipped with a scalar product a(·, ·), X = V

I a “manifold”, as in topology optimization:

X = {Ω ⊂ D |Ω Lipschitz }

1. Constrained optimization

min
x∈X

J(x)

s.t.

{
g(x) = 0

h(x) ≤ 0,

with J : X → R, g : X → Rp and h : X → Rq Fréchet
differentiable.
The set X can be

I a finite dimensional vector space, X = Rn

I a Hilbert space equipped with a scalar product a(·, ·), X = V

I a “manifold”, as in topology optimization:

X = {Ω ⊂ D |Ω Lipschitz }

1. A generic optimization algorithm

From a current guess xn, how to select the descent direction ξn
given objective J and constraints g , h?

I Many “iteratives” methods in literature:
I Penalty methods (like Augmented Lagrangian Method)
I Linearization methods : SLP, SQP, MMA, MFD

These methods suffer from:

I the need for tuning unintuitive parameters.

I “inconsistencies” when ∆t → 0: SLP, SQP, MFD
subproblems may not have a solution if ∆t too small. ALG
does not guarantee reducing the objective function if
constraints are satisfied.

1. A generic optimization algorithm

From a current guess xn, how to select the descent direction ξn
given objective J and constraints g , h?

I Many “iteratives” methods in literature:
I Penalty methods (like Augmented Lagrangian Method)
I Linearization methods : SLP, SQP, MMA, MFD

These methods suffer from:

I the need for tuning unintuitive parameters.

I “inconsistencies” when ∆t → 0: SLP, SQP, MFD
subproblems may not have a solution if ∆t too small. ALG
does not guarantee reducing the objective function if
constraints are satisfied.

1. A generic optimization algorithm

From a current guess xn, how to select the descent direction ξn
given objective J and constraints g , h?

I Many “iteratives” methods in literature:
I Penalty methods (like Augmented Lagrangian Method)
I Linearization methods : SLP, SQP, MMA, MFD

These methods suffer from:

I the need for tuning unintuitive parameters.

I “inconsistencies” when ∆t → 0: SLP, SQP, MFD
subproblems may not have a solution if ∆t too small. ALG
does not guarantee reducing the objective function if
constraints are satisfied.

1. A generic optimization algorithm

From a current guess xn, how to select the descent direction ξn
given objective J and constraints g , h?

I Many “iteratives” methods in literature:
I Penalty methods (like Augmented Lagrangian Method)
I Linearization methods : SLP, SQP, MMA, MFD

These methods suffer from:

I the need for tuning unintuitive parameters.

I “inconsistencies” when ∆t → 0: SLP, SQP, MFD
subproblems may not have a solution if ∆t too small. ALG
does not guarantee reducing the objective function if
constraints are satisfied.

1. A generic optimization algorithm

Dynamical systems approaches:

I For unconstrained optimization, the celebrated gradient flow:

ẋ = −∇J(x)

J(x(t)) decreases necessarily!
I For equality constrained optimization, projected gradient flow

(Tanabe (1980)):

ẋ = −(I −DgT (DgDgT)−1Dg)∇J(x)

(gradient flow on X = {x ∈ V | g(x) = 0})
Then Yamashita (1980) added a Gauss-Newton direction:

ẋ = −αJ(I −DgT (DgDgT)−1Dg)∇J(x)

−αCDg
T (DgDgT)−1g(x)

g(x(t)) = g(x(0))e−αC t and J(x(t)) is guaranteed to
decrease if g(x(t)) = 0.

1. A generic optimization algorithm

Dynamical systems approaches:

I For unconstrained optimization, the celebrated gradient flow:

ẋ = −∇J(x)

J(x(t)) decreases necessarily!

I For equality constrained optimization, projected gradient flow
(Tanabe (1980)):

ẋ = −(I −DgT (DgDgT)−1Dg)∇J(x)

(gradient flow on X = {x ∈ V | g(x) = 0})
Then Yamashita (1980) added a Gauss-Newton direction:

ẋ = −αJ(I −DgT (DgDgT)−1Dg)∇J(x)

−αCDg
T (DgDgT)−1g(x)

g(x(t)) = g(x(0))e−αC t and J(x(t)) is guaranteed to
decrease if g(x(t)) = 0.

1. A generic optimization algorithm

Dynamical systems approaches:

I For unconstrained optimization, the celebrated gradient flow:

ẋ = −∇J(x)

J(x(t)) decreases necessarily!
I For equality constrained optimization, projected gradient flow

(Tanabe (1980)):

ẋ = −(I −DgT (DgDgT)−1Dg)∇J(x)

(gradient flow on X = {x ∈ V | g(x) = 0})

Then Yamashita (1980) added a Gauss-Newton direction:

ẋ = −αJ(I −DgT (DgDgT)−1Dg)∇J(x)

−αCDg
T (DgDgT)−1g(x)

g(x(t)) = g(x(0))e−αC t and J(x(t)) is guaranteed to
decrease if g(x(t)) = 0.

1. A generic optimization algorithm

Dynamical systems approaches:

I For unconstrained optimization, the celebrated gradient flow:

ẋ = −∇J(x)

J(x(t)) decreases necessarily!
I For equality constrained optimization, projected gradient flow

(Tanabe (1980)):

ẋ = −(I −DgT (DgDgT)−1Dg)∇J(x)

(gradient flow on X = {x ∈ V | g(x) = 0})
Then Yamashita (1980) added a Gauss-Newton direction:

ẋ = −αJ(I −DgT (DgDgT)−1Dg)∇J(x)

−αCDg
T (DgDgT)−1g(x)

g(x(t)) = g(x(0))e−αC t and J(x(t)) is guaranteed to
decrease if g(x(t)) = 0.

1. A generic optimization algorithm

Dynamical systems approaches:

I For unconstrained optimization, the celebrated gradient flow:

ẋ = −∇J(x)

J(x(t)) decreases necessarily!
I For equality constrained optimization, projected gradient flow

(Tanabe (1980)):

ẋ = −(I −DgT (DgDgT)−1Dg)∇J(x)

(gradient flow on X = {x ∈ V | g(x) = 0})
Then Yamashita (1980) added a Gauss-Newton direction:

ẋ = −αJ(I −DgT (DgDgT)−1Dg)∇J(x)

−αCDg
T (DgDgT)−1g(x)

g(x(t)) = g(x(0))e−αC t and J(x(t)) is guaranteed to
decrease if g(x(t)) = 0.

1. A generic optimization algorithm

For both equality constraints g(x) = 0 and inequality constraints
h(x) ≤ 0, consider Ĩ (x) the set of violated constraints:

Ĩ (x) = {i ∈ {1, . . . , q} | hi (x) > 0}.

C
Ĩ (x)

=
[
g(x) | (hi (x))

i∈Ĩ (x)

]T

We propose
ẋ = −αJξJ(x(t))− αCξC (x(t))

with

−ξJ(x) :=

{
the “best” descent direction

with respect to the constraints Ĩ (x)

−ξC (x) :=

{
the Gauss-Newton direction

−DCT
Ĩ (x)

(DC
Ĩ (x)

DCT
Ĩ (x)

)−1C
Ĩ (x)

(x)

1. A generic optimization algorithm

For both equality constraints g(x) = 0 and inequality constraints
h(x) ≤ 0, consider Ĩ (x) the set of violated constraints:

Ĩ (x) = {i ∈ {1, . . . , q} | hi (x) > 0}.

C
Ĩ (x)

=
[
g(x) | (hi (x))

i∈Ĩ (x)

]T
We propose

ẋ = −αJξJ(x(t))− αCξC (x(t))

with

−ξJ(x) :=

{
the “best” descent direction

with respect to the constraints Ĩ (x)

−ξC (x) :=

{
the Gauss-Newton direction

−DCT
Ĩ (x)

(DC
Ĩ (x)

DCT
Ĩ (x)

)−1C
Ĩ (x)

(x)

1. A generic optimization algorithm

min
(x1,x2)∈R2

J(x1, x2) = x2
1 + (x2 + 3)2

s.t.

{
h1(x1, x2) = −x2

1 + x2 ≤ 0

h2(x1, x2) = −x1 − x2 − 2 ≤ 0

1. A generic optimization algorithm

We propose:
ẋ = −αJξJ(x(t))− αCξC (x(t))

with

ξJ(x) := (I −DCT
Î (x)

(DC
Î (x)

DCT
Î (x)

)−1DC
Î (x)

)(∇J(x))

ξC (x) := DCT
Ĩ (x)

(DC
Ĩ (x)

DCT
Ĩ (x)

)−1C
Ĩ (x)

(x).

Î (x) ⊂ Ĩ (x) is a subset of the active or violated constraints which
can be computed by mean of a dual subproblem.

1. A generic optimization algorithm

We propose:
ẋ = −αJξJ(x(t))− αCξC (x(t))

with

ξJ(x) := (I −DCT
Î (x)

(DC
Î (x)

DCT
Î (x)

)−1DC
Î (x)

)(∇J(x))

ξC (x) := DCT
Ĩ (x)

(DC
Ĩ (x)

DCT
Ĩ (x)

)−1C
Ĩ (x)

(x).

Î (x) ⊂ Ĩ (x) is a subset of the active or violated constraints which
can be computed by mean of a dual subproblem.

1. A generic optimization algorithm

The best descent direction −ξJ(x) must be proportional to

ξ∗ = arg min
ξ∈V

DJ(x)ξ

s.t.

Dg(x)ξ = 0

Dh
Ĩ (x)

(x)ξ ≤ 0

||ξ||V ≤ 1.

where h
Ĩ (x)

(x) = (hi (x))
i∈Ĩ (x)

1. A generic optimization algorithm

Proposition

Let (λ∗(x),µ∗(x)) ∈ Rp × RCardĨ (x) the solutions of the following
dual minimization problem:

(λ∗(x),µ∗(x)) := arg min
λ∈Rp

µ∈Rq̃(x),µ>0

||∇J(x)+Dg(x)T λ+Dh
Ĩ (x)

(x)T µ||V .

Then, unless x is a KKT point, the best descent direction ξ∗(x) is
given by

ξ∗(x) = −
∇J(x) + Dg(x)T λ∗(x) + Dh

Ĩ (x)
(x)T µ∗(x)

||∇J(x) + Dg(x)T λ∗(x) + Dh
Ĩ (x)

(x)T µ∗(x)||V
.

1. A generic optimization algorithm

Proposition

Let Î (x) the set obtained by collecting the non zero components of
µ∗(x):

Î (x) := {i ∈ Ĩ |µ∗i (x) > 0}.

Then ξ∗(x) is explicitly given by:

ξ∗(x) = −
ΠC

Î (x)
(∇J(x))

||ΠC
Î (x)

(∇J(x))||V
,

with

ΠC
Î (x)

(∇J(x)) = (I −DCT
Î (x)

(DC
Î (x)

DCT
Î (x)

)−1DC
Î (x)

)(∇J(x))

1. A generic optimization algorithm

We can prove:

1. Constraints are asymptotically satisfied:

g(x(t)) = e−αC tg(x(0)) and h
Ĩ (x(t))

≤ e−αC th(x(0))

2. J decreases as soon as the violation C
Ĩ (x(t))

is sufficiently

small

3. All stationary points x∗ of the ODE are KKT points

2. Applications to shape optimization

What is truely required by the user:

1. Specification of objective and constraints J, g , h

2. Fréchet derivatives DJ(x), Dg(x), Dh(x) given as linear
operators

3. Scalar product a for identifying these derivatives

4. Typical length scale ∆t (e.g. the mesh size)

5. αJ and αC for tuning the relative magnitude of ξJ and ξC ,
i.e. the speed at which violated constraints become satisfied.

2. Applications to shape optimization

What is truely required by the user:

1. Specification of objective and constraints J, g , h

2. Fréchet derivatives DJ(x), Dg(x), Dh(x) given as linear
operators

3. Scalar product a for identifying these derivatives

4. Typical length scale ∆t (e.g. the mesh size)

5. αJ and αC for tuning the relative magnitude of ξJ and ξC ,
i.e. the speed at which violated constraints become satisfied.

2. Applications to shape optimization

What is truely required by the user:

1. Specification of objective and constraints J, g , h

2. Fréchet derivatives DJ(x), Dg(x), Dh(x) given as linear
operators

3. Scalar product a for identifying these derivatives

4. Typical length scale ∆t (e.g. the mesh size)

5. αJ and αC for tuning the relative magnitude of ξJ and ξC ,
i.e. the speed at which violated constraints become satisfied.

2. Applications to shape optimization

What is truely required by the user:

1. Specification of objective and constraints J, g , h

2. Fréchet derivatives DJ(x), Dg(x), Dh(x) given as linear
operators

3. Scalar product a for identifying these derivatives

4. Typical length scale ∆t (e.g. the mesh size)

5. αJ and αC for tuning the relative magnitude of ξJ and ξC ,
i.e. the speed at which violated constraints become satisfied.

2. Applications to shape optimization

What is truely required by the user:

1. Specification of objective and constraints J, g , h

2. Fréchet derivatives DJ(x), Dg(x), Dh(x) given as linear
operators

3. Scalar product a for identifying these derivatives

4. Typical length scale ∆t (e.g. the mesh size)

5. αJ and αC for tuning the relative magnitude of ξJ and ξC ,
i.e. the speed at which violated constraints become satisfied.

2. Applications to shape optimization

A multiple load case.

ΓD ΓD

g0

Γ0

g1

Γ1

g2

Γ2

g3

Γ3

g4

Γ4

g5

Γ5

g6

Γ6

g7

Γ7

g8

Γ8

−div(Ae(ui)) = 0 in Ω

Ae(ui)n = 0 on Γ

Ae(ui)n = gi on Γi

Ae(ui)n = 0 on Γj for j 6= i

ui = 0 on ΓD ,

2. Applications to shape optimization

Volume minimization subject to multiple load rigidity constraints

min
Ω

∫
Ω
dx

s.t.

∫
Ω
Ae(ui) : e(ui)dx ≤ C , ∀i = 1 . . . 9

Demonstration on shape optimization test cases

(a) One load (only g4 is considered).

(b) Three loads (only g0, g4, g8 are considered).

(c) All nine loads.

2. Applications to shape optimization

0 50 100 150 200 250 300

0.45

0.50

0.55

0.60

0.65

0.70

(a) J(Ω) = Vol(Ω).

0 50 100 150 200 250 300

0.22

0.24

0.26

0.28
C4

(b) Constraints Ci .

Figure: Single load case.

2. Applications to shape optimization

0 50 100 150 200 250 300
0.45

0.50

0.55

0.60

0.65

0.70

(a) J(Ω) = Vol(Ω).

0 50 100 150 200 250 300
0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300
C0
C4
C8

(b) Constraints Ci .

Figure: Three load case.

2. Applications to shape optimization

0 50 100 150 200 250 300
0.50

0.55

0.60

0.65

0.70

(a) J(Ω) = Vol(Ω).

0 50 100 150 200 250 300

0.10

0.15

0.20

0.25

0.30
C0
C1
C2
C3
C4
C5
C6
C7
C8

(b) Constraints Ci .

Figure: Nine load case.

2. Applications to shape optimization

Heat exchange subject to maximal pressure drop and non
penetration constraint:

max
Ω

∫
Ωf ,cold

ρcpv · ∇Tdx −
∫

Ωf ,hot

ρcpv · ∇Tdx

s.t.

∫
∂Ωf ,out

pds −
∫
∂Ωf ,in

pds ≤ DP0,

d(Ωf ,hot ,Ωf ,cold) > dmin

References

Feppon, F., Allaire, G., Bordeu, F., Cortial, J.,
and Dapogny, C. Shape optimization of a coupled thermal
fluid-structure problem in a level set mesh evolution
framework.
SeMA Journal (2019).

Feppon, F., Allaire, G., and Dapogny, C. Null space
gradient flows for constrained optimization with applications
to shape optimization.
HAL preprint hal-01972915 (2019).

Feppon, F., Allaire, G., and Dapogny, C. A
variational formulation for computing shape derivatives of
geometric constraints along rays.
HAL preprint hal-01879571 (2019).

Many thanks!

Constrained optimization

I For a vector space X = V , a sequence of updates will be of
the form

xn+1 = xn −∆tξn

where −ξn is the current descent direction.
I For a manifold, this becomes

xn+1 = ρxn(−∆tξn)

xn+1

xn

∆tξn

TxnM
M

ρxn

1. A generic optimization algorithm

Warning: ∇J(x) and the transpose T must be computed with
respect to the scalar product a of the Hilbert space V or Txn . In
practice this means solving

∀ξ ∈ V , a(∇J(x), ξ) = DJ(x)ξ

∀ξ ∈ V , a(∇gi (x), ξ) = Dgi (x)ξ

∀ξ ∈ V , a(∇hi (x), ξ) = Dhi (x)ξ

Then

DgT (x) =
[
∇g0(x) · · · ∇gp(x)

]T
DhT (x) =

[
∇h0(x) · · · ∇hq(x)

]T

