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Figure: Settings of the heat exchanger
topology optimization problem.

I Navier-Stokes flows in the hot
and cold phases Ωf ,hot and
Ωf ,cold .

I Thermal convection in the fluid
phase Ωf = Ωf ,hot ∪ Ωf ,cold .

I Thermal diffusion in Ωs and Ωf

with conductivities ks >> kf .

I Non-penetration constraint:

d(Ωf ,hot,Ωf ,cold) > dmin.

I In 3D!
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The boundary variation method of Hadamard

min
Γ

J(Γ)
⌦f

⌦s

�

✓ �✓

Γθ = (I + θ)Γ, with θ ∈W 1,∞
0 (D,Rd), ||θ||W 1,∞(Rd ,Rd )< 1.

J(Γθ) = J(Γ) +
dJ

dθ
(θ) + o(θ), with

|o(θ)|
||θ||W 1,∞(D,Rd )

θ→0−−−→ 0.
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I. Shape derivatives
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II. Null space optimization
algorithm
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Objective function

III. Parallel computing
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V. Heat exchangers
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Coupled physics system

Ωs

Ωf

D
Ωf

I Incompressible Navier-Stokes system for the velocity and pressure (v , p) in Ωf

−div(σf (v , p)) + ρ∇v v = ff in Ωf

I Convection-diffusion for the temperature T in Ωf and Ωs :

−div(kf∇Tf ) + ρv · ∇Tf = Qf in Ωf

−div(ks∇Ts) = Qs in Ωs

I Boundary conditions on Γ = ∂Ωf :
Tf = Ts on Γ

kf∇Tf · n = ks∇Ts · n on Γ

v = 0 on Γ.
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Shape derivatives

Proposition

Let J(Γ,T , v , p) an arbitrary cost function. If J has continuous partial derivatives, then
Γ 7→ J(Γ, u(Γ),T (Γ), v(Γ), p(Γ)) is shape differentiable and the shape derivative reads1:

d

dθ

[
J(Γθ , v(Γθ), p(Γθ),T (Γθ), u(Γθ))

]
(θ)

=
∂J

∂θ
(θ) +

∫
Γ
(ff · w − σf (v , p) : ∇w + n · σf (w , q)∇v · n + n · σf (v , p)∇w · n)(θ · n)ds

+

∫
Γ

(
ks∇Ts · ∇Ss − kf∇Tf · ∇Sf + Qf Sf − QsSs − 2ks

∂Ts

∂n
∂Ss

∂n
+ 2kf

∂Tf

∂n
∂Sf

∂n

)
(θ · n)ds

1Feppon et al., Shape optimization of a coupled thermal fluid–structure problem in a
level set mesh evolution framework (2019)



Body-fitted meshes

We rely on body fitted meshes2,3.

I Fluid-Solid interface Γ exactly
captured, no need of physics
interpolation because no
porous regions.

I Remeshing with Mmg enabling
mesh size control.

2Allaire, Dapogny, and Frey, Shape optimization with a level set based mesh evolution
method (2014)
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level set mesh evolution framework (2019)
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Null space optimization algorithm

I Nonlinear constrained optimization on
manifolds with a moderate number of
constraints

I Generalization of the unconstrained
gradient flow: no hard tuning of
parameters

I Adapted to the infinite dimensional
setting of the method of Hadamard

Open source implementation4:
https://gitlab.com/florian.feppon/null-space-optimizer

pip install nullspace optimizer

4Feppon, Allaire, and Dapogny, Null space gradient flows for constrained optimization
with applications to shape optimization (2019)

https://gitlab.com/florian.feppon/null-space-optimizer
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Parallel computing

I Use of Domain Decomposition and adapted preconditioners for solving
finite element problems : all FEM related operations are achieved in
parallel5.

I We solve fluid FEM problems on meshes up to 4.8 millions of
Tetrahedra with 30 CPUs.

I Mesh adaptation and Isosurface discretization is still sequential. A
future release of (Par)Mmg will allow to do it in parallel.

5Feppon et al., Topology optimization of thermal fluid–structure systems using
body-fitted meshes and parallel computing (2020)
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Non mixing constraint
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Figure: Settings of the heat exchanger topology
optimization problem .

Non-penetration constraint:

d(Ωf ,hot,Ωf ,cold) > dmin.

We enforce it by imposing

∀x ∈ Ωf ,cold, dΩf ,hot
(x) > dmin,

where dΩf ,hot
is the signed

distance function to the
domain Ωf ,hot.
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Non-penetration constraint:

d(Ωf ,hot,Ωf ,cold) > dmin.

We enforce it by imposing

∀x ∈ Ωf ,cold, dΩf ,hot
(x) > dmin,

where dΩf ,hot
is the signed

distance function to the
domain Ωf ,hot.



The signed distance function

The signed distance function dΩ to the domain Ω ⊂ D is defined by:

∀x ∈ D, dΩ(x) =


− min

y∈∂Ω
||y − x || if x ∈ Ω,

min
y∈∂Ω

||y − x || if x ∈ D\Ω.



2D heat exchangers

dmin
Γ

D

Heat exchanger problem with limited pressure loss and non-mixing constraint:

min
Γ

J(Ωf ) = −

(∫
Ωf ,cold

ρcpv · ∇Tdx −
∫

Ωf ,hot

ρcpv · ∇Tdx

)

s.c .


DP(Ωf ) =

∫
∂ΩD

f

pds −
∫
∂ΩN

f

pds ≤ DP0

Qhot↔cold(Ωf ) > dmin.
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Shape derivatives of geometric constraints

For instance

Qhot↔cold(Ωf ) :=

(∫
Ωf ,cold

1

|dΩf ,hot
|p
dx

)− 1
p

'

∣∣∣∣∣
∣∣∣∣∣ 1

dΩf ,hot

∣∣∣∣∣
∣∣∣∣∣
−1

L∞(Ωf ,cold )

.

This reduces to the setting of computing the shape derivative of some
penalty functional Qhot↔cold(Ωf ) with:

Qhot↔cold(Ωf ) :=

∫
D
j(dΩf ,hot

)dx .
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Shape derivatives of geometric constraints

The shape derivative of Qhot↔cold(Ωf ) is given by6:

Q ′hot↔cold(Ω)(θ) =

∫
∂Ωf ,hot

u(y) θ · n dy

with u(y) = −
∫
z∈ray(y)

j ′(dΩf ,hot
(z))

∏
1≤i≤n−1

(1 + κi (y)dΩf ,hot
(z))dz , ∀y ∈ ∂Ω.

The computation of u(y) requires a priori
integration along the normal rays and the
computation of curvatures κi (y).

6Allaire, Jouve, and Michailidis, Thickness control in structural optimization via a level
set method (2016)
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Shape derivatives of geometric constraints

It turns out that it is possible to compute u without integrating along the rays7:

Proposition

Let û ∈ Vω be the solution to the variational problem

∀v ∈ Vω,

∫
∂Ωf ,hot

ûvds +

∫
D

ω(∇dΩf ,hot
· ∇û)(∇dΩf ,hot

· ∇v)dx = −
∫
D

j ′(dΩf ,hot
)vdx .

Then u(y) = û(y) for any y ∈ ∂Ωf ,hot .

I This variational problem can easily be solved with FEM in 2D and 3D

I This allows to handle conveniently geometric constraints (e.g. maximum
thickness, minum distance, etc. . . ) in 2D and 3D level set based topology
optimization.

7Feppon, Allaire, and Dapogny, A variational formulation for computing shape
derivatives of geometric constraints along rays (2019)
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Let û ∈ Vω be the solution to the variational problem

∀v ∈ Vω,

∫
∂Ωf ,hot
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7Feppon, Allaire, and Dapogny, A variational formulation for computing shape
derivatives of geometric constraints along rays (2019)
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2D Heat Exchangers with non-mixing constraint

(a) Initial temperature (b) Final temperature.

(c) Intermediate iterations 0, 8, 20, 50, 88 et 200.



3D fluid-to-fluid heat exchanger

x

z
y

d(Ωf ,hot,Ωf ,cold) > dmin

Thot

Tcold

D

Ωf ,hot

Ωf ,cold

Figure: Schematic of the 3D setting.



3D fluid-to-fluid heat exchanger

Figure: Initial distribution of fluid considered for the 3D heat exchanger test case.



3D fluid-to-fluid heat exchanger



3D fluid-to-fluid heat exchanger



3D fluid-to-fluid heat exchanger

Figure: Intermediate iterations.



3D fluid-to-fluid heat exchanger

(a) Cold phase (b) Hot phase

Figure: Separate plots of the topologically optimized cold and hot fluid phases in the
configuration dmin = 0.04.



3D fluid-to-fluid heat exchanger

Figure: Cut of the resulting solid domain



3D fluid-to-fluid heat exchanger

Many thanks for your attention!


