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Topology optimization with the method of Hadamard

min
Ω⊂D

J(Ω,u(Ω))

s.t.

{
−div(A(1Ω)∇u) = f in D

u = 0 on ∂D.



Topology optimization with the method of Hadamard

Optimal “shapes” are not shapes but composite structures.

Figure: Kambampati et al., “Fast level set topology optimization using a
hierarchical data structure” (2018).



Inverse homogenization method

Ω ≡ Ωε(a) is a composite material with parameterized
microstructure:

ε

a1

a2

a3

min
a=(a1,a2,a3)

J(Ωε(a),uε(Ωε(a)))

s.t.

{
−div(A(1Ωε(a))∇uε) = f in D

u = 0 on ∂D.



Inverse homogenization method

Ω ≡ Ωε(a) is a composite material with parameterized
microstructure:

ε

a1

a2

a3

min
a=(a1,a2,a3)

J∗(a,u(a))

s.t.

{
−div(A∗(a)∇u) = f in D

u = 0 on ∂D,

A∗(a) is an effective material tensor and uε(Ωε(a))→ u(a).
Optimize a1(x), . . . a3(x) instead of Ω!



Inverse homogenization method

(a) Optimized density (b) Optimized orientation (c) De-homogenized
shape

Figure: Topology optimization of a 2-d cantilever beam by a
homogenization method.
Geoffroy Donders, “Homogenization method for topology optmization of
structures built with lattice materials.” (2018).



Fluid applications

We would like to extend the method for fluid applications:

min
Ω⊂D

J(Ω,u(Ω), p(Ω)),

s.t.


−∆u +∇p = f in Ω

div(u) = 0 in Ω,

u= 0 on ∂Ω.

Figure: 2-fluid heat exchanger
optimized with the method of
Hadamard[1].

[1] Feppon et al., “Body-fitted topology optimization of 2D and 3D fluid-to-fluid
heat exchangers” (2021)



Fluid applications

Several industrial systems such as multiphase heat exchangers
involve complex fluid systems with numerous fins and pipes.

Figure: Figures from [2][3][4].

[2] Material Innovation Inc., Composite Heat Exchangers (2009)
[3] Multiphysics, “” (1994)
[4] Barry, Gregory, and Abuaf, Turbine blade with enhanced cooling and profile
optimization (1999)
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Fluid applications

We would like to extend the method for fluid applications:

min
Ω⊂D

J(Ω,u(Ω), p(Ω)),

s.t.


−∆u +∇p = f in Ω

div(u) = 0 in Ω,

u= 0 on ∂Ω.

The heterogeneity of ∂Ω lies in
the boundary condition.
The homogenization theory is
different.

Figure: 2-fluid heat exchanger
optimized with the method of
Hadamard[1].

[1] Feppon et al., “Body-fitted topology optimization of 2D and 3D fluid-to-fluid
heat exchangers” (2021)



Periodic setting considered

Y

ηT

P = (0, 1)d

Dε = D\ωε

D

ωε

ε

Figure: The perforated domain Dε and the unit cell Y . Ω =“the blue
domain”.

Depending on how η scales with ε, there are three known
homogenized models[5].

[5] Allaire, “Homogenization of the Stokes flow in a connected porous medium”
(1989)
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The three homogenized regimes


−∆uε +∇pε = f in Dε

div(uε) = 0

uε = 0 on ∂ωε

uε is D–periodic,

Let aε := ηε the size of the holes ωε.
Let σε = εd/(d−2) (if d > 3).

I



The three homogenized regimes


−∆uε +∇pε = f in Dε

div(uε) = 0

uε = 0 on ∂ωε

uε is D–periodic,

Let aε := ηε the size of the holes ωε.
Let σε = εd/(d−2) (if d > 3).

I if aε = o(σε), then (uε, pε)→ (u, p) with{
−∆u +∇p = f in D

div(u) = 0.

This is the “Stokes” regime.



The three homogenized regimes


−∆uε +∇pε = f in Dε

div(uε) = 0

uε = 0 on ∂ωε

uε is D–periodic,

Let aε := ηε the size of the holes ωε.
Let σε = εd/(d−2) (if d > 3).

I if aε = σε, then (uε, pε)→ (u, p) with (u, p) solving the
Brinkman ’s equation{

−∆u + Fu +∇p = f in D

div(u) = 0.

where F ≡ (Fij)1≤i ,j≤d is a d × d symmetric positive matrix.
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uε = 0 on ∂ωε

uε is D–periodic,

Let aε := ηε the size of the holes ωε.
Let σε = εd/(d−2) (if d > 3).

I if aε >> σε while ε→ 0 then (ad−2
ε ε−duε, pε)→ (u, p) where{

Fu +∇p = f in D

div(u) = 0 in D



The three homogenized regimes


−∆uε +∇pε = f in Dε

div(uε) = 0

uε = 0 on ∂ωε

uε is D–periodic,

Let aε := ηε the size of the holes ωε.
Let σε = εd/(d−2) (if d > 3).

I if aε >> σε while ε→ 0 then (ad−2
ε ε−duε, pε)→ (u, p) where{

Fu +∇p = f in D

div(u) = 0 in D

This rewrites as the Darcy ’s law

uε ' εda2−d
ε F−1(f −∇p), with div(uε) = 0.



The three homogenized regimes

Not clear how to use this for inverse homogenization

I if the hole size η is fixed, then one should use the Darcy’s
model

I if there is no hole, then one should use the Stokes model. . .

I if the hole size is close to the critical size σε, then one should
use the Brinkman’s model.

Can we derive a unified effective model which could encompass all
three regimes?
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Higher order homogenized models for the Stokes problem

I Feppon, “High order homogenization of the Poisson equation
in a perforated periodic domain” (2020)

I Feppon, “High order homogenization of the Stokes system in
a periodic porous medium” (2020)

I Feppon and Jing, “High order homogenized Stokes models
capture all three regimes” (2021)
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Outline of the results for the Stokes system

I We derive high order homogenized equations for the periodic Stokes
problem with fixed η > 0:

−∆uε +∇pε = f in Dε

div(uε) = 0 in Dε

uε = 0 on ∂ωε

uε is D–periodic.

I We derive first a formal, “infinite-order” homogenized equation:
+∞∑
k=0

εk−2Mk · ∇ku∗ε +∇p∗ε = f in D

div(u∗ε ) = 0 in D.

where (Mk · ∇ku∗ε )l = Mk
i1...ik ,lm∂

k
i1...iku

∗
ε,m.

I We have formally

uε(x) =
+∞∑
k=0

εkNk(x/ε)·∇ku∗ε (x), pε(x) = p∗ε (x)+
+∞∑
k=0

εk−1βk(x/ε)·∇ku∗ε (x).
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Outline of the results for the Stokes system

I We propose a truncation procedure to obtain well-posed
homogenized model of order 2K + 2 for any K ∈ N:

2K+2∑
k=0

εk−2Dk
K · ∇kv∗K +∇p∗K = f in D,

div(v∗K ) = 0 in D,

v∗K is D–periodic.

I The first half coefficients coincide: Dk
K = Mk for 0 ≤ k ≤ K .

I We have the following error bounds (recall uε = O(ε2), pε = O(1)):∣∣∣∣∣
∣∣∣∣∣uε −

K∑
k=0

εkNk(·/ε) · ∇kv∗K

∣∣∣∣∣
∣∣∣∣∣
L2(D,Rd )

≤ CK (f )εK+3

∣∣∣∣∣
∣∣∣∣∣pε −

(
p∗K +

K−1∑
k=0

εk−1βk(·/ε) · ∇kv∗K

)∣∣∣∣∣
∣∣∣∣∣
L2(D)

≤ CK (f )εK+1.
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Outline of the results for the Stokes system

I Finally, we compute asymptotics for the coefficients Mk in the
regime η → 0.

+∞∑
k=0

εk−2Mk · ∇ku∗ε +∇p∗ε = f in D

div(u∗ε ) = 0 in D.

I We find:
M0 ∼ ηd−2F

M1 = o(ηd−2)

M2 = −I + o(ηd−2)

Mk = o(ηd−2) for any k > 2

=⇒



ε−2M0 ∼ (aε/σε)
d−2F

ε−1M1 = o(ε(aε/σε)
d−2)

ε0M2 → −I
εk−2Mk → 0 for k > 3

I Since εk−2ηd−2 = εk(aε/σε)
d−2, the high-order model

converges coefficient-wise to either of the Stokes, Brinkman or
Darcy equation as η → 0.
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Symmetry properties

Remark: the higher order models contain odd orders differential
operators (e.g. ε−1M1 · ∇):

+∞∑
k=0

εk−2Mk · ∇ku∗ε +∇p∗ε = f in D

div(u∗ε ) = 0 in D.

However the very strange terms ε2k−1M2k+1 · ∇2k+1 vanish if the
unit cell Y has enough symmetries.
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Two-scale expansions

I The starting point is to postulate two-scale expansions for uε
and pε:

uε(x) =
+∞∑
i=0

εi+2ui (x , x/ε), pε(x) =
+∞∑
i=0

εi (p∗i (x)+εpi (x , x/ε)),

where ui (x , y) and pi (x , y) are P-periodic in y , with∫
Y
pi (x , y)dy = 0.

I We seek homogenized equations for the averaged variables

u∗ε (x) :=
+∞∑
i=0

εi+2

∫
Y

ui (x , y)dy , p∗ε (x) :=
+∞∑
i=0

εip∗i (x)

I We insert the ansatz for uε and pε in the Stokes equation,{
−∆uε +∇pε = f in Dε

div(uε) = 0 in Dε
with

{
uε = 0 on ∂ωε

uε is D–periodic,
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X k

1(y) . . . X k
d(y)

]
αk(y) :=

[
αk

1(y) . . . αk
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The criminal ansatz

. . . we find the “criminal” ansatz
uε(x) =

+∞∑
i=0

εiN i (x/ε) · ∇iu∗ε (x)

pε(x) = p∗ε (x) +
+∞∑
i=0

εi−1βi (x/ε) · ∇iu∗ε (x),

.



Truncating the infinite order homogenized equation

We now want a ”practical” equation for computing (u∗ε , p
∗
ε ).

Truncating naively the infinite order equation
+∞∑
k=0

εk−2Mk · ∇ku∗ε +∇p∗ε = f in D

div(u∗ε ) = 0 in D.

yields in general an ill-posed problem.
We truncate the criminal ansatz and construct a homogenized
equation from a minimization principle.
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Truncating the infinite order homogenized equation

Recall uε is the minimizer of

min
w∈H1(Dε,Rd )

J(w , f ) :=

∫
D

(
1

2
∇w : ∇w − f ·w

)
dy

s.t.


div(w) = 0 in Dε

w = 0 on ∂ωε

w is D–periodic.

For K ∈ N and v ∈ HK+1(D,Rd), let wε,K (v) be the truncated
ansatz

wε,K (v)(x) :=
K∑

k=0

εkNk(x/ε) · ∇kv(x), x ∈ Dε,

We consider the approximate minimization problem

min
v∈HK+1(D,Rd )

J(wε,K (v), f ) s.t.

{
div(v) = 0

v is D–periodic.
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after averaging with respect to x/ε.

The first order optimality condition for J∗K yields a well-posed
homogenized equation of order 2K + 2:

2K+2∑
k=0

εk−2Dk
K · ∇kv∗K +∇p∗K = f in D,

div(v∗K ) = 0 in D,

v∗K is D–periodic.
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Outline

1. Motivations from topology optimization

2. Overview of our results

3. Higher order homogenized models for the Stokes problem:
summary of the derivation

4. Higher order models capture all three regimes: low volume
fraction asymptotics.



Periodic setting considered

Y

ηT

P = (0, 1)d

Dε = D\ωε

D

ωε

ε

Figure: The perforated domain Dε and the unit cell Y . Ω =“the blue
domain”.

Depending on how η scales with ε, there are three known
homogenized models[5].

[5] Allaire, “Homogenization of the Stokes flow in a connected porous medium”
(1989)



Low volume fraction asymptotics

Infinite-order equation:
+∞∑
k=0

εk−2Mk · ∇ku∗ε +∇p∗ε = f in D

div(u∗ε ) = 0 in D.

Well-posed homogenized equation of order 2K + 2:
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k=0

εk−2Dk
K · ∇kv∗K +∇p∗K = f in D,

div(v∗K ) = 0 in D,

v∗K is D–periodic.

We study the behavior of the coefficients Mk and Dk
K as η → 0.
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Low volume fraction asymptotics


M0 = (X 0∗)−1

Mk = −(X 0∗)−1
k−1∑
p=0

X k−p∗ ⊗Mp

X k∗
ij :=

∫
Y
X k

i (y) · ejdy .
−∆yyX k+2

j +∇yα
k+2
j = (2∂lX k+1

j − αk+1
j el)⊗ el + X k

j ⊗ I in Y

divy (X k+2
j ) = −(X k+1

j − 〈X k+1
j 〉) · el ⊗ el in Y

X k+2
j = 0 on ∂(ηT )

We estimate 〈X k
j 〉 as η → 0.

Since |〈X k
j 〉| ≤ Cη1−d/2||∇X k

j ||L2(Y ,Rd×d ) , we need to estimate

||∇X k
j ||L2(Y ,Rd×d ).
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Energy inequality in the perforated cell

Lemma

Consider h and g satisfying

∫
P\(ηT )

gdx = 0. Let (v , φ) be the unique

solution to the following Stokes system:
−∆v +∇φ = h in P \ (ηT )

div(v) = g in P \ (ηT )

v = 0 on ∂(ηT )

v is P–periodic.

There exists a constant C > 0 independent of (v , φ), η, h and g such
that

||∇v ||L2(P\(ηT ),Rd×d ) + ||φ||L2(P\(ηT ))

≤ C (||h − 〈h〉||L2(P\(ηT ),Rd ) + η1−d/2|〈h〉|+ ||g ||L2(P\(ηT ))).

∇v grows as η → 0 only if |〈h〉| 6= 0.
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There exists a constant C > 0 independent of (v , φ), η, h and g such
that

||∇v ||L2(P\(ηT ),Rd×d ) + ||φ||L2(P\(ηT ))

≤ C (||h − 〈h〉||L2(P\(ηT ),Rd ) + η1−d/2|〈h〉|+ ||g ||L2(P\(ηT ))).

∇v grows as η → 0 only if |〈h〉| 6= 0.
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A modified cascade of equations


−∆yyX k+2

j +∇yα
k+2
j = (2∂lX k+1

j − αk+1
j el)⊗ el + X k

j ⊗ I in Y

divy (X k+2
j ) = −(X k+1

j − 〈X k+1
j 〉) · el ⊗ el in Y

X k+2
j = 0 on ∂(ηT )

||∇X k+2
j || grows because of 〈X k

j 〉 ⊗ I 6= 0.

We define a modified cascade of equations with zero-mean right hand
sides:{
−∆Yk+2

j +∇ωk+2
j = (2∂lYk+1

j − ωk+1
j el)⊗ el + (Yk

j − 〈Y
k
j 〉)⊗ I , in Y

div(Yk+2
j ) = −(Yk+1

j − 〈Yk+1
j 〉) · el ⊗ el in Y ,

Thanks to the previous lemma,

||∇Yk
j ||L2(P\(ηT ),Rd×d ) ≤ Ckη

1−d/2 for any k ∈ N

〈Yk
j 〉 ≤ Ckη

2−d for any k ∈ N
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Recursive formula for the coefficients Mk

Knowing this, we can prove with weak convergence techniques

Y0∗ ∼ η2−dF−1 and Yk∗ = o(η2−d) for k > 1.

where F is a matrix tensor which can be explicited.

The next key
ingredient:

Yk(y) = X k(y)−
k−2∑
l=0

Y l(y)⊗X k−l−2∗ ⊗ I .

=⇒ X k∗ = Yk∗+
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Recursive formula for the coefficients Mk

X k∗ =
k−2∑
l=0

Y l∗ ⊗X k−l−2∗ ⊗ I︸ ︷︷ ︸
Cauchy product !

Since
k∑

p=0

X k−p∗ ⊗Mp =

{
I , if k = 0,

0, if k ≥ 1.

we obtain

k∑
p=0

Yp∗ ⊗Mk−p = −Yk−2∗ ⊗ I for any k > 2.

which is equivalent to

Y0∗⊗Mk+· · ·+Yk−3∗⊗M3+Yk−2∗⊗(M2+I )+Yk−1∗⊗M1+Y0∗⊗M0 = 0.

for any k > 0.
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Y0∗⊗Mk+· · ·+Yk−3∗⊗M3+Yk−2−∗⊗(M2 + I )+Yk−1∗⊗M1+Y0∗⊗M0 = 0.

for any k > 0.

Y0∗ ∼ η2−dF−1 and Yk∗ = o(η2−d) for k > 1.

Combining the two equations, we find
M0 ∼ ηd−2F

M1 = o(ηd−2)

M2 = −I + o(ηd−2)

Mk = o(ηd−2) for any k > 2

as claimed.
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Recursive formula for the coefficients Mk

I Finally, we compute asymptotics for the coefficients Mk in the
regime η → 0.

+∞∑
k=0

εk−2Mk · ∇ku∗ε +∇p∗ε = f in D

div(u∗ε ) = 0 in D.

I We find:
M0 ∼ ηd−2F

M1 = o(ηd−2)

M2 = −I + o(ηd−2)

Mk = o(ηd−2) for any k > 2

=⇒



ε−2M0 ∼ (aε/σε)
d−2F

ε−1M1 = o(ε(aε/σε)
d−2)

ε0M2 → −I
εk−2Mk → 0 for k > 3

I Since εk−2ηd−2 = εk(aε/σε)
d−2, the high-order model converges

coefficient-wise to either of the Stokes, Brinkman or Darcy equation
as η → 0.



The end

Thank you for your attention!

P = (0, 1)d
Y

Dε


