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1. Motivations from topology optimization



Topology optimization with the method of Hadamard

. —div(A(1g)Vu) = f in D
>t u=0ondD.



Topology optimization with the method of Hadamard

Optimal “shapes” are not shapes but composite structures.
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Figure: Kambampati et al., “Fast level set topology optimization using a
hierarchical data structure” (2018).
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Q.(a) is a composite material with parameterized

microstructure:
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min

(a1,a2,a3)

a=

u=0o0no0D.

—div(A(lge(a))Vue) =finD



Inverse homogenization method

Q = Q.(a) is a composite material with parameterized
microstructure:
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min J*(a, u(a))

a=(a1,a,a3)
. —div(A*(a)Vu) =fin D
S.T.
u=0o0n0dD,

A*(a) is an effective material tensor and u.(Q2(a)) — u(a).
Optimize ai(x),...as3(x) instead of Q!



Inverse homogenization method
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Figure: Topology optimization of a 2-d cantilever beam by a

homogenization method.
Geoffroy Donders, “Homogenization method for topology optmization of
structures built with lattice materials.” (2018).



Fluid applications

We would like to extend the method for fluid applications:

min J(Q,u(Q2), p()),

QcD
—Au+Vp=FfinQ
s.t. div(u) =0 in Q,
u= 0 on 09.

Figure: 2-fluid heat exchanger
optimized with the method of
Hadamard.

o Feppon et al., “Body-fitted topology optimization of 2D and 3D fluid-to-fluid
heat exchangers” (2021)



Fluid applications

Several industrial systems such as multiphase heat exchangers
involve complex fluid systems with numerous fins and pipes.

Figure: Figures from [IBIH,

I Material Innovation Inc., Composite Heat Exchangers (2009)

Bl Multiphysics, “" (1994)

e Barry, Gregory, and Abuaf, Turbine blade with enhanced cooling and profile
optimization (1999)
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Fluid applications

We would like to extend the method for fluid applications:

min J(Q,u(Q2), p()),

QcD
—Au+Vp=FfinQ
s.t. div(u) =0 in Q,
u= 0 on 09.

The heterogeneity of 012 lies in
the boundary condition.

The homogenization theory is
different.

Figure: 2-fluid heat exchanger
optimized with the method of
Hadamard.

o Feppon et al., “Body-fitted topology optimization of 2D and 3D fluid-to-fluid
heat exchangers” (2021)



Periodic setting considered
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Figure: The perforated domain D, and the unit cell Y. Q ="the blue
domain”.

Bl Allaire, “Homogenization of the Stokes flow in a connected porous medium”
(1989)



Periodic setting considered
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Figure: The perforated domain D, and the unit cell Y. Q ="the blue
domain”.

Depending on how 7 scales with ¢, there are three known
homogenized models®].

Bl Allaire, “Homogenization of the Stokes flow in a connected porous medium”
(1989)



The three homogenized regimes

—Au. +Vp. = f in D,
div(u:) =0
u. = 0 on Ow,
u. is D—periodic,

Let a. := ne the size of the holes we.
Let o, = €¥/(972) (if d > 3).



The three homogenized regimes

—Au. +Vp. = f in D,
div(u:) =0
u. = 0 on Ow,
u. is D—periodic,
Let a. := ne the size of the holes we.
Let o, = €9/(972) (if d > 3).

» if a. = o(o), then (u., pc) — (u, p) with

—Au+Vp=FfinD
div(u) = 0.

This is the “Stokes” regime.



The three homogenized regimes

—Au. +Vp. = f in D,
div(u:) =0
u. = 0 on Ow,
u. is D—periodic,
Let a. := ne the size of the holes we.
Let o, = €9/(972) (if d > 3).

» if a. = o, then (u, p) — (u, p) with (u, p) solving the
Brinkman s equation

—Au+Fu+Vp=FfinD
div(u) = 0.

where /= (F;)1-; -4 is a d x d symmetric positive matrix.
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The three homogenized regimes

—Au. +Vp. = f in D,
div(u:) =0
u. = 0 on Ow,
u. is D—periodic,
Let a. := ne the size of the holes we.
Let o, = €9/(972) (if d > 3).

> if a. >> o, while € — 0 then (a?2¢ %u,, p.) — (u, p) where

Fu+Vp=finD
div(u) = 0in D

This rewrites as the Darcy 's law

ue =~ ?aZ”/F}(F — Vp), with div(uc) =0.
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> if the hole size ) is fixed, then one should use the Darcy's
model
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The three homogenized regimes

Not clear how to use this for inverse homogenization

> if the hole size ) is fixed, then one should use the Darcy's
model

» if there is no hole, then one should use the Stokes model. ..

>

if the hole size is close to the critical size o, then one should
use the Brinkman’'s model.

Can we derive a unified effective model which could encompass all
three regimes?



1. Motivations from topology optimization

2. Overview of our results



Higher order homogenized models for the Stokes problem

» Feppon, “High order homogenization of the Poisson equation
in a perforated periodic domain” (2020)
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order homogenized models for the Stokes problem

» Feppon, “High order homogenization of the Poisson equation
in a perforated periodic domain” (2020)

» Feppon, “High order homogenization of the Stokes system in
a periodic porous medium” (2020)

» Feppon and Jing, “High order homogenized Stokes models
capture all three regimes” (2021)



Qutline of the results for the Stokes system

» We derive high order homogenized equations for the periodic Stokes
problem with fixed n > 0:

—Au. +Vp. =fin D,
div(u.) =0 in D,
u. = 0 on Jw,

u, is D—periodic.
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Qutline of the results for the Stokes system

» We derive high order homogenized equations for the periodic Stokes
problem with fixed n > 0:
—Au. +Vp. =fin D,
div(u.) =0 in D,
u. = 0 on Jw,

u, is D—periodic.

» We derive first a formal, “infinite-order” homogenized equation:
+o0
> e PMk . Vkur + Vp: =fin D
k=0
div(u?)=01in D.
ok L ur

I1‘..I'k €e,m-*

where (M* - V¥u?) = M m
» We have formally

+o0 +o0
u(x) = Y N (x/e)-VEu (x), pex) = pL(x)+)_ 1B (x/e)-VEui (x).
k=0

k=0



Qutline of the results for the Stokes system

» We propose a truncation procedure to obtain well-posed
homogenized model of order 2K -+ 2 for any K € N:

2K+2
Z 72D - VK + Vpi = Fin D,
k=0

div(vg) =01in D,

v is D—periodic.
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Qutline of the results for the Stokes system

» We propose a truncation procedure to obtain well-posed
homogenized model of order 2K -+ 2 for any K € N:

2K+2
Z 72D - VK + Vpi = Fin D,
k=0

div(vg) =01in D,

v is D—periodic.
> The first half coefficients coincide: DX = M* for 0 < k < K.

> We have the following error bounds (recall u, = O(¢?), p. = O(1)):

K
u, — Zeka(-/e) VK

k=0

< CK(f)6K+3
L2(D,RY)

< CK(f)6K+1.
L2(D)

K-1
pe — (pii + Y ETIBE(/e) - Vk"?)

k=0




Qutline of the results for the Stokes system

> Finally, we compute asymptotics for the coefficients M¥ in the
regime n — 0.

+00
> e PMEVRu +Vpr = fin D
k=0

div(ul) =0in D.
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Qutline of the results for the Stokes system

> Finally, we compute asymptotics for the coefficients M¥ in the
regime n — 0.

+o0
> e PMEVRu +Vpr = fin D

k=0
div(ul) =0in D.
» We find:
MO ~n?2F e ?M° ~ (ac/oc )T %F
M = o(n9=2) e IM = o(e(ac /o )¥7?)
2 d—2 - 02
M= —1+o(n° ") eM— —I
Mk = o(n=2) for any k > 2 F2Mk = 0 for k>3
> Since X292 = ek(a./0.)? 2, the high-order model

converges coefficient-wise to either of the Stokes, Brinkman or
Darcy equation as n — 0.



Symmetry properties

Remark: the higher order models contain odd orders differential
operators (e.g. € *M!.V):
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Symmetry properties

Remark: the higher order models contain odd orders differential
operators (e.g. € *M!.V):

+oo
> e PMK . VRul +Vpr = fin D
k=0

div(u) =01in D.

2k—1pg2k+1 | 72k+1

However the very strange terms ¢ vanish if the

unit cell Y has enough symmetries.
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Two-scale expansions

» The starting point is to postulate two-scale expansions for u,
and p:
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Two-scale expansions

» The starting point is to postulate two-scale expansions for u,
and p:
+00 +oo

ue(X) = Zei+2ui(xvx/6)7 pe(X) = Zei(p}k(x)—i-ep,-(x,x/e)),

i=0 i=0
where u;(x,y) and p;(x, y) are P-periodic in y, with
/ pi(x,y)dy = 0.
Y

> We seek homogenized equations for the averaged variables

“+o0 —+o0
v = L6 [ wlxndy, b= Y i)
i=0 i=0

» We insert the ansatz for u. and p. in the Stokes equation,

{—Au€+Vp5:fin D. . {uezoon&u6
w

div(u) =0 in D, u, is D—periodic,



Two-scale expansions

» We find
400
u(x) =Y t2X(x/e) - VI(F(x) = Vp!(x)),
i=0
) = pi(x +Z ol (x/e) - V(F(x) = Vi (x)).
foo ) )
div(u}(x)) = 0 where u(x) = Ze’+2X’*-V’(f(x)—Vp:(x)).
i=0
and

= /Y X/(y)dy.



Two-scale expansions

The tensors (X*(y), a*(y)) are defined by
) =[xy o X))

o) = [ak(y) .. o))

where (X/(y), a/(y) are the solutions to the cascade of cell Stokes
problems



Two-scale expansions

The tensors (X*(y), a*(y)) are defined by

) =[xy o X))
-
a"(y) = [ak(y) ... ak(n)] -
where (X/(y), a/(y) are the solutions to the cascade of cell Stokes

problems

~A,X?+V,0) =einY,
div, (X ) =0inY

—AyX]+Vyaf = (20X —ale) @ e in Y
divy (X]) = —(X? — (X)) - e @e in Y,

Dy, X[+ Va7 = 20X —of )@ e+ Xf @1 in Y
divy(xjk“) = (X[ -

\
°

<Xj-(+1>) -e®einY



The infinite order homogenized equation

We have obtained

—+00

u(x) =X (x/€) - VI(F(x) — Vpi(x)),

i=0

+o0
p(x) = p () + 3 e ai(x/e) - V(£ (x) = Vp!(x)).
i=0
div(u’(x)) = 0.
+oo

ul(x) =Y 2™ VI(F(x) - Vpi(x).

i=0



The infinite order homogenized equation

We have obtained

—+00

u(x) =X (x/€) - VI(F(x) — Vpi(x)),

i=0
pe(x) = pl(x +Z Hlal(x/e) - VI(F(x) = VP! (x)).

div(u’(x)) = 0.
+oo

ul(x) = 32N VI(F(x) = Vpi(x)).

i=0

The first coefficient 1" of the series is a positive symmetric
definite matrix.
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The infinite order homogenized equation

+oo
ul(x)=>_ P2 VI(F(x) - Vpi(x)).
i=0
The first coefficient %" of the series is a positive symmetric

definite matrix.
Introducing a family of tensors (M*),en such that

+oo +o00
(Z Ek—ZMk . vk) (Z Ek+2Xk* . vk) — I
k=0 k=0

we obtain the infinite order homogenized equation:

“+00
D FPME VR = - V!
k=0



The infinite order homogenized equation

+oo
ul(x)=>_ P2 VI(F(x) - Vpi(x)).
i=0

The first coefficient %" of the series is a positive symmetric
definite matrix.
Introducing a family of tensors (M*),en such that

+oo +o00
(Z Ek—ZMk . vk) (Z Ek+2Xk* . vk) — I
k=0 k=0

MO _ (XO*)_]'
k—1

Mk _ —(XO*)_]' ZXk—p* @ MP
p=0
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We now express u.(x), p.(x) in terms of u?(x), p(x). We know

u(x) = 3 <20 (x/e) - VH(F(x) — Vi (),

k=0
+oo
pe(x) = Pl (x) + Y _ el (x/e) - VE(F(x) = V! (x))-
k=0

“+oo
f—Vpl =Y M - VHu;
k=0



The criminal ansatz

We now express u.(x), p.(x) in terms of u?(x), p(x). We know

x) =y e F2xK(x/e) - VK(F(x) — Vpi (%)),
k=0
“+o00
pe(x) = pL(x) + Y e lak(x/e) - VK(F(x) — Vpi(x)).
k=0
f—Vp = io e 2Mk . Vku?

Introducing the tensors N*(x/€), B%(x/€) such that

geka(x/e) VK= <+f fr2xk(x/e) - ) (Z e2Mk.v )
k=0

k=0

k=0



The criminal ansatz

...we find the “criminal” ansatz

+o00
u.(x) = Z e Ni(x/e) - Viu?(x)

i=0 . | | | '
pe(x) = pI(x) + > €1 B (x/e) - Viui (),

i=0
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We now want a " practical” equation for computing (u, p;).
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Truncating the infinite order homogenized equation

We now want a " practical” equation for computing (u, p;).
Truncating naively the infinite order equation

K
> e PMK . VRu + VI =fin D
k=0
div(u’) =01in D.

yields in general an ill-posed problem.
We truncate the criminal ansatz and construct a homogenized
equation from a minimization principle.



Truncating the infinite order homogenized equation

Recall u, is the minimizer of
1
min J(w, f) ::/ (—Vw:Vw—f-w) dy
weH! (D RY) p \2
div(w) =0 in D,
s.t. w = 0 on Ow,

w is D—periodic.
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Truncating the infinite order homogenized equation

Recall u, is the minimizer of
1
min J(w, f) ::/ (—Vw:Vw—f-w) dy
weH(D.,RY) p \2
div(w) =0 in D,
s.t. w = 0 on Ow,
w is D—periodic.
For K € Nand v € H*"'(D,RY), let w, k(v) be the truncated

ansatz
K

we k(v)(x) := Zeka(x/e) -Vkv(x), xe D,
k=0

We consider the approximate minimization problem
div(v) =0

v is D—periodic.

min J(we k(v),f) s.t. {

veH 1(D,Rd)



Truncating the infinite order homogenized equation

We consider the approximate minimization problem

div(v) =0
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We consider the approximate minimization problem

div(v) =0
v is D—periodic.

Ji(v, f) s.t. {

min
veHX1(D,RY)

after averaging with respect to x/e.



Truncating the infinite order homogenized equation

We consider the approximate minimization problem

di =0
min Ji(v, f) s.t. v(v) _ .
veEH 1(D,RY) v is D—periodic.

after averaging with respect to x/e.

The first order optimality condition for Jy yields a well-posed
homogenized equation of order 2K + 2:

2K+2
> Dk - Vv + Vpje = f in D,
k=0

div(vg) =01in D,

vy is D—periodic.
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Truncating the infinite order homogenized equation

Infinite-order equation:

+oo
Zek*ZMk -VKku? +Vp: =Ffin D
k=0
div(uf) =0in D.
Well-posed homogenized equation of order 2K + 2:
2K+2
> Dk - Vi + Vpje = f in D,
k=0
div(vg) =01in D,
vy is D—periodic.
Because it turns out DX = M¥ for 0 < k < K, one can prove the
error bound

K
ue — > FNF(-fe) - Vv

k=0

< C(F)ek+3

[2(D . Rd)




Truncating the infinite order homogenized equation

Infinite-order equation:

+oo
Zek*ZMk -VKku? +Vp: =Ffin D
k=0
div(uf) =0in D.
Well-posed homogenized equation of order 2K + 2:
2K+2
> Dk - Vi + Vpje = f in D,
k=0
div(vg) =01in D,
vy is D—periodic.
Because it turns out DX = M¥ for 0 < k < K, one can prove the
error bound

K-1
pe — <p2‘< +> &I/ Vkv}%)

k=0

< Ci(F)eiHL,
12(D)




1. Motivations from topology optimization

2. Overview of our results

3. Higher order homogenized models for the Stokes problem:
summary of the derivation

4. Higher order models capture all three regimes: low volume
fraction asymptotics.



Periodic setting considered

CACAAACA 7
A .
N A A ‘
nr CACACACARRC?
Y CACACACAFZ <
P—(0,1)° 0000@?%

Figure: The perforated domain D, and the unit cell Y. Q ="the blue
domain”.

Depending on how 7 scales with ¢, there are three known
homogenized models®].

Bl Allaire, “Homogenization of the Stokes flow in a connected porous medium”
(1989)



Low volume fraction asymptotics

Infinite-order equation:

+oo
> MK VRu +Vpl =fin D
k=0
div(u) =01in D.
Well-posed homogenized equation of order 2K + 2:
2K+2
> Dk - Vi + Vpje = fin D,
k=0
div(vg) =01in D,

vy is D—periodic.



Low volume fraction asymptotics

Infinite-order equation:

+oo
> MK VRu +Vpl =fin D
k=0

div(u) =01in D.

Well-posed homogenized equation of order 2K + 2:

2K+2
> Dk - Vi + Vpje = fin D,
k=0

div(vg) =01in D,

vy is D—periodic.

We study the behavior of the coefficients M* and Df as i — 0.
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p=0
X :=/YX,*(y)-ejdy.
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Low volume fraction asymptotics

MO _ (XO*)—I
k—1
Mk — —(XO*)_l ZXk_P* ® MP

p=0
X :=/YX,*(y)-ejdy-

—Dy X VP = (2000 —af e e+ X @1 in Y
divy (X)) = —=(X T = () e ®ein Y
ijz =0on 9d(nT)

We estimate (Xj‘> as 7 — 0.
Since ](Xjkﬂ < Cﬂlid/2||vle'(||l_2(y’Rd><d) , we need to estimate
HVXJ;'(HB(Y,R"Xd)-



Energy inequality in the perforated cell

Lemma

Consider h and g satisfying/ gdx = 0. Let (v, ¢) be the unique
P\(nT)
solution to the following Stokes system:
—Av+Vo=hinP\(nT)
div(v) =g in P\ (nT)
v=20ondnT)

v is P—periodic.
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Energy inequality in the perforated cell

Lemma

Consider h and g satisfying/ gdx = 0. Let (v, ¢) be the unique
P\(nT)
solution to the following Stokes system:
—Av+Vo=hin P\ (nT)
div(v) =g in P\ (nT)
v=20ondnT)
v is P—periodic.
There exists a constant C > 0 independent of (v, ), n, h and g such
that

IV V] 2(p\ () mexy + 11€1] 2P\ Ty
< C(Ilh = (B)liz(pr(yryrey + 1"~ 2 )]+ gl zer o)

Vv grows as 7 — 0 only if |(h)| # 0.



A modified cascade of equations

Dy, X[ 4V, = (20X - ol )@ e+ Xf @ in Y
divy (X67?) = —(XF — (X)) e ®ein Y

./YJ’-(‘"2 =0ond(nT)

||VXJ’-(+2|| grows because of <le<> ®1#0.
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Dy, X[ 4V, = (20X - ol )@ e+ Xf @ in Y
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k+2 _
X" =00n0(nT)
||VXJ’-(+2|| grows because of <le<> ®1#0.

We define a modified cascade of equations with zero-mean right hand
sides:
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A modified cascade of equations

Dy, X[ 4V, = (20X - ol )@ e+ Xf @ in Y
divy(xf”) = —(x - <Xf+1>) e ®einY
k+2 _
X" =00n0(nT)
||VXJ’-(+2|| grows because of <le<> ®1#0.

We define a modified cascade of equations with zero-mean right hand
sides:

—AYI? + VW = 01 —wi e @ e+ (Vf — (V) @1, in Y
div(YIP2) = (VI = (VE) e @ e in Y,

Thanks to the previous lemma,
||Vyj-(||L2(p\(nT)7Rd><d) < Ck’ﬂl_d/2 forany k e N

Q?Jk) < Cen?~9 forany k € N



Recursive formula for the coefficients M*

Knowing this, we can prove with weak convergence techniques
V& ~ 2 9F~1and Y5 = o(n*~9) for k > 1.

where F is a matrix tensor which can be explicited.
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Recursive formula for the coefficients M*

Knowing this, we can prove with weak convergence techniques
VO ~ 2 9F~Yand Y5 = o(n*~?) for k > 1

where F is a matrix tensor which can be explicited. The next key
ingredient:

y ( Xk(y Zy (y Xk—I—Q* ® /

k—2
— Xk* _ yk* + Zyl* ® Xk—l—2>k ®

1=0

Cauchy product !



Recursive formula for the coefficients M*

k—2
Xk* _ Zyl* ® Xk—/—Z* Q1
1=0

Cauchy product !
Since ;
Zxk—p*(@Mp:{la Iszo,

prd 0, if k> 1.

we obtain

k
Zyp* @ MF=P = —Yk=2* @ | for any k > 2.
p=0



Recursive formula for the coefficients M*

k—2
Xk* _ Zyl* ® Xk—/—Z* @1
/=0

Cauchy product !

Since ;
ZXk_p*(EQMP: /, if k=0,
s 0, if k>1.
we obtain
k
Zyp* @ MF=P = —Yk=2* @ | for any k > 2.
p=0

which is equivalent to
V@M 4 VML YR (M) + YV oMY o MP = 0.

for any k > 0.



Recursive formula for the coefficients M*

yO*®Mk+. . ~—|—yk—3*®/\/’3+yk_2_*®(/\/l2 + /)+yk—1*®M1+yO*®MO =0.

for any k > 0.



Recursive formula for the coefficients M*

yO*®Mk+. . ~—|—yk—3*®/\/’3+yk_2_*®(/\/l2 + /)+yk—1*®M1+yO*®MO =0.
for any k > 0.

VO w2 9F L and YA = o(n2’d) for k > 1.



Recursive formula for the coefficients M*

VHQMH 4 - 4 YR QML YE 2 (M2 4 )4V @MY QMO = 0.
for any k > 0.

VO ~ 2 9F L and YK = o(n?~9) for k > 1.
Combining the two equations, we find

MO ~ 59—2F

M = o(1"?)

M? = —1 + o(n?~?)

M* = o(n9=2) for any k > 2

as claimed.



Recursive formula for the coefficients M*

> Finally, we compute asymptotics for the coefficients M¥ in the
regime n — 0.

+0oo
> e PMF - VHrul +Vpl =Fin D
k=0
div(u’) =01in D.
» We find:
MO ~ 77d_2F
M = o(n~?)

M? = —I + o(n?"?)
M* = o(n?=2) for any k > 2

> Since 721972 = ¢¥(a./o.)?72, the high-order model converges
coefficient-wise to either of the Stokes, Brinkman or Darcy equation
asn — 0.



Thank you for your attention!
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