High order homogenized Stokes models capture all three regimes

Florian Feppon

Wenjia Jing (Tsinghua University), Habib Ammari (SAM), Grégoire Allaire (CMAP)

SMAI-GAMNI thesis award winners Day
March 18th, 2021

Outline

1. Motivations from topology optimization
2. Overview of our results
3. Higher order homogenized models for the Stokes problem: summary of the derivation
4. Higher order models capture all three regimes: low volume fraction asymptotics.

Outline

1. Motivations from topology optimization
2. Overview of our results
3. Higher order homogenized models for the Stokes problem: summary of the derivation
4. Higher order models capture all three regimes: low volume fraction asymptotics.

Topology optimization with the method of Hadamard

Topology optimization with the method of Hadamard

Optimal "shapes" are not shapes but composite structures.

Figure: Kambampati et al., "Fast level set topology optimization using a hierarchical data structure" (2018).

Inverse homogenization method

$\Omega \equiv \Omega_{\epsilon}(\boldsymbol{a})$ is a composite material with parameterized microstructure:

Inverse homogenization method

$\Omega \equiv \Omega_{\epsilon}(\boldsymbol{a})$ is a composite material with parameterized microstructure:

$$
\begin{aligned}
& \min _{\boldsymbol{a}=\left(a_{1}, a_{2}, a_{3}\right)} J^{*}(\boldsymbol{a}, \boldsymbol{u}(\boldsymbol{a})) \\
& \text { s.t. }\left\{\begin{aligned}
-\operatorname{div}\left(A^{*}(\boldsymbol{a}) \nabla \boldsymbol{u}\right) & =\boldsymbol{f} \text { in } D \\
\boldsymbol{u} & =0 \text { on } \partial D
\end{aligned}\right.
\end{aligned}
$$

$A^{*}(\boldsymbol{a})$ is an effective material tensor and $\boldsymbol{u}_{\epsilon}\left(\Omega_{\epsilon}(\boldsymbol{a})\right) \rightarrow \boldsymbol{u}(\boldsymbol{a})$. Optimize $a_{1}(x), \ldots a_{3}(x)$ instead of Ω !

Inverse homogenization method

(a) Optimized density

(b) Optimized orientation
(c) De-homogenized shape

Figure: Topology optimization of a 2-d cantilever beam by a homogenization method. Geoffroy Donders, "Homogenization method for topology optmization of structures built with lattice materials." (2018).

Fluid applications

We would like to extend the method for fluid applications:

$$
\min _{\Omega \subset D} J(\Omega, \boldsymbol{u}(\Omega), p(\Omega))
$$

s.t. $\left\{\begin{aligned}-\Delta \boldsymbol{u}+\nabla p & =\boldsymbol{f} \text { in } \Omega \\ \operatorname{div}(\boldsymbol{u}) & =0 \text { in } \Omega, \\ \boldsymbol{u} & =0 \text { on } \partial \Omega .\end{aligned}\right.$

Figure: 2-fluid heat exchanger optimized with the method of Hadamard ${ }^{[1]}$.
[1] Feppon et al., "Body-fitted topology optimization of 2D and 3D fluid-to-fluid heat exchangers" (2021)

Fluid applications

Several industrial systems such as multiphase heat exchangers involve complex fluid systems with numerous fins and pipes.

Figure: Figures from ${ }^{[2][3][4]}$.
[2] Material Innovation Inc., Composite Heat Exchangers (2009)
[3] Multiphysics, ""' (1994)
[4] Barry, Gregory, and Abuaf, Turbine blade with enhanced cooling and profile optimization (1999)

Fluid applications

We would like to extend the method for fluid applications:

$$
\min _{\Omega \subset D} J(\Omega, \boldsymbol{u}(\Omega), p(\Omega))
$$

s.t. $\left\{\begin{aligned}-\Delta \boldsymbol{u}+\nabla p & =\boldsymbol{f} \text { in } \Omega \\ \operatorname{div}(\boldsymbol{u}) & =0 \text { in } \Omega, \\ \boldsymbol{u} & =0 \text { on } \partial \Omega .\end{aligned}\right.$

Figure: 2-fluid heat exchanger optimized with the method of Hadamard ${ }^{[1]}$.
[1] Feppon et al., "Body-fitted topology optimization of 2D and 3D fluid-to-fluid heat exchangers" (2021)

Fluid applications

We would like to extend the method for fluid applications:

$$
\begin{aligned}
& \min _{\Omega \subset D} \quad J(\Omega, \boldsymbol{u}(\Omega), p(\Omega)) \\
& \text { s.t. }\left\{\begin{array}{r}
-\Delta \boldsymbol{u}+\nabla p=\boldsymbol{f} \text { in } \Omega \\
\operatorname{div}(\boldsymbol{u})=0 \text { in } \Omega, \\
\boldsymbol{u}=0 \text { on } \partial \Omega
\end{array}\right.
\end{aligned}
$$

The heterogeneity of $\partial \Omega$ lies in the boundary condition.

Figure: 2-fluid heat exchanger optimized with the method of Hadamard ${ }^{[1]}$.
[1] Feppon et al., "Body-fitted topology optimization of 2D and 3D fluid-to-fluid heat exchangers" (2021)

Fluid applications

We would like to extend the method for fluid applications:

$$
\begin{aligned}
& \min _{\Omega \subset D} \quad J(\Omega, \boldsymbol{u}(\Omega), p(\Omega)) \\
& \text { s.t. }\left\{\begin{array}{r}
-\Delta \boldsymbol{u}+\nabla p=\boldsymbol{f} \text { in } \Omega \\
\operatorname{div}(\boldsymbol{u})=0 \text { in } \Omega \\
\boldsymbol{u}=0 \text { on } \partial \Omega
\end{array}\right.
\end{aligned}
$$

The heterogeneity of $\partial \Omega$ lies in the boundary condition.
The homogenization theory is different.

Figure: 2-fluid heat exchanger optimized with the method of Hadamard ${ }^{[1]}$.
[1] Feppon et al., "Body-fitted topology optimization of 2D and 3D fluid-to-fluid heat exchangers" (2021)

Periodic setting considered

Figure: The perforated domain D_{ϵ} and the unit cell $Y . \Omega=$ "the blue domain".
${ }^{[5]}$ Allaire, "Homogenization of the Stokes flow in a connected porous medium" (1989)

Periodic setting considered

Figure: The perforated domain D_{ϵ} and the unit cell $Y . \Omega=$ "the blue domain".

Depending on how η scales with ϵ, there are three known homogenized models ${ }^{[5]}$.
${ }^{[5]}$ Allaire, "Homogenization of the Stokes flow in a connected porous medium" (1989)

The three homogenized regimes

$$
\left\{\begin{aligned}
-\Delta \boldsymbol{u}_{\epsilon}+\nabla p_{\epsilon} & =\boldsymbol{f} \text { in } D_{\epsilon} \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}\right) & =0 \\
\boldsymbol{u}_{\epsilon} & =0 \text { on } \partial \omega_{\epsilon} \\
\boldsymbol{u}_{\epsilon} & \text { is } D \text {-periodic, }
\end{aligned}\right.
$$

Let $a_{\epsilon}:=\eta \epsilon$ the size of the holes ω_{ϵ}.

$$
\text { Let } \sigma_{\epsilon}=\epsilon^{d /(d-2)} \text { (if } d \geqslant 3 \text {). }
$$

The three homogenized regimes

$$
\left\{\begin{aligned}
-\Delta \boldsymbol{u}_{\epsilon}+\nabla p_{\epsilon} & =\boldsymbol{f} \text { in } D_{\epsilon} \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}\right) & =0 \\
\boldsymbol{u}_{\epsilon} & =0 \text { on } \partial \omega_{\epsilon} \\
\boldsymbol{u}_{\epsilon} & \text { is } D \text {-periodic, }
\end{aligned}\right.
$$

Let $a_{\epsilon}:=\eta \epsilon$ the size of the holes ω_{ϵ}.
Let $\sigma_{\epsilon}=\epsilon^{d /(d-2)}$ (if $d \geqslant 3$).

- if $a_{\epsilon}=o\left(\sigma_{\epsilon}\right)$, then $\left(\boldsymbol{u}_{\epsilon}, p_{\epsilon}\right) \rightarrow(\boldsymbol{u}, p)$ with

$$
\left\{\begin{aligned}
-\Delta \boldsymbol{u}+\nabla p & =\boldsymbol{f} \text { in } D \\
\operatorname{div}(\boldsymbol{u}) & =0 .
\end{aligned}\right.
$$

This is the "Stokes" regime.

The three homogenized regimes

$$
\left\{\begin{aligned}
-\Delta \boldsymbol{u}_{\epsilon}+\nabla p_{\epsilon} & =\boldsymbol{f} \text { in } D_{\epsilon} \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}\right) & =0 \\
\boldsymbol{u}_{\epsilon} & =0 \text { on } \partial \omega_{\epsilon} \\
\boldsymbol{u}_{\epsilon} & \text { is } D \text {-periodic, }
\end{aligned}\right.
$$

Let $a_{\epsilon}:=\eta \epsilon$ the size of the holes ω_{ϵ}.
Let $\sigma_{\epsilon}=\epsilon^{d /(d-2)}$ (if $d \geqslant 3$).

- if $a_{\epsilon}=\sigma_{\epsilon}$, then $\left(\boldsymbol{u}_{\epsilon}, p_{\epsilon}\right) \rightarrow(\boldsymbol{u}, p)$ with (\boldsymbol{u}, p) solving the Brinkman 's equation

$$
\left\{\begin{aligned}
-\Delta \boldsymbol{u}+F \boldsymbol{u}+\nabla p & =\boldsymbol{f} \text { in } D \\
\operatorname{div}(\boldsymbol{u}) & =0 .
\end{aligned}\right.
$$

where $F \equiv\left(F_{i j}\right)_{1 \leq i, j \leq d}$ is a $d \times d$ symmetric positive matrix.

The three homogenized regimes

$$
\left\{\begin{aligned}
-\Delta \boldsymbol{u}_{\epsilon}+\nabla p_{\epsilon} & =\boldsymbol{f} \text { in } D_{\epsilon} \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}\right) & =0 \\
\boldsymbol{u}_{\epsilon} & =0 \text { on } \partial \omega_{\epsilon} \\
\boldsymbol{u}_{\epsilon} & \text { is } D \text {-periodic, }
\end{aligned}\right.
$$

Let $a_{\epsilon}:=\eta \epsilon$ the size of the holes ω_{ϵ}.
Let $\sigma_{\epsilon}=\epsilon^{d /(d-2)}$ (if $d \geqslant 3$).

- if $a_{\epsilon} \gg \sigma_{\epsilon}$ while $\epsilon \rightarrow 0$ then $\left(a_{\epsilon}^{d-2} \epsilon^{-d} \boldsymbol{u}_{\epsilon}, p_{\epsilon}\right) \rightarrow(\boldsymbol{u}, p)$ where

$$
\left\{\begin{aligned}
F \boldsymbol{u}+\nabla p & =\boldsymbol{f} \text { in } D \\
\operatorname{div}(\boldsymbol{u}) & =0 \text { in } D
\end{aligned}\right.
$$

The three homogenized regimes

$$
\left\{\begin{aligned}
-\Delta \boldsymbol{u}_{\epsilon}+\nabla p_{\epsilon} & =\boldsymbol{f} \text { in } D_{\epsilon} \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}\right) & =0 \\
\boldsymbol{u}_{\epsilon} & =0 \text { on } \partial \omega_{\epsilon} \\
\boldsymbol{u}_{\epsilon} & \text { is } D \text {-periodic, }
\end{aligned}\right.
$$

Let $a_{\epsilon}:=\eta \epsilon$ the size of the holes ω_{ϵ}.
Let $\sigma_{\epsilon}=\epsilon^{d /(d-2)}$ (if $d \geqslant 3$).

- if $a_{\epsilon} \gg \sigma_{\epsilon}$ while $\epsilon \rightarrow 0$ then $\left(a_{\epsilon}^{d-2} \epsilon^{-d} \boldsymbol{u}_{\epsilon}, p_{\epsilon}\right) \rightarrow(\boldsymbol{u}, p)$ where

$$
\left\{\begin{aligned}
F \boldsymbol{u}+\nabla p & =\boldsymbol{f} \text { in } D \\
\operatorname{div}(\boldsymbol{u}) & =0 \text { in } D
\end{aligned}\right.
$$

This rewrites as the Darcy 's law

$$
\boldsymbol{u}_{\epsilon} \simeq \epsilon^{d} a_{\epsilon}^{2-d} F^{-1}(\boldsymbol{f}-\nabla p), \text { with } \operatorname{div}\left(\boldsymbol{u}_{\epsilon}\right)=0
$$

The three homogenized regimes

Not clear how to use this for inverse homogenization

- if the hole size η is fixed, then one should use the Darcy's model

The three homogenized regimes

Not clear how to use this for inverse homogenization

- if the hole size η is fixed, then one should use the Darcy's model
- if there is no hole, then one should use the Stokes model...

The three homogenized regimes

Not clear how to use this for inverse homogenization

- if the hole size η is fixed, then one should use the Darcy's model
- if there is no hole, then one should use the Stokes model. . .
- if the hole size is close to the critical size σ_{ϵ}, then one should use the Brinkman's model.

The three homogenized regimes

Not clear how to use this for inverse homogenization

- if the hole size η is fixed, then one should use the Darcy's model
- if there is no hole, then one should use the Stokes model...
- if the hole size is close to the critical size σ_{ϵ}, then one should use the Brinkman's model.

Can we derive a unified effective model which could encompass all three regimes?

Outline

1. Motivations from topology optimization
2. Overview of our results
3. Higher order homogenized models for the Stokes problem: summary of the derivation
4. Higher order models capture all three regimes: low volume fraction asymptotics.

Higher order homogenized models for the Stokes problem

- Feppon, "High order homogenization of the Poisson equation in a perforated periodic domain" (2020)

Higher order homogenized models for the Stokes problem

- Feppon, "High order homogenization of the Poisson equation in a perforated periodic domain" (2020)
- Feppon, "High order homogenization of the Stokes system in a periodic porous medium" (2020)

Higher order homogenized models for the Stokes problem

- Feppon, "High order homogenization of the Poisson equation in a perforated periodic domain" (2020)
- Feppon, "High order homogenization of the Stokes system in a periodic porous medium" (2020)
- Feppon and Jing, "High order homogenized Stokes models capture all three regimes" (2021)

Outline of the results for the Stokes system

- We derive high order homogenized equations for the periodic Stokes problem with fixed $\eta>0$:

$$
\left\{\begin{aligned}
-\Delta \boldsymbol{u}_{\epsilon}+\nabla p_{\epsilon} & =\boldsymbol{f} \text { in } D_{\epsilon} \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}\right) & =0 \text { in } D_{\epsilon} \\
\boldsymbol{u}_{\epsilon} & =0 \text { on } \partial \omega_{\epsilon} \\
\boldsymbol{u}_{\epsilon} & \text { is } D \text {-periodic. }
\end{aligned}\right.
$$

Outline of the results for the Stokes system

- We derive high order homogenized equations for the periodic Stokes problem with fixed $\eta>0$:

$$
\left\{\begin{aligned}
-\Delta \boldsymbol{u}_{\epsilon}+\nabla p_{\epsilon} & =\boldsymbol{f} \text { in } D_{\epsilon} \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}\right) & =0 \text { in } D_{\epsilon} \\
\boldsymbol{u}_{\epsilon} & =0 \text { on } \partial \omega_{\epsilon} \\
\boldsymbol{u}_{\epsilon} & \text { is } D \text {-periodic. }
\end{aligned}\right.
$$

- We derive first a formal, "infinite-order" homogenized equation:

$$
\left\{\begin{aligned}
\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}+\nabla p_{\epsilon}^{*} & =\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}\right) & =0 \text { in } D
\end{aligned}\right.
$$

where $\left(M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}\right)_{I}=M_{i_{1} \ldots i_{k}, l m}^{k} \partial_{i_{1} \ldots, i_{k}}^{k} u_{\epsilon, m}^{*}$.

Outline of the results for the Stokes system

- We derive high order homogenized equations for the periodic Stokes problem with fixed $\eta>0$:

$$
\left\{\begin{aligned}
-\Delta \boldsymbol{u}_{\epsilon}+\nabla p_{\epsilon} & =\boldsymbol{f} \text { in } D_{\epsilon} \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}\right) & =0 \text { in } D_{\epsilon} \\
\boldsymbol{u}_{\epsilon} & =0 \text { on } \partial \omega_{\epsilon} \\
\boldsymbol{u}_{\epsilon} & \text { is } D \text {-periodic. }
\end{aligned}\right.
$$

- We derive first a formal, "infinite-order" homogenized equation:

$$
\left\{\begin{aligned}
\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}+\nabla p_{\epsilon}^{*} & =\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}\right) & =0 \text { in } D
\end{aligned}\right.
$$

where $\left(M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}\right)_{I}=M_{i_{1} \ldots i_{k}, l m}^{k} \partial_{i_{1} \ldots, i_{k}}^{k} u_{\epsilon, m}^{*}$.

- We have formally

$$
\boldsymbol{u}_{\epsilon}(x)=\sum_{k=0}^{+\infty} \epsilon^{k} N^{k}(x / \epsilon) \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}(x), p_{\epsilon}(x)=p_{\epsilon}^{*}(x)+\sum_{k=0}^{+\infty} \epsilon^{k-1} \boldsymbol{\beta}^{k}(x / \epsilon) \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}(x) .
$$

Outline of the results for the Stokes system

- We propose a truncation procedure to obtain well-posed homogenized model of order $2 K+2$ for any $K \in \mathbb{N}$:

$$
\left\{\begin{aligned}
\sum_{k=0}^{2 K+2} \epsilon^{k-2} \mathbb{D}_{K}^{k} \cdot \nabla^{k} \boldsymbol{v}_{K}^{*}+\nabla p_{K}^{*} & =\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{v}_{K}^{*}\right) & =0 \text { in } D \\
\mathbf{v}_{K}^{*} & \text { is } D \text {-periodic. }
\end{aligned}\right.
$$

Outline of the results for the Stokes system

- We propose a truncation procedure to obtain well-posed homogenized model of order $2 K+2$ for any $K \in \mathbb{N}$:

$$
\left\{\begin{aligned}
\sum_{k=0}^{2 K+2} \epsilon^{k-2} \mathbb{D}_{K}^{k} \cdot \nabla^{k} \boldsymbol{v}_{K}^{*}+\nabla p_{K}^{*} & =\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{v}_{K}^{*}\right) & =0 \text { in } D \\
\mathbf{v}_{K}^{*} & \text { is } D \text {-periodic. }
\end{aligned}\right.
$$

- The first half coefficients coincide: $\mathbb{D}_{K}^{k}=M^{k}$ for $0 \leq k \leq K$.

Outline of the results for the Stokes system

- We propose a truncation procedure to obtain well-posed homogenized model of order $2 K+2$ for any $K \in \mathbb{N}$:

$$
\left\{\begin{aligned}
\sum_{k=0}^{2 K+2} \epsilon^{k-2} \mathbb{D}_{K}^{k} \cdot \nabla^{k} \boldsymbol{v}_{K}^{*}+\nabla p_{K}^{*} & =\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{v}_{K}^{*}\right) & =0 \text { in } D \\
\boldsymbol{v}_{K}^{*} & \text { is } D \text {-periodic. }
\end{aligned}\right.
$$

- The first half coefficients coincide: $\mathbb{D}_{K}^{k}=M^{k}$ for $0 \leq k \leq K$.
- We have the following error bounds (recall $\boldsymbol{u}_{\epsilon}=O\left(\epsilon^{2}\right), p_{\epsilon}=O(1)$):

$$
\begin{gathered}
\left\|\boldsymbol{u}_{\epsilon}-\sum_{k=0}^{K} \epsilon^{k} N^{k}(\cdot / \epsilon) \cdot \nabla^{k} \boldsymbol{v}_{K}^{*}\right\|_{L^{2}\left(D, \mathbb{R}^{d}\right)} \leq C_{K}(\boldsymbol{f}) \epsilon^{K+3} \\
\left\|p_{\epsilon}-\left(p_{K}^{*}+\sum_{k=0}^{K-1} \epsilon^{k-1} \boldsymbol{\beta}^{k}(\cdot / \epsilon) \cdot \nabla^{k} \boldsymbol{v}_{K}^{*}\right)\right\|_{L^{2}(D)} \leq C_{K}(\boldsymbol{f}) \epsilon^{K+1} .
\end{gathered}
$$

Outline of the results for the Stokes system

- Finally, we compute asymptotics for the coefficients M^{k} in the regime $\eta \rightarrow 0$.

$$
\left\{\begin{aligned}
\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}+\nabla p_{\epsilon}^{*} & =\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}\right) & =0 \text { in } D
\end{aligned}\right.
$$

Outline of the results for the Stokes system

- Finally, we compute asymptotics for the coefficients M^{k} in the regime $\eta \rightarrow 0$.

$$
\left\{\begin{aligned}
\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}+\nabla p_{\epsilon}^{*} & =\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}\right) & =0 \text { in } D
\end{aligned}\right.
$$

- We find:

$$
\left\{\begin{array}{l}
M^{0} \sim \eta^{d-2} F \\
M^{1}=o\left(\eta^{d-2}\right) \\
M^{2}=-I+o\left(\eta^{d-2}\right) \\
M^{k}=o\left(\eta^{d-2}\right) \text { for any } k>2
\end{array}\right.
$$

Outline of the results for the Stokes system

- Finally, we compute asymptotics for the coefficients M^{k} in the regime $\eta \rightarrow 0$.

$$
\left\{\begin{aligned}
\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}+\nabla p_{\epsilon}^{*} & =\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}\right) & =0 \text { in } D
\end{aligned}\right.
$$

- We find:

$$
\left\{\begin{array}{l}
M^{0} \sim \eta^{d-2} F \\
M^{1}=o\left(\eta^{d-2}\right) \\
M^{2}=-I+o\left(\eta^{d-2}\right) \\
M^{k}=o\left(\eta^{d-2}\right) \text { for any } k>2
\end{array}\right.
$$

- Since $\epsilon^{k-2} \eta^{d-2}=\epsilon^{k}\left(a_{\epsilon} / \sigma_{\epsilon}\right)^{d-2}$, the high-order model converges coefficient-wise to either of the Stokes, Brinkman or Darcy equation as $\eta \rightarrow 0$.

Outline of the results for the Stokes system

- Finally, we compute asymptotics for the coefficients M^{k} in the regime $\eta \rightarrow 0$.

$$
\left\{\begin{array}{r}
\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}+\nabla p_{\epsilon}^{*}=\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}\right)=0 \text { in } D
\end{array}\right.
$$

- We find:

$$
\left\{\begin{array} { l }
{ M ^ { 0 } \sim \eta ^ { d - 2 } F } \\
{ M ^ { 1 } = o (\eta ^ { d - 2 }) } \\
{ M ^ { 2 } = - I + o (\eta ^ { d - 2 }) } \\
{ M ^ { k } = o (\eta ^ { d - 2 }) \text { for any } k > 2 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\epsilon^{-2} M^{0} \sim\left(a_{\epsilon} / \sigma_{\epsilon}\right)^{d-2} F \\
\end{array}\right.\right.
$$

- Since $\epsilon^{k-2} \eta^{d-2}=\epsilon^{k}\left(a_{\epsilon} / \sigma_{\epsilon}\right)^{d-2}$, the high-order model converges coefficient-wise to either of the Stokes, Brinkman or Darcy equation as $\eta \rightarrow 0$.

Outline of the results for the Stokes system

- Finally, we compute asymptotics for the coefficients M^{k} in the regime $\eta \rightarrow 0$.

$$
\left\{\begin{array}{r}
\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}+\nabla p_{\epsilon}^{*}=\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}\right)=0 \text { in } D
\end{array}\right.
$$

- We find:

$$
\left\{\begin{array} { l }
{ M ^ { 0 } \sim \eta ^ { d - 2 } F } \\
{ M ^ { 1 } = o (\eta ^ { d - 2 }) } \\
{ M ^ { 2 } = - I + o (\eta ^ { d - 2 }) } \\
{ M ^ { k } = o (\eta ^ { d - 2 }) \text { for any } k > 2 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\epsilon^{-2} M^{0} \sim\left(a_{\epsilon} / \sigma_{\epsilon}\right)^{d-2} F \\
\epsilon^{-1} M^{1}=o\left(\epsilon\left(a_{\epsilon} / \sigma_{\epsilon}\right)^{d-2}\right) \\
\end{array}\right.\right.
$$

- Since $\epsilon^{k-2} \eta^{d-2}=\epsilon^{k}\left(a_{\epsilon} / \sigma_{\epsilon}\right)^{d-2}$, the high-order model converges coefficient-wise to either of the Stokes, Brinkman or Darcy equation as $\eta \rightarrow 0$.

Outline of the results for the Stokes system

- Finally, we compute asymptotics for the coefficients M^{k} in the regime $\eta \rightarrow 0$.

$$
\left\{\begin{array}{r}
\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}+\nabla p_{\epsilon}^{*}=\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}\right)=0 \text { in } D
\end{array}\right.
$$

- We find:

$$
\left\{\begin{array} { l }
{ M ^ { 0 } \sim \eta ^ { d - 2 } F } \\
{ M ^ { 1 } = o (\eta ^ { d - 2 }) } \\
{ M ^ { 2 } = - I + o (\eta ^ { d - 2 }) } \\
{ M ^ { k } = o (\eta ^ { d - 2 }) \text { for any } k > 2 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\epsilon^{-2} M^{0} \sim\left(a_{\epsilon} / \sigma_{\epsilon}\right)^{d-2} F \\
\epsilon^{-1} M^{1}=o\left(\epsilon\left(a_{\epsilon} / \sigma_{\epsilon}\right)^{d-2}\right) \\
\epsilon^{0} M^{2} \rightarrow-I
\end{array}\right.\right.
$$

- Since $\epsilon^{k-2} \eta^{d-2}=\epsilon^{k}\left(a_{\epsilon} / \sigma_{\epsilon}\right)^{d-2}$, the high-order model converges coefficient-wise to either of the Stokes, Brinkman or Darcy equation as $\eta \rightarrow 0$.

Outline of the results for the Stokes system

- Finally, we compute asymptotics for the coefficients M^{k} in the regime $\eta \rightarrow 0$.

$$
\left\{\begin{array}{r}
\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}+\nabla p_{\epsilon}^{*}=\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}\right)=0 \text { in } D
\end{array}\right.
$$

- We find:

$$
\left\{\begin{array} { l }
{ M ^ { 0 } \sim \eta ^ { d - 2 } F } \\
{ M ^ { 1 } = o (\eta ^ { d - 2 }) } \\
{ M ^ { 2 } = - I + o (\eta ^ { d - 2 }) } \\
{ M ^ { k } = o (\eta ^ { d - 2 }) \text { for any } k > 2 }
\end{array} \Longrightarrow \left\{\begin{array}{c}
\epsilon^{-2} M^{0} \sim\left(a_{\epsilon} / \sigma_{\epsilon}\right)^{d-2} F \\
\epsilon^{-1} M^{1}=o\left(\epsilon\left(a_{\epsilon} / \sigma_{\epsilon}\right)^{d-2}\right) \\
\epsilon^{0} M^{2} \rightarrow-I \\
\epsilon^{k-2} M^{k} \rightarrow 0 \text { for } k \geqslant 3
\end{array}\right.\right.
$$

- Since $\epsilon^{k-2} \eta^{d-2}=\epsilon^{k}\left(a_{\epsilon} / \sigma_{\epsilon}\right)^{d-2}$, the high-order model converges coefficient-wise to either of the Stokes, Brinkman or Darcy equation as $\eta \rightarrow 0$.

Symmetry properties

Remark: the higher order models contain odd orders differential operators (e.g. $\epsilon^{-1} M^{1} \cdot \nabla$):

$$
\left\{\begin{aligned}
\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}+\nabla p_{\epsilon}^{*} & =\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}\right) & =0 \text { in } D
\end{aligned}\right.
$$

Symmetry properties

Remark: the higher order models contain odd orders differential operators (e.g. $\epsilon^{-1} M^{1} \cdot \nabla$):

$$
\left\{\begin{aligned}
\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}+\nabla p_{\epsilon}^{*} & =\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}\right) & =0 \text { in } D
\end{aligned}\right.
$$

However the very strange terms $\epsilon^{2 k-1} M^{2 k+1} \cdot \nabla^{2 k+1}$ vanish if the unit cell Y has enough symmetries.

Outline

1. Motivations from topology optimization
2. Overview of our results
3. Higher order homogenized models for the Stokes problem: summary of the derivation
4. Higher order models capture all three regimes: low volume fraction asymptotics.

Two-scale expansions

- The starting point is to postulate two-scale expansions for $\boldsymbol{u}_{\epsilon}$ and p_{ϵ} :
$\boldsymbol{u}_{\epsilon}(x)=\sum_{i=0}^{+\infty} \epsilon^{i+2} \boldsymbol{u}_{i}(x, x / \epsilon), \quad p_{\epsilon}(x)=\sum_{i=0}^{+\infty} \epsilon^{i}\left(p_{i}^{*}(x)+\epsilon p_{i}(x, x / \epsilon)\right)$,
where $\boldsymbol{u}_{i}(x, y)$ and $p_{i}(x, y)$ are P-periodic in y, with

$$
\int_{Y} p_{i}(x, y) \mathrm{d} y=0
$$

Two-scale expansions

- The starting point is to postulate two-scale expansions for $\boldsymbol{u}_{\epsilon}$ and p_{ϵ} :

$$
\boldsymbol{u}_{\epsilon}(x)=\sum_{i=0}^{+\infty} \epsilon^{i+2} \boldsymbol{u}_{i}(x, x / \epsilon), \quad p_{\epsilon}(x)=\sum_{i=0}^{+\infty} \epsilon^{i}\left(p_{i}^{*}(x)+\epsilon p_{i}(x, x / \epsilon)\right),
$$

where $\boldsymbol{u}_{i}(x, y)$ and $p_{i}(x, y)$ are P-periodic in y, with

$$
\int_{Y} p_{i}(x, y) \mathrm{d} y=0
$$

- We seek homogenized equations for the averaged variables

$$
\boldsymbol{u}_{\epsilon}^{*}(x):=\sum_{i=0}^{+\infty} \epsilon^{i+2} \int_{Y} \boldsymbol{u}_{i}(x, y) \mathrm{d} y, \quad p_{\epsilon}^{*}(x):=\sum_{i=0}^{+\infty} \epsilon^{i} p_{i}^{*}(x)
$$

Two-scale expansions

- The starting point is to postulate two-scale expansions for $\boldsymbol{u}_{\epsilon}$ and p_{ϵ} :

$$
\boldsymbol{u}_{\epsilon}(x)=\sum_{i=0}^{+\infty} \epsilon^{i+2} \boldsymbol{u}_{i}(x, x / \epsilon), \quad p_{\epsilon}(x)=\sum_{i=0}^{+\infty} \epsilon^{i}\left(p_{i}^{*}(x)+\epsilon p_{i}(x, x / \epsilon)\right),
$$

where $\boldsymbol{u}_{i}(x, y)$ and $p_{i}(x, y)$ are P-periodic in y, with

$$
\int_{Y} p_{i}(x, y) \mathrm{d} y=0
$$

- We seek homogenized equations for the averaged variables

$$
\boldsymbol{u}_{\epsilon}^{*}(x):=\sum_{i=0}^{+\infty} \epsilon^{i+2} \int_{Y} \boldsymbol{u}_{i}(x, y) \mathrm{d} y, \quad p_{\epsilon}^{*}(x):=\sum_{i=0}^{+\infty} \epsilon^{i} p_{i}^{*}(x)
$$

- We insert the ansatz for $\boldsymbol{u}_{\epsilon}$ and p_{ϵ} in the Stokes equation,

$$
\left\{\begin{array} { r l }
{ - \Delta \boldsymbol { u } _ { \epsilon } + \nabla p _ { \epsilon } } & { = \boldsymbol { f } \text { in } D _ { \epsilon } } \\
{ \operatorname { d i v } (\boldsymbol { u } _ { \epsilon }) } & { = 0 \text { in } D _ { \epsilon } }
\end{array} \text { with } \left\{\begin{array}{l}
\boldsymbol{u}_{\epsilon}=0 \text { on } \partial \omega_{\epsilon} \\
\boldsymbol{u}_{\epsilon} \text { is } D \text {-periodic }
\end{array}\right.\right.
$$

Two-scale expansions

- We find

$$
\begin{aligned}
& \boldsymbol{u}_{\epsilon}(x)=\sum_{i=0}^{+\infty} \epsilon^{i+2} \mathcal{X}^{i}(x / \epsilon) \cdot \nabla^{i}\left(\boldsymbol{f}(x)-\nabla p_{\epsilon}^{*}(x)\right) \\
& p_{\epsilon}(x)=p_{\epsilon}^{*}(x)+\sum_{i=0}^{+\infty} \epsilon^{i+1} \boldsymbol{\alpha}^{i}(x / \epsilon) \cdot \nabla^{i}\left(\boldsymbol{f}(x)-\nabla p_{\epsilon}^{*}(x)\right) .
\end{aligned}
$$

$\operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}(x)\right)=0$ where $\boldsymbol{u}_{\epsilon}^{*}(x)=\sum_{i=0}^{+\infty} \epsilon^{i+2} \mathcal{X}^{i *} \cdot \nabla^{i}\left(\boldsymbol{f}(x)-\nabla p_{\epsilon}^{*}(x)\right)$.
and

$$
\mathcal{X}^{i *}=\int_{Y} \mathcal{X}^{i}(y) \mathrm{d} y .
$$

Two-scale expansions

The tensors $\left(\mathcal{X}^{k}(y), \boldsymbol{\alpha}^{k}(y)\right)$ are defined by

$$
\begin{aligned}
\mathcal{X}^{k}(y) & :=\left[\begin{array}{lll}
\mathcal{X}_{1}^{k}(y) & \ldots & \mathcal{X}_{d}^{k}(y)
\end{array}\right] \\
\boldsymbol{\alpha}^{k}(y) & :=\left[\begin{array}{lll}
\alpha_{1}^{k}(y) & \ldots & \alpha_{d}^{k}(y)
\end{array}\right]^{T}
\end{aligned}
$$

where $\left(\mathcal{X}^{i}(y), \alpha^{i}(y)\right.$ are the solutions to the cascade of cell Stokes problems

Two-scale expansions

The tensors $\left(\mathcal{X}^{k}(y), \boldsymbol{\alpha}^{k}(y)\right)$ are defined by

$$
\begin{aligned}
\mathcal{X}^{k}(y) & :=\left[\begin{array}{lll}
\mathcal{X}_{1}^{k}(y) & \ldots & \mathcal{X}_{d}^{k}(y)
\end{array}\right] \\
\boldsymbol{\alpha}^{k}(y) & :=\left[\begin{array}{lll}
\alpha_{1}^{k}(y) & \ldots & \alpha_{d}^{k}(y)
\end{array}\right]^{T}
\end{aligned}
$$

where $\left(\mathcal{X}^{i}(y), \alpha^{i}(y)\right.$ are the solutions to the cascade of cell Stokes problems

$$
\begin{aligned}
& \left\{\begin{aligned}
-\Delta_{y y} \mathcal{X}_{j}^{0}+\nabla_{y} \alpha_{j}^{0} & =\boldsymbol{e}_{j} \text { in } Y, \\
\operatorname{div}_{y}\left(\mathcal{X}_{j}^{0}\right) & =0 \text { in } Y
\end{aligned}\right. \\
& \left\{\begin{aligned}
-\Delta_{y y} \mathcal{X}_{j}^{1}+\nabla_{y} \alpha_{j}^{1} & =\left(2 \partial_{l} \mathcal{X}_{j}^{0}-\alpha_{j}^{0} \boldsymbol{e}_{l}\right) \otimes e_{l} \text { in } Y \\
\operatorname{div}_{y}\left(\mathcal{X}_{j}^{1}\right) & =-\left(\mathcal{X}_{j}^{0}-\left\langle\mathcal{X}_{j}^{0}\right\rangle\right) \cdot \boldsymbol{e}_{l} \otimes e_{l} \text { in } Y,
\end{aligned}\right. \\
& \left\{\begin{aligned}
&-\Delta_{y y} \mathcal{X}_{j}^{k+2}+\nabla_{y} \alpha_{j}^{k+2}=\left(2 \partial_{l} \mathcal{X}_{j}^{k+1}-\alpha_{j}^{k+1} \boldsymbol{e}_{l}\right) \otimes e_{l}+\mathcal{X}_{j}^{k} \otimes I \text { in } Y \\
& \operatorname{div}_{y}\left(\mathcal{X}_{j}^{k+2}\right)=-\left(\mathcal{X}_{j}^{k+1}-\left\langle\mathcal{X}_{j}^{k+1}\right\rangle\right) \cdot \boldsymbol{e}_{l} \otimes e_{l} \text { in } Y
\end{aligned}\right.
\end{aligned}
$$

The infinite order homogenized equation

We have obtained

$$
\begin{gathered}
\boldsymbol{u}_{\epsilon}(x)=\sum_{i=0}^{+\infty} \epsilon^{i+2} \mathcal{X}^{i}(x / \epsilon) \cdot \nabla^{i}\left(\boldsymbol{f}(x)-\nabla p_{\epsilon}^{*}(x)\right) \\
p_{\epsilon}(x)=p_{\epsilon}^{*}(x)+\sum_{i=0}^{+\infty} \epsilon^{i+1} \boldsymbol{\alpha}^{i}(x / \epsilon) \cdot \nabla^{i}\left(\boldsymbol{f}(x)-\nabla p_{\epsilon}^{*}(x)\right) \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}(x)\right)=0 \\
\boldsymbol{u}_{\epsilon}^{*}(x)=\sum_{i=0}^{+\infty} \epsilon^{i+2} \mathcal{X}^{i *} \cdot \nabla^{i}\left(\boldsymbol{f}(x)-\nabla p_{\epsilon}^{*}(x)\right)
\end{gathered}
$$

The infinite order homogenized equation

We have obtained

$$
\begin{gathered}
\boldsymbol{u}_{\epsilon}(x)=\sum_{i=0}^{+\infty} \epsilon^{i+2} \mathcal{X}^{i}(x / \epsilon) \cdot \nabla^{i}\left(\boldsymbol{f}(x)-\nabla p_{\epsilon}^{*}(x)\right) \\
p_{\epsilon}(x)=p_{\epsilon}^{*}(x)+\sum_{i=0}^{+\infty} \epsilon^{i+1} \boldsymbol{\alpha}^{i}(x / \epsilon) \cdot \nabla^{i}\left(\boldsymbol{f}(x)-\nabla p_{\epsilon}^{*}(x)\right) \\
\quad \operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}(x)\right)=0 \\
\boldsymbol{u}_{\epsilon}^{*}(x)=\sum_{i=0}^{+\infty} \epsilon^{i+2} \mathcal{X}^{i *} \cdot \nabla^{i}\left(\boldsymbol{f}(x)-\nabla p_{\epsilon}^{*}(x)\right)
\end{gathered}
$$

The first coefficient $\mathcal{X}^{0 *}$ of the series is a positive symmetric definite matrix.

The infinite order homogenized equation

$$
\boldsymbol{u}_{\epsilon}^{*}(x)=\sum_{i=0}^{+\infty} \epsilon^{i+2} \mathcal{X}^{i *} \cdot \nabla^{i}\left(\boldsymbol{f}(x)-\nabla p_{\epsilon}^{*}(x)\right)
$$

The first coefficient $\mathcal{X}^{0 *}$ of the series is a positive symmetric definite matrix.

The infinite order homogenized equation

$$
\boldsymbol{u}_{\epsilon}^{*}(x)=\sum_{i=0}^{+\infty} \epsilon^{i+2} \mathcal{X}^{i *} \cdot \nabla^{i}\left(\boldsymbol{f}(x)-\nabla p_{\epsilon}^{*}(x)\right)
$$

The first coefficient $\mathcal{X}^{0 *}$ of the series is a positive symmetric definite matrix.
Introducing a family of tensors $\left(M^{k}\right)_{k \in \mathbb{N}}$ such that

$$
\left(\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k}\right)\left(\sum_{k=0}^{+\infty} \epsilon^{k+2} \mathcal{X}^{k *} \cdot \nabla^{k}\right)=I
$$

we obtain the infinite order homogenized equation:

$$
\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}=\boldsymbol{f}-\nabla p_{\epsilon}^{*}
$$

The infinite order homogenized equation

$$
\mathbf{u}_{\epsilon}^{*}(x)=\sum_{i=0}^{+\infty} \epsilon^{i+2} \mathcal{X}^{i *} \cdot \nabla^{i}\left(\boldsymbol{f}(x)-\nabla p_{\epsilon}^{*}(x)\right)
$$

The first coefficient $\mathcal{X}^{0 *}$ of the series is a positive symmetric definite matrix.
Introducing a family of tensors $\left(M^{k}\right)_{k \in \mathbb{N}}$ such that

$$
\begin{gathered}
\left(\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k}\right)\left(\sum_{k=0}^{+\infty} \epsilon^{k+2} \mathcal{X}^{k *} \cdot \nabla^{k}\right)=I \\
\left\{\begin{array}{l}
M^{0}=\left(\mathcal{X}^{0 *}\right)^{-1} \\
M^{k}=-\left(\mathcal{X}^{0 *}\right)^{-1} \sum_{p=0}^{k-1} \mathcal{X}^{k-p *} \otimes M^{p}
\end{array}\right.
\end{gathered}
$$

The criminal ansatz

We now express $\boldsymbol{u}_{\epsilon}(x), p_{\epsilon}(x)$ in terms of $\boldsymbol{u}_{\epsilon}^{*}(x), p_{\epsilon}^{*}(x)$.

The criminal ansatz

We now express $\boldsymbol{u}_{\epsilon}(x), p_{\epsilon}(x)$ in terms of $\boldsymbol{u}_{\epsilon}^{*}(x), p_{\epsilon}^{*}(x)$. We know

$$
\begin{aligned}
\boldsymbol{u}_{\epsilon}(x) & =\sum_{k=0}^{+\infty} \epsilon^{k+2} \mathcal{X}^{k}(x / \epsilon) \cdot \nabla^{k}\left(\boldsymbol{f}(x)-\nabla p_{\epsilon}^{*}(x)\right), \\
p_{\epsilon}(x)= & p_{\epsilon}^{*}(x)+\sum_{k=0}^{+\infty} \epsilon^{k+1} \boldsymbol{\alpha}^{k}(x / \epsilon) \cdot \nabla^{k}\left(\boldsymbol{f}(x)-\nabla p_{\epsilon}^{*}(x)\right) \\
\boldsymbol{f}-\nabla p_{\epsilon}^{*}= & \sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}
\end{aligned}
$$

The criminal ansatz

We now express $\boldsymbol{u}_{\epsilon}(x), p_{\epsilon}(x)$ in terms of $\boldsymbol{u}_{\epsilon}^{*}(x), p_{\epsilon}^{*}(x)$. We know

$$
\begin{aligned}
\boldsymbol{u}_{\epsilon}(x) & =\sum_{k=0}^{+\infty} \epsilon^{k+2} \mathcal{X}^{k}(x / \epsilon) \cdot \nabla^{k}\left(\boldsymbol{f}(x)-\nabla p_{\epsilon}^{*}(x)\right), \\
p_{\epsilon}(x) & =p_{\epsilon}^{*}(x)+\sum_{k=0}^{+\infty} \epsilon^{k+1} \boldsymbol{\alpha}^{k}(x / \epsilon) \cdot \nabla^{k}\left(\boldsymbol{f}(x)-\nabla p_{\epsilon}^{*}(x)\right) \\
\boldsymbol{f}-\nabla p_{\epsilon}^{*} & =\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}
\end{aligned}
$$

Introducing the tensors $N^{k}(x / \epsilon), \boldsymbol{\beta}^{k}(x / \epsilon)$ such that

$$
\begin{aligned}
& \sum_{k=0}^{+\infty} \epsilon^{k} N^{k}(x / \epsilon) \cdot \nabla^{k}:=\left(\sum_{k=0}^{+\infty} \epsilon^{k+2} \mathcal{X}^{k}(x / \epsilon) \cdot \nabla^{k}\right)\left(\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k}\right) \\
& \sum_{k=0}^{+\infty} \epsilon^{k} \boldsymbol{\beta}^{k}(x / \epsilon) \cdot \nabla^{k}:=\left(\sum_{k=0}^{+\infty} \epsilon^{k+2} \boldsymbol{\alpha}^{k}(x / \epsilon) \cdot \nabla^{k}\right)\left(\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k}\right),
\end{aligned}
$$

The criminal ansatz

... we find the "criminal" ansatz

$$
\left\{\begin{array}{l}
\boldsymbol{u}_{\epsilon}(x)=\sum_{i=0}^{+\infty} \epsilon^{i} N^{i}(x / \epsilon) \cdot \nabla^{i} \mathbf{u}_{\epsilon}^{*}(x) \\
p_{\epsilon}(x)=p_{\epsilon}^{*}(x)+\sum_{i=0}^{+\infty} \epsilon^{i-1} \boldsymbol{\beta}^{i}(x / \epsilon) \cdot \nabla^{i} u_{\epsilon}^{*}(x)
\end{array} .\right.
$$

Truncating the infinite order homogenized equation

We now want a "practical" equation for computing $\left(\boldsymbol{u}_{\epsilon}^{*}, p_{\epsilon}^{*}\right)$.

Truncating the infinite order homogenized equation

We now want a "practical" equation for computing $\left(u_{\epsilon}^{*}, p_{\epsilon}^{*}\right)$. Truncating naively the infinite order equation

$$
\left\{\begin{aligned}
\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}+\nabla p_{\epsilon}^{*} & =\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}\right) & =0 \text { in } D
\end{aligned}\right.
$$

Truncating the infinite order homogenized equation

We now want a "practical" equation for computing $\left(u_{\epsilon}^{*}, p_{\epsilon}^{*}\right)$. Truncating naively the infinite order equation

$$
\left\{\begin{aligned}
\sum_{k=0}^{K} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}+\nabla p_{\epsilon}^{*} & =\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}\right) & =0 \text { in } D
\end{aligned}\right.
$$

Truncating the infinite order homogenized equation

We now want a "practical" equation for computing $\left(u_{\epsilon}^{*}, p_{\epsilon}^{*}\right)$. Truncating naively the infinite order equation

$$
\left\{\begin{aligned}
\sum_{k=0}^{K} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}+\nabla p_{\epsilon}^{*} & =\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}\right) & =0 \text { in } D .
\end{aligned}\right.
$$

yields in general an ill-posed problem.

Truncating the infinite order homogenized equation

We now want a "practical" equation for computing $\left(\boldsymbol{u}_{\epsilon}^{*}, p_{\epsilon}^{*}\right)$. Truncating naively the infinite order equation

$$
\left\{\begin{aligned}
\sum_{k=0}^{K} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}+\nabla p_{\epsilon}^{*} & =\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}\right) & =0 \text { in } D .
\end{aligned}\right.
$$

yields in general an ill-posed problem.
We truncate the criminal ansatz and construct a homogenized equation from a minimization principle.

Truncating the infinite order homogenized equation

Recall $\boldsymbol{u}_{\epsilon}$ is the minimizer of

$$
\begin{aligned}
& \min _{\boldsymbol{w} \in \boldsymbol{H}^{1}\left(D_{\epsilon}, \mathbb{R}^{d}\right)} \quad J(\boldsymbol{w}, \boldsymbol{f}):=\int_{D}\left(\frac{1}{2} \nabla \boldsymbol{w}: \nabla \boldsymbol{w}-\boldsymbol{f} \cdot \boldsymbol{w}\right) \mathrm{d} y \\
& \text { s.t. }\left\{\begin{aligned}
\operatorname{div}(\boldsymbol{w})=0 \text { in } D_{\epsilon} \\
\boldsymbol{w}=0 \text { on } \partial \omega_{\epsilon} \\
\boldsymbol{w} \text { is } D \text {-periodic. }
\end{aligned}\right.
\end{aligned}
$$

Truncating the infinite order homogenized equation

Recall $\boldsymbol{u}_{\epsilon}$ is the minimizer of

$$
\begin{aligned}
& \min _{\boldsymbol{w} \in H^{1}\left(D_{\epsilon}, \mathbb{R}^{d}\right)} \quad J(\boldsymbol{w}, \boldsymbol{f}):=\int_{D}\left(\frac{1}{2} \nabla \boldsymbol{w}: \nabla \boldsymbol{w}-\boldsymbol{f} \cdot \boldsymbol{w}\right) \mathrm{d} y \\
& \text { s.t. }\left\{\begin{aligned}
\operatorname{div}(\boldsymbol{w})=0 \text { in } D_{\epsilon} \\
\boldsymbol{w}=0 \text { on } \partial \omega_{\epsilon} \\
\boldsymbol{w} \text { is } D \text {-periodic. }
\end{aligned}\right.
\end{aligned}
$$

For $K \in \mathbb{N}$ and $\boldsymbol{v} \in H^{K+1}\left(D, \mathbb{R}^{d}\right)$, let $\boldsymbol{w}_{\epsilon, K}(v)$ be the truncated ansatz

$$
\boldsymbol{w}_{\epsilon, K}(v)(x):=\sum_{k=0}^{K} \epsilon^{k} N^{k}(x / \epsilon) \cdot \nabla^{k} \boldsymbol{v}(x), \quad x \in D_{\epsilon},
$$

Truncating the infinite order homogenized equation

Recall $\boldsymbol{u}_{\epsilon}$ is the minimizer of

$$
\begin{aligned}
& \min _{\boldsymbol{w} \in H^{1}\left(D_{\epsilon}, \mathbb{R}^{d}\right)} \quad J(\boldsymbol{w}, \boldsymbol{f}):=\int_{D}\left(\frac{1}{2} \nabla \boldsymbol{w}: \nabla \boldsymbol{w}-\boldsymbol{f} \cdot \boldsymbol{w}\right) \mathrm{d} y \\
& \text { s.t. }\left\{\begin{aligned}
\operatorname{div}(\boldsymbol{w})=0 \text { in } D_{\epsilon} \\
\boldsymbol{w}=0 \text { on } \partial \omega_{\epsilon} \\
\boldsymbol{w} \text { is } D \text {-periodic. }
\end{aligned}\right.
\end{aligned}
$$

For $K \in \mathbb{N}$ and $\boldsymbol{v} \in H^{K+1}\left(D, \mathbb{R}^{d}\right)$, let $\boldsymbol{w}_{\epsilon, K}(v)$ be the truncated ansatz

$$
\boldsymbol{w}_{\epsilon, K}(v)(x):=\sum_{k=0}^{K} \epsilon^{k} N^{k}(x / \epsilon) \cdot \nabla^{k} \boldsymbol{v}(x), \quad x \in D_{\epsilon},
$$

We consider the approximate minimization problem

$$
\min _{\boldsymbol{v} \in \boldsymbol{H}^{K+1}\left(D, \mathbb{R}^{d}\right)} J\left(\boldsymbol{w}_{\epsilon, K}(\boldsymbol{v}), \boldsymbol{f}\right) \text { s.t. }\left\{\begin{aligned}
\operatorname{div}(\boldsymbol{v}) & =0 \\
\boldsymbol{v} & \text { is } D \text {-periodic. }
\end{aligned}\right.
$$

Truncating the infinite order homogenized equation

We consider the approximate minimization problem

$$
\min _{\boldsymbol{v} \in \boldsymbol{H}^{K+1}\left(D, \mathbb{R}^{d}\right)} J\left(\boldsymbol{w}_{\epsilon, K}(\boldsymbol{v}), \boldsymbol{f}\right) \text { s.t. }\left\{\begin{aligned}
\operatorname{div}(\boldsymbol{v}) & =0 \\
\boldsymbol{v} & \text { is } D \text {-periodic. }
\end{aligned}\right.
$$

Truncating the infinite order homogenized equation

We consider the approximate minimization problem

$$
\min _{v \in H^{K+1}\left(D, \mathbb{R}^{d}\right)} J_{K}^{*}(v, \boldsymbol{f}) \quad \text { s.t. }\left\{\begin{array}{r}
\operatorname{div}(v)=0 \\
v \text { is } D \text {-periodic. }
\end{array}\right.
$$

after averaging with respect to x / ϵ.

Truncating the infinite order homogenized equation

We consider the approximate minimization problem

$$
\min _{\boldsymbol{v} \in \boldsymbol{H}^{K+1}\left(D, \mathbb{R}^{d}\right)} J_{K}^{*}(\boldsymbol{v}, \boldsymbol{f}) \quad \text { s.t. }\left\{\begin{aligned}
\operatorname{div}(v) & =0 \\
v & \text { is } D \text {-periodic. }
\end{aligned}\right.
$$

after averaging with respect to x / ϵ.
The first order optimality condition for J_{K}^{*} yields a well-posed homogenized equation of order $2 K+2$:

$$
\left\{\begin{aligned}
\sum_{k=0}^{2 K+2} \epsilon^{k-2} \mathbb{D}_{K}^{k} \cdot \nabla^{k} \boldsymbol{v}_{K}^{*}+\nabla p_{K}^{*} & =\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{v}_{K}^{*}\right) & =0 \text { in } D \\
\boldsymbol{v}_{K}^{*} & \text { is } D \text {-periodic. }
\end{aligned}\right.
$$

Truncating the infinite order homogenized equation

Infinite-order equation:

$$
\left\{\begin{aligned}
\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}+\nabla p_{\epsilon}^{*} & =\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}\right) & =0 \text { in } D
\end{aligned}\right.
$$

Well-posed homogenized equation of order $2 K+2$:

$$
\left\{\begin{aligned}
& \sum_{k=0}^{2 K+2} \epsilon^{k-2} \mathbb{D}_{K}^{k} \cdot \nabla^{k} \boldsymbol{v}_{K}^{*}+\nabla p_{K}^{*}=\boldsymbol{f} \text { in } D \\
& \operatorname{div}\left(\boldsymbol{v}_{K}^{*}\right)=0 \text { in } D \\
& \boldsymbol{v}_{K}^{*} \text { is } D \text {-periodic. }
\end{aligned}\right.
$$

Truncating the infinite order homogenized equation

Infinite-order equation:

$$
\left\{\begin{aligned}
\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}+\nabla p_{\epsilon}^{*} & =\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}\right) & =0 \text { in } D
\end{aligned}\right.
$$

Well-posed homogenized equation of order $2 K+2$:

$$
\left\{\begin{aligned}
& \sum_{k=0}^{2 K+2} \epsilon^{k-2} \mathbb{D}_{K}^{k} \cdot \nabla^{k} \boldsymbol{v}_{K}^{*}+\nabla p_{K}^{*}=\boldsymbol{f} \text { in } D \\
& \operatorname{div}\left(\boldsymbol{v}_{K}^{*}\right)=0 \text { in } D \\
& \boldsymbol{v}_{K}^{*} \text { is } D \text {-periodic. }
\end{aligned}\right.
$$

Because it turns out $\mathbb{D}_{K}^{k}=M^{k}$ for $0 \leq k \leq K$, one can prove the error bound

$$
\left\|\boldsymbol{u}_{\epsilon}-\sum_{k=0}^{K} \epsilon^{k} N^{k}(\cdot / \epsilon) \cdot \nabla^{k} \boldsymbol{v}_{K}^{*}\right\|_{L^{2}\left(D, \mathbb{R}^{d}\right)} \leq C_{K}(\boldsymbol{f}) \epsilon^{K+3}
$$

Truncating the infinite order homogenized equation

Infinite-order equation:

$$
\left\{\begin{aligned}
\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}+\nabla p_{\epsilon}^{*} & =\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}\right) & =0 \text { in } D
\end{aligned}\right.
$$

Well-posed homogenized equation of order $2 K+2$:

$$
\left\{\begin{aligned}
& \sum_{k=0}^{2 K+2} \epsilon^{k-2} \mathbb{D}_{K}^{k} \cdot \nabla^{k} \boldsymbol{v}_{K}^{*}+\nabla p_{K}^{*}=\boldsymbol{f} \text { in } D \\
& \operatorname{div}\left(\boldsymbol{v}_{K}^{*}\right)=0 \text { in } D \\
& \boldsymbol{v}_{K}^{*} \text { is } D \text {-periodic. }
\end{aligned}\right.
$$

Because it turns out $\mathbb{D}_{K}^{k}=M^{k}$ for $0 \leq k \leq K$, one can prove the error bound

$$
\left\|p_{\epsilon}-\left(p_{K}^{*}+\sum_{k=0}^{K-1} \epsilon^{k-1} \boldsymbol{\beta}^{k}(\cdot / \epsilon) \cdot \nabla^{k} \boldsymbol{v}_{K}^{*}\right)\right\|_{L^{2}(D)} \leq C_{K}(\boldsymbol{f}) \epsilon^{K+1}
$$

Outline

1. Motivations from topology optimization
2. Overview of our results
3. Higher order homogenized models for the Stokes problem: summary of the derivation
4. Higher order models capture all three regimes: low volume fraction asymptotics.

Periodic setting considered

Figure: The perforated domain D_{ϵ} and the unit cell $Y . \Omega=$ "the blue domain".

Depending on how η scales with ϵ, there are three known homogenized models ${ }^{[5]}$.
${ }^{[5]}$ Allaire, "Homogenization of the Stokes flow in a connected porous medium" (1989)

Low volume fraction asymptotics

Infinite-order equation:

$$
\left\{\begin{aligned}
\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}+\nabla p_{\epsilon}^{*} & =\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}\right) & =0 \text { in } D
\end{aligned}\right.
$$

Well-posed homogenized equation of order $2 K+2$:

$$
\left\{\begin{aligned}
\sum_{k=0}^{2 K+2} \epsilon^{k-2} \mathbb{D}_{K}^{k} \cdot \nabla^{k} \boldsymbol{v}_{K}^{*}+\nabla p_{K}^{*} & =\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{v}_{K}^{*}\right) & =0 \text { in } D \\
\boldsymbol{v}_{K}^{*} & \text { is } D \text {-periodic. }
\end{aligned}\right.
$$

Low volume fraction asymptotics

Infinite-order equation:

$$
\left\{\begin{aligned}
\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}+\nabla p_{\epsilon}^{*} & =\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}\right) & =0 \text { in } D
\end{aligned}\right.
$$

Well-posed homogenized equation of order $2 K+2$:

$$
\left\{\begin{aligned}
\sum_{k=0}^{2 K+2} \epsilon^{k-2} \mathbb{D}_{K}^{k} \cdot \nabla^{k} \boldsymbol{v}_{K}^{*}+\nabla p_{K}^{*} & =\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{v}_{K}^{*}\right) & =0 \text { in } D \\
\boldsymbol{v}_{K}^{*} & \text { is } D \text {-periodic. }
\end{aligned}\right.
$$

We study the behavior of the coefficients M^{k} and \mathbb{D}_{K}^{k} as $\eta \rightarrow 0$.

Low volume fraction asymptotics

$$
\left\{\begin{array}{l}
M^{0}=\left(\mathcal{X}^{0 *}\right)^{-1} \\
M^{k}=-\left(\mathcal{X}^{0 *}\right)^{-1} \sum_{p=0}^{k-1} \mathcal{X}^{k-p *} \otimes M^{p}
\end{array}\right.
$$

Low volume fraction asymptotics

$$
\left\{\begin{array}{l}
M^{0}=\left(\mathcal{X}^{0 *}\right)^{-1} \\
M^{k}=-\left(\mathcal{X}^{0 *}\right)^{-1} \sum_{p=0}^{k-1} \mathcal{X}^{k-p *} \otimes M^{p} \\
\mathcal{X}_{i j}^{k *}:=\int_{Y} \mathcal{X}_{i}^{k}(y) \cdot \boldsymbol{e}_{j} \mathrm{~d} y
\end{array}\right.
$$

Low volume fraction asymptotics

$$
\begin{gathered}
\left\{\begin{aligned}
M^{0}=\left(\mathcal{X}^{0 *}\right)^{-1} \\
M^{k}=-\left(\mathcal{X}^{0 *}\right)^{-1} \sum_{p=0}^{k-1} \mathcal{X}^{k-p *} \otimes M^{p}
\end{aligned}\right. \\
\mathcal{X}_{i j}^{k *}:=\int_{Y} \mathcal{X}_{i}^{k}(y) \cdot \boldsymbol{e}_{j} \mathrm{~d} y .
\end{gathered} \begin{aligned}
-\Delta_{y y} \mathcal{X}_{j}^{k+2}+\nabla_{y} \alpha_{j}^{k+2} & =\left(2 \partial_{I} \mathcal{X}_{j}^{k+1}-\alpha_{j}^{k+1} \boldsymbol{e}_{I}\right) \otimes e_{I}+\mathcal{X}_{j}^{k} \otimes I \text { in } Y \\
\operatorname{div}_{y}\left(\mathcal{X}_{j}^{k+2}\right) & =-\left(\mathcal{X}_{j}^{k+1}-\left\langle\mathcal{X}_{j}^{k+1}\right\rangle\right) \cdot \boldsymbol{e}_{I} \otimes e_{I} \text { in } Y \\
\mathcal{X}_{j}^{k+2} & =0 \text { on } \partial(\eta T)
\end{aligned}
$$

Low volume fraction asymptotics

$$
\begin{gathered}
\left\{\begin{aligned}
M^{0}=\left(\mathcal{X}^{0 *}\right)^{-1} \\
M^{k}=-\left(\mathcal{X}^{0 *}\right)^{-1} \sum_{p=0}^{k-1} \mathcal{X}^{k-p *} \otimes M^{p}
\end{aligned}\right. \\
\mathcal{X}_{i j}^{k *}:=\int_{Y} \mathcal{X}_{i}^{k}(y) \cdot \boldsymbol{e}_{j} \mathrm{~d} y .
\end{gathered} \begin{aligned}
-\Delta_{y y} \mathcal{X}_{j}^{k+2}+\nabla_{y} \alpha_{j}^{k+2} & =\left(2 \partial_{l} \mathcal{X}_{j}^{k+1}-\alpha_{j}^{k+1} \boldsymbol{e}_{l}\right) \otimes e_{I}+\mathcal{X}_{j}^{k} \otimes I \text { in } Y \\
\operatorname{div}_{y}\left(\mathcal{X}_{j}^{k+2}\right) & =-\left(\mathcal{X}_{j}^{k+1}-\left\langle\mathcal{X}_{j}^{k+1}\right\rangle\right) \cdot \boldsymbol{e}_{I} \otimes e_{I} \text { in } Y \\
\mathcal{X}_{j}^{k+2} & =0 \text { on } \partial(\eta T)
\end{aligned}
$$

We estimate $\left\langle\mathcal{X}_{j}^{k}\right\rangle$ as $\eta \rightarrow 0$.

Low volume fraction asymptotics

$$
\left.\begin{array}{c}
\left\{\begin{aligned}
M^{0}=\left(\mathcal{X}^{0 *}\right)^{-1} \\
M^{k}=-\left(\mathcal{X}^{0 *}\right)^{-1} \sum_{p=0}^{k-1} \mathcal{X}^{k-p *} \otimes M^{p}
\end{aligned}\right. \\
\mathcal{X}_{i j}^{k *}:=\int_{Y} \mathcal{X}_{i}^{k}(y) \cdot \boldsymbol{e}_{j} \mathrm{~d} y .
\end{array}\right\} \begin{aligned}
-\Delta_{y y} \mathcal{X}_{j}^{k+2}+\nabla_{y} \alpha_{j}^{k+2} & =\left(2 \partial_{I} \mathcal{X}_{j}^{k+1}-\alpha_{j}^{k+1} \boldsymbol{e}_{I}\right) \otimes e_{I}+\mathcal{X}_{j}^{k} \otimes I \text { in } Y \\
\operatorname{div}_{y}\left(\mathcal{X}_{j}^{k+2}\right) & =-\left(\mathcal{X}_{j}^{k+1}-\left\langle\mathcal{X}_{j}^{k+1}\right\rangle\right) \cdot \boldsymbol{e}_{I} \otimes e_{I} \text { in } Y \\
\mathcal{X}_{j}^{k+2} & =0 \text { on } \partial(\eta T)
\end{aligned}
$$

We estimate $\left\langle\mathcal{X}_{j}^{k}\right\rangle$ as $\eta \rightarrow 0$.
Since $\left|\left\langle\mathcal{X}_{j}^{k}\right\rangle\right| \leq C \eta^{1-d / 2}\left\|\nabla \mathcal{X}_{j}^{k}\right\|_{L^{2}\left(Y, \mathbb{R}^{d \times d}\right)}$, we need to estimate $\left\|\nabla \mathcal{X}_{j}^{k}\right\|_{L^{2}\left(Y, \mathbb{R}^{d \times d}\right)}$.

Energy inequality in the perforated cell

Lemma

Consider \boldsymbol{h} and g satisfying $\int_{P \backslash(\eta T)} g \mathrm{~d} x=0$. Let (\boldsymbol{v}, ϕ) be the unique solution to the following Stokes system:

$$
\left\{\begin{array}{r}
-\Delta \boldsymbol{v}+\nabla \phi=\boldsymbol{h} \text { in } P \backslash(\eta T) \\
\operatorname{div}(\boldsymbol{v})=g \text { in } P \backslash(\eta T) \\
\boldsymbol{v}=0 \text { on } \partial(\eta T) \\
\boldsymbol{v} \text { is } P \text {-periodic. }
\end{array}\right.
$$

Energy inequality in the perforated cell

Lemma

Consider \boldsymbol{h} and g satisfying $\int_{P \backslash(\eta T)} g \mathrm{~d} x=0$. Let (\boldsymbol{v}, ϕ) be the unique solution to the following Stokes system:

$$
\left\{\begin{aligned}
-\Delta \boldsymbol{v}+\nabla \phi & =\boldsymbol{h} \text { in } P \backslash(\eta T) \\
\operatorname{div}(\boldsymbol{v}) & =g \text { in } P \backslash(\eta T) \\
\boldsymbol{v} & =0 \text { on } \partial(\eta T) \\
\boldsymbol{v} & \text { is } P \text {-periodic. }
\end{aligned}\right.
$$

There exists a constant $C>0$ independent of $(\boldsymbol{v}, \phi), \eta, \boldsymbol{h}$ and g such that

$$
\begin{aligned}
& \|\nabla \boldsymbol{v}\|_{L^{2}\left(P \backslash(\eta T), \mathbb{R}^{d \times d}\right)}+\|\phi\|_{L^{2}(P \backslash(\eta T))} \\
& \quad \leq C\left(\|\boldsymbol{h}-\langle\boldsymbol{h}\rangle\|_{L^{2}\left(P \backslash(\eta T), \mathbb{R}^{d}\right)}+\eta^{1-d / 2}|\langle\boldsymbol{h}\rangle|+\|g\|_{L^{2}(P \backslash(\eta T))}\right) .
\end{aligned}
$$

Energy inequality in the perforated cell

Lemma

Consider \boldsymbol{h} and g satisfying $\int_{P \backslash(\eta T)} g \mathrm{~d} x=0$. Let (\boldsymbol{v}, ϕ) be the unique solution to the following Stokes system:

$$
\left\{\begin{aligned}
-\Delta \boldsymbol{v}+\nabla \phi & =\boldsymbol{h} \text { in } P \backslash(\eta T) \\
\operatorname{div}(\boldsymbol{v}) & =g \text { in } P \backslash(\eta T) \\
\boldsymbol{v} & =0 \text { on } \partial(\eta T) \\
\boldsymbol{v} & \text { is } P \text {-periodic. }
\end{aligned}\right.
$$

There exists a constant $C>0$ independent of $(\boldsymbol{v}, \phi), \eta, \boldsymbol{h}$ and g such that

$$
\begin{aligned}
& \|\nabla \boldsymbol{v}\|_{L^{2}\left(P \backslash(\eta T), \mathbb{R}^{d \times d}\right)}+\|\phi\|_{L^{2}(P \backslash(\eta T))} \\
& \quad \leq C\left(\|\boldsymbol{h}-\langle\boldsymbol{h}\rangle\|_{L^{2}\left(P \backslash(\eta T), \mathbb{R}^{d}\right)}+\eta^{1-d / 2}|\langle\boldsymbol{h}\rangle|+\|g\|_{L^{2}(P \backslash(\eta T))}\right) .
\end{aligned}
$$

$\nabla \boldsymbol{v}$ grows as $\eta \rightarrow 0$ only if $|\langle\boldsymbol{h}\rangle| \neq 0$.

A modified cascade of equations

$$
\left\{\begin{aligned}
-\Delta_{y y} \mathcal{X}_{j}^{k+2}+\nabla_{y} \alpha_{j}^{k+2} & =\left(2 \partial_{I} \mathcal{X}_{j}^{k+1}-\alpha_{j}^{k+1} \boldsymbol{e}_{I}\right) \otimes e_{I}+\mathcal{X}_{j}^{k} \otimes I \text { in } Y \\
\operatorname{div}_{y}\left(\mathcal{X}_{j}^{k+2}\right) & =-\left(\mathcal{X}_{j}^{k+1}-\left\langle\mathcal{X}_{j}^{k+1}\right\rangle\right) \cdot \boldsymbol{e}_{I} \otimes e_{I} \text { in } Y \\
\mathcal{X}_{j}^{k+2} & =0 \text { on } \partial(\eta T)
\end{aligned}\right.
$$

$\left\|\nabla \mathcal{X}_{j}^{k+2}\right\|$ grows because of $\left\langle\mathcal{X}_{j}^{k}\right\rangle \otimes I \neq 0$.

A modified cascade of equations

$$
\left\{\begin{aligned}
-\Delta_{y y} \mathcal{X}_{j}^{k+2}+\nabla_{y} \alpha_{j}^{k+2} & =\left(2 \partial_{l} \mathcal{X}_{j}^{k+1}-\alpha_{j}^{k+1} \boldsymbol{e}_{\boldsymbol{I}}\right) \otimes e_{I}+\mathcal{X}_{j}^{k} \otimes I \text { in } Y \\
\operatorname{div}_{y}\left(\mathcal{X}_{j}^{k+2}\right) & =-\left(\mathcal{X}_{j}^{k+1}-\left\langle\mathcal{X}_{j}^{k+1}\right\rangle\right) \cdot \boldsymbol{e}_{I} \otimes e_{I} \text { in } Y \\
\mathcal{X}_{j}^{k+2} & =0 \text { on } \partial(\eta T)
\end{aligned}\right.
$$

$\left\|\nabla \mathcal{X}_{j}^{k+2}\right\|$ grows because of $\left\langle\mathcal{X}_{j}^{k}\right\rangle \otimes I \neq 0$.
We define a modified cascade of equations with zero-mean right hand sides:

$$
\left\{\begin{aligned}
-\Delta \mathcal{Y}_{j}^{k+2}+\nabla \omega_{j}^{k+2} & =\left(2 \partial \mathcal{Y}_{j}^{k+1}-\omega_{j}^{k+1} \boldsymbol{e}_{l}\right) \otimes e_{I}+\left(\mathcal{Y}_{j}^{k}-\left\langle\mathcal{Y}_{j}^{k}\right\rangle\right) \otimes I, \text { in } Y \\
\operatorname{div}\left(\mathcal{Y}_{j}^{k+2}\right) & =-\left(\mathcal{Y}_{j}^{k+1}-\left\langle\boldsymbol{\mathcal { Y }}_{j}^{k+1}\right\rangle\right) \cdot \boldsymbol{e}_{l} \otimes e_{I} \text { in } Y,
\end{aligned}\right.
$$

A modified cascade of equations

$$
\left\{\begin{aligned}
-\Delta_{y y} \mathcal{X}_{j}^{k+2}+\nabla_{y} \alpha_{j}^{k+2} & =\left(2 \partial_{l} \mathcal{X}_{j}^{k+1}-\alpha_{j}^{k+1} \boldsymbol{e}_{I}\right) \otimes e_{l}+\mathcal{X}_{j}^{k} \otimes I \text { in } Y \\
\operatorname{div}_{y}\left(\mathcal{X}_{j}^{k+2}\right) & =-\left(\mathcal{X}_{j}^{k+1}-\left\langle\mathcal{X}_{j}^{k+1}\right\rangle\right) \cdot \boldsymbol{e}_{I} \otimes e_{I} \text { in } Y \\
\mathcal{X}_{j}^{k+2} & =0 \text { on } \partial(\eta T)
\end{aligned}\right.
$$

$\left\|\nabla \mathcal{X}_{j}^{k+2}\right\|$ grows because of $\left\langle\mathcal{X}_{j}^{k}\right\rangle \otimes I \neq 0$.
We define a modified cascade of equations with zero-mean right hand sides:

$$
\left\{\begin{aligned}
-\Delta \mathcal{Y}_{j}^{k+2}+\nabla \omega_{j}^{k+2} & =\left(2 \partial \boldsymbol{\mathcal { Y }}_{j}^{k+1}-\omega_{j}^{k+1} \boldsymbol{e}_{l}\right) \otimes e_{I}+\left(\mathcal{Y}_{j}^{k}-\left\langle\mathcal{Y}_{j}^{k}\right\rangle\right) \otimes I, \text { in } Y \\
\operatorname{div}\left(\mathcal{Y}_{j}^{k+2}\right) & =-\left(\mathcal{Y}_{j}^{k+1}-\left\langle\mathcal{Y}_{j}^{k+1}\right\rangle\right) \cdot \boldsymbol{e}_{l} \otimes e_{l} \text { in } Y,
\end{aligned}\right.
$$

Thanks to the previous lemma,

$$
\begin{gathered}
\left\|\nabla \mathcal{Y}_{j}^{k}\right\|_{L^{2}\left(P \backslash(\eta T), \mathbb{R}^{d \times d}\right)} \leq C_{k} \eta^{1-d / 2} \text { for any } k \in \mathbb{N} \\
\qquad\left\langle\mathcal{Y}_{j}^{k}\right\rangle \leq C_{k} \eta^{2-d} \text { for any } k \in \mathbb{N}
\end{gathered}
$$

Recursive formula for the coefficients M^{k}

Knowing this, we can prove with weak convergence techniques

$$
\mathcal{Y}^{0 *} \sim \eta^{2-d} F^{-1} \text { and } \mathcal{Y}^{k *}=o\left(\eta^{2-d}\right) \text { for } k \geqslant 1 .
$$

where F is a matrix tensor which can be explicited.

Recursive formula for the coefficients M^{k}

Knowing this, we can prove with weak convergence techniques

$$
\mathcal{Y}^{0 *} \sim \eta^{2-d} F^{-1} \text { and } \mathcal{Y}^{k *}=o\left(\eta^{2-d}\right) \text { for } k \geqslant 1 .
$$

where F is a matrix tensor which can be explicited. The next key ingredient:

$$
\mathcal{Y}^{k}(y)=\mathcal{X}^{k}(y)-\sum_{l=0}^{k-2} \mathcal{Y}^{\prime}(y) \otimes \mathcal{X}^{k-I-2 *} \otimes I
$$

Recursive formula for the coefficients M^{k}

Knowing this, we can prove with weak convergence techniques

$$
\mathcal{Y}^{0 *} \sim \eta^{2-d} F^{-1} \text { and } \mathcal{Y}^{k *}=o\left(\eta^{2-d}\right) \text { for } k \geqslant 1 .
$$

where F is a matrix tensor which can be explicited. The next key ingredient:

$$
\begin{aligned}
& \mathcal{Y}^{k}(y)=\mathcal{X}^{k}(y)-\sum_{I=0}^{k-2} \mathcal{Y}^{\prime}(y) \otimes \mathcal{X}^{k-I-2 *} \otimes I \\
& \Longrightarrow \mathcal{X}^{k *}=\mathcal{Y}^{k *}+\sum_{I=0}^{k-2} \mathcal{Y}^{\prime *} \otimes \mathcal{X}^{k-I-2 *} \otimes I
\end{aligned}
$$

Recursive formula for the coefficients M^{k}

Knowing this, we can prove with weak convergence techniques

$$
\mathcal{Y}^{0 *} \sim \eta^{2-d} F^{-1} \text { and } \mathcal{Y}^{k *}=o\left(\eta^{2-d}\right) \text { for } k \geqslant 1 .
$$

where F is a matrix tensor which can be explicited. The next key ingredient:

$$
\begin{aligned}
& \mathcal{Y}^{k}(y)=\mathcal{X}^{k}(y)-\sum_{I=0}^{k-2} \mathcal{Y}^{\prime}(y) \otimes \mathcal{X}^{k-I-2 *} \otimes I . \\
& \Longrightarrow \mathcal{X}^{k *}=\mathcal{Y}^{k *}+\underbrace{\sum_{l=0}^{k-2} \mathcal{Y}^{\prime *} \otimes \mathcal{X}^{k-I-2 *} \otimes I}_{\text {Cauchy product ! }}
\end{aligned}
$$

Recursive formula for the coefficients M^{k}

$$
\mathcal{X}^{k *}=\underbrace{\sum_{I=0}^{k-2} \mathcal{Y}^{\prime *} \otimes \mathcal{X}^{k-I-2 *} \otimes I}_{\text {Cauchy product ! }}
$$

Since

$$
\sum_{p=0}^{k} \mathcal{X}^{k-p *} \otimes M^{p}= \begin{cases}I, & \text { if } k=0 \\ 0, & \text { if } k \geq 1\end{cases}
$$

we obtain

$$
\sum_{p=0}^{k} \mathcal{Y}^{p *} \otimes M^{k-p}=-\mathcal{Y}^{k-2 *} \otimes I \text { for any } k \geqslant 2
$$

Recursive formula for the coefficients M^{k}

$$
\mathcal{X}^{k *}=\underbrace{\sum_{I=0}^{k-2} \mathcal{Y}^{\prime *} \otimes \mathcal{X}^{k-I-2 *} \otimes I}_{\text {Cauchy product ! }}
$$

Since

$$
\sum_{p=0}^{k} \mathcal{X}^{k-p *} \otimes M^{p}= \begin{cases}I, & \text { if } k=0 \\ 0, & \text { if } k \geq 1\end{cases}
$$

we obtain

$$
\sum_{p=0}^{k} \mathcal{Y}^{p *} \otimes M^{k-p}=-\mathcal{Y}^{k-2 *} \otimes I \text { for any } k \geqslant 2
$$

which is equivalent to
$\mathcal{Y}^{0 *} \otimes M^{k}+\cdots+\mathcal{Y}^{k-3 *} \otimes M^{3}+\mathcal{Y}^{k-2 *} \otimes\left(M^{2}+I\right)+\mathcal{Y}^{k-1 *} \otimes M^{1}+\mathcal{Y}^{0 *} \otimes M^{0}=0$.
for any $k \geqslant 0$.

Recursive formula for the coefficients M^{k}

$$
\mathcal{Y}^{0 *} \otimes M^{k}+\cdots+\mathcal{Y}^{k-3 *} \otimes M^{3}+\mathcal{Y}^{k-2-*} \otimes\left(M^{2}+I\right)+\mathcal{Y}^{k-1 *} \otimes M^{1}+\mathcal{Y}^{0 *} \otimes M^{0}=0 .
$$

$$
\text { for any } k \geqslant 0 \text {. }
$$

Recursive formula for the coefficients M^{k}

$$
\mathcal{Y}^{0 *} \otimes M^{k}+\cdots+\mathcal{Y}^{k-3 *} \otimes M^{3}+\mathcal{Y}^{k-2-*} \otimes\left(M^{2}+I\right)+\mathcal{Y}^{k-1 *} \otimes M^{1}+\mathcal{Y}^{0 *} \otimes M^{0}=0 .
$$

for any $k \geqslant 0$.

$$
\mathcal{Y}^{0 *} \sim \eta^{2-d} F^{-1} \text { and } \mathcal{Y}^{k *}=o\left(\eta^{2-d}\right) \text { for } k \geqslant 1 .
$$

Recursive formula for the coefficients M^{k}

$\mathcal{Y}^{0 *} \otimes M^{k}+\cdots+\mathcal{Y}^{k-3 *} \otimes M^{3}+\mathcal{Y}^{k-2-*} \otimes\left(M^{2}+I\right)+\mathcal{Y}^{k-1 *} \otimes M^{1}+\mathcal{Y}^{0 *} \otimes M^{0}=0$.
for any $k \geqslant 0$.

$$
\mathcal{Y}^{0 *} \sim \eta^{2-d} F^{-1} \text { and } \mathcal{Y}^{k *}=o\left(\eta^{2-d}\right) \text { for } k \geqslant 1 .
$$

Combining the two equations, we find

$$
\left\{\begin{array}{l}
M^{0} \sim \eta^{d-2} F \\
M^{1}=o\left(\eta^{d-2}\right) \\
M^{2}=-I+o\left(\eta^{d-2}\right) \\
M^{k}=o\left(\eta^{d-2}\right) \text { for any } k>2
\end{array}\right.
$$

as claimed.

Recursive formula for the coefficients M^{k}

- Finally, we compute asymptotics for the coefficients M^{k} in the regime $\eta \rightarrow 0$.

$$
\left\{\begin{aligned}
\sum_{k=0}^{+\infty} \epsilon^{k-2} M^{k} \cdot \nabla^{k} \boldsymbol{u}_{\epsilon}^{*}+\nabla p_{\epsilon}^{*} & =\boldsymbol{f} \text { in } D \\
\operatorname{div}\left(\boldsymbol{u}_{\epsilon}^{*}\right) & =0 \text { in } D
\end{aligned}\right.
$$

- We find:

$$
\left\{\begin{array}{l}
M^{0} \sim \eta^{d-2} F \\
M^{1}=o\left(\eta^{d-2}\right) \\
M^{2}=-I+o\left(\eta^{d-2}\right) \\
M^{k}=o\left(\eta^{d-2}\right) \text { for any } k>2
\end{array}\right.
$$

- Since $\epsilon^{k-2} \eta^{d-2}=\epsilon^{k}\left(a_{\epsilon} / \sigma_{\epsilon}\right)^{d-2}$, the high-order model converges coefficient-wise to either of the Stokes, Brinkman or Darcy equation as $\eta \rightarrow 0$.

The end

Thank you for your attention!

